IS YOUR LLM REALLY MASTERING THE CONCEPT? A MULTI-AGENT BENCHMARK

Anonymous authors

000

001

003 004

006

008

010 011

012

013

014

015

016

017

018

019

021

023

025

027 028 029

031

033

034

037

040

041

042

043 044

045

047

051

052

Paper under double-blind review

ABSTRACT

Concepts are generalized abstractions that allow humans to categorize and reason efficiently. Whether Large Language Models (LLMs) possess a similar understanding of conceptual relationships, however, is not yet well established. Existing benchmarks primarily focus on factual recall or narrow tasks (e.g., multiple-choice question answering or knowledge quizzes), offering limited insight into whether models understand conceptual relationships and subtle distinctions (e.g., poetry vs. prose). Many also rely on static datasets that risk overfitting. To address this gap, we introduce CK-Arena, a multi-agent interaction benchmark inspired by the Undercover game, designed to evaluate the mastery of conceptual feature knowledge by LLMs. In CK-Arena, models must describe, differentiate, and infer distinguishing features of concepts from partial information, testing their ability to reason about both commonalities and differences across concept boundaries. The benchmark offers scalable datasets, rigorous evaluation protocols, and flexible extension methods, enabling comprehensive assessment of LLMs' conceptual understanding across multiple dimensions. Experimental results show that LLMs' understanding of conceptual knowledge varies significantly across different categories and is not strictly aligned with general model capabilities. The code is made publicly available at: https: //anonymous.4open.science/r/CK-Arena/readme.md.

Figure 1: **Conceptual knowledge arena (CK-Arena).** The benchmark aims to evaluate the mastery of conceptual feature knowledge by LLMs. It builds on the interactive game *Undercover*, where concept pairs with overlapping and distinct features are assigned to LLM agents. Acting as players, models generate descriptions, infer similarities and differences, and make strategic decisions with partial information. As judges, they evaluate responses for sentence metrics. This multi-agent setup creates a dynamic and scalable environment for assessing conceptual understanding.

1 Introduction

A concept is a high-level abstraction of knowledge that captures shared properties of entities and their characteristic attributes. Understanding concepts requires recognizing their relationships as well as the similarities and differences that distinguish closely related ones, which is a fundamental aspect of human cognition (Wu et al., 2012; Gong et al., 2016; Ji et al., 2019; Zhang et al., 2021; Wang et al., 2024; Cao et al., 2024). For example, the concept *Primates* unites animals such as *monkeys* and *apes* through features like opposable thumbs, forward-facing eyes, and advanced cognitive abilities, while also involving subtle distinctions such as the presence of tails in most *monkeys* but not in *apes*. Human cognition naturally uses such conceptual structures for reasoning and adaptation, but it is still uncertain to what extent Large Language Models (LLMs) internalize and exploit these abstractions.

Recent work has highlighted the importance of conceptual knowledge as a core aspect of intelligence. Studies have examined conceptual design generation (Ma et al., 2023), concept editing (Wang et al., 2024), and abstract concept understanding (Liao et al., 2023; Chen et al., 2025), showing growing interest in concept-based reasoning for LLMs. Yet progress remains constrained by the lack of systematic benchmarks. Traditional benchmarks have advanced LLMs performance (Hendrycks et al.; Zellers et al., 2019; Liang et al.; Mostafazadeh et al., 2017), but most rely on static question—answer formats that test token-level accuracy and factual recall. These evaluations reduce knowledge to isolated items and mainly measure information retrieval, offering little evidence of whether models understand conceptual relationships or can distinguish closely related concepts. For example, a model may identify that *monkeys* and *apes* both belong to *Primates*, but this does not show understanding of the hierarchical relationships or distinctive features between the two groups. In addition, fixed formats such as multiple-choice questions provide only a partial view of reasoning, and the reliance on static datasets limits scalability, since building and updating them requires extensive human annotation.

Interactive game-based environments have emerged as an alternative (Lin et al., 2023; Zhou et al., 2023; Wu et al., 2023), offering dynamic contexts for multi-step reasoning. However, most existing simulations emphasize strategy, providing limited insight into whether models can represent and communicate conceptual knowledge. These gaps call for a systematic and scalable benchmark that directly evaluates conceptual reasoning in realistic interactive settings. To address this gap, we introduce CK-Arena, an interactive multi-agent benchmark for evaluating LLMs' ability to represent, differentiate, and communicate conceptual knowledge (Figure 1). We evaluate the LLMs by having them play the *undercover* (Who is the spy?) game, a multi-agent language game that involves describing a targeting word and identifying each player's role, and by assessing their multi-turn performance as well as their in-game statements. Unlike traditional dataset-based or strategy-focused benchmarks, CK-Arena engages models with concept pairs that share both overlapping and distinctive features, and offers scalable datasets, systematic evaluation protocols, and extensible tools for assessing conceptual understanding.

For evaluation, LLMs serve as referees and are combined with human calibration to ensure reliability. We test a set of recent language models over multiple rounds using a convergent rating system, producing an intuitive leaderboard of their relative performance. Beyond overall ratings, we also analyze results from different perspectives, including in-game success and text generation quality. Experimental findings show that LLMs' conceptual understanding varies across categories and does not consistently align with their general capabilities, highlighting the need for targeted evaluation beyond surface-level performance.

In summary, our contributions are three-fold: (1) we propose CK-Arena, a benchmark for conceptual understanding in interactive multi-agent settings; (2) we develop systematic metrics and scalable datasets for concept representation, differentiation, and connection; and (3) we conduct extensive experiments with six commonly used LLMs from different families, revealing gaps between general capability and conceptual understanding.

2 RELATED WORKS

Benchmarks for Conceptual Knowledge Reasoning. Commonsense reasoning benchmarks play an important role in assessing the capabilities of Large Language Models (LLMs). Widely used benchmarks such as Story Cloze Test (Mostafazadeh et al., 2017), Choice of Plausible Alternatives (COPA) (Roemmele et al., 2011), and HellaSwag (Zellers et al., 2019) largely rely on static formats

109

110

111

112

113

114

115

116

117 118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134 135

136 137

138

139

140

141

142 143

144 145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

like multiple-choice questions or binary judgments. While effective for evaluating factual recall and superficial understanding, these static formats do not fully reflect real-world interactive scenarios. More recent benchmarks, including MMLU (Hendrycks et al.), CMMLU (Li et al., 2024), BIG-Bench (Srivastava et al., 2022), and HELM (Liang et al.), have introduced tasks such as logical reasoning, cloze tests, and multi-turn Q&A to expand the scope of evaluation. Although these efforts represent progress toward more interactive assessments, they still focus predominantly on factual recall and task-specific reasoning, offering limited insight into how well LLMs understand and manipulate conceptual knowledge boundaries in evolving contexts. In contrast, CK-Arena is designed to explicitly evaluate conceptual mastery by immersing LLMs in interactive, multi-agent gameplay that requires real-time understanding of semantic boundaries.

Game-based Evaluation. Multi-agent Games provide a unique platform for evaluating AI capabilities, offering interactive and dynamic environments that differ from traditional benchmarks built on static datasets. They have been used to measure various skills, including environmental perception and planning in exploratory games (Wang et al., 2023; Wu et al., 2023), strategic decision-making in competitive games (Feng et al., 2023; Ma et al., 2024), team collaboration in cooperative games (Agashe et al., 2023; Mosquera et al., 2024), and social interaction and language comprehension in communication games (Light et al.; Qiao et al., 2023; Wu et al., 2024). Compared to static evaluations, game-based benchmarks offer more realistic interaction scenarios that better mimic real-world decision-making. However, many game benchmarks rely on fixed formats and rules, resulting in gameplay that is highly similar across multiple testing rounds and limiting their evaluation scope. Undercover (Xu et al., 2024) stands out because its interchangeable word pairs generate varied content within the same structure. Although prior work has used Undercover as a benchmark (Xu & Zhong, 2025; Dong et al., 2024; Wei et al., 2025), these studies primarily explored method development and decision-making, without leveraging its unique potential for evaluating conceptual understanding. CK-Arena fills this gap by integrating concept-based reasoning within multi-agent interactions, allowing LLMs to explore and articulate conceptual relationships dynamically, mirroring real-world cognitive processing.

3 CK-Arena: Conceptual Knowledge Arena

This section introduces the construction of CK-Arena, detailing the choice of the *Undercover* game as the evaluation paradigm, the metrics employed to capture different dimensions of model performance, and the overall workflow for building, running, and analyzing the evaluation. Together, these components establish CK-Arena as a rigorous and scalable framework for uncovering both the strengths and limitations of LLMs in conceptual knowledge.

3.1 THE UNDERCOVER GAME FOR EVALUATION

Game Rule. CK-Arena is built on the multi-agent language game Undercover (Xu et al., 2024), which is originally designed to test the players' reasoning and strategic communication abilities. In the game, players are assigned either as "civilians" who are the majority of the players and know a common word, or as "undercover" who are given a different but related word. Note that each player is informed of their assigned concept word but remains unaware of their team identity or the concepts held by others. Through rounds of description, players must identify who the undercover agents are while undercover agents try to remain undetected by providing descriptions vague enough to seem plausible without revealing their ignorance of the civilians' word. After each round, play-

Figure 2: Flowchart of gameplay and win conditions in Undercover. Players alternate between describing their assigned concepts and voting to eliminate suspects. The game ends when undercover agents equal the number of civilians (undercover win) or when all undercover agents are eliminated (civilian win).

ers participate in a voting process to eliminate the individual they suspect to be an undercover agent. The game concludes under one of two conditions: (1) if all undercover agents are eliminated, the civilians win; (2) if the number of civilians and undercover agents is equal, the undercover agents win. The flowchart of gameplay is illustrated in Figure 2.

Data Statistics The dataset we provided contains a total of 529 English pairs of concepts, including 220 concrete noun pairs, 100 abstract noun pairs, 109 adverb pairs, and 100 verb pairs. After initial experimental attempts, we concluded that concrete noun pairs are more suitable for our experimental setup and overall research questions. Therefore, for the specific experiments, we selected 12 different categories from the 220 concrete noun pairs. These categories consist of concrete noun pairs that are closest to our daily life and conversational contexts.

Why Use Undercover to Evaluate? To illustrate the effectiveness of the *Undercover* game in CK-Arena, consider an example where the concepts *football* and *basketball* are assigned to players, with *basketball* designated as the undercover concept. During the speaking phase, the undercover player must analyze the descriptions provided by others about *football*, identify shared attributes, and strategically describe *basketball* in a way that overlaps with common features, such as "*This is a ball-shaped sports equipment*" or "*This sport is played by two teams*." This task requires more than superficial word associations or token co-occurrence. It calls for understanding the similarities and differences between concepts. A model that fails to capture these relationships and relies on shallow generation risks exposing its undercover role and being eliminated. With its emphasis on conceptual understanding, interactive dynamics, and scalable coverage, CK-Arena provides a rigorous benchmark for evaluating LLMs' understanding of conceptual knowledge.

3.2 Large Language Models as Players

Pipeline. LLM participates in CK-Arena's evaluation by playing multiple rounds of games as a player. In our configuration, we set up 6 players for each game, consisting of 4 civilians and 2 undercover agents. The game begins with an initialization phase in which players are randomly assigned roles: civilians receive a primary concept, while undercover agents are given a similar but distinct concept. During gameplay, players take turns producing statements that describe their assigned concept while also attempting to identify potential undercover agents or civilians. Specifically, a player's task in the game involves two main components: (1) leveraging partial feature descriptions provided by other players, together with the prior knowledge that the unknown concept is semantically related to the known concept, in order to make inferences about the unknown concept; and (2) retrieving and associating relevant features of their assigned concept based on the given strategic guidelines, and then constructing statements that are related to features of the concept for their turn of speech. These two steps engage the model in processing both concept-to-concept relations and concept-to-feature mappings, thereby providing a strong reflection of its degree of conceptual understanding.

Prompt Design. To ensure effective communication and role-specific behavior, we construct tailored prompts for LLM-based agents in CK-Arena. The prompts include a comprehensive system prompt that provides game rules, input-output format guidelines, specific task instructions, basic strategic guidance, and example descriptions. In addition, each player receives a contextualized user prompt containing information about their assigned concept, historical statements, and analytical insights from previous rounds. Since CK-Arena is designed to evaluate conceptual mastery, we restrict players' strategic space with clear action guidelines to avoid confounding effects from uncontrolled reasoning and decision-making.

3.3 EVALUATE THE PERFORMANCE OF PLAYERS

Data Preparation. The selection of concept pairs is crucial to the effectiveness of the *Undercover* game in CK-Arena. We constructed a dataset of semantically related concept pairs spanning a wide range of categories. The dataset underwent pilot screening to ensure two main properties: (1) Semantic proximity: concepts are sufficiently similar to create challenging gameplay yet distinct enough for meaningful differentiation; (2) Descriptive clarity: concepts are expressive enough to enable smooth interactions during the game.

Table 1: **Evaluation metrics for CK-Arena.** Detailed breakdown of the metrics used to assess LLM performance in interactive gameplay.

Metric	Formula	Symbol Definitions		
Win Rate (WR)	$\mathrm{WR} = rac{G_{\mathrm{w}}}{G_{\mathrm{t}}}$	$G_{\rm w}$: Number of games won by the player $G_{\rm t}$: Total number of games played by the player		
Survival Rate (SR)	$SR = \frac{R_s}{R_t}$	R_s : Number of rounds the player survived R_t : Total number of rounds in all games		
Novelty	$\mathrm{Nov}(s_i) \in [0,1]$	s_i : Current statement $\mathrm{Nov}(s_i)$: Degree of new information in statement s_i compared to previous statements		
Reasonableness	$\mathrm{Rea}(s_i,c) \in [0,1]$	s_i : Current statement c : Target concept $Rea(s_i,c)$: Logical coherence between statement s_i and concept c 's properties		

The final dataset contains 529 English concept pairs spanning different parts of speech and semantic categories. Detailed statistics are provided in Appendix D, and the source files are available in our project repository. Furthermore, users can freely construct datasets in professional knowledge domains they wish to evaluate, which demonstrates CK-Arena's scalability. Appendix E provides concrete extension examples and guidelines.

Evaluation Metrics. To comprehensively evaluate model performance in CK-Arena, we distinguish between two categories of metrics:

- (A) *Player-level metrics* capture overall outcomes across games through two measures: Win Rate (WR), which reflects the proportion of games won and indicates effectiveness in fulfilling assigned roles; and Survival Rate (SR), which measures rounds survived before elimination, evaluating players' ability to navigate social dynamics and avoid suspicion.
- (B) Statement-level metrics assess individual response quality during gameplay, reflecting conceptual mastery at finer granularity. Both metrics use a 0-1.0 scale: Novelty measures new information introduced compared to previous descriptions, promoting creative exploration while preventing repetition; and Reasonableness assesses logical coherence between statements and concept properties, ensuring meaningful discourse. Statements below either threshold trigger automatic elimination.

Large Language Models as Judges. To meet the extensive knowledge demands of diverse topics, we adopt a multi-judge pipeline: strong LLMs from different families first produce independent assessments using prompts aligned with the evaluation framework in Section 3.3, where each dimension is defined together with scoring rubrics and worked examples to ensure round-by-round consistency. In order to prevent instability caused by LLMs as judgments, we have set up a manual team to review and adjust some scores based on LLMs' analysis process and relevant open source knowledge bases Miller (1995); wik (a;b). Specifically, 3.1% of the scores were manually calibrated. Once a sufficient volume of annotated data has been collected, the judging process can be further automated, as described below.

Efficient Metric Assessment. Considering the high cost and inefficiency of manual expert review, as well as the substantial time and financial burden of relying on powerful LLMs for evaluation, we sought to automate the scoring of two statement-level metrics that directly affect game progress by eliminating players. For *Novelty*, successive descriptive statements within each game can be vectorized, and their similarity (e.g., via cosine distance) can be computed. This provides a direct

Table 2: Classification performance of *Qwen-3-8B-ckR* as judge. Our *Qwen-3-8B-ckR* judge on the evaluation set: near-perfect accuracy and F_1 score, demonstrating that the fine-tuned model reliably replicates human expert assessments for maintaining game operation.

Class	Precision	Recall	F1-score	Support
0	1.00 0.99	0.93 1.00	0.96 1.00	29 271
Accuracy		0.99		300

quantitative approximation of novelty, where a low similarity score indicates novel contributions. For *Reasonableness*, the game's elimination mechanism can be viewed as a binary classification task. We tested traditional machine learning classifiers, smaller language models (e.g., MiniLM), and other methods, but these approaches failed to capture conceptual and feature-level relationships. In

contrast, *Qwen-3-8B* leveraged the associative reasoning ability of LLMs and achieved 92% accuracy in reasonableness judgment, though its outputs still diverged from human-designed evaluation criteria. To improve alignment, we fine-tuned *Qwen-3-8B* on about 2,000 structured descriptive samples from our experiments, producing *Qwen-3-8B-ckR*. In Table 2, *Qwen-3-8B-ckR* reaches 99.3% accuracy on the test set, and we adopt it as the reasonableness judge.

Result Collection and Analysis. CK-Arena integrates comprehensive data collection throughout each gameplay session. Every game instance generates a structured JSON record containing metadata (ID, timestamp, selected concepts), player details (IDs, LLM models, roles, assigned concepts), and judge specifications. The system logs the complete history of player statements with evaluation scores for novelty and reasonableness, along with vote records, elimination outcomes, and game-level statistics that capture overall performance and decision-making patterns. Users can choose to retain only statements and votes or the full reasoning process. All data are organized by rounds, enabling multi-dimensional analysis of interactions and decisions. Automated scripts further aggregate results across instances, producing statistical summaries and visualizations of indicators such as decision quality, elimination accuracy, and statement metrics.

Unified Rating System. To move beyond single-batch evaluations, we introduce a robust rating system that supports repeated assessments across multiple batches using quantitative indicators to systematically track model performance in CK-Arena. Because player behavior spans multiple dimensions, including win rates, survival rates, voting accuracy, and other indicators, the system provides a unified framework to capture overall capability. Specifically, we implement a team-based Elo rating system tailored to CK-Arena, where each player's rating is dynamically updated based on game outcomes, performance metrics, opponent and teammate strength, and experience-dependent volatility factors (Elo & Sloan, 1978).

For each player i in game g, we compute a composite performance score S_i^g as a weighted combination of multiple performance indicators:

$$S_i^g = \alpha \cdot W_i^g + \beta \cdot SR_i^g + \gamma \cdot VR_i^g$$

where $W_i^g \in \{0,1\}$ represents the binary win/loss outcome, $V_i^g \in [0,1]$ denotes the survival rate, and $VR_i^g \in [0,1]$ represents correctly voting rate. In our experiments, we set $(\alpha,\beta,\gamma)=(0.75,0.15,0.10)$.

To account for differing uncertainty in rating estimates between novice and experienced players, we group games into batches of 12 and apply an experience-dependent K-factor that decays by batch rather than by individual game count. This batching reflects the game design: different topic words may introduce systematic variation, and batch-based evaluation balances rating adjustments across diverse themes. The K-factor is defined as

$$K(n) = K_{min} + (K_{max} - K_{min}) \cdot \exp\left(-\frac{\lfloor n/12 \rfloor}{\tau}\right)$$

where n represents the number of games played and we set $K_{max} = 60$, $K_{min} = 5$, $\tau = 2.5$. This formulation ensures high volatility for new players ($K \approx 60$ at n = 0) while stabilizing ratings for experienced players ($K \approx 5$ at $n \ge 140$).

We conducted an analysis of the results in preliminary experiments and observed an inherent role bias in Undercover: under the 2 versus 4 setting with our defined prompts, civilians are consistently more likely to win than undercover agents (with an average win rate of approximately 66.7%). This phenomenon has also been reported in several other studies related to Undercover (Dong et al., 2024; Xu & Zhong, 2025). To correct for this role-induced imbalance, we introduced an adjustment in the computation of expected performance. Specifically, during the calculation of expected performance, we add a temporary Elo offset of +120 to the stronger side (*i.e.*, the civilian role). This adjustment ensures that players of equal skill level have comparable rating update opportunities regardless of whether they play as civilians or undercover agents. The detailed derivation and justification of the 120-point offset are provided in the Appendix D.

4 EXPERIMENTS

In this section, we describe the experimental setup and present the main findings, including the evaluation of large models in CK-Arena. Our experiments follow two steps. First, we perform baseline

Table 3: **Performance comparison in CK-Arena.** Results are reported separately for the *Civilian* and *Undercover* roles. WR denotes *Win Rate*, and SR denotes *Survival Rate*. Both serve as indicators of in-game performance, where higher values reflect stronger capability in fulfilling role objectives. Reasonableness measures the logical consistency of statements with the target concept, while Novelty evaluates the degree of new information introduced. We show how models balance these factors, with Qwen2.5-72B leading in reasonableness, GPT-40 showing strong civilian win rates, and Gemini-2.0-pro-exp excelling in novelty. The best values are in **bold** and the second-best are underlined.

LLM	Role	Performance Metrics			
		WR↑	SR ↑	Reasonableness ↑	Novelty ↑
Qwen2.5-72B	Civilian	0.6847	0.7207	0.9593	0.6676
	Undercover	0.3636	0.2955	0.9737	0.7051
GPT-40	Civilian Undercover	0.6854 0.3485	0.6629 0.2273	0.9678 0.9614	0.6693 0.7429
DeepSeek-V3	Civilian	0.6814	0.6637	0.9470	0.8248
	Undercover	<u>0.3571</u>	0.2857	0.9537	0.8220
LLaMA-3.3-70B-instruct	Civilian	0.6702	0.6596	0.9663	0.8072
	Undercover	0.3279	0.1803	0.9678	0.8083
Gemini-2.0-pro-exp	Civilian	0.6636	0.6545	0.9667	0.8259
	Undercover	0.3111	0.2889	0.9652	0.8391
Claude-3-5-Haiku	Civilian	0.6408	0.6214	0.9494	0.7633
	Undercover	0.2692	0.1923	0.9273	0.8061

evaluations on six widely-used LLMs from different families in controlled 6-player games, focusing on statement-level performance, conceptual understanding, and role-specific metrics. Second, we construct a scalable leaderboard, where additional LLMs are benchmarked against some of the six baseline models, which serve as anchors in our unified rating system. This allows us to quantify relative strength across a broader set of models. We report both quantitative and qualitative analyses to ensure the reliability of the results.

The testing data consists of 464 game instances across twelve concept categories: *food, landforms, animals, artifacts, tools, people/social, plants, sports, stationery, electronics, clothing,* and *sundries.* During gameplay, a total of 6112 conceptual feature descriptions are generated. Additional results are provided in Appendix D and Appendix E.

4.1 RESULTS ON THE 6-PLAYER GAME

Experimental Setting. We evaluate six widely used LLMs from different families, including *Claude-3-5-Haiku* (Anthropic, 2024), *GPT-4o* (Hurst et al., 2024), *Gemini-2.0-Pro-Exp* (Team et al., 2023), *DeepSeek-V3* (Liu et al., 2024), *LLaMA-3.3-70B* (Grattafiori et al., 2024), and *Qwen2.5-72B* (Bai et al., 2023). In addition, *GPT-4.1-2025-04-14* (OpenAI, 2025a) and *Claude-3-7-Sonnet-20250219* (Anthropic, 2025a) are selected as the LLM-based judges to score all statements across statement-level metrics as references. Following data collection, a human expert panel then reviewed all statements, taking into account both the LLMs' scores and relevant reference knowledge, and determined the final scores.

Performance Comparison. Table 3 summarizes baseline model performance in CK-Arena. Civilian win rates are consistently higher than undercover win rates, showing that the undercover role is more challenging because it requires concealing one's assigned concept while simultaneously inferring shared features with the civilian concept. All LLMs performed well at reasonableness. This is partly attributed to the threshold elimination mechanism applied during the evaluation, which filters out low-scoring statements before final analysis. High reasonableness scores also indicate that current LLMs are capable of understanding tasks and generating structured language descriptions based on basic knowledge. Novelty is more nuanced: strong models such as *Qwen2.5* and *GPT-4o* often score lower, as excessive novelty risks revealing the undercover identity, while repetition can also lead to

Figure 3: **t-SNE visualizations of LLM statements across concept categories.** Each plot shows model outputs for (a) animals, (b) food, and (c) electronics. Repetitive descriptions, reflecting shallow understanding, appear as tightly clustered points, whereas richer knowledge produces more dispersed distributions. The visualizations also indicate that different LLMs center their descriptions on different focal aspects of a concept, suggesting variation in how conceptual knowledge is represented.

elimination. Effective play depends on balancing precision and originality, highlighting the ability to express subtle conceptual differences without being overly novel or trivially repetitive. CK-Arena is designed to capture this balance, making it a meaningful test of conceptual reasoning.

Semantic Dispersion as a Proxy for Conceptual Depth. We embed LLMgenerated statements and compare them using dimensionality reduction and visualization. Given the same number of descriptions for a concept, shallow understanding typically leads to repetitive phrasing, which appears as tightly clustered points in the t-SNE plot, whereas deeper knowledge produces more dispersed patterns. The visualizations reveal systematic differences in how models generate conceptual descriptions under the same topic. Figure 3(a) shows that Gemini-2.0-pro-exp and GPT-40 emphasize different aspects of the same concept, reflecting variation in conceptual focus. Figures 3(b) and (c) further demonstrate differences in clustering degree, with some models producing narrow clusters

Figure 4: Relevance scores of different LLMs across various categories. The heatmap shows how well model statements align with target concepts, where darker colors indicate higher relevance.

and others spreading more broadly across the semantic space. This indicates the variation in focus and the degree of dispersion in LLM-generated conceptual associations.

Statement–Concept Relevance Heatmap. In addition to the metrics introduced in Section 3.3, we also evaluate *Relevance*, where LLM judges score each player's statements based on alignment with the target concept. High scores correspond to specific, tightly linked descriptions that help civilians detect the undercover agent, while low scores indicate vague or overly broad statements that could fit multiple concepts. This metric reflects the strategic tension of the game: civilians gain from precise descriptions, whereas undercover agents may opt for broader ones to avoid detection.

Figure 4 presents the relevance scores of different LLMs across conceptual categories. Both the highest-scoring *DeepSeek-V3* and the lowest-scoring *Qwen2.5-72B* also achieve strong win rates, showing that higher relevance does not necessarily lead to better game performance. At the same time, scores remain relatively consistent across categories. This suggests the chosen concepts are similarly describable, which helps ensure that the benchmark evaluates models fairly rather than being driven by category-specific difficulty.

4.2 THE SCALABLE LEADERBOARD IN CK-ARENA

Experimental Setting. We construct a leaderboard of LLMs as players in CK-Arena. *DeepSeek-v3* and *Qwen2.5-72B* serve as anchor models, providing stable baselines for comparison. We then benchmark additional LLMs, including *GPT-5* (OpenAI, 2025b), *GPT-oss-120b* (OpenAI et al., 2025), *DeepSeek-v3.1* (DeepSeek, 2025), *Claude-opus-4.1* (Anthropic, 2025b), *kimi-k2-instruct* (Team et al., 2025), *Qwen-plus* (Yang et al., 2025), *Ernie-4.5-300b-a47b* (Baidu-ERNIE-Team, 2025), and *Gemini-2.5-flash-preview* (Google, 2025). Each model receives identical prompts and plays at least 60 rounds against the anchor models to ensure rating stability and reliability.

Results from Unified Rating System. Each new model plays more than 60 rounds against the anchors, allowing Elo score fluctuations to stabilize under the experiencedependent K-factor schedule. To control for ordering effects, we also reverse the sequence in which models are introduced. Forward and reverse evaluations produce the same ranking across all 14 LLMs, with the maximum Elo difference for any model being only 1.72 and a Pearson correlation of 0.99 between leaderboards. This high consistency shows that evaluation order does not affect fairness and validates the design choice of using experience-dependent K-factors and anchor baselines.

Using this framework, we compile a comprehensive leaderboard of all evaluated LLMs (Figure 5). Within model families such as *DeepSeek* and *Qwen*, performance gaps between newer and older versions are

Figure 5: **Leaderboard of LLMs in CK-Arena.** Each player starts with an initial rating of 0. After stabilization, a player consistently defeating 0-rated opponents converges around 420, which serves as a reference for strong performance. The leaderboard highlights relative differences across 14 evaluated LLMs.

relatively small, and both remain behind top-tier models like *GPT-5*. These results suggest that iterative improvements within some families are not sufficient to close the performance gap, an aspect that CK-Arena makes visible.

5 CONCLUSION

We present CK-Arena as a benchmark for evaluating the conceptual knowledge and understanding of LLMs through interactive, multi-agent gameplay. Built on the *Undercover* game, it provides a scalable and dynamic environment where models engage with associations, similarities, and differences between concepts, an ability that traditional static benchmarks often overlook. Our experiments show that conceptual understanding varies across categories and does not consistently align with general benchmark performance, indicating that skills such as coding or mathematics do not necessarily translate into stronger conceptual understanding. CK-Arena addresses this gap with a systematic and extensible framework for assessing conceptual knowledge, and it serves as a starting point for future benchmarks that seek to capture more human-like, semantically grounded understanding in LLMs.

Limitations and future directions. We acknowledge that CK-Arena has several limitations. As an early effort in evaluating conceptual understanding, it still depends on strong LLMs and some manual review for judging, enforces strict response formats that may penalize formatting errors, and is restricted to English, which limits cross-linguistic evaluation. These limitations point to clear directions for future work, such as developing more robust automated judging mechanisms, enhancing response handling, and extending the benchmark to multiple languages. Addressing these challenges will improve the scalability, reliability, and inclusiveness of CK-Arena, strengthening its role as a foundation for conceptual understanding evaluation.

ETHICAL STATEMENT

This research was conducted following established ethical guidelines for AI research. Our benchmark CK-Arena evaluates AI systems' conceptual knowledge without collecting or processing any personally identifiable information. All concept pairs used in our experiments were carefully curated to ensure they do not contain harmful, offensive, or culturally insensitive content. The experiments involving multiple large language models were designed to analyze their capabilities in understanding conceptual boundaries without any deception or manipulation techniques.

REPRODICIBILITY STATEMENT

We provide all resources necessary to reproduce our work. The complete code, dataset, and training data used in our experiments are released together with this paper. The prompts used, parameter settings for LLM utilization, and hyperparameter configurations for fine-tuning the large model have all been disclosed in Appendix D. In addition, we include a scalability demonstration and an example in Appendix E to facilitate replication.

REFERENCES

- Wikidata: A free knowledge base. https://www.wikidata.org/, a. Accessed: 2025-09-22.
- Wikipedia: The free encyclopedia. https://www.wikipedia.org/, b. Accessed: 2025-04-22.
 - Saaket Agashe, Yue Fan, Anthony Reyna, and Xin Eric Wang. Llm-coordination: evaluating and analyzing multi-agent coordination abilities in large language models. *arXiv preprint arXiv:2310.03903*, 2023.
 - Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku, 2024. URL https://www.anthropic.com/news/3-5-models-and-computer-use.
 - Anthropic. Claude 3.7 sonnet and claude code, 2025a. URL https://www.anthropic.com/news/claude-3-7-sonnet.
 - Anthropic. Claude opus 4.1, 2025b. URL https://www.anthropic.com/news/claude-opus-4-1.
 - Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.
 - Baidu-ERNIE-Team. Ernie 4.5 technical report, 2025.
 - Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning: Concept, taxonomy, and methods. *IEEE Transactions on Neural Networks and Learning Systems*, 2024.
- Liuqing Chen, Duowei Xia, ZhaoJun Jiang, Xinyang Tan, Lingyun Sun, and Lin Zhang. A conceptual design method based on concept–knowledge theory and large language models. *Journal of Computing and Information Science in Engineering*, 25(2), 2025.
 - DeepSeek. Deepseek-v3.1 release, 2025. URL https://api-docs.deepseek.com/news/news250821.

- Ruiqi Dong, Zhixuan Liao, Guangwei Lai, Yuhan Ma, Danni Ma, and Chenyou Fan. Who is undercover? guiding llms to explore multi-perspective team tactic in the game. *arXiv preprint arXiv:2410.15311*, 2024.
- Arpad E Elo and Sam Sloan. The rating of chessplayers: Past and present. (No Title), 1978.
 - Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, David Mguni, Yali Du, and Jun Wang. Chessgpt: Bridging policy learning and language modeling. In *Advances in Neural Information Processing Systems*, volume 36, pp. 7216–7262, 2023.
 - Yu Gong, Kaiqi Zhao, and Kenny Zhu. Representing verbs as argument concepts. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 30, 2016.
 - Google. Start building with gemini 2.5 flash, 2025. URL https://developers.googleblog.com/en/start-building-with-gemini-25-flash/.
 - Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
 - Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. In *International Conference on Learning Representations*.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Lei Ji, Yujing Wang, Botian Shi, Dawei Zhang, Zhongyuan Wang, and Jun Yan. Microsoft concept graph: Mining semantic concepts for short text understanding. *Data Intelligence*, 1(3):238–270, 2019.
 - Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. In *Findings of the Association for Computational Linguistics ACL* 2024, pp. 11260–11285, 2024.
 - Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language models. *Transactions on Machine Learning Research*.
 - Jiayi Liao, Xu Chen, and Lun Du. Concept understanding in large language models: An empirical study. 2023.
 - Jonathan Light, Min Cai, Sheng Shen, and Ziniu Hu. Avalonbench: Evaluating llms playing the game of avalon. In *NeurIPS 2023 Foundation Models for Decision Making Workshop*.
 - Jiaju Lin, Haoran Zhao, Aochi Zhang, Yiting Wu, Huqiuyue Ping, and Qin Chen. Agentsims: An open-source sandbox for large language model evaluation. *arXiv preprint arXiv:2308.04026*, 2023.
 - Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024.
 - Kevin Ma, Daniele Grandi, Christopher McComb, and Kosa Goucher-Lambert. Conceptual design generation using large language models. In *International Design Engineering Technical Conferences and Computers and Information in Engineering Conference*, volume 87349, pp. V006T06A021. American Society of Mechanical Engineers, 2023.
 - Weiyu Ma, Qirui Mi, Yongcheng Zeng, Xue Yan, Runji Lin, Yuqiao Wu, Jun Wang, and Haifeng Zhang. Large language models play starcraft ii: Benchmarks and a chain of summarization approach. *Advances in Neural Information Processing Systems*, 37:133386–133442, 2024.
 - George A Miller. Wordnet: a lexical database for english. *Communications of the ACM*, 38(11): 39–41, 1995.

- Manuel Mosquera, Juan Sebastian Pinzon, Manuel Rios, Yesid Fonseca, Luis Felipe Giraldo, Nicanor Quijano, and Ruben Manrique. Can Ilm-augmented autonomous agents cooperate?, an evaluation of their cooperative capabilities through melting pot. *arXiv preprint arXiv:2403.11381*, 2024.
- Nasrin Mostafazadeh, Michael Roth, Annie Louis, Nathanael Chambers, and James F Allen. Lsdsem 2017 shared task: The story cloze test. In *2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics*, pp. 46–51. Association for Computational Linguistics, 2017.
- OpenAI. Introducing gpt-4.1 in the api, 2025a. URL https://openai.com/index/gpt-4-1/.
- OpenAI. Introducing gpt-5, 2025b. URL https://openai.com/index/introducing-gpt-5/.
- OpenAI, :, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K. Arora, Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler Bertao, Nivedita Brett, Eugene Brevdo, Greg Brockman, Sebastien Bubeck, Che Chang, Kai Chen, Mark Chen, Enoch Cheung, Aidan Clark, Dan Cook, Marat Dukhan, Casey Dvorak, Kevin Fives, Vlad Fomenko, Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun Gogineni, Adam Goucher, Lukas Gross, Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec Helyar, Haitang Hu, Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina Kofman, Dominik Kundel, Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc, James Park Lennon, Scott Lessans, Mario Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin, Jordan Liss, Lily, Liu, Jiancheng Liu, Kevin Lu, Chris Lu, Zoran Martinovic, Lindsay McCallum, Josh McGrath, Scott McKinney, Aidan McLaughlin, Song Mei, Steve Mostovoy, Tong Mu, Gideon Myles, Alexander Neitz, Alex Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ashley Pantuliano, Giambattista Parascandolo, Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic Peran, Dmitry Pimenov, Michelle Pokrass, Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo Raso, Hongyu Ren, Kimmy Richardson, David Robinson, Bob Rotsted, Hadi Salman, Suvansh Sanjeev, Max Schwarzer, D. Sculley, Harshit Sikchi, Kendal Simon, Karan Singhal, Yang Song, Dane Stuckey, Zhiqing Sun, Philippe Tillet, Sam Toizer, Foivos Tsimpourlas, Nikhil Vyas, Eric Wallace, Xin Wang, Miles Wang, Olivia Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery, Cedric Whitney, Hannah Wong, Lin Yang, Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech Zaremba, Wenting Zhan, Cyril Zhang, Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-120b & gpt-oss-20b model card, 2025.
- Dan Qiao, Chenfei Wu, Yaobo Liang, Juntao Li, and Nan Duan. Gameeval: Evaluating llms on conversational games. *arXiv preprint arXiv:2308.10032*, 2023.
- Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives: An evaluation of commonsense causal reasoning. In *AAAI spring symposium: logical formalizations of commonsense reasoning*, pp. 90–95, 2011.
- Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. *Transactions on Machine Learning Research*, 2022.
- Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong, Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao, Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu, Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin, Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu, Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe Lu,

Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi, Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang, Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang, Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu, Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao, Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang, Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou, Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence, 2025.

- Xiaohan Wang, Shengyu Mao, Shumin Deng, Yunzhi Yao, Yue Shen, Lei Liang, Jinjie Gu, Huajun Chen, and Ningyu Zhang. Editing conceptual knowledge for large language models. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 706–724, 2024.
- Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, Yitao Liang, and Team CraftJarvis. Describe, explain, plan and select: interactive planning with large language models enables open-world multi-task agents. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp. 34153–34189, 2023.
- Chentian Wei, Jiewei Chen, and Jinzhu Xu. Exploring large language models for word games:who is the spy? *arXiv preprint arXiv:* 2503.15235, 2025.
- Dekun Wu, Haochen Shi, Zhiyuan Sun, and Bang Liu. Deciphering digital detectives: Understanding llm behaviors and capabilities in multi-agent mystery games. In *Findings of the Association for Computational Linguistics ACL 2024*, pp. 8225–8291, 2024.
- Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q Zhu. Probase: A probabilistic taxonomy for text understanding. In *Proceedings of the 2012 ACM SIGMOD international conference on management of data*, pp. 481–492, 2012.
- Yue Wu, So Yeon Min, Shrimai Prabhumoye, Yonatan Bisk, Russ R Salakhutdinov, Amos Azaria, Tom M Mitchell, and Yuanzhi Li. Spring: Studying papers and reasoning to play games. In *Advances in Neural Information Processing Systems*, volume 36, pp. 22383–22687, 2023.
- Lin Xu, Zhiyuan Hu, Daquan Zhou, Hongyu Ren, Zhen Dong, Kurt Keutzer, See-Kiong Ng, and Jiashi Feng. MAgIC: Investigation of large language model powered multi-agent in cognition, adaptability, rationality and collaboration. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 7315–7332, 2024.
- Shuhang Xu and Fangwei Zhong. Comet: Metaphor-driven covert communication for multi-agent language games. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, 2025.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.
- Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 4791–4800, 2019.

Ningyu Zhang, Qianghuai Jia, Shumin Deng, Xiang Chen, Hongbin Ye, Hui Chen, Huaixiao Tou, Gang Huang, Zhao Wang, Nengwei Hua, et al. Alicg: Fine-grained and evolvable conceptual graph construction for semantic search at alibaba. In *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining*, pp. 3895–3905, 2021.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, et al. Sotopia: Interactive evaluation for social intelligence in language agents. *arXiv preprint arXiv:2310.11667*, 2023.

A FUTURE WORKS

In the future, we plan to extend CK-Arena in several key directions: (1) Expanding the Concept Pair Dataset: We aim to increase the diversity of concept pairs by introducing more categories and refining the quality of selections, thereby building a more comprehensive knowledge network for evaluation. (2) Multilingual Extension: Adapting CK-Arena to support multiple languages holds significant potential. Different languages are deeply tied to unique cultural knowledge and conceptual representations, which can reveal cross-linguistic differences in conceptual understanding. (3) Diversifying Agent Forms: Beyond standard LLM-based agents, we intend to incorporate specialized language models trained in specific knowledge domains to serve as judges, and even explore scenarios where LLM-based agents interact and compete alongside human participants. Furthermore, the rich set of statements generated during CK-Arena gameplay represents a valuable resource. These concept-driven descriptions can form a semantic norm, potentially serving as raw data for training concept-aware models, such as Large Concept Models (LCMs). Although the current dataset is functional, we aim to further enhance the automation process and evaluation system to transform this data into a high-quality, structured dataset. This would enable more effective training and evaluation of models designed for conceptual understanding and knowledge-based tasks.

B LIMITATIONS

Despite its contributions, the CK-Arena benchmark also has several limitations that are worth considering. First, during the initialization stage, the LLM serving as the judge must be a powerful and knowledgeable model, and the final scoring still requires manual team review. While our automated pipeline shields end users from these concerns, researchers may incur additional time and financial costs if they prefer to define their own judging criteria rather than adopting CK-Arena's defaults. Second, our framework places strict requirements on the format of LLM responses (e.g., JSON). Although we implement parsing and error-handling mechanisms, models may still be penalized for formatting issues rather than genuine gameplay mistakes. This may require users to regularly check game logs, identify abnormal responses, and supplement more response handling mechanisms. Third, all evaluations are conducted exclusively in English, which may introduce language-specific biases and constrain cross-linguistic insights into conceptual mastery. Addressing these challenges will be crucial for improving the scalability and inclusiveness of the benchmark.

C USE OF LLMS

In the course of this work, we employed Large Language Models (LLMs) in two ways. First, LLMs (specifically *Claude Sonnet 4*) were used during manuscript preparation for grammar checking, text polishing, and improving the clarity of academic writing. Second, in the early stages of literature review, we utilized the "deep research" function of LLMs to obtain a broader and more comprehensive overview of related works. These applications were limited to auxiliary support and did not influence the design, implementation, or analysis of CK-Arena.

D IMPLEMENTATION DETAILS

Detailed Data Statistics The dataset we provided contains a total of 529 English pairs of concepts, including 220 concrete noun pairs, 100 abstract noun pairs, 109 adverb pairs, and 100 verb pairs. After initial experimental attempts, we concluded that concrete noun pairs are more suitable for our experimental setup and overall research questions. Therefore, for the specific experiments, we selected 12 different categories from the 220 concrete noun pairs. These categories consist of concrete noun pairs that are closest to our daily life and conversational contexts. All of those concepts can be considered with rich and clearly describable features. We believe that starting with these concept pairs can more reliably and steadily complete our experiments and yield preliminary results. In the future, we will further explore the other words.

Experimental Settings For the evaluation of LLMs as players, all models were used in a zero-shot setting without task-specific fine-tuning. We only specified the input prompts, without any additional

hyperparameters, such as temperature, top-p, and so on. To ensure fairness and reproducibility, we employed the default API settings for each model, consistently choosing the most recent stable release available at the time of the experiments.

For the training of qwen-3-8b-ckR, we fine-tuned the model using LoRA adaptation with the following hyperparameter configuration: 5 training epochs, a learning rate of 1e-4, batch size of 16, linear learning rate scheduler, validation every 50 steps, maximum sequence length of 8192, warmup ratio of 0.05, and weight decay of 0.01. LoRA-specific settings included rank 8, alpha 16, dropout 0.1, and applying adaptation to all target modules. The dataset used for training, along with preprocessing details, is fully released in the accompanying code repository to ensure reproducibility.

Connection of CK-Arena with Existing Benchmarks. We think that CK-Arena offers distinct yet complementary value in LLM evaluation tasks.

Fundamental Differences in Evaluation Focus: Traditional benchmarks like MMLU primarily assess factual recall and static knowledge retrieval through multiple-choice questions. In contrast, CK-Arena evaluates dynamic conceptual understanding in interactive contexts. For example, while MMLU might ask "Which of the following animals is a primate?", CK-Arena requires models to articulate the distinguishing features between closely related concepts (e.g., monkeys vs. apes) and navigate the semantic boundaries dynamically based on partial information from other agents.

Why Static vs. Dynamic Evaluation Matters: Our preliminary analysis suggests that strong performance on traditional benchmarks doesn't necessarily translate to effective conceptual boundary navigation. For instance, a model might correctly identify that both soccer and basketball are sports (factual knowledge) but struggle to strategically describe one while concealing its identity when the other is the majority concept (conceptual understanding + strategic reasoning). This highlights that knowing facts about concepts differs from understanding their relational structures and boundaries.

We also point out that CK-Arena does not aim to replace existing benchmarks but to fill a critical gap in evaluating interactive conceptual understanding. Traditional benchmarks excel at measuring breadth of knowledge, while CK-Arena probes depth of conceptual understanding in realistic social contexts. The differences in results reflect that multi-agent interaction requires different cognitive processes than isolated question-answering.

Scalability Demonstration. In order to explain the scalability of CK Arena, we provide a specific example in this section to help researchers who need to build their own datasets test LLM's knowledge mastery in specific fields. We will divide this task into three steps:

Firstly, researchers need to construct concept pairs related to evaluation knowledge within their field (for example, by describing the similarities and differences between alcohol lamps and flame spray guns to explore the knowledge of middle school chemistry experiments). Users may also need to adjust prompts if they wish to have their own rating criteria. Then, users need to conduct at least 60 pre-experiments using models with comparable performance (or one model as all players) and game settings of their own choice (such as number of players, rounds, etc.) to obtain role bias calibration values. Specifically, the concepts in the newly constructed dataset may have inconsistent similarities, which can lead to role bias in the game. For example, if two concepts are very similar, it is obvious that undercover characters are easily mixed up with civilian characters; On the contrary, the undercover character finds it difficult to move forward. Therefore, it is necessary to determine role bias through pre-experiments and use temporary scores to balance this bias. The third step is for users to repeat the game multiple times until the K-value stabilizes, in order to obtain a performance analysis among the LLM players participating in the game.

Then, here comes the example. Due to the fact that most concepts that contain broadly descriptive features are nouns, our specially designed prompt template is not suitable for evaluating verbs or other parts of speech. Therefore, we carried out a complete extension proces. First, we built a verb word pair dataset, and then adjusted part of the content in the prompt to help players better participate in the game, and judges more standardized. The following are the added parts:

- Nature of the action: Such as the type characteristics of the action. - Relationship of action: Such as the characteristics of the subject and object involved. - Usage scenarios: Such as the environmental characteristics and cultural background where the action occurs. - Concluding effects:

The consequences and impacts brought about by the action. - Emotional impact: The emotional overtones, moral implications, and social attributes involved in the action.

The experimental results regarding verbs can be viewed in section E. During our testing, the API call cost for reviewing a single game was approximately \$0.8, while completing a full theme review required around \$40–50. By replacing expensive LLM-based judges with a fine-tuned model, as mentioned in the paper, these costs could be more substantially reduced. In terms of time efficiency, the open-source code provided in this work already supports batch execution of multiple games. Although API calls impose certain speed constraints, our experiments show that running 5 games in parallel does not trigger rate-limit restrictions, allowing most reviews to be completed in only one day.

Derivation of the 120-Point Elo Offset. In this paragraph, we derive the 120-point Elo offset used to balance the expected performance between the civilian and undercover roles in the game. The goal is to ensure that players of equal skill levels have comparable rating update opportunities, regardless of their assigned roles.

In the Elo rating system, the expected score E_A of player A against player B is given by:

$$E_A = \frac{1}{1 + 10^{(R_B - R_A)/400}},$$

where R_A and R_B are the ratings of players A and B. Although this is a 1v1 formula, in our design, the Elo update first computes the expected outcome based on the win–loss relationship between two teams, and then incorporates each player's individual performance for the actual score adjustment. Therefore, we can treat the two teams as player A and player B, and use the standard formula for derivation.

Empirically, the civilian role has a natural advantage, leading to a baseline win probability of 2/3 for the civilians against undercover agents of equal skill. To determine the Elo offset that corresponds to this advantage, we solve for the Elo rating difference x that yields an expected score of 2/3:

$$\frac{1}{1 + 10^{-x/400}} = \frac{2}{3} \tag{1}$$

$$10^{-x/400} = \frac{1}{2} \tag{2}$$

$$-\frac{x}{400} = \log_{10}\left(\frac{1}{2}\right) \tag{3}$$

$$x = 400 \cdot \log_{10}(2) \approx 400 \cdot 0.3010 \approx 120 \tag{4}$$

Thus, an Elo difference of approximately 120 corresponds to the observed 2/3 win rate. To balance the game, we introduce a temporary offset of +120 Elo points to the civilian side when computing expected outcomes. This adjustment ensures that, from the model's perspective, the expected probability of winning for both sides is effectively 1/2, thereby eliminating the systematic role-induced imbalance in rating updates.

E More Experimental Results

The stability of the scoring process To verify the stability of the scoring process in our LLM-based evaluation framework (and thereby support the reliability and repeatability of evaluation results), we conducted three independent evaluations on the animal group. Based on the outcomes of these evaluations, we calculated key statistical indicators—mean, variance, and standard deviation—for each of the statement-level metrics (Novelty and Reasonableness). The specific statistical data are presented in Table 4. This table reflects the stability of the scoring process: LLM-based assessments already demonstrate strong internal consistency, and with additional human review to adjust specific cases, CK-Arena ensures both reproducibility and robustness of the evaluation framework.

Table 4: Statistical indicators of three independent evaluations on the animal group.

Metric	Mean	Variance	Std Dev
Novelty	0.8150	0.000203	0.0142
Reasonableness	0.9672	0.000042	0.0065

Figure 6: The win rate performance of six LLMs across 12 categories. A comparative analysis reveals that each model exhibits distinct strengths and weaknesses across different concept categories. These variations are likely influenced by differences in training data, architectural design, and optimization strategies specific to each model. The analysis reveals models' focus areas, knowledge gaps, and insights for improving conceptual understanding.

Win Rate by Different Categories. Figure 6 illustrates the win rate performance of various LLMs across different conceptual categories. The results highlight clear strengths and weaknesses for each model. For example, DeepSeek-V3 achieves the highest win rate in the animal category, reaching 80%, indicating strong domain-specific understanding. Similarly, *GPT-40* excels in the landmark category with a win rate of 80%, reflecting its grasp of geographical concepts. In contrast, *Claude-3-5-Haiku* demonstrates a notably low win rate of just 14.3% in the social category, suggesting limitations in handling social context. These performance differences are likely influenced by the models' training datasets and optimization strategies, highlighting domain-specific expertise and gaps in conceptual understanding.

Table 5: Win rate (WR) and Survival rate (SR) comparison of baseline large language models in CK-Arena. Results are reported separately for *Civilian* and *Undercover* roles.

LLM	Role	Performance Metrics	
	11010	WR↑	SR ↑
DeepSeek-V3	Civilian	0.4286	0.7391
	Undercover	0.3750	0.5714
Gemini-2.0-exp	Civilian	0.4762	0.4286
	Undercover	0.3333	0.2222
Claude-3-5-Haiku-20241022	Civilian	0.6842	0.5263
	Undercover	0.7273	0.6364
Qwen2.5-72B	Civilian	0.5652	0.7391
	Undercover	0.5714	0.5714
LLaMA-3.3-70B-instruct	Civilian	0.5238	0.7143
	Undercover	0.4444	0.4444
GPT-40-2024-11-20	Civilian	0.5000	0.5455
	Undercover	0.3750	0.3750

Evaluation Based on Verb Vocabulary We repeated the baseline experiment, but changed the dataset used for evaluation to one with verb themes. Specific data can be found in our open-source repository as shown in Figure 5. Interestingly, Claude-3.5, which had always performed at the bottom of the original model, actually achieved the highest win rate in this experiment and showed a significant gap compared to other models. Perhaps we can conduct more fine-grained classification and evaluation to explore the reasons for these phenomena.

F PROMPTS

1026

1027 1028

1029

1074

This section presents the detailed prompts used for different agent roles in CK-Arena. We provide the complete prompts to ensure reproducibility and transparency of our experimental setup.

```
1030
1031
       You are an AI player participating in the "Undercover" game. You need to
       \hookrightarrow analyze the situation based on the information received, determine
1032
       \hookrightarrow your identity, and devise appropriate speaking strategies and content.
1033
1034
       # Game Rules
1035
1036
       1. Each player receives a word. The majority of players receive the same
       \hookrightarrow word (civilians), while a minority (1-2 players) receive a different
1037
       \hookrightarrow but related word (undercover agents).
1038
       2. The game proceeds in turns, with each player using one sentence to
1039
       \hookrightarrow describe their word without directly saying it.
1040
       3. After each round of descriptions, all players vote for who they think
1041
       \hookrightarrow is the undercover agent. The player with the most votes is eliminated.
       4. If all undercover agents are eliminated, the civilians win; if the
1042
       \hookrightarrow number of undercover agents equals or exceeds the number of
1043
       \hookrightarrow civilians, the undercover agents win.
1044
1045
       # Speaking Requirements
1046
       1. Your statement must be a brief descriptive sentence, not a lengthy
1047
       \hookrightarrow exposition.
1048
       2. You cannot repeat statements made by other players in previous rounds.
1049
       3. Your description can be broad or specific, but must match the word
1050
       \hookrightarrow you received. You cannot give descriptions that do not match your
1051
       \hookrightarrow word.
       4. Please adjust the level of detail in your description according to
1052
       \hookrightarrow your strategic needs. Below are examples of different levels of
1053
       \hookrightarrow detail.
1054
1055
       # Description Examples
1056
       (Assuming the word to describe is "soccer ball")
       "A spherical object" - Detail level 0.2 (too broad, many objects are
1057
        → spherical)
1058
       "A sports equipment" - Detail level 0.4 (more specific, but still covers
1059
       \rightarrow a wide range)
1060
       "Mostly contacted by the lower body of athletes" - Detail level 0.6
1061

→ (more specific, stronger directional indication)
       "Commonly depicted with a pattern of black and white pentagons and
1062
       \hookrightarrow hexagons" - Detail level 0.8 (very specific, almost only soccer balls
1063
       \hookrightarrow look like this)
1064
       "One of the most popular sports in the world, seen being kicked and
1065

→ headed by athletes on a green field - Detail level 1.0 (completely)

1066
       \hookrightarrow points to soccer ball)
1067
       # Your Task
1068
1069
       1. Based on the given word and other players' statements, analyze your
1070
       \hookrightarrow possible identity (civilian or undercover agent)
1071
       2. With the goal of protecting yourself and accomplishing your game
       \hookrightarrow objective, provide your statement content.
1072
       3. Provide your analysis and decision-making process in JSON format
1073
```

Listing 1: Player Agent System Prompt for Speaking Phase (I)

```
1080
1081
       # Output Requirements
1082
1083
       You must respond in JSON format, including the following fields:
1084
1085
       "identity": "Analysis of your own and other players' identities",
       "strategy": "Your thinking and decision-making process",
1086
       "statement": "Your final statement (you cannot include your analysis
1087
       \hookrightarrow process in the statement field, and you cannot directly mention your
1088
       \hookrightarrow word) "
1089
1090
       # Strategy Tips
1091
1092
       ### At the beginning of the game or when identity is still undetermined:
1093
1094
       start with very vague, broad characteristics or properties, then provide
1095
       \hookrightarrow more detailed descriptions of the word after gradually determining
       \hookrightarrow your identity situation.
1096
1097
       ### As a civilian (you need to determine your civilian identity
1098
       \hookrightarrow yourself):
1099
1100
       Analyze other players' statements to find descriptions inconsistent with
1101
       \hookrightarrow the majority
       Gradually narrow down the word range to help identify the undercover
1102

→ agent

1103
       Ensure your description matches your word, don't say anything
1104
       \hookrightarrow inconsistent with it
1105
       ### As an undercover agent (you need to determine your undercover
1106
       \hookrightarrow identity yourself):
1107
1108
       Carefully analyze civilian statements to infer their word
1109
       Use vague descriptions that won't immediately arouse suspicion
1110
       Ensure your description can match both your word and the civilians' word
       \hookrightarrow (ambiguity)
1111
       Avoid descriptions obviously different from others, but don't completely
1112
       \hookrightarrow follow them
1113
```

Listing 2: Player Agent System Prompt for Speaking Phase (II)

```
Here is information related to this game round. Please analyze this

    information to complete your task.
    # Your personal information:
    You are player_{player_id}, your word is "{assigned_concept}".
    # Statement history for this game round:
    {statement_history}
    # Your identity analysis from the previous round:
    {last_analyze}
```

Listing 3: Player Agent User Prompt Template for Speaking Phase

```
1134
       You are an AI player participating in the "Undercover" game. You need to
1135
       \hookrightarrow analyze the situation based on the information received, determine
       \hookrightarrow your identity, and decide to vote for a player to try to eliminate
1137
       \hookrightarrow them.
1138
1139
       # Game Rules
1140
       1. Each player receives a word. The majority of players receive the same
1141
       \hookrightarrow word (civilians), while a minority (1-2 players) receive a different
1142
       \hookrightarrow but related word (undercover agents).
1143
       2. The game proceeds in turns, with each player using one sentence to
1144
       \hookrightarrow describe their word without directly saying it.
       3. After each round of descriptions, all players vote for who they think
1145
       \hookrightarrow is the undercover agent. The player with the most votes is eliminated.
1146
       4. If all undercover agents are eliminated, the civilians win; if the
1147
       \hookrightarrow number of undercover agents equals or exceeds the number of
1148
       \hookrightarrow civilians, the undercover agents win.
1149
1150
       # Your Task
1151
       1. Based on the given word and other players' statements, analyze your
1152

→ possible identity (civilian or undercover agent)

1153
       2. With the goal of protecting yourself and accomplishing your game
1154
       \hookrightarrow objective, provide your statement content.
1155
       3. Provide your analysis and decision-making process in JSON format
1156
       # Output Requirements
1157
1158
       You must respond in JSON format, including the following fields:
1159
       "identity": "Analysis of your identity",
1160
       "strategy": "Thinking about your strategy",
1161
       "vote": "The player you want to vote for (just a number, no additional
1162

→ text explanation needed) "

1163
1164
```

Listing 4: Player Agent System Prompt for Voting Phase

```
Here is information related to this game round. Please analyze this

→ information to complete your task.

# Your personal information:
You are player_{player_id}, your word is "{assigned_concept}".

# The description history for this game round is:
{statement_history}

# Your identity analysis from the previous round:
{last_analyze}

# The list of currently surviving players is:
{alive_players}
You can only choose one number from these as your vote.
```

Listing 5: Player Agent User Prompt Template for Voting Phase

```
1188
1189
       # Undercover Game Referee Guide
1190
       You are the referee for the "Undercover" game, responsible for analyzing
1191
       \hookrightarrow each player's statement and scoring it according to the following
1192
       \hookrightarrow criteria. You need to output your evaluation results in JSON format.
1193
1194
       ## Evaluation Dimensions
1195
       1. **Novelty**: Whether the current statement repeats content from
1196
       \hookrightarrow previous players' statements
1197
       - 0: Completely repeats a previous player's description
1198
       - 0.2: Mostly repetitive, with only minimal new information
1199
       - 0.4: Partially repeats previous content, with some additional content
       - 0.6: Mainly new content, but with some repetition
1200
       - 0.8: Almost entirely new content, with a different perspective from
1201
       \hookrightarrow previous descriptions
1202
       - 1.0: Completely novel description, providing an entirely new
1203
       \hookrightarrow \texttt{perspective or information}
1204
       2. **Relevance**: The degree of relevance and specificity between the
1205

→ statement and the word's characteristics

1206
       - 0: Completely irrelevant
1207
       - 0.2: Extremely broad description, applicable to a large number of
1208
       \hookrightarrow objects/concepts
       - 0.4: Broad but somewhat directional description
1209
       - 0.6: Clear clues, but could still point to multiple similar things
1210
       - 0.8: Highly specific description, basically only pointing to the
1211
       \hookrightarrow target word or very few similar objects
1212
       - 1.0: Description that almost directly points to the word
1213
       3. **Reasonableness**: How reasonable the association between the
1214
       \hookrightarrow description and the word is
1215
       - 0: Completely unreasonable, impossible to establish any association
1216
       \hookrightarrow with the word
1217
       - 0.2: Extremely far-fetched association
1218
       - 0.4: Some association but rather far-fetched
       - 0.6: Reasonable but not unique association
1219
       - 0.8: Highly reasonable association
1220
       - 1.0: Description completely matching the word's characteristics
1221
1222
       ## Output Format
1223
       '''json
1224
1225
           "novelty": {
1226
           "score": Value between 0 and 1 (limited to 0, 0.2, 0.4, 0.6, 0.8, 1),
1227
           "explanation": "Explanation for why this score was given"
1228
           "relevance": {
1229
           "score": Value between 0 and 1 (limited to 0, 0.2, 0.4, 0.6, 0.8, 1),
1230
           "explanation": "Explanation for why this score was given"
1231
1232
           "reasonableness": {
1233
           "score": Value between 0 and 1 (limited to 0, 0.2, 0.4, 0.6, 0.8, 1),
           "explanation": "Explanation for why this score was given"
1234
1235
1236
       . . .
1237
```

Listing 6: Judge Agent System Prompt (I)

```
1242
1243
       ## Scoring Reference Examples
1244
1245
       ### Example 1: Soccer Ball
1246
1247
       Assume the word is "soccer ball", player's statement is "a spherical
1248

→ object", with no previous player statements:
1249
       '''json
1250
1251
            "novelty": {
1252
            "score": 1.0,
            "explanation": "This is the first statement, so it's completely
1253
       \hookrightarrow novel"
1254
           },
1255
            "relevance": {
1256
            "score": 0.2,
1257
            "explanation": "The description is very broad, applicable to any
       \hookrightarrow spherical object, doesn't provide characteristics unique to a soccer
1258
       \hookrightarrow ball"
1259
            },
1260
            "reasonableness": {
1261
            "score": 1,
1262
            "explanation": "The description is completely reasonable, a soccer
       \hookrightarrow ball is indeed a spherical object"
1263
1264
1265
       . . .
1266
1267
       ### Example 2: Soccer Ball
1268
       Assume the word is "soccer ball", player's statement is "one of the most
1269
       \hookrightarrow popular sports in the world, can be seen being kicked by people on a
1270
       → green field", previous players have said "a spherical object" and "a
1271
       \hookrightarrow black and white object":
1272
1273
       '''json
1274
            "novelty": {
1275
            "score": 1.0,
1276
            "explanation": "The description provides completely new information,
1277
       \hookrightarrow focusing on soccer ball as a sport attribute and usage scenario,
       \hookrightarrow completely different from previous descriptions focusing on
1278

→ appearance"

1279
            },
1280
            "relevance": {
1281
            "score": 1.0,
1282
            "explanation": "The description is highly relevant, 'being kicked by
       \hookrightarrow people on a green field' directly points to a soccer ball, with
1283

→ almost no other possibilities"

1284
1285
            "reasonableness": {
1286
            "score": 1.0,
1287
            "explanation": "The description is completely reasonably associated
       \hookrightarrow with a soccer ball, mentioning core features of soccer"
1288
1289
1290
       , , ,
1291
```

Listing 7: Judge Agent System Prompt (II)

```
1296
1297
1298
       ### Example 3: Soccer Ball
1299
1300
       Assume the word is "soccer ball", player's statement is "it gives me a
       \hookrightarrow headache", previous players have said "a ball that can be kicked" and
1301
1302
       \hookrightarrow "used on a green field":
1303
       '''json
1304
1305
            "novelty": {
1306
            "score": 0.8,
            "explanation": "The description provides a new perspective (related
1307
       \hookrightarrow to bodily sensation), completely different from previous descriptions
1308
       \hookrightarrow focusing on physical characteristics and usage scenarios"
1309
1310
            "relevance": {
1311
            "score": 0.4,
            "explanation": "The description provides some clues (possibly
1312
       \hookrightarrow alluding to headers), but is very vague, many things could cause
1313

→ headaches"

1314
            },
1315
            "reasonableness": {
1316
            "score": 0.2,
            "explanation": "Although one could connect this to how heading a
1317
       \hookrightarrow soccer ball might cause headaches, this association is quite
1318
       \hookrightarrow far-fetched and not a typical or direct characteristic of soccer
1319
       → balls"
1320
            }
1321
       . . .
1322
1323
       ### Example 4: Soccer Ball
1324
1325
       Assume the word is "soccer ball", current player's statement is "a ball
1326
       \hookrightarrow kicked on grass", a previous player has said "a ball used on a green
1327
       \hookrightarrow field":
1328
       '''json
1329
1330
            "novelty": {
1331
            "score": 0.4,
            "explanation": "The description largely repeats the previous 'green
1332
       \hookrightarrow field' concept (grass), only adding the 'kicking' action detail"
1333
           },
1334
            "relevance": {
1335
            "score": 0.8,
1336
            "explanation": "The description is quite specific, 'a ball kicked on
       \hookrightarrow grass' largely points to a soccer ball, but could also be other ball
1337

→ sports"

1338
            },
1339
            "reasonableness": {
1340
            "score": 1.0,
1341
            "explanation": "The description is completely reasonably associated
       \hookrightarrow with a soccer ball, matching its basic characteristics"
1342
           }
1343
1344
       , , ,
1345
```

Listing 8: Judge Agent System Prompt

```
Please evaluate the following player's statement.

# Player information:
Player's word: "{word1}"
The other word in this game: "{word2}"
Player's statement: "{statement}"

# Historical statements:
{history}
```

Listing 9: Judge Agent User Prompt Template