

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IS YOUR LLM REALLY MASTERING THE CONCEPT? A MULTI-AGENT BENCHMARK

Anonymous authors

Paper under double-blind review

ABSTRACT

Concepts are generalized abstractions that allow humans to categorize and reason efficiently. Whether Large Language Models (LLMs) possess a similar understanding of conceptual relationships, however, is not yet well established. Existing benchmarks primarily focus on factual recall or narrow tasks (e.g., multiple-choice question answering or knowledge quizzes), offering limited insight into whether models understand conceptual relationships and subtle distinctions (e.g., poetry vs. prose). Many also rely on static datasets that risk overfitting. To address this gap, we introduce CK-Arena, a multi-agent interaction benchmark inspired by the Undercover game, designed to evaluate the mastery of conceptual feature knowledge by LLMs. In CK-Arena, models must describe, differentiate, and infer distinguishing features of concepts from partial information, testing their ability to reason about both commonalities and differences across concept boundaries. The benchmark offers scalable datasets, rigorous evaluation protocols, and flexible extension methods, enabling comprehensive assessment of LLMs' conceptual understanding across multiple dimensions. Experimental results show that LLMs' understanding of conceptual knowledge varies significantly across different categories and is not strictly aligned with general model capabilities. The code is made publicly available at: <https://anonymous.4open.science/r/CK-Arena/readme.md>.

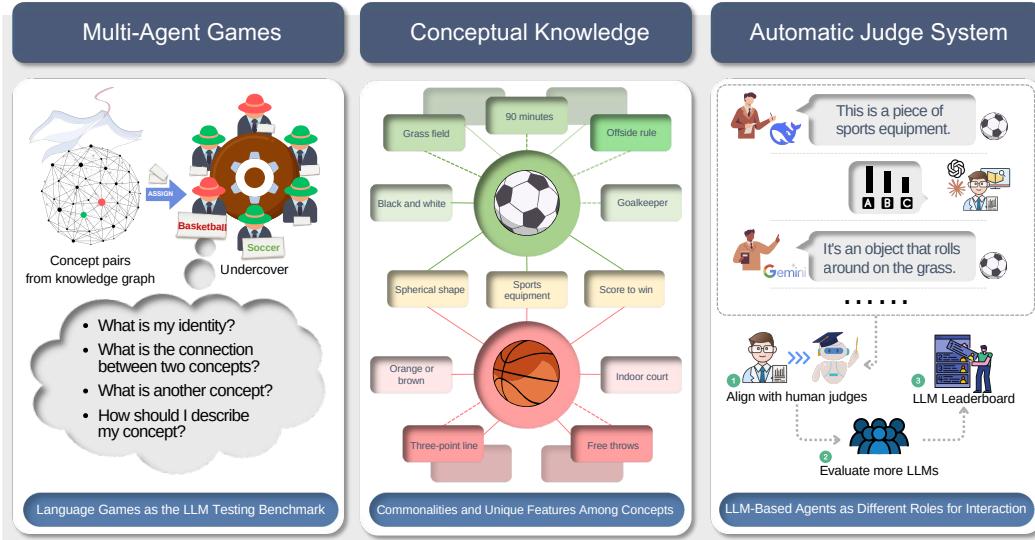


Figure 1: **Conceptual knowledge arena (CK-Arena).** The benchmark aims to evaluate the mastery of conceptual feature knowledge by LLMs. It builds on the interactive game *Undercover*, where concept pairs with overlapping and distinct features are assigned to LLM agents. Acting as players, models generate descriptions, infer similarities and differences, and make strategic decisions with partial information. As judges, they evaluate responses for sentence metrics. This multi-agent setup creates a dynamic and scalable environment for assessing conceptual understanding.

054

1 INTRODUCTION

055
 056 A concept is a high-level abstraction of knowledge that captures shared properties of entities and their
 057 characteristic attributes. Understanding concepts requires recognizing their relationships as well as
 058 the similarities and differences that distinguish closely related ones, which is a fundamental aspect
 059 of human cognition (Wu et al., 2012; Gong et al., 2016; Ji et al., 2019; Zhang et al., 2021; Wang
 060 et al., 2024; Cao et al., 2024). For example, the concept *Primates* unites animals such as *monkeys* and
 061 *apes* through features like opposable thumbs, forward-facing eyes, and advanced cognitive abilities,
 062 while also involving subtle distinctions such as the presence of tails in most *monkeys* but not in *apes*.
 063 Human cognition naturally uses such conceptual structures for reasoning and adaptation, but it is still
 064 uncertain to what extent Large Language Models (LLMs) internalize and exploit these abstractions.

065 Recent work has highlighted the importance of conceptual knowledge as a core aspect of intelligence.
 066 Studies have examined conceptual design generation (Ma et al., 2023), concept editing (Wang et al.,
 067 2024), and abstract concept understanding (Liao et al., 2023; Chen et al., 2025), showing growing
 068 interest in concept-based reasoning for LLMs. Yet progress remains constrained by the lack of
 069 systematic benchmarks. Traditional benchmarks have advanced LLMs performance (Hendrycks et al.;
 070 Zellers et al., 2019; Liang et al.; Mostafazadeh et al., 2017), but most rely on static question–answer
 071 formats that test token-level accuracy and factual recall. These evaluations reduce knowledge to
 072 isolated items and mainly measure information retrieval, offering little evidence of whether models
 073 understand conceptual relationships or can distinguish closely related concepts. For example, a model
 074 may identify that *monkeys* and *apes* both belong to *Primates*, but this does not show understanding of
 075 the hierarchical relationships or distinctive features between the two groups. In addition, fixed formats
 076 such as multiple-choice questions provide only a partial view of reasoning, and the reliance on static
 077 datasets limits scalability, since building and updating them requires extensive human annotation.

078 Interactive game-based environments have emerged as an alternative (Lin et al., 2023; Zhou et al.,
 079 2023; Wu et al., 2023), offering dynamic contexts for multi-step reasoning. However, most existing
 080 simulations emphasize strategy, providing limited insight into whether models can represent and
 081 communicate conceptual knowledge. These gaps call for a systematic and scalable benchmark that
 082 directly evaluates conceptual reasoning in realistic interactive settings. To address this gap, we
 083 introduce CK-Arena, an interactive multi-agent benchmark for evaluating LLMs’ ability to represent,
 084 differentiate, and communicate conceptual knowledge (Figure 1). We evaluate the LLMs by having
 085 them play the *undercover* (*Who is the spy?*) game, a multi-agent language game that involves
 086 describing a targeting word and identifying each player’s role, and by assessing their multi-turn
 087 performance as well as their in-game statements. Unlike traditional dataset-based or strategy-
 088 focused benchmarks, CK-Arena engages models with concept pairs that share both overlapping and
 089 distinctive features, and offers scalable datasets, systematic evaluation protocols, and extensible tools
 for assessing conceptual understanding.

090 For evaluation, LLMs serve as referees and are combined with human calibration to ensure reliability.
 091 We test a set of recent language models over multiple rounds using a convergent rating system,
 092 producing an intuitive leaderboard of their relative performance. Beyond overall ratings, we also
 093 analyze results from different perspectives, including in-game success and text generation quality.
 094 Experimental findings show that LLMs’ conceptual understanding varies across categories and does
 095 not consistently align with their general capabilities, highlighting the need for targeted evaluation
 096 beyond surface-level performance.

097 In summary, our contributions are four-fold: (1) we propose CK-Arena, a benchmark for conceptual
 098 understanding in interactive multi-agent settings; (2) we develop scalable datasets used in CK-
 099 Arena for concept representation, differentiation, and connection, with a simple and expandable data
 100 construction process; (3) we conduct a large number of experiments on several large-scale models,
 101 and obtained knowledge preferences and behavior preferences of specific large-scale models through
 102 qualitative and quantitative analysis; and (4) we establish a scoring system to integrate fine-grained
 103 indicators into a comprehensive score, and launch a leaderboard for tested large models.

104

2 RELATED WORKS

105 **Benchmarks for Conceptual Knowledge Reasoning.** Commonsense reasoning benchmarks play
 106 an important role in assessing the capabilities of Large Language Models (LLMs). Widely used

108 benchmarks such as Story Cloze Test (Mostafazadeh et al., 2017), Choice of Plausible Alternatives
 109 (COPA) (Roemmel et al., 2011), and HellaSwag (Zellers et al., 2019) largely rely on static formats
 110 like multiple-choice questions or binary judgments. While effective for evaluating factual recall and
 111 superficial understanding, these static formats do not fully reflect real-world interactive scenarios.
 112 More recent benchmarks, including MMLU (Hendrycks et al.), CMMLU (Li et al., 2024), BIG-
 113 Bench (Srivastava et al., 2022), and HELM (Liang et al.), have introduced tasks such as logical
 114 reasoning, cloze tests, and multi-turn Q&A to expand the scope of evaluation. Although these efforts
 115 represent progress toward more interactive assessments, they still focus predominantly on factual
 116 recall and task-specific reasoning, offering limited insight into how well LLMs understand and
 117 manipulate conceptual knowledge boundaries in evolving contexts. In contrast, CK-Arena is designed
 118 to explicitly evaluate conceptual mastery by immersing LLMs in interactive, multi-agent gameplay
 119 that requires real-time understanding of semantic boundaries.
 120

121 **Game-based Evaluation.** Multi-agent Games provide a unique platform for evaluating AI capabili-
 122 ties, offering interactive and dynamic environments that differ from traditional benchmarks built on
 123 static datasets. They have been used to measure various skills, including environmental perception
 124 and planning in exploratory games (Wang et al., 2023; Wu et al., 2023), strategic decision-making
 125 in competitive games (Feng et al., 2023; Ma et al., 2024), team collaboration in cooperative games
 126 (Agashe et al., 2023; Mosquera et al., 2024), and social interaction and language comprehension
 127 in communication games (Light et al.; Qiao et al., 2023; Wu et al., 2024). Compared to static
 128 evaluations, game-based benchmarks offer more realistic interaction scenarios that better mimic
 129 real-world decision-making. However, many game benchmarks rely on fixed formats and rules,
 130 resulting in gameplay that is highly similar across multiple testing rounds and limiting their evaluation
 131 scope. Undercover (Xu et al., 2024) stands out because its interchangeable word pairs generate varied
 132 content within the same structure. Although prior work has used Undercover as a benchmark (Xu
 133 & Zhong, 2025; Dong et al., 2024; Wei et al., 2025), these studies primarily explored method de-
 134 velopment and decision-making, without leveraging its unique potential for evaluating conceptual
 135 understanding. CK-Arena fills this gap by integrating concept-based reasoning within multi-agent
 136 interactions, allowing LLMs to explore and articulate conceptual relationships dynamically, mirroring
 137 real-world cognitive processing.
 138

3 CK-ARENA: CONCEPTUAL KNOWLEDGE ARENA

139 This section introduces the construction of CK-Arena, detailing the choice of the *Undercover* game as
 140 the evaluation paradigm, the metrics employed to capture different dimensions of model performance,
 141 and the overall workflow for building, running, and analyzing the evaluation. Together, these
 142 components establish CK-Arena as a rigorous and scalable framework for uncovering both the
 143 strengths and limitations of LLMs in conceptual knowledge.
 144

3.1 THE UNDERCOVER GAME FOR EVALUATION

145 **Game Rule.** CK-Arena is built on
 146 the multi-agent language game *Under-
 147 cover* (Xu et al., 2024), which is originally
 148 designed to test the players’ reasoning and
 149 strategic communication abilities. In the
 150 game, players are assigned either as “civilians”
 151 who are the majority of the players and know a
 152 common word, or as “undercover” who are given
 153 a different but related word. Note that each player
 154 is informed of their assigned concept word but remains
 155 unaware of their team identity or the concepts
 156 held by others. Through rounds of descrip-
 157 tion, players must identify who the under-
 158 cover agents are while undercover agents
 159 try to remain undetected by providing de-
 160 scriptions vague enough to seem plausible
 161



Figure 2: **Flowchart of gameplay and win conditions in Undercover.** Players alternate between describing their assigned concepts and voting to eliminate suspects. The game ends when undercover agents equal the number of civilians (undercover win) or when all undercover agents are eliminated (civilian win).

162 without revealing their ignorance of the
 163 civilians' word. After each round, play-
 164 ers participate in a voting process to eliminate the individual they suspect to be an undercover agent.
 165 The game concludes under one of two conditions: (1) if all undercover agents are eliminated, the
 166 civilians win; (2) if the number of civilians and undercover agents is equal, the undercover agents
 167 win. The flowchart of gameplay is illustrated in Figure 2.

168
 169 **Data Statistics** The dataset we provided contains a total of 529 English pairs of concepts, including
 170 220 concrete noun pairs, 100 abstract noun pairs, 109 adverb pairs, and 100 verb pairs. After initial
 171 experimental attempts, we concluded that concrete noun pairs are more suitable for our experimental
 172 setup and overall research questions. Therefore, for the specific experiments, we selected 12 different
 173 categories from the 220 concrete noun pairs. These categories consist of concrete noun pairs that are
 174 closest to our daily life and conversational contexts.

175
 176 **Why Use Undercover to Evaluate?** To illustrate the effectiveness of the *Undercover* game in
 177 CK-Arena, consider an example where the concepts *football* and *basketball* are assigned to players,
 178 with *basketball* designated as the undercover concept. During the speaking phase, the undercover
 179 player must analyze the descriptions provided by others about *football*, identify shared attributes,
 180 and strategically describe *basketball* in a way that overlaps with common features, such as “*This is*
 181 *a ball-shaped sports equipment*” or “*This sport is played by two teams*.” This task requires more
 182 than superficial word associations or token co-occurrence. It calls for understanding the similarities
 183 and differences between concepts. A model that fails to capture these relationships and relies on
 184 shallow generation risks exposing its undercover role and being eliminated. With its emphasis on
 185 conceptual understanding, interactive dynamics, and scalable coverage, CK-Arena provides a rigorous
 186 benchmark for evaluating LLMs’ understanding of conceptual knowledge.

187 3.2 LARGE LANGUAGE MODELS AS PLAYERS

188
 189 **Pipeline.** LLM participates in CK-Arena’s evaluation by playing multiple rounds of games as a
 190 player. In our configuration, we set up 6 players for each game, consisting of 4 civilians and 2 under-
 191 cover agents. The game begins with an initialization phase in which players are randomly assigned
 192 roles: civilians receive a primary concept, while undercover agents are given a similar but distinct
 193 concept. During gameplay, players take turns producing statements that describe their assigned con-
 194 cept while also attempting to identify potential undercover agents or civilians. Specifically, a player’s
 195 task in the game involves two main components: (1) leveraging partial feature descriptions provided
 196 by other players, together with the prior knowledge that the unknown concept is semantically related
 197 to the known concept, in order to make inferences about the unknown concept; and (2) retrieving and
 198 associating relevant features of their assigned concept based on the given strategic guidelines, and
 199 then constructing statements that are related to features of the concept for their turn of speech. These
 200 two steps engage the model in processing both concept-to-concept relations and concept-to-feature
 201 mappings, thereby providing a strong reflection of its degree of conceptual understanding.

202
 203 **Prompt Design.** To ensure effective communication and role-specific behavior, we construct
 204 tailored prompts for LLM-based agents in CK-Arena. The prompts include a comprehensive system
 205 prompt that provides game rules, input-output format guidelines, specific task instructions, basic
 206 strategic guidance, and example descriptions. In addition, each player receives a contextualized user
 207 prompt containing information about their assigned concept, historical statements, and analytical
 208 insights from previous rounds. Since CK-Arena is designed to evaluate conceptual mastery, we restrict
 209 players’ strategic space with clear action guidelines to avoid confounding effects from uncontrolled
 210 reasoning and decision-making.

211 3.3 EVALUATE THE PERFORMANCE OF PLAYERS

212
 213 **Data Preparation.** The selection of concept pairs is crucial to the effectiveness of the *Undercover*
 214 game in CK-Arena. We constructed a dataset of semantically related concept pairs spanning a
 215 wide range of categories. The dataset underwent pilot screening to ensure two main properties:
 (1) Semantic proximity: concepts are sufficiently similar to create challenging gameplay yet distinct

Table 1: **Evaluation metrics for CK-Arena.** Detailed breakdown of the metrics used to assess LLM performance in interactive gameplay.

Metric	Formula	Symbol Definitions
Win Rate (WR)	$WR = \frac{G_w}{G_t}$	G_w : Number of games won by the player G_t : Total number of games played by the player
Survival Rate (SR)	$SR = \frac{R_s}{R_t}$	R_s : Number of rounds the player survived R_t : Total number of rounds in all games
Novelty	$Nov(s_i) \in [0, 1]$	s_i : Current statement $Nov(s_i)$: Degree of new information in statement s_i compared to previous statements
Reasonableness	$Rea(s_i, c) \in [0, 1]$	s_i : Current statement c : Target concept $Rea(s_i, c)$: Logical coherence between statement s_i and concept c 's properties

enough for meaningful differentiation; (2) Descriptive clarity: concepts are expressive enough to enable smooth interactions during the game.

The final dataset contains 529 English concept pairs spanning different parts of speech and semantic categories. Detailed statistics are provided in Appendix D, and the source files are available in our project repository. Furthermore, users can freely construct datasets in professional knowledge domains they wish to evaluate, which demonstrates CK-Arena's scalability. Appendix E provides concrete extension examples and guidelines.

Evaluation Metrics. To comprehensively evaluate model performance in CK-Arena, we distinguish between two categories of metrics:

(A) *Player-level metrics* capture overall outcomes across games through two measures: Win Rate (WR), which reflects the proportion of games won and indicates effectiveness in fulfilling assigned roles; and Survival Rate (SR), which measures rounds survived before elimination, evaluating players' ability to navigate social dynamics and avoid suspicion.

(B) *Statement-level metrics* assess individual response quality during gameplay, reflecting conceptual mastery at finer granularity. Both metrics use a 0-1.0 scale: Novelty measures new information introduced compared to previous descriptions, promoting creative exploration while preventing repetition; and Reasonableness assesses logical coherence between statements and concept properties, ensuring meaningful discourse. Statements below either threshold trigger automatic elimination.

Large Language Models as Judges. To meet the extensive knowledge demands of diverse topics, we adopt a multi-judge pipeline: strong LLMs from different families first produce independent assessments using prompts aligned with the evaluation framework in Section 3.3, where each dimension is defined together with scoring rubrics and worked examples to ensure round-by-round consistency. In order to prevent instability caused by LLMs as judgments, we have set up a manual team to review and adjust some scores based on LLMs’ analysis process and relevant open source knowledge bases Miller (1995); wik (a;b). Specifically, 3.1% of the scores were manually calibrated. Once a sufficient volume of annotated data has been collected, the judging process can be further automated, as described below.

Efficient Metric Assessment. Considering the high cost and inefficiency of manual expert review, as well as the substantial time and financial burden of relying on powerful LLMs for evaluation, we sought to automate the scoring of two statement-level metrics that directly affect game progress by eliminating players. For *Novelty*, successive descriptive statements within each game can be vectorized, and their similarity (e.g., via cosine distance) can be computed. This provides a direct quantitative approximation of novelty, wh-

Table 2: **Classification performance of *Qwen-3-8B-ckR* as judge.** Our *Qwen-3-8B-ckR* judge on the evaluation set: near-perfect accuracy and F_1 score, demonstrating that the fine-tuned model reliably replicates human expert assessments for maintaining game operation.

Class	Precision	Recall	F1-score	Support
0	1.00	0.93	0.96	29
1	0.99	1.00	1.00	271
Accuracy		0.99		300

270 For *Reasonableness*, the game’s elimination mechanism can be viewed as a binary classification
 271 task. We tested traditional machine learning classifiers, smaller language models (e.g., MiniLM), and
 272 other methods, but these approaches failed to capture conceptual and feature-level relationships. In
 273 contrast, *Qwen-3-8B* leveraged the associative reasoning ability of LLMs and achieved 92% accuracy
 274 in reasonableness judgment, though its outputs still diverged from human-designed evaluation criteria.
 275 To improve alignment, we fine-tuned *Qwen-3-8B* on about 2,000 structured descriptive samples from
 276 our experiments, producing *Qwen-3-8B-ckR*. In Table 2, *Qwen-3-8B-ckR* reaches 99.3% accuracy on
 277 the test set, and we adopt it as the reasonableness judge.
 278

279 **Result Collection and Analysis.** CK-Arena integrates comprehensive data collection throughout
 280 each gameplay session. Every game instance generates a structured JSON record containing metadata
 281 (ID, timestamp, selected concepts), player details (IDs, LLM models, roles, assigned concepts), and
 282 judge specifications. The system logs the complete history of player statements with evaluation
 283 scores for novelty and reasonableness, along with vote records, elimination outcomes, and game-level
 284 statistics that capture overall performance and decision-making patterns. Users can choose to retain
 285 only statements and votes or the full reasoning process. All data are organized by rounds, enabling
 286 multi-dimensional analysis of interactions and decisions. Automated scripts further aggregate results
 287 across instances, producing statistical summaries and visualizations of indicators such as decision
 288 quality, elimination accuracy, and statement metrics.
 289

290 **Unified Rating System.** To move beyond single-batch evaluations, we introduce a robust rating
 291 system that supports repeated assessments across multiple batches using quantitative indicators to
 292 systematically track model performance in CK-Arena. Because player behavior spans multiple
 293 dimensions, including win rates, survival rates, voting accuracy, and other indicators, the system
 294 provides a unified framework to capture overall capability. Specifically, we implement a team-based
 295 Elo rating system tailored to CK-Arena, where each player’s rating is dynamically updated based on
 296 game outcomes, performance metrics, opponent and teammate strength, and experience-dependent
 297 volatility factors (Elo & Sloan, 1978).

298 For each player i in game g , we compute a composite performance score S_i^g as a weighted combination
 299 of multiple performance indicators:

$$S_i^g = \alpha \cdot W_i^g + \beta \cdot SR_i^g + \gamma \cdot VR_i^g$$

300 where $W_i^g \in \{0, 1\}$ represents the binary win/loss outcome, $VR_i^g \in [0, 1]$ denotes the survival
 301 rate, and $SR_i^g \in [0, 1]$ represents correctly voting rate. In our experiments, we set $(\alpha, \beta, \gamma) =$
 302 $(0.75, 0.15, 0.10)$.

303 To account for differing uncertainty in rating estimates between novice and experienced players, we
 304 group games into batches of 12 and apply an experience-dependent K-factor that decays by batch
 305 rather than by individual game count. This batching reflects the game design: different topic words
 306 may introduce systematic variation, and batch-based evaluation balances rating adjustments across
 307 diverse themes. The K-factor is defined as
 308

$$K(n) = K_{min} + (K_{max} - K_{min}) \cdot \exp\left(-\frac{\lfloor n/12 \rfloor}{\tau}\right)$$

309 where n represents the number of games played and we set $K_{max} = 60$, $K_{min} = 5$, $\tau = 2.5$. This
 310 formulation ensures high volatility for new players ($K \approx 60$ at $n = 0$) while stabilizing ratings for
 311 experienced players ($K \approx 5$ at $n \geq 140$).

312 We conducted an analysis of the results in preliminary experiments and observed an inherent role
 313 bias in *Undercover*: under the 2 versus 4 setting with our defined prompts, civilians are consistently
 314 more likely to win than undercover agents (with an average win rate of approximately 66.7%). This
 315 phenomenon has also been reported in several other studies related to *Undercover* (Dong et al., 2024;
 316 Xu & Zhong, 2025). To correct for this role-induced imbalance, we introduced an adjustment in the
 317 computation of expected performance. Specifically, during the calculation of expected performance,
 318 we add a temporary Elo offset of +120 to the stronger side (*i.e.*, the civilian role). This adjustment
 319 ensures that players of equal skill level have comparable rating update opportunities regardless of
 320 whether they play as civilians or undercover agents. The detailed derivation and justification of the
 321 120-point offset are provided in the Appendix D.
 322

324 **Table 3: Performance comparison in CK-Arena.** Results are reported separately for the *Civilian*
 325 and *Undercover* roles. WR denotes *Win Rate*, and SR denotes *Survival Rate*. Both serve as indicators
 326 of in-game performance, where higher values reflect stronger capability in fulfilling role objectives.
 327 Reasonableness measures the logical consistency of statements with the target concept, while Novelty
 328 evaluates the degree of new information introduced. We show how models balance these factors, with
 329 Qwen2.5-72B leading in reasonableness, GPT-4o showing strong civilian win rates, and Gemini-2.0-
 330 pro-exp excelling in novelty. The best values are in **bold** and the second-best are underlined.

LLM	Role	Performance Metrics			
		WR ↑	SR ↑	Reasonableness ↑	Novelty ↑
Qwen2.5-72B	Civilian	<u>0.6847</u>	0.7207	0.9593	0.6676
	Undercover	0.3636	<u>0.2955</u>	0.9737	0.7051
GPT-4o	Civilian	0.6854	0.6629	<u>0.9678</u>	0.6693
	Undercover	0.3485	0.2273	<u>0.9614</u>	0.7429
DeepSeek-V3	Civilian	0.6814	<u>0.6637</u>	0.9470	0.8248
	Undercover	<u>0.3571</u>	0.2857	0.9537	0.8220
LLaMA-3.3-70B-instruct	Civilian	0.6702	0.6596	0.9663	0.8072
	Undercover	0.3279	0.1803	0.9678	0.8083
Gemini-2.0-pro-exp	Civilian	0.6636	0.6545	0.9667	<u>0.8259</u>
	Undercover	0.3111	<u>0.2889</u>	0.9652	0.8391
Claude-3-5-Haiku	Civilian	0.6408	0.6214	0.9494	0.7633
	Undercover	0.2692	0.1923	0.9273	0.8061

4 EXPERIMENTS

351 In this section, we describe the experimental setup and present the main findings, including the
 352 evaluation of large models in CK-Arena. Our experiments follow two steps. First, we perform baseline
 353 evaluations on six widely-used LLMs from different families in controlled 6-player games, focusing
 354 on statement-level performance, conceptual understanding, and role-specific metrics. Second, we
 355 construct a scalable leaderboard, where additional LLMs are benchmarked against some of the six
 356 baseline models, which serve as anchors in our unified rating system. This allows us to quantify
 357 relative strength across a broader set of models. We report both quantitative and qualitative analyses
 358 to ensure the reliability of the results.

359 The testing data consists of 464 game instances across twelve concept categories: *food*, *landforms*,
 360 *animals*, *artifacts*, *tools*, *people/social*, *plants*, *sports*, *stationery*, *electronics*, *clothing*, and *sundries*.
 361 During gameplay, a total of 6112 conceptual feature descriptions are generated. Additional results
 362 are provided in Appendix D and Appendix E.

4.1 RESULTS ON THE 6-PLAYER GAME

366 **Experimental Setting.** We evaluate six widely used LLMs from different families, including
 367 *Claude-3-5-Haiku* (Anthropic, 2024), *GPT-4o* (Hurst et al., 2024), *Gemini-2.0-Pro-Exp* (Team et al.,
 368 2023), *DeepSeek-V3* (Liu et al., 2024), *LLaMA-3.3-70B* (Grattafiori et al., 2024), and *Qwen2.5-72B*
 369 (Bai et al., 2023). In addition, *GPT-4.1-2025-04-14* (OpenAI, 2025a) and *Claude-3-7-Sonnet-20250219*
 370 (Anthropic, 2025a) are selected as the LLM-based judges to score all statements across
 371 statement-level metrics as references. Following data collection, a human expert panel then reviewed
 372 all statements, taking into account both the LLMs’ scores and relevant reference knowledge, and
 373 determined the final scores.

374 **Performance Comparison.** Table 3 summarizes baseline model performance in CK-Arena. Civilian
 375 win rates are consistently higher than undercover win rates, showing that the undercover role
 376 is more challenging because it requires concealing one’s assigned concept while simultaneously
 377 inferring shared features with the civilian concept. All LLMs performed well at reasonableness. This
 is partly attributed to the threshold elimination mechanism applied during the evaluation, which filters

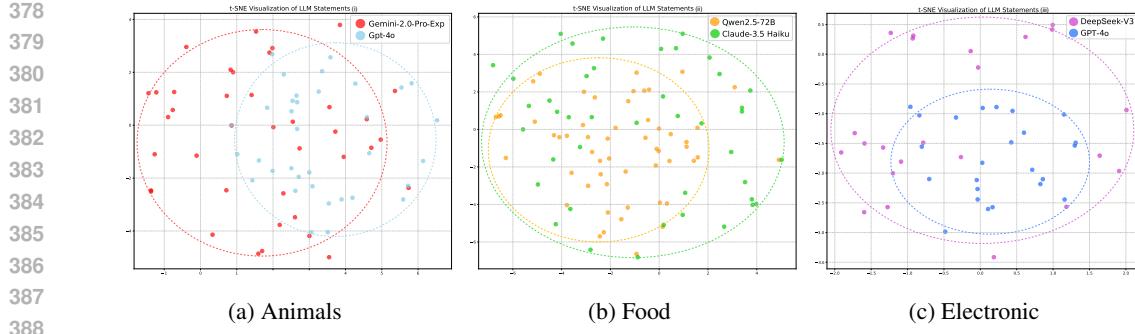


Figure 3: **t-SNE visualizations of LLM statements across concept categories.** Each plot shows model outputs for (a) animals, (b) food, and (c) electronics. Repetitive descriptions, reflecting shallow understanding, appear as tightly clustered points, whereas richer knowledge produces more dispersed distributions. The visualizations also indicate that different LLMs center their descriptions on different focal aspects of a concept, suggesting variation in how conceptual knowledge is represented.

out low-scoring statements before final analysis. High reasonableness scores also indicate that current LLMs are capable of understanding tasks and generating structured language descriptions based on basic knowledge. Novelty is more nuanced: strong models such as *Qwen2.5* and *GPT-4o* often score lower, as excessive novelty risks revealing the undercover identity, while repetition can also lead to elimination. Effective play depends on balancing precision and originality, highlighting the ability to express subtle conceptual differences without being overly novel or trivially repetitive. CK-Arena is designed to capture this balance, making it a meaningful test of conceptual reasoning.

Semantic Dispersion as a Proxy for Conceptual Depth. We embed LLM-generated statements and compare them using dimensionality reduction and visualization. Given the same number of descriptions for a concept, shallow understanding typically leads to repetitive phrasing, which appears as tightly clustered points in the t-SNE plot, whereas deeper knowledge produces more dispersed patterns. The visualizations reveal systematic differences in how models generate conceptual descriptions under the same topic. Figure 3(a) shows that *Gemini-2.0-pro-exp* and *GPT-4o* emphasize different aspects of the same concept, reflecting variation in conceptual focus. Figures 3(b) and (c) further demonstrate differences in clustering degree, with some models producing narrow clusters and others spreading more broadly across the semantic space. This indicates the variation in focus and the degree of dispersion in LLM-generated conceptual associations.

Statement-Concept Relevance Heatmap. In addition to the metrics introduced in Section 3.3, we also evaluate *Relevance*, where LLM judges score each player’s statements based on alignment with the target concept. High scores correspond to specific, tightly linked descriptions that help civilians detect the undercover agent, while low scores indicate vague or overly broad statements that could fit multiple concepts. This metric reflects the strategic tension of the game: civilians gain from precise descriptions, whereas undercover agents may opt for broader ones to avoid detection.

Figure 4 presents the relevance scores of different LLMs across conceptual categories. Both the highest-scoring *DeepSeek-V3* and the lowest-scoring *Qwen2.5-72B* also achieve strong win rates, showing that higher relevance does not necessarily lead to better game performance. At the same

time, scores remain relatively consistent across categories. This suggests the chosen concepts are similarly describable, which helps ensure that the benchmark evaluates models fairly rather than being driven by category-specific difficulty.

4.2 THE SCALABLE LEADERBOARD IN CK-ARENA

Experimental Setting. We construct a leaderboard of LLMs as players in CK-Arena. *DeepSeek-v3* and *Qwen2.5-72B* serve as anchor models, providing stable baselines for comparison. We then benchmark additional LLMs, including *GPT-5* (OpenAI, 2025b), *GPT-oss-120b* (OpenAI et al., 2025), *DeepSeek-v3.1* (DeepSeek, 2025), *Claude-opus-4.1* (Anthropic, 2025b), *kimi-k2-instruct* (Team et al., 2025), *Qwen-plus* (Yang et al., 2025), *Ernie-4.5-300b-a47b* (Baidu-ERNIE-Team, 2025), and *Gemini-2.5-flash-preview* (Google, 2025). Each model receives identical prompts and plays at least 60 rounds against the anchor models to ensure rating stability and reliability.

Results from Unified Rating System.

Each new model plays more than 60 rounds against the anchors, allowing Elo score fluctuations to stabilize under the experience-dependent K -factor schedule. To control for ordering effects, we also reverse the sequence in which models are introduced. Forward and reverse evaluations produce the same ranking across all 14 LLMs, with the maximum Elo difference for any model being only 1.72 and a Pearson correlation of 0.99 between leaderboards. This high consistency shows that evaluation order does not affect fairness and validates the design choice of using experience-dependent K -factors and anchor baselines. **We also added human baseline to benchmark to reflect the general human level of conceptual knowledge application to a certain extent. However, we need to emphasize that humans will have some disadvantages compared with LLM in the large-scale evaluation of undercover, because the multiple undercover games involved in CK-arena require participants to have a profound understanding of all aspects of knowledge, but it is difficult for normal humans to distinguish these details. For details, please refer to Appendix E.**

Using this framework, we compile a comprehensive leaderboard of all evaluated LLMs (Figure 5). Within model families such as *DeepSeek* and *Qwen*, performance gaps between newer and older versions are relatively small, and both remain behind top-tier models like *GPT-5*. These results suggest that iterative improvements within some families are not sufficient to close the performance gap, an aspect that CK-Arena makes visible.

5 CONCLUSION

We present CK-Arena as a benchmark for evaluating the conceptual knowledge and understanding of LLMs through interactive, multi-agent gameplay. Built on the *Undercover* game, it provides a scalable and dynamic environment where models engage with associations, similarities, and differences between concepts, an ability that traditional static benchmarks often overlook. Our experiments show that conceptual understanding varies across categories and does not consistently align with general benchmark performance, indicating that skills such as coding or mathematics do not necessarily translate into stronger conceptual understanding. CK-Arena addresses this gap with a systematic and extensible framework for assessing conceptual knowledge, and it serves as a starting point for future benchmarks that seek to capture more human-like, semantically grounded understanding in LLMs.

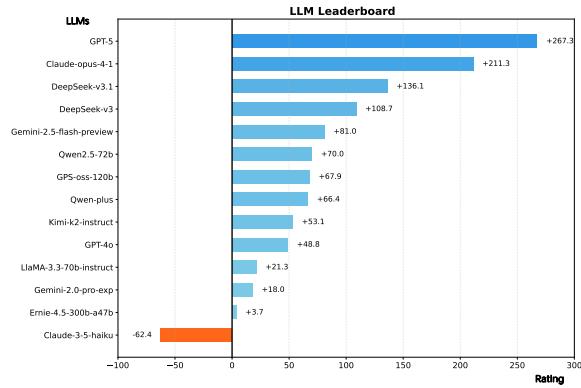


Figure 5: Leaderboard of LLMs in CK-Arena. Each player starts with an initial rating of 0. After stabilization, a player consistently defeating 0-rated opponents converges around 420, which serves as a reference for strong performance. The leaderboard highlights relative differences across 14 evaluated LLMs.

486 **Limitations and future directions.** We acknowledge that CK-Arena has several limitations. As
 487 an early effort in evaluating conceptual understanding, it still depends on strong LLMs and some
 488 manual review for judging, enforces strict response formats that may penalize formatting errors, and
 489 is restricted to English, which limits cross-linguistic evaluation. These limitations point to clear
 490 directions for future work, such as developing more robust automated judging mechanisms, enhancing
 491 response handling, and extending the benchmark to multiple languages. Addressing these challenges
 492 will improve the scalability, reliability, and inclusiveness of CK-Arena, strengthening its role as a
 493 foundation for conceptual understanding evaluation.

494 **ETHICAL STATEMENT**

497 This research was conducted following established ethical guidelines for AI research. Our bench-
 498 mark CK-Arena evaluates AI systems' conceptual knowledge without collecting or processing any
 499 personally identifiable information. All concept pairs used in our experiments were carefully curated
 500 to ensure they do not contain harmful, offensive, or culturally insensitive content. The experiments
 501 involving multiple large language models were designed to analyze their capabilities in understanding
 502 conceptual boundaries without any deception or manipulation techniques.

503 **REPRODUCIBILITY STATEMENT**

506 We provide all resources necessary to reproduce our work. The complete code, dataset, and training
 507 data used in our experiments are released together with this paper. The prompts used, parameter
 508 settings for LLM utilization, and hyperparameter configurations for fine-tuning the large model have
 509 all been disclosed in Appendix D. In addition, we include a scalability demonstration and an example
 510 in Appendix E to facilitate replication.

511 **REFERENCES**

513 Wikidata: A free knowledge base. <https://www.wikidata.org/>, a. Accessed: 2025-09-22.

514 Wikipedia: The free encyclopedia. <https://www.wikipedia.org/>, b. Accessed: 2025-04-22.

517 Saaket Agashe, Yue Fan, Anthony Reyna, and Xin Eric Wang. Llm-coordination: evaluating
 518 and analyzing multi-agent coordination abilities in large language models. *arXiv preprint*
 519 *arXiv:2310.03903*, 2023.

520 Anthropic. Introducing computer use, a new claudie 3.5 sonnet, and claudie 3.5 haiku, 2024. URL
 521 <https://www.anthropic.com/news/3-5-models-and-computer-use>.

523 Anthropic. Claude 3.7 sonnet and claudie code, 2025a. URL <https://www.anthropic.com/news/claudie-3-7-sonnet>.

525 Anthropic. Claude opus 4.1, 2025b. URL <https://www.anthropic.com/news/claudie-4-1>.

527 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 528 Yu Han, Fei Huang, Bin Yuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
 529 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanchi Tan,
 530 Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
 531 Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
 532 Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
 533 Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. *arXiv preprint arXiv:2309.16609*,
 534 2023.

535 Baidu-ERNIE-Team. Ernie 4.5 technical report, 2025.

537 Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
 538 Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning:
 539 Concept, taxonomy, and methods. *IEEE Transactions on Neural Networks and Learning Systems*,
 2024.

540 Liuqing Chen, Duowei Xia, ZhaoJun Jiang, Xinyang Tan, Lingyun Sun, and Lin Zhang. A conceptual
 541 design method based on concept–knowledge theory and large language models. *Journal of*
 542 *Computing and Information Science in Engineering*, 25(2), 2025.

543

544 DeepSeek. Deepseek-v3.1 release, 2025. URL <https://api-docs.deepseek.com/news/news250821>.

545

546 Ruiqi Dong, Zhixuan Liao, Guangwei Lai, Yuhan Ma, Danni Ma, and Chenyou Fan. Who is
 547 undercover? guiding llms to explore multi-perspective team tactic in the game. *arXiv preprint*
 548 *arXiv:2410.15311*, 2024.

549

550 Arpad E Elo and Sam Sloan. The rating of chessplayers: Past and present. *(No Title)*, 1978.

551

552 Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, David Mguni,
 553 Yali Du, and Jun Wang. Chessgpt: Bridging policy learning and language modeling. In *Advances*
 554 *in Neural Information Processing Systems*, volume 36, pp. 7216–7262, 2023.

555

556 Yu Gong, Kaiqi Zhao, and Kenny Zhu. Representing verbs as argument concepts. In *Proceedings of*
 557 *the AAAI Conference on Artificial Intelligence*, volume 30, 2016.

558

559 Google. Start building with gemini 2.5 flash, 2025. URL <https://developers.googleblog.com/en/start-building-with-gemini-25-flash/>.

560

561 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 562 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 563 models. *arXiv preprint arXiv:2407.21783*, 2024.

564

565 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 566 Steinhardt. Measuring massive multitask language understanding. In *International Conference on*
 567 *Learning Representations*.

568

569 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 570 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 571 *arXiv:2410.21276*, 2024.

572

573 Lei Ji, Yujing Wang, Botian Shi, Dawei Zhang, Zhongyuan Wang, and Jun Yan. Microsoft concept
 574 graph: Mining semantic concepts for short text understanding. *Data Intelligence*, 1(3):238–270,
 575 2019.

576

577 Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
 578 Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. In *Findings of*
 579 *the Association for Computational Linguistics ACL 2024*, pp. 11260–11285, 2024.

580

581 Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
 582 Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
 583 models. *Transactions on Machine Learning Research*.

584

585 Jiayi Liao, Xu Chen, and Lun Du. Concept understanding in large language models: An empirical
 586 study. 2023.

587

588 Jonathan Light, Min Cai, Sheng Shen, and Ziniu Hu. Avalonbench: Evaluating llms playing the game
 589 of avalon. In *NeurIPS 2023 Foundation Models for Decision Making Workshop*.

590

591 Jiaju Lin, Haoran Zhao, Aochi Zhang, Yiting Wu, Huqiyue Ping, and Qin Chen. Agentsims: An
 592 open-source sandbox for large language model evaluation. *arXiv preprint arXiv:2308.04026*, 2023.

593

594 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 595 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 596 *arXiv:2412.19437*, 2024.

597

598 Kevin Ma, Daniele Grandi, Christopher McComb, and Kosa Goucher-Lambert. Conceptual de-
 599 sign generation using large language models. In *International Design Engineering Technical*
 600 *Conferences and Computers and Information in Engineering Conference*, volume 87349, pp.
 601 V006T06A021. American Society of Mechanical Engineers, 2023.

594 Weiyu Ma, Qirui Mi, Yongcheng Zeng, Xue Yan, Runji Lin, Yuqiao Wu, Jun Wang, and Haifeng
 595 Zhang. Large language models play starcraft ii: Benchmarks and a chain of summarization
 596 approach. *Advances in Neural Information Processing Systems*, 37:133386–133442, 2024.

597

598 George A Miller. Wordnet: a lexical database for english. *Communications of the ACM*, 38(11):
 599 39–41, 1995.

600

601 Manuel Mosquera, Juan Sebastian Pinzon, Manuel Rios, Yesid Fonseca, Luis Felipe Giraldo, Nicanor
 602 Quijano, and Ruben Manrique. Can llm-augmented autonomous agents cooperate?, an evaluation
 603 of their cooperative capabilities through melting pot. *arXiv preprint arXiv:2403.11381*, 2024.

604

605 Nasrin Mostafazadeh, Michael Roth, Annie Louis, Nathanael Chambers, and James F Allen. Lsdsem
 606 2017 shared task: The story cloze test. In *2nd Workshop on Linking Models of Lexical, Sentential
 607 and Discourse-level Semantics*, pp. 46–51. Association for Computational Linguistics, 2017.

608

609 OpenAI. Introducing gpt-4.1 in the api, 2025a. URL <https://openai.com/index/gpt-4-1/>.

610

611 OpenAI. Introducing gpt-5, 2025b. URL <https://openai.com/index/introducing-gpt-5/>.

612

613 OpenAI, :, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin
 614 Arbus, Rahul K. Arora, Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler
 615 Bertao, Nivedita Brett, Eugene Brevdo, Greg Brockman, Sebastien Bubeck, Che Chang, Kai Chen,
 616 Mark Chen, Enoch Cheung, Aidan Clark, Dan Cook, Marat Dukhan, Casey Dvorak, Kevin Fives,
 617 Vlad Fomenko, Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun Gogineni, Adam Goucher,
 618 Lukas Gross, Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec Helyar,
 619 Haitang Hu, Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina Kofman,
 620 Dominik Kundel, Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc, James Park
 621 Lennon, Scott Lessans, Mario Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin, Jordan Liss, Lily,
 622 Liu, Jiancheng Liu, Kevin Lu, Chris Lu, Zoran Martinovic, Lindsay McCallum, Josh McGrath,
 623 Scott McKinney, Aidan McLaughlin, Song Mei, Steve Mostovoy, Tong Mu, Gideon Myles,
 624 Alexander Neitz, Alex Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ashley Pantuliano,
 625 Giambattista Parascandolo, Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic Peran, Dmitry
 626 Pimenov, Michelle Pokrass, Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo Raso, Hongyu
 627 Ren, Kimmy Richardson, David Robinson, Bob Rotsted, Hadi Salman, Suvansh Sanjeev, Max
 628 Schwarzer, D. Sculley, Harshit Sikchi, Kendal Simon, Karan Singh, Yang Song, Dane Stuckey,
 629 Zhiqing Sun, Philippe Tillet, Sam Toizer, Foivos Tsimpourlas, Nikhil Vyas, Eric Wallace, Xin
 630 Wang, Miles Wang, Olivia Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery, Cedric Whitney,
 631 Hannah Wong, Lin Yang, Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech Zaremba, Wenting
 632 Zhan, Cyril Zhang, Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-120b & gpt-oss-20b
 633 model card, 2025.

634

635 Dan Qiao, Chenfei Wu, Yaobo Liang, Juntao Li, and Nan Duan. Gameeval: Evaluating llms on
 636 conversational games. *arXiv preprint arXiv:2308.10032*, 2023.

637

638 Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alterna-
 639 tives: An evaluation of commonsense causal reasoning. In *AAAI spring symposium: logical
 640 formalizations of commonsense reasoning*, pp. 90–95, 2011.

641

642 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 643 Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
 644 imitation game: Quantifying and extrapolating the capabilities of language models. *Transactions
 645 on Machine Learning Research*, 2022.

646

647 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricu,
 648 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 649 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

650

651 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 652 Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
 653 Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,

648 Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
 649 Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
 650 Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
 651 Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
 652 Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin Liu,
 653 Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu, Tianwei
 654 Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe Lu,
 655 Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo Miao,
 656 Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi, Feifan
 657 Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng Teng,
 658 Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang, Jinhong
 659 Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang, Yuzhi
 660 Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu, Xingzhe
 661 Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing Xu, L. H.
 662 Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie Yan, Yuzi Yan,
 663 Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao, Xingcheng Yao,
 664 Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang Yuan, Mengjie Yuan,
 665 Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang, Yangkun Zhang, Yizhi
 666 Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng Zhang, Haotian Zhao,
 667 Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou, Zaida Zhou, Zhen Zhu,
 668 Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence, 2025.

669 Xiaohan Wang, Shengyu Mao, Shumin Deng, Yunzhi Yao, Yue Shen, Lei Liang, Jinjie Gu, Huajun
 670 Chen, and Ningyu Zhang. Editing conceptual knowledge for large language models. In *Findings
 of the Association for Computational Linguistics: EMNLP 2024*, pp. 706–724, 2024.

671 Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, Yitao Liang, and Team CraftJarvis.
 672 Describe, explain, plan and select: interactive planning with large language models enables
 673 open-world multi-task agents. In *Proceedings of the 37th International Conference on Neural
 674 Information Processing Systems*, pp. 34153–34189, 2023.

675 Chentian Wei, Jiewei Chen, and Jinzhu Xu. Exploring large language models for word games: who is
 676 the spy? *arXiv preprint arXiv: 2503.15235*, 2025.

677 Dekun Wu, Haochen Shi, Zhiyuan Sun, and Bang Liu. Deciphering digital detectives: Understanding
 678 llm behaviors and capabilities in multi-agent mystery games. In *Findings of the Association for
 679 Computational Linguistics ACL 2024*, pp. 8225–8291, 2024.

680 Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q Zhu. Probbase: A probabilistic taxonomy
 681 for text understanding. In *Proceedings of the 2012 ACM SIGMOD international conference on
 682 management of data*, pp. 481–492, 2012.

683 Yue Wu, So Yeon Min, Shrimai Prabhumoye, Yonatan Bisk, Russ R Salakhutdinov, Amos Azaria,
 684 Tom M Mitchell, and Yuanzhi Li. Spring: Studying papers and reasoning to play games. In
 685 *Advances in Neural Information Processing Systems*, volume 36, pp. 22383–22687, 2023.

686 Lin Xu, Zhiyuan Hu, Daquan Zhou, Hongyu Ren, Zhen Dong, Kurt Keutzer, See-Kiong Ng, and
 687 Jiashi Feng. MAgIC: Investigation of large language model powered multi-agent in cognition,
 688 adaptability, rationality and collaboration. In *Proceedings of the 2024 Conference on Empirical
 689 Methods in Natural Language Processing*, pp. 7315–7332, 2024.

690 Shuhang Xu and Fangwei Zhong. Comet: Metaphor-driven covert communication for multi-agent
 691 language games. In *Proceedings of the 63rd Annual Meeting of the Association for Computational
 692 Linguistics (Volume 1: Long Papers)*, 2025.

693 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 694 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 695 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 696 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 697 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 698 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 699 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger

702 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
703 Qiu. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.
704

705 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
706 really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for*
707 *Computational Linguistics*, pp. 4791–4800, 2019.

708 Ningyu Zhang, Qianghuai Jia, Shumin Deng, Xiang Chen, Hongbin Ye, Hui Chen, Huaixiao Tou,
709 Gang Huang, Zhao Wang, Nengwei Hua, et al. Alicg: Fine-grained and evolvable conceptual graph
710 construction for semantic search at alibaba. In *Proceedings of the 27th ACM SIGKDD conference*
711 *on knowledge discovery & data mining*, pp. 3895–3905, 2021.

712 Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
713 Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, et al. Sotopia: Interactive evaluation for
714 social intelligence in language agents. *arXiv preprint arXiv:2310.11667*, 2023.
715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

A FUTURE WORKS

757
 758 In the future, we plan to extend CK-Arena in several key directions: (1) Expanding the Concept
 759 Pair Dataset: We aim to increase the diversity of concept pairs by introducing more categories and
 760 refining the quality of selections, thereby building a more comprehensive knowledge network for
 761 evaluation. (2) Multilingual Extension: Adapting CK-Arena to support multiple languages holds
 762 significant potential. Different languages are deeply tied to unique cultural knowledge and conceptual
 763 representations, which can reveal cross-linguistic differences in conceptual understanding. (3)
 764 Diversifying Agent Forms: Beyond standard LLM-based agents, we intend to incorporate specialized
 765 language models trained in specific knowledge domains to serve as judges, and even explore scenarios
 766 where LLM-based agents interact and compete alongside human participants. Furthermore, the rich
 767 set of statements generated during CK-Arena gameplay represents a valuable resource. These
 768 concept-driven descriptions can form a semantic norm, potentially serving as raw data for training
 769 concept-aware models, such as Large Concept Models (LCMs). Although the current dataset is
 770 functional, we aim to further enhance the automation process and evaluation system to transform this
 771 data into a high-quality, structured dataset. This would enable more effective training and evaluation
 772 of models designed for conceptual understanding and knowledge-based tasks.
 773

774

B LIMITATIONS

775
 776 Despite its contributions, the CK-Arena benchmark also has several limitations that are worth
 777 considering. First, during the initialization stage, the LLM serving as the judge must be a powerful and
 778 knowledgeable model, and the final scoring still requires manual team review. While our automated
 779 pipeline shields end users from these concerns, researchers may incur additional time and financial
 780 costs if they prefer to define their own judging criteria rather than adopting CK-Arena’s defaults.
 781 Second, our framework places strict requirements on the format of LLM responses (e.g., JSON).
 782 Although we implement parsing and error-handling mechanisms, models may still be penalized for
 783 formatting issues rather than genuine gameplay mistakes. This may require users to regularly check
 784 game logs, identify abnormal responses, and supplement more response handling mechanisms. Third,
 785 all evaluations are conducted exclusively in English, which may introduce language-specific biases
 786 and constrain cross-linguistic insights into conceptual mastery. Addressing these challenges will be
 787 crucial for improving the scalability and inclusiveness of the benchmark.
 788

789

C USE OF LLMs

790
 791 In the course of this work, we employed Large Language Models (LLMs) in two ways. First, LLMs
 792 (specifically *Claude Sonnet 4*) were used during manuscript preparation for grammar checking, text
 793 polishing, and improving the clarity of academic writing. Second, in the early stages of literature
 794 review, we utilized the “deep research” function of LLMs to obtain a broader and more comprehensive
 795 overview of related works. These applications were limited to auxiliary support and did not influence
 796 the design, implementation, or analysis of CK-Arena.
 797

798

D IMPLEMENTATION DETAILS

799 **Detailed Data Statistics** The dataset we provided contains a total of 529 English pairs of concepts,
 800 including 220 concrete noun pairs, 100 abstract noun pairs, 109 adverb pairs, and 100 verb pairs.
 801 After initial experimental attempts, we concluded that concrete noun pairs are more suitable for
 802 our experimental setup and overall research questions. Therefore, for the specific experiments, we
 803 selected 12 different categories from the 220 concrete noun pairs. These categories consist of concrete
 804 noun pairs that are closest to our daily life and conversational contexts. All of those concepts can be
 805 considered with rich and clearly describable features. We believe that starting with these concept
 806 pairs can more reliably and steadily complete our experiments and yield preliminary results. In the
 807 future, we will further explore the other words.
 808

809 **Experimental Settings** For the evaluation of LLMs as players, all models were used in a zero-shot
 810 setting without task-specific fine-tuning. We only specified the input prompts, without any additional
 811

810 hyperparameters, such as temperature, top-p, and so on. To ensure fairness and reproducibility, we
 811 employed the default API settings for each model, consistently choosing the most recent stable release
 812 available at the time of the experiments.

813 For the training of qwen-3-8b-ckR, we fine-tuned the model using LoRA adaptation with the following
 814 hyperparameter configuration: 5 training epochs, a learning rate of 1e-4, batch size of 16, linear
 815 learning rate scheduler, validation every 50 steps, maximum sequence length of 8192, warmup ratio
 816 of 0.05, and weight decay of 0.01. LoRA-specific settings included rank 8, alpha 16, dropout 0.1, and
 817 applying adaptation to all target modules. The dataset used for training, along with preprocessing
 818 details, is fully released in the accompanying code repository to ensure reproducibility.

820 **Connection of CK-Arena with Existing Benchmarks.** We think that CK-Arena offers distinct yet
 821 complementary value in LLM evaluation tasks.

822 Fundamental Differences in Evaluation Focus: Traditional benchmarks like MMLU primarily assess
 823 factual recall and static knowledge retrieval through multiple-choice questions. In contrast, CK-Arena
 824 evaluates dynamic conceptual understanding in interactive contexts. For example, while MMLU
 825 might ask “Which of the following animals is a primate?”, CK-Arena requires models to articulate
 826 the distinguishing features between closely related concepts (e.g., monkeys vs. apes) and navigate
 827 the semantic boundaries dynamically based on partial information from other agents.

828 Why Static vs. Dynamic Evaluation Matters: Our preliminary analysis suggests that strong per-
 829 formance on traditional benchmarks doesn’t necessarily translate to effective conceptual boundary
 830 navigation. For instance, a model might correctly identify that both soccer and basketball are sports
 831 (factual knowledge) but struggle to strategically describe one while concealing its identity when the
 832 other is the majority concept (conceptual understanding + strategic reasoning). This highlights that
 833 knowing facts about concepts differs from understanding their relational structures and boundaries.

834 We also point out that CK-Arena does not aim to replace existing benchmarks but to fill a critical
 835 gap in evaluating interactive conceptual understanding. Traditional benchmarks excel at measuring
 836 breadth of knowledge, while CK-Arena probes depth of conceptual understanding in realistic social
 837 contexts. The differences in results reflect that multi-agent interaction requires different cognitive
 838 processes than isolated question-answering.

839 **Scalability Demonstration.** In order to explain the scalability of CK-Arena, we provide a specific
 840 example in this section to help researchers who need to build their own datasets test LLM’s knowledge
 841 mastery in specific fields. We will divide this task into three steps:

842 Firstly, researchers need to construct concept pairs related to evaluation knowledge within their field
 843 (for example, by describing the similarities and differences between alcohol lamps and flame spray
 844 guns to explore the knowledge of middle school chemistry experiments). Users may also need to
 845 adjust prompts if they wish to have their own rating criteria. Then, users need to conduct at least
 846 60 pre-experiments using models with comparable performance (or one model as all players) and
 847 game settings of their own choice (such as number of players, rounds, etc.) to obtain role bias
 848 calibration values. Specifically, the concepts in the newly constructed dataset may have inconsistent
 849 similarities, which can lead to role bias in the game. For example, if two concepts are very similar, it
 850 is obvious that undercover characters are easily mixed up with civilian characters; On the contrary,
 851 the undercover character finds it difficult to move forward. Therefore, it is necessary to determine
 852 role bias through pre-experiments and use temporary scores to balance this bias. The third step is for
 853 users to repeat the game multiple times until the K-value stabilizes, in order to obtain a performance
 854 analysis among the LLM players participating in the game.

855 Then, here comes the example. Due to the fact that most concepts that contain broadly descriptive
 856 features are nouns, our specially designed prompt template is not suitable for evaluating verbs or
 857 other parts of speech. Therefore, we carried out a complete extension process. First, we built a verb
 858 word pair dataset, and then adjusted part of the content in the prompt to help players better participate
 859 in the game, and judges more standardized. The following are the added parts:

860 - *Nature of the action: Such as the type characteristics of the action.* - *Relationship of action:*
 861 *Such as the characteristics of the subject and object involved.* - *Usage scenarios: Such as the*
 862 *environmental characteristics and cultural background where the action occurs.* - *Concluding effects:*

864 *The consequences and impacts brought about by the action. - Emotional impact: The emotional
 865 overtones, moral implications, and social attributes involved in the action.*

866
 867 The experimental results regarding verbs can be viewed in section E. During our testing, the API
 868 call cost for reviewing a single game was approximately \$0.8, while completing a full theme review
 869 required around \$40–50. By replacing expensive LLM-based judges with a fine-tuned model, as
 870 mentioned in the paper, these costs could be more substantially reduced. In terms of time efficiency,
 871 the open-source code provided in this work already supports batch execution of multiple games.
 872 Although API calls impose certain speed constraints, our experiments show that running 5 games in
 873 parallel does not trigger rate-limit restrictions, allowing most reviews to be completed in only one
 874 day.

875 **Derivation of the 120-Point Elo Offset.** In this paragraph, we derive the 120-point Elo offset used
 876 to balance the expected performance between the civilian and undercover roles in the game. The goal
 877 is to ensure that players of equal skill levels have comparable rating update opportunities, regardless
 878 of their assigned roles.

879 In the Elo rating system, the expected score E_A of player A against player B is given by:
 880

$$881 \quad 882 \quad E_A = \frac{1}{1 + 10^{(R_B - R_A)/400}},$$

883 where R_A and R_B are the ratings of players A and B . Although this is a 1v1 formula, in our design,
 884 the Elo update first computes the expected outcome based on the win–loss relationship between two
 885 teams, and then incorporates each player’s individual performance for the actual score adjustment.
 886 Therefore, we can treat the two teams as player A and player B , and use the standard formula for
 887 derivation.

888 Empirically, the civilian role has a natural advantage, leading to a baseline win probability of $2/3$ for
 889 the civilians against undercover agents of equal skill. To determine the Elo offset that corresponds to
 890 this advantage, we solve for the Elo rating difference x that yields an expected score of $2/3$:

$$893 \quad \frac{1}{1 + 10^{-x/400}} = \frac{2}{3} \quad (1)$$

$$894 \quad 895 \quad 10^{-x/400} = \frac{1}{2} \quad (2)$$

$$896 \quad -\frac{x}{400} = \log_{10}\left(\frac{1}{2}\right) \quad (3)$$

$$897 \quad 898 \quad x = 400 \cdot \log_{10}(2) \approx 400 \cdot 0.3010 \approx 120 \quad (4)$$

900 Thus, an Elo difference of approximately 120 corresponds to the observed $2/3$ win rate. To balance
 901 the game, we introduce a temporary offset of +120 Elo points to the civilian side when computing
 902 expected outcomes. This adjustment ensures that, from the model’s perspective, the expected
 903 probability of winning for both sides is effectively $1/2$, thereby eliminating the systematic role-
 904 induced imbalance in rating updates.

905 E MORE EXPERIMENTAL RESULTS

906 **The stability of the scoring process** To verify the stability of the scoring process in our LLM-based
 907 evaluation framework (and thereby support the reliability and repeatability of evaluation results),
 908 we conducted three independent evaluations on the animal group. Based on the outcomes of these
 909 evaluations, we calculated key statistical indicators—mean, variance, and standard deviation—for
 910 each of the statement-level metrics (Novelty and Reasonableness). The specific statistical data are
 911 presented in Table 4. This table reflects the stability of the scoring process: LLM-based assessments
 912 already demonstrate strong internal consistency, and with additional human review to adjust specific
 913 cases, CK-Arena ensures both reproducibility and robustness of the evaluation framework.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 4: Statistical indicators of three independent evaluations on the animal group.

Metric	Mean	Variance	Std Dev
Novelty	0.8150	0.000203	0.0142
Reasonableness	0.9672	0.000042	0.0065

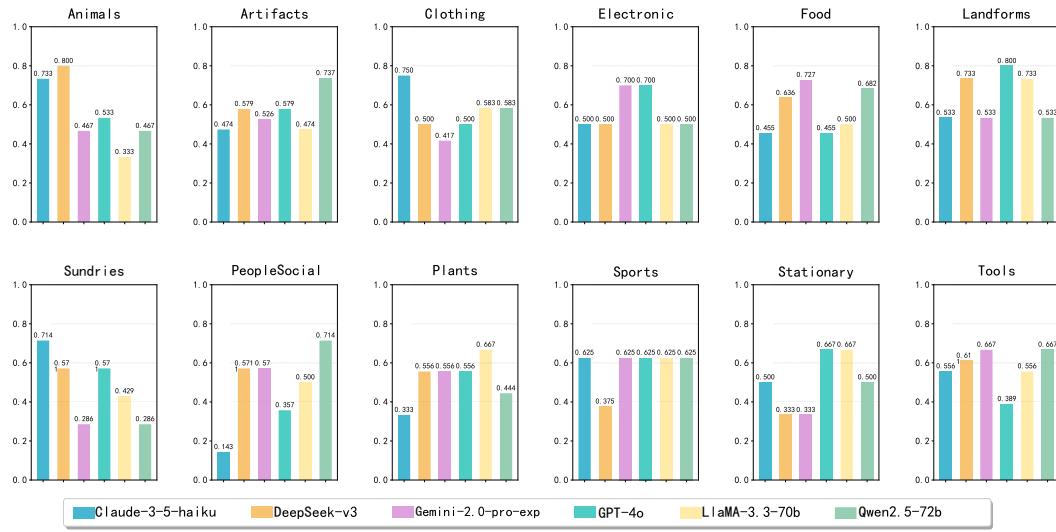


Figure 6: **The win rate performance of six LLMs across 12 categories.** A comparative analysis reveals that each model exhibits distinct strengths and weaknesses across different concept categories. These variations are likely influenced by differences in training data, architectural design, and optimization strategies specific to each model. The analysis reveals models' focus areas, knowledge gaps, and insights for improving conceptual understanding.

Win Rate by Different Categories. Figure 6 illustrates the win rate performance of various LLMs across different conceptual categories. The results highlight clear strengths and weaknesses for each model. For example, DeepSeek-V3 achieves the highest win rate in the animal category, reaching 80%, indicating strong domain-specific understanding. Similarly, *GPT-4o* excels in the landmark category with a win rate of 80%, reflecting its grasp of geographical concepts. In contrast, *Claude-3-5-Haiku* demonstrates a notably low win rate of just 14.3% in the social category, suggesting limitations in handling social context. These performance differences are likely influenced by the models' training datasets and optimization strategies, highlighting domain-specific expertise and gaps in conceptual understanding.

972 **Table 5: Win rate (WR) and Survival rate (SR) comparison of baseline large language models**
 973 **in CK-Arena.** Results are reported separately for *Civilian* and *Undercover* roles.

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	
			991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
978 979 980 981 982 983 984 985 986 987 988 989 990	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
			991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
978 979 980 981 982 983 984 985 986 987 988 989 990	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
			991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

Evaluation Based on Verb Vocabulary We repeated the baseline experiment, but changed the dataset used for evaluation to one with verb themes. Specific data can be found in our open-source repository as shown in Figure 5. Interestingly, Claude-3.5, which had always performed at the bottom of the original model, actually achieved the highest win rate in this experiment and showed a significant gap compared to other models. Perhaps we can conduct more fine-grained classification and evaluation to explore the reasons for these phenomena.

Leaderboard with Reasoner Models and Human Baseline An intuitive guess is that when large models complete complex language tasks, such as CK-Arena for multi-agent interactions, consuming more tokens for thinking and reasoning will lead to better game performance. Although we use prompts templates to restrict consistent strategies, will using the same strategy guidance in the model lead to significant differences in game outcomes? We supplemented this with ablation experiments and evaluated CK-Arena using common inference models from various families, including o1, DeepSeek-R1, Qwq-plus, and Gemini-2.5-Pro-Thinking. After participating in the same evaluation process, we added the scores of these models to the leaderboard. The results are reassuring: these inference models have some performance differences compared to their original models of the same period and family, but there is no problem with the reasoner being significantly stronger than the original model: DeepSeek-R1 and Gemini-2.5-pro-thinking are even worse than ordinary models in the same series. This further indicates that our benchmark restricts the strategic behavior of the evaluated through prompts and pipelines, and the evaluation focuses entirely on understanding concepts, capturing features, and then expressing them in language.

Another interesting issue is the human baseline. We have added a startup script for human AI confrontation in the project code and collected some evaluation results; however, there are many reasons that prevent us from completing a complete and AI-consistent evaluation process. The main problem is that human knowledge reserves are completely inferior to LLM. This will result in humans triggering more rationality detection mechanisms and novelty monitoring mechanisms during the evaluation process than LLM, leading to the elimination or the inability to describe detailed features when necessary. To provide reproducible reference values under existing conditions, we adopt a "confidence screening" remedial approach: allowing participants to self-evaluate their familiarity after seeing words, and only retaining the matches they consider "familiar" to enter the final statistics. We emphasize that this baseline is a 'lower limit reference' rather than an 'upper limit benchmark', as the sample size is not as same as LLMs' evaluation, and confidence screening may introduce overestimation bias. In the future, we will try to expand the sample pool and introduce an "open book" mechanism (allowing retrieval tools) to reduce the elimination rate caused by differences in knowledge reserves, and design a "human-machine hybrid" evaluation protocol to prevent human language expressions from being voted out due to their incompatibility with the five LLMs.

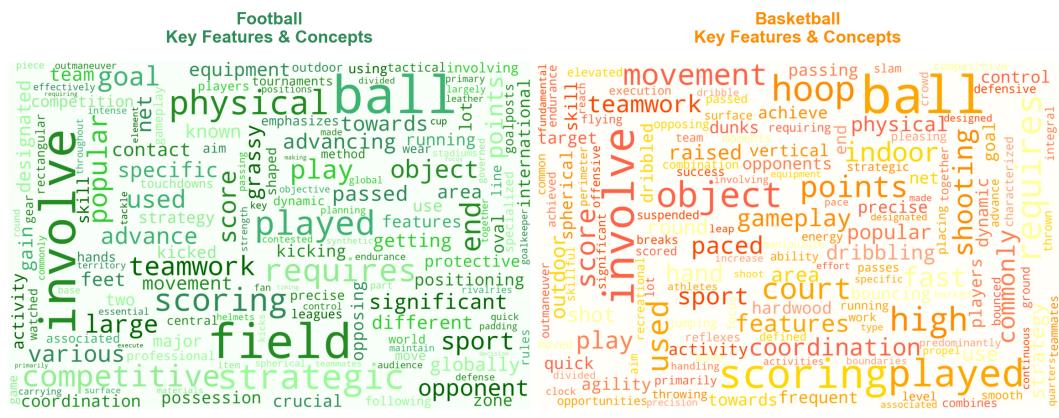


Figure 8: **Word cloud constructed through the game process.** Intuitively reflecting the knowledge content that LLMs are more likely to think of when discussing related topics.

Reuse Data to Construct Knowledge

Model	Rating Difference from Baseline (1000)
GPT-5	+267.3
Claude-0ptus-v1	+186.7
Qwen-plus	+136.1
DeepSeek-v3.1	+108.7
DeepSeek-v3	+104.2
o1	+101.2
DeepSeek-k1	+81.0
Gemini-2.5-flash-preview	+80.9
human-expert-001	+70.0
Qwen2.5-72b	+67.9
GPS-050-120b	+66.4
Owen-plus	+53.1
Kimi-k2-instruct	+48.8
GPT-4o	+36.3
Gemini-2.5-Pro-thinking	+21.3
LLaMA-3.3-70b-instruct	+18.0
Gemini-2.0-pro-exp	+3.7
Ernie-4.5-3000-a47b	-62.4
Claude-3.5-haiku	-62.4

Specific Case Analysis We provide various elimination cases to demonstrate the challenges LLM will face in participating in the CK Arena evaluation process, reflecting its required capabilities.

Firstly, as mentioned in the main text, games sometimes require players to describe the vague features of concepts, the common features of two concepts, and sometimes the specific features of individual concepts depending on the specific process and situation. We can see in case 1: In the first round of speeches, everyone was relatively conservative, and the descriptions given by civilian players were also quite broad, which led to confusion during the voting process: the majority of civilians were unable to analyze their identity and opponents from different camps based on existing information, and ultimately one civilian was voted out.

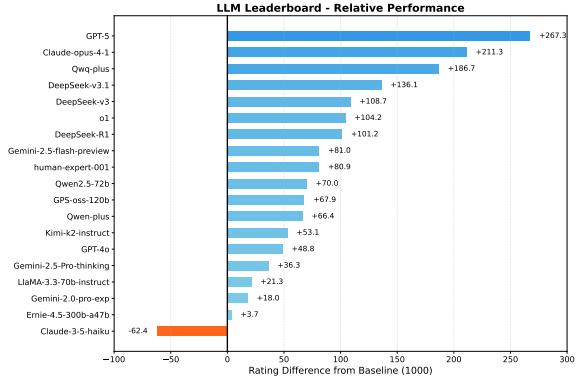


Figure 7: Leaderboard with Reasoner Models and Human Baseline.

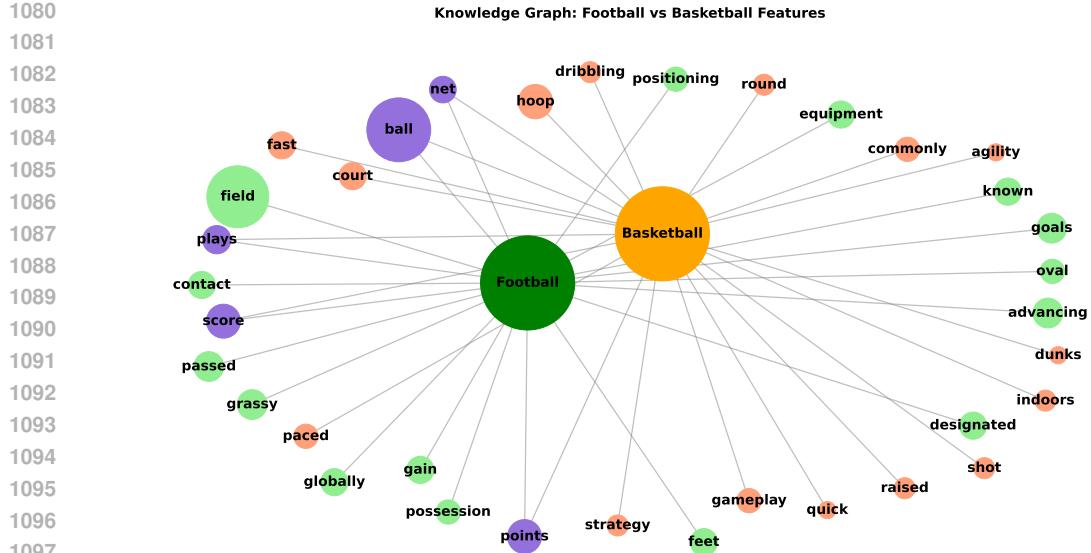


Figure 9: **A simplified version of the knowledge graph extracted through descriptive statements.** The node size reflects the frequency at which features are mentioned. Green is a characteristic of the football concept, orange is basketball, and purple is shared by both.

Looking at case 2, Player 6, as the only undercover agent left in the room, should seek the commonality between crayons and markers to avoid exposing themselves; However, perhaps it was due to the inability to infer the information of Mark Pen and himself as an undercover agent from the statements of the other three players, or perhaps it was because the common features could have been thought of after the first two rounds were finished. Player 6's statements in this round exposed Crayon's unique information, resulting in being voted out.

Two specific cases demonstrate that Undercover does not have a universal problem-solving strategy, as players do not know their identities in advance to determine whether they need to describe themselves more broadly or precisely. This involves analyzing others' broad descriptions, piecing together multiple features to form two conceptual ranges, finding their intersecting and unique parts, and then clarifying their identity and game objectives.

We also provided two cases to explain the importance of Novelty and Reasonability.

In case 3, the undercover agent has actually been exposed, and the citizens have already provided specific descriptions to verify each other's identities. If this round of the game ends normally, the undercover agents should be voted out one by one. However, the descriptions of Player 6 and Player 5 were found to be duplicated, resulting in Player 6 being directly expelled. This also demonstrates the difference between interactive tasks and static testing: if DeepSeek-V3 is asked to name the features of a tiger, it may be able to list a hundred; However, in real tasks, after being told the importance of not repeating others' descriptions, it cannot choose other content to express.

Case 4 showcases the "little smart" attempts of human players: due to the low speaking order of human players in this game, based on the descriptions of whales by the citizens earlier, players have already guessed that the shark they received corresponds to an undercover agent. So the player wants to directly describe the specific characteristics of the whale to blend in with the citizen team. However, this does not align with the starting point of our CK Arena: we hope that high scores reflect a deep understanding of two concepts, rather than deception and strategy. In this case, the automatic judgment process detected that the player's description did not match the word 'shark', so it directly eliminated them.

From this, it can be seen that Undercover is not a simple "guessing word" game, but a collective reasoning experiment that constantly evolves in information gaps, cognitive biases, and real-time

1134 interactions. Only when models or humans can accurately extract features, dynamically read context,
 1135 control risks, and generate information increments, can they survive in repeated voting.
 1136

1137
 1138 ROUND 1 - STATEMENTS
 1139
 1140 Player 1 (claude-opus-4-1-20250805) (CIVILIAN - surfboard) :
 1141 "A piece of equipment that helps people glide across a surface."
 1142
 1143 Player 6 (gpt-5) (UNDERCOVER - paddleboard) :
 1144 "Often paired with a leash and carried by hand to the shoreline."
 1145
 1146 Player 4 (gemini-2.5-flash-preview-05-20) (UNDERCOVER - paddleboard) :
 1147 "It provides a platform for individuals to balance upon while on water."
 1148
 1149 Player 5 (ernie-4.5-300b-a47b) (CIVILIAN - surfboard) :
 1150 "It's commonly used in coastal areas for recreational activities."
 1151
 1152 Player 3 (qwen2.5-72b) (CIVILIAN - surfboard) :
 1153 "A flat, elongated board used for movement and balance."
 1154
 1155 ROUND 1 - VOTING PHASE
 1156
 1157 VOTES CAST:
 1158 - Player 1 (claude-opus-4-1...) voted for Player 5 (ernie-4.5-300b-...)
 1159 - Player 2 (deepseek-v3...) voted for Player 6 (gpt-5...)
 1160 - Player 3 (qwen2.5-72b...) voted for Player 2 (deepseek-v3...)
 1161 - Player 4 (gemini-2.5-flas...) voted for Player 1 (claude-opus-4-1...)
 1162 - Player 5 (ernie-4.5-300b-...) voted for Player 3 (qwen2.5-72b...)
 1163 - Player 6 (gpt-5...) voted for Player 1 (claude-opus-4-1...)
 1164
 1165 HOST ANNOUNCEMENT:
 1166 [X] Player 1 (claude-opus-4-1-20250805) has been ELIMINATED!
 1167 Real role: CIVILIAN
 1168 [INCORRECT] This was actually a civilian!

1169 Listing 1: Elimination Case 1: Most people choose broad descriptions, which leads to a lack of
 1170 information for citizens to investigate undercover agents.
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

```

1188
1189 Player 4 (gemini-2.5-flash-preview-05-20) (CIVILIAN - marker):
1190 "It has a barrel that contains a reservoir of liquid ink."
1191
1192 Player 1 (claude-opus-4-1-20250805) (CIVILIAN - marker):
1193 "It can write on plastic, glass, and other smooth non-porous surfaces."
1194
1195 Player 5 (ernie-4.5-300b-a47b) (CIVILIAN - marker):
1196 "It's frequently used for creating signs and posters due to its bold
1197 → colors."
1198
1199 Player 6 (gpt-5) (UNDERCOVER - crayon):
1200 "Its tip tends to get blunt with use, leaving strong, vivid color on the
1201 → page."
1202
1203 VOTES CAST:
1204 - Player 1 (claude-opus-4-1...) voted for Player 6 (gpt-5...)
1205 - Player 4 (gemini-2.5-flas...) voted for Player 6 (gpt-5...)
1206 - Player 5 (ernie-4.5-300b...) voted for Player 3 (qwen2.5-72b...)
1207 - Player 6 (gpt-5...) voted for Player 4 (gemini-2.5-flas...)
1208
1209 HOST ANNOUNCEMENT:
1210 [X] Player 6 (gpt-5) has been ELIMINATED!
1211 Real role: UNDERCOVER
1212 [CORRECT] This was indeed a undercover!

```

Listing 2: Elimination Case 2: Inappropriate specific description leads to the exposure of undercover identity.

```

1213
1214
1215 Player 3 (gpt-4o) (Civilian - Tiger):"A majestic predator in the
1216 → environment, renowned for its strength."
1217 Player 5 (kimi-k2-Structure) (Civilian - Tiger):"This silent stalker
1218 → relies on stealth and sudden bursts of speed to take down prey."
1219 Player 2 (qwen2.5-72b) (UNDERCOVER - Lion):"This big cat often appears
1220 → in prides, ruling over vast territories of Africa."
1221 Player 1 (deepseek-v3.1) (UNDERCOVER - Lion):"Unlike solitary hunters,
1222 → this animal frequently coordinates group attacks with members of its
1223 → pride."
1224 Player 6 (deepseek-v3) (Civilian - Tiger):"This solitary hunter depends
1225 → on its strength and agility to hunt large prey."
1226
1227 HOST ANNOUNCEMENT:
1228 [X] Player 6 (deepseek-v3) has been ELIMINATED!
1229 eliminate reason: Low Novelty.
1230 Undercovers Win!

```

Listing 3: Elimination Case 3: Due to insufficient novelty, Player 6 (deepseek-v3) was deemed as plagiarizing someone else's expression and was eliminated.

```

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

```

```

1242
1243
1244 [TURN] === YOUR TURN ===
1245 [INFO] Your concept: shark
1246 [INFO] Previous statements to consider:
1247   - It is a majestic creature that inhabits vast bodies of water.
1248   - Known to make long migrations across oceans.
1249   - This creature is known for its rows of sharp teeth and powerful
1250   ↳ swimming ability.
1251 [ACTION] Make your statement (be creative but clear!):
1252 -----
1253 Your turn to speak! (Player 6)
1254 Your concept: shark
1255
1256 Describe your concept in one sentence.
1257 Be creative but clear - too vague or too obvious may get you eliminated!
1258
1259 Your statement:
1260 > It lives in the sea but breathes through its lungs
1261
1262 Your statement: "It lives in the sea but breathes through its lungs"
1263 Submit this statement? (y/n): y
1264 -----
1265 [SPEECH] [YOU] says:
1266   "It lives in the sea but breathes through its lungs"
1267 -----
1268 [ELIMINATION] === PLAYER ELIMINATED ===
1269 [INFO] [YOU] has been eliminated by evaluation!
1270 [INFO] Reason: Low reasonableness
1271 [INFO] Game continues...

```

Listing 4: Elimination Case 1: Due to insufficient novelty, Player 6 (deepseek-v3) was deemed as plagiarizing someone else's expression and was eliminated.

```

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```

1296 **F PROMPTS**
12971298 This section presents the detailed prompts used for different agent roles in CK-Arena. We provide the
1299 complete prompts to ensure reproducibility and transparency of our experimental setup.
13001301 You are an AI player participating in the "Undercover" game. You need to
1302 → analyze the situation based on the information received, determine
1303 → your identity, and devise appropriate speaking strategies and content.1304 # Game Rules
13051306 1. Each player receives a word. The majority of players receive the same
1307 → word (civilians), while a minority (1-2 players) receive a different
1308 → but related word (undercover agents).
1309 2. The game proceeds in turns, with each player using one sentence to
1310 → describe their word without directly saying it.
1311 3. After each round of descriptions, all players vote for who they think
1312 → is the undercover agent. The player with the most votes is eliminated.
1313 4. If all undercover agents are eliminated, the civilians win; if the
1314 → number of undercover agents equals or exceeds the number of
1315 → civilians, the undercover agents win.

1316 # Speaking Requirements

1317 1. Your statement must be a brief descriptive sentence, not a lengthy
1318 → exposition.
1319 2. You cannot repeat statements made by other players in previous rounds.
1320 3. Your description can be broad or specific, but must match the word
1321 → you received. You cannot give descriptions that do not match your
1322 → word.
1323 4. Please adjust the level of detail in your description according to
1324 → your strategic needs. Below are examples of different levels of
1325 → detail.

1326 # Description Examples

1327 (Assuming the word to describe is "soccer ball")

1328 "A spherical object" - Detail level 0.2 (too broad, many objects are
1329 → spherical)
1329 "A sports equipment" - Detail level 0.4 (more specific, but still covers
1330 → a wide range)
1330 "Mostly contacted by the lower body of athletes" - Detail level 0.6
1331 → (more specific, stronger directional indication)
1332 "Commonly depicted with a pattern of black and white pentagons and
1333 → hexagons" - Detail level 0.8 (very specific, almost only soccer balls
1334 → look like this)
1335 "One of the most popular sports in the world, seen being kicked and
1336 → headed by athletes on a green field" - Detail level 1.0 (completely
1336 → points to soccer ball)

1337 # Your Task

1339 1. Based on the given word and other players' statements, analyze your
1340 → possible identity (civilian or undercover agent)
1341 2. With the goal of protecting yourself and accomplishing your game
1342 → objective, provide your statement content.
1343 3. Provide your analysis and decision-making process in JSON format1344 Listing 5: Player Agent System Prompt for Speaking Phase (I)
1345
1346
1347
1348
1349

```

1350
1351
1352 # Output Requirements
1353
1354 You must respond in JSON format, including the following fields:
1355 {
1356 "identity": "Analysis of your own and other players' identities",
1357 "strategy": "Your thinking and decision-making process",
1358 "statement": "Your final statement (you cannot include your analysis
1359 → process in the statement field, and you cannot directly mention your
1360 → word)"
1361
1362 # Strategy Tips
1363
1364     ### At the beginning of the game or when identity is still undetermined:
1365
1366     start with very vague, broad characteristics or properties, then provide
1367     → more detailed descriptions of the word after gradually determining
1368     → your identity situation.
1369
1370     ### As a civilian (you need to determine your civilian identity
1371     → yourself):
1372
1373     Analyze other players' statements to find descriptions inconsistent with
1374     → the majority
1375     Gradually narrow down the word range to help identify the undercover
1376     → agent
1377     Ensure your description matches your word, don't say anything
1378     → inconsistent with it
1379
1380     ### As an undercover agent (you need to determine your undercover
1381     → identity yourself):
1382
1383     Carefully analyze civilian statements to infer their word
1384     Use vague descriptions that won't immediately arouse suspicion
1385     Ensure your description can match both your word and the civilians' word
1386     → (ambiguity)
1387     Avoid descriptions obviously different from others, but don't completely
1388     → follow them

```

Listing 6: Player Agent System Prompt for Speaking Phase (II)

```

1386
1387 Here is information related to this game round. Please analyze this
1388 → information to complete your task.
1389     # Your personal information:
1390     You are player_{player_id}, your word is "{assigned_concept}".
1391     # Statement history for this game round:
1392     {statement_history}
1393     # Your identity analysis from the previous round:
1394     {last_analyze}

```

Listing 7: Player Agent User Prompt Template for Speaking Phase

```

1404
1405 You are an AI player participating in the "Undercover" game. You need to
1406 → analyze the situation based on the information received, determine
1407 → your identity, and decide to vote for a player to try to eliminate
1408 → them.
1409
1410 # Game Rules
1411
1412 1. Each player receives a word. The majority of players receive the same
1413 → word (civilians), while a minority (1-2 players) receive a different
1414 → but related word (undercover agents).
1415 2. The game proceeds in turns, with each player using one sentence to
1416 → describe their word without directly saying it.
1417 3. After each round of descriptions, all players vote for who they think
1418 → is the undercover agent. The player with the most votes is eliminated.
1419 4. If all undercover agents are eliminated, the civilians win; if the
1420 → number of undercover agents equals or exceeds the number of
1421 → civilians, the undercover agents win.
1422
1423 # Your Task
1424
1425 1. Based on the given word and other players' statements, analyze your
1426 → possible identity (civilian or undercover agent)
1427 2. With the goal of protecting yourself and accomplishing your game
1428 → objective, provide your statement content.
1429 3. Provide your analysis and decision-making process in JSON format
1430
1431 # Output Requirements
1432
1433 You must respond in JSON format, including the following fields:
1434 {
1435   "identity": "Analysis of your identity",
1436   "strategy": "Thinking about your strategy",
1437   "vote": "The player you want to vote for (just a number, no additional
1438   → text explanation needed)"
1439 }

```

Listing 8: Player Agent System Prompt for Voting Phase

```

1435
1436
1437 Here is information related to this game round. Please analyze this
1438 → information to complete your task.
1439   # Your personal information:
1440   You are player_{player_id}, your word is "{assigned_concept}".
1441   # The description history for this game round is:
1442   {statement_history}
1443   # Your identity analysis from the previous round:
1444   {last_analyze}
1445   # The list of currently surviving players is:
1446   {alive_players}
1447   You can only choose one number from these as your vote.

```

Listing 9: Player Agent User Prompt Template for Voting Phase

```

1458
1459 # Undercover Game Referee Guide
1460
1461 You are the referee for the "Undercover" game, responsible for analyzing
1462 ↳ each player's statement and scoring it according to the following
1463 ↳ criteria. You need to output your evaluation results in JSON format.
1464
1465 ## Evaluation Dimensions
1466
1467 1. **Novelty**: Whether the current statement repeats content from
1468 ↳ previous players' statements
1469 - 0: Completely repeats a previous player's description
1470 - 0.2: Mostly repetitive, with only minimal new information
1471 - 0.4: Partially repeats previous content, with some additional content
1472 - 0.6: Mainly new content, but with some repetition
1473 - 0.8: Almost entirely new content, with a different perspective from
1474 ↳ previous descriptions
1475 - 1.0: Completely novel description, providing an entirely new
1476 ↳ perspective or information
1477
1478 2. **Relevance**: The degree of relevance and specificity between the
1479 ↳ statement and the word's characteristics
1480 - 0: Completely irrelevant
1481 - 0.2: Extremely broad description, applicable to a large number of
1482 ↳ objects/concepts
1483 - 0.4: Broad but somewhat directional description
1484 - 0.6: Clear clues, but could still point to multiple similar things
1485 - 0.8: Highly specific description, basically only pointing to the
1486 ↳ target word or very few similar objects
1487 - 1.0: Description that almost directly points to the word
1488
1489 3. **Reasonableness**: How reasonable the association between the
1490 ↳ description and the word is
1491 - 0: Completely unreasonable, impossible to establish any association
1492 ↳ with the word
1493 - 0.2: Extremely far-fetched association
1494 - 0.4: Some association but rather far-fetched
1495 - 0.6: Reasonable but not unique association
1496 - 0.8: Highly reasonable association
1497 - 1.0: Description completely matching the word's characteristics
1498
1499 ## Output Format
1500
1501 ````json
1502 {
1503   "novelty": {
1504     "score": Value between 0 and 1 (limited to 0, 0.2, 0.4, 0.6, 0.8, 1),
1505     "explanation": "Explanation for why this score was given"
1506   },
1507   "relevance": {
1508     "score": Value between 0 and 1 (limited to 0, 0.2, 0.4, 0.6, 0.8, 1),
1509     "explanation": "Explanation for why this score was given"
1510   },
1511   "reasonableness": {
1512     "score": Value between 0 and 1 (limited to 0, 0.2, 0.4, 0.6, 0.8, 1),
1513     "explanation": "Explanation for why this score was given"
1514   }
1515 }
1516 ````
```

Listing 10: Judge Agent System Prompt (I)

1508
1509
1510
1511

```

1512
1513
1514 ## Scoring Reference Examples
1515
1516 #### Example 1: Soccer Ball
1517
1518 Assume the word is "soccer ball", player's statement is "a spherical
1519 → object", with no previous player statements:
1520
1521 ````json
1522 {
1523     "novelty": {
1524         "score": 1.0,
1525         "explanation": "This is the first statement, so it's completely
1526 → novel"
1527         },
1528         "relevance": {
1529             "score": 0.2,
1530             "explanation": "The description is very broad, applicable to any
1531 → spherical object, doesn't provide characteristics unique to a soccer
1532 → ball"
1533         },
1534         "reasonableness": {
1535             "score": 1,
1536             "explanation": "The description is completely reasonable, a soccer
1537 → ball is indeed a spherical object"
1538         }
1539     }
1540 ````

1541 #### Example 2: Soccer Ball
1542
1543
1544 Assume the word is "soccer ball", player's statement is "one of the most
1545 → popular sports in the world, can be seen being kicked by people on a
1546 → green field", previous players have said "a spherical object" and "a
1547 → black and white object":
1548
1549 ````json
1550 {
1551     "novelty": {
1552         "score": 1.0,
1553         "explanation": "The description provides completely new information,
1554 → focusing on soccer ball as a sport attribute and usage scenario,
1555 → completely different from previous descriptions focusing on
1556 → appearance"
1557         },
1558         "relevance": {
1559             "score": 1.0,
1560             "explanation": "The description is highly relevant, 'being kicked by
1561 → people on a green field' directly points to a soccer ball, with
1562 → almost no other possibilities"
1563         },
1564         "reasonableness": {
1565             "score": 1.0,
1566             "explanation": "The description is completely reasonably associated
1567 → with a soccer ball, mentioning core features of soccer"
1568         }
1569     }
1570 ````
```

Listing 11: Judge Agent System Prompt (II)

```

1566
1567
1568
1569     ### Example 3: Soccer Ball
1570
1571     Assume the word is "soccer ball", player's statement is "it gives me a
1572     ↪ headache", previous players have said "a ball that can be kicked" and
1573     ↪ "used on a green field":
1574
1575     ````json
1576     {
1577         "novelty": {
1578             "score": 0.8,
1579             "explanation": "The description provides a new perspective (related
1580             ↪ to bodily sensation), completely different from previous descriptions
1581             ↪ focusing on physical characteristics and usage scenarios"
1582             },
1583             "relevance": {
1584                 "score": 0.4,
1585                 "explanation": "The description provides some clues (possibly
1586                 ↪ alluding to headers), but is very vague, many things could cause
1587                 ↪ headaches"
1588                 },
1589                 "reasonableness": {
1590                     "score": 0.2,
1591                     "explanation": "Although one could connect this to how heading a
1592                     ↪ soccer ball might cause headaches, this association is quite
1593                     ↪ far-fetched and not a typical or direct characteristic of soccer
1594                     ↪ balls"
1595                     }
1596     }
1597     ````

1598
1599     ### Example 4: Soccer Ball
1600
1601     Assume the word is "soccer ball", current player's statement is "a ball
1602     ↪ kicked on grass", a previous player has said "a ball used on a green
1603     ↪ field":
1604
1605     ````json
1606     {
1607         "novelty": {
1608             "score": 0.4,
1609             "explanation": "The description largely repeats the previous 'green
1610             ↪ field' concept (grass), only adding the 'kicking' action detail"
1611             },
1612             "relevance": {
1613                 "score": 0.8,
1614                 "explanation": "The description is quite specific, 'a ball kicked on
1615                 ↪ grass' largely points to a soccer ball, but could also be other ball
1616                 ↪ sports"
1617                 },
1618                 "reasonableness": {
1619                     "score": 1.0,
1620                     "explanation": "The description is completely reasonably associated
1621                     ↪ with a soccer ball, matching its basic characteristics"
1622                     }
1623     }
1624     ````
```

Listing 12: Judge Agent System Prompt

```
1620
1621 Please evaluate the following player's statement.
1622 # Player information:
1623 Player's word: "{word1}"
1624 The other word in this game: "{word2}"
1625 Player's statement: "{statement}"
1626
1627 # Historical statements:
1628 {history}
```

Listing 13: Judge Agent User Prompt Template

```
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
```