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ABSTRACT

Predicting the ground-state 3D molecular conformations from 2D molecular
graphs is critical in computational chemistry due to its profound impact on molec-
ular properties. Deep learning (DL) approaches have recently emerged as promis-
ing alternatives to computationally-heavy classical methods such as density func-
tional theory (DFT). However, we discover that existing DL methods inadequately
model inter-atomic forces, particularly for non-bonded atomic pairs, due to their
naive usage of bonds and pairwise distances. Consequently, significant prediction
errors occur for atoms with low degree (i.e., low coordination numbers) whose
conformations are primarily influenced by non-bonded interactions. To address
this, we propose REBIND, a novel framework that rewires molecular graphs by
adding edges based on the Lennard-Jones potential to capture non-bonded inter-
actions for low-degree atoms. Experimental results demonstrate that REBIND
significantly outperforms state-of-the-art methods across various molecular sizes,
achieving up to a 20% reduction in prediction error.

1 INTRODUCTION

The ground-state conformation of a molecule represents the lowest energy state on the potential en-
ergy surface, where the inter-atomic forces are balanced at equilibrium. This 3D conformation of
the molecule plays a crucial role in determining the molecule’s physical, chemical, and biological
properties. As a result, it is utilized in various applications such as molecular property predic-
tion (Satorras et al., 2021; Schütt et al., 2021; Liu et al., 2022; Thölke & De Fabritiis, 2022; Zhou
et al., 2023a; Zaidi et al., 2023; Ni et al., 2024), drug discovery (Luo et al., 2021; Ganea et al.,
2021; Jing et al., 2022; Xu et al., 2022; Zhou et al., 2023b; Tang et al., 2024), and protein-ligand
interactions (Pei et al., 2024; Wang et al., 2024).

Recently, deep learning approaches (Hu* et al., 2020; Xu et al., 2021c; Brody et al., 2022; Ram-
pasek et al., 2022; Xu et al., 2024) have emerged as promising alternatives to reduce the computa-
tional costs of ab initio calculations such as density functional theory (DFT; Kohn & Sham, 1965;
Parr et al., 1979). These approaches focus on predicting 3D molecular conformations by leveraging
graph neural networks (GNNs) with 2D molecular graphs as input. Central to most of these models
is the assumption that a 2D molecular graph, where atoms are represented as nodes and covalent
bonds as edges, can effectively capture atomic interactions. Building on this assumption, they em-
ploy iterative message-passing updates to predict molecular conformations, which are parallel to the
iterative force-based updates used for conformer optimization. Specifically, GNN-based methods
rely on covalent bonds (Hu* et al., 2020; Brody et al., 2022; Rampasek et al., 2022) and pairwise
distances (Xu et al., 2024) during the message-passing phase to represent inter-atomic forces, en-
couraging bonded and proximate atomic pairs to be close in the representational space.

In this work, we challenge the assumption of existing approaches that bonds and inter-atomic dis-
tances are sufficient to capture the complex behaviors of atomic interactions. In reality, forces are
influenced by factors beyond bonds and monotonic distance properties, especially for non-bonded
atomic pairs that are typically dominated by van der Waals potentials (Lu & Chen, 2020; Lii &
Allinger, 1989). Consequently, significant prediction errors are observed for existing GNNs on
atoms with low degree, i.e., low coordination numbers, whose conformations can be more sensi-
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tive to non-bonded interactions, as illustrated in Figure 1 in Section 3. Therefore, a new model to
accurately account for the atomic interactions is warranted.

In response to this challenge, we present REBIND, a novel framework that rewires molecular graphs
by adding edges between non-bonded atomic pairs exhibiting high inter-atomic forces, often mod-
eled with the Lennard-Jones (LJ) potential (Jones, 1924). To this end, we propose a force-aware
self-guidance graph transformer, whereupon the initial conformation predicted from the encoder, a
LJ potential-based adjacency matrix is constructed, then utilized in the decoder to predict the final
conformation.

To be specific, utilizing the encoder’s prediction of inter-atomic distances from the initial confor-
mation, REBIND calculates the absolute forces acting between all non-bonded atomic pairs through
the derivative of the LJ potential. Subsequently, REBIND augments the graph by adding edges
to non-bonded pairs with the largest computed forces. Our edge augmentation is performed in a
degree-compensating manner, ensuring that atoms with fewer connections receive additional edges
to enhance the modeling of its non-bonded interactions. Furthermore, to differentiate the nature of
these interactions, we distinguish the augmented edges into distinct adjacency matrices each specif-
ically modeling repulsive and attractive forces. Incorporating these force-based adjacency matrices,
the decoder refines the initial conformation prediction by generating residual adjustments, leading
to a more precise molecular geometry.

The versatility of our proposed framework is demonstrated through benchmarks on both small-scale
datasets, i.e., QM9 (Ramakrishnan et al., 2014) and Molecule3D (Xu et al., 2021c), and a large-scale
GEOM-DRUGS (Axelrod & Gomez-Bombarelli, 2022) dataset. We also show that our idea of force-
based rewiring brings universal improvements to GNNs even outside the proposed architecture, i.e.,
GINE (Hu* et al., 2020), GATv2 (Brody et al., 2022), and GraphGPS (Rampasek et al., 2022).

Our contributions are summarized as follows:

• We reveal that current approaches, which solely rely on bonds and predicted pairwise distances,
are insufficient for accurately modeling inter-atomic forces, especially resulting in significant
errors for nodes with low-degree atoms.

• We introduce REBIND, a novel graph rewiring framework that adds edges between non-bonded
atomic pairs with high inter-atomic forces guided by the Lennard-Jones potential. The number
of augmented edges for each atom is determined in a degree-compensating fashion, improving
the modeling of non-bonded interactions for low-degree atoms.

• Extensive evaluation on diverse molecular sizes demonstrates the effectiveness of REBIND in
enhancing ground-state molecular conformation prediction. Notably, our framework achieves
improvements of up to 20% on the QM9 dataset.

2 PRELIMINARIES

Problem definition. We focus on predicting the 3D ground-state molecular conformation from
its corresponding 2D molecular graph G = (V, E), where V denotes the set of N = |V| atoms
(nodes) and E represents the set of M = |E| bonds (undirected edges) between atomic pairs. Nodes
are characterized by a feature matrix X = [x1,x2, ...,xN ]T ∈ RN×d, where each feature encodes
atomic properties such as atom types and chirality. Edges are described by a binary adjacency matrix
A ∈ RN×N , where A[i, j] = 1 if a bond exists between atoms i and j, and A[i, j] = 0 otherwise.
Additionally, an edge feature matrix E = [e1, e2, ..., eM ]T ∈ RM×f may be utilized to represent
bond-specific attributes, including bond types. For each node i in a single graph, its degree is notated
as degi =

∑
j∈V 1[A[i, j] = 1] and relative degree is defined as degrel

i = degi/maxn∈[1,N ] degn.
The ground-state molecular conformation is represented as C = [C1,C2, ...,CN ]T ∈ RN×3, where
each Ci ∈ R3 corresponds to the 3D coordinate of atom i. The atomic pairwise distance is denoted
as D ∈ RN×N , where Dij = ∥Ci −Cj∥2.

Multi-head self-attention. At the core of a transformer (Vaswani, 2017) is a self-attention mecha-
nism, which allows each instance in the input data to attend to every other instances, thereby enabling
the model to capture the instance-wise relationships. Formally, given input feature matrix X , the
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self-attention computes query (Q), key (K), and value (V ) matrices through linear transformations:

Q = XWQ, K = XWK , V = XW V , (1)

where WQ, WK , W V ∈ Rd×dk are learnable weight matrices. The attention scores at are then
computed as follows:

Attention(Q,K,V ) = σsm

(
QKT

√
dk

)
V , (2)

where σsm is a softmax function and the scaling factor
√
dk stabilizes the gradients during training.

To enhance the model’s ability to capture diverse patterns, multi-head attention employs multiple
attention heads in parallel. Each head independently performs self-attention, and their outputs are
concatenated and linearly transformed as:

MultiHead(Q,K,V ) = Concat(O1, . . . ,OH)WO, (3)

where each Oh = Attention(Qh,Kh,Vh) and WO ∈ RHdk×dmodel is a learnable weight matrix.

Inter-atomic interaction modeling in prior works. Traditional message-passing-based architec-
tures (Hu* et al., 2020; Brody et al., 2022; Rampasek et al., 2022) leverage covalent bonds to model
interactions between connected atomic pairs. For a given node i at the l-th layer, the node repre-
sentation hi is updated via message aggregation from a set of its bonded neighboring nodes Ni, as
formulated below:

h
(l+1)
i = ψ

(
h
(l)
i , ϕ

(
{h(l)

j , g
(l)
ij | j ∈ Ni}

))
, (4)

where ϕ is an aggregation function that combines the representations of neighboring nodes, and ψ is
an update function that integrates this aggregated information with the node’s current hidden state.
g
(l)
ij denotes the hidden representation of the edge feature corresponding to connected node pairs.

Recently, a new encoder-decoder based graph transformer (Xu et al., 2024) was proposed to capture
inter-atomic forces by utilizing both bonds and atomic pairwise distances. In this framework, the
pairwise distance matrix D̂ ∈ RN×N is computed from the initial conformation predicted by the
encoder. For each h-th head in the decoder, the adjacency matrix A representing bond existence and
a row-subtracted Euclidean distance matrix Drow-sub, defined as Drow-sub

ij = maxn∈[1,N ] D̂in− D̂ij ,
are integrated as residuals in the multi-head attention score Ŝh, formulated as follows:

Ŝh = Sh + Sh ⊙ (βA
h ×A) + Sh ⊙ (βD

h ×Drow-sub),

Sh = QhK
T
h = (ZWQ

h )(ZWK
h )T,

(5)

where Sh ∈ RN×N is the original self-attention score computed by the outer product between key
and query matrices Qh,Kh ∈ RN×dk , and βA

h , β
D
h ∈ R are learnable parameters that determine the

influence of bonds and distance factors, respectively.

3 LIMITATION OF INTER-ATOMIC FORCE MODELING IN PRIOR STUDIES

In this section, we highlight the shortfalls of current approaches in using covalent bonds (Hu* et al.,
2020; Brody et al., 2022; Rampasek et al., 2022) or pairwise distances (Xu et al., 2024) to model
inter-atomic forces, followed by experimental results supporting our claim.

Limitations of prior works for non-bonded interactions. In ground-state molecular conforma-
tion prediction, accurately modeling inter-atomic forces is essential, as the net force on each atom
defined by the gradient of molecular energy E, approaches zero at equilibrium (Shi et al., 2021a).
This equilibrium condition primarily determines the spatial arrangement of atoms. Meanwhile, a
classic model of the energy E divides the term into bonded and non-bonded interactions (Leach,
2001; Luo et al., 2021), where bonded interactions can be further divided into bond stretching, angle
bending, and torsion as shown in Equation 6.

E = Ebonded + Enon-bonded = Ebond + Eangle + Etorsion + Enon-bonded (6)

3
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Figure 1: Atom-wise error analysis with respect to the relative atom degree on varing architectures
in the QM9 dataset. (a) represents the average atom-wise RMSD while (b) shows the average atom-
wise MAE for each bin of low-degree and high-degree atoms. ∆ denotes the gap between the errors
of the low-degree and high-degree groups.

We find that previous works inadequately account for non-bonded interactions. As shown in Sec-
tion 2, these methods incorporate the bond adjacency matrix Abond to capture the bonded interactions
Ebonded (Hu* et al., 2020; Brody et al., 2022; Rampasek et al., 2022), or the distance-based proximity
matrix Drow-sub (row-subtracted Euclidean distance matrix) to approximate non-bonded interactions
Enon-bonded (Xu et al., 2024). However, even the distance-based proximity matrix Drow-sub of GT-
MGC, which explicitly aims to model non-bonded interactions, oversimplifies non-bonded forces by
assuming a monotonic relationship between attention weights and Drow-sub. In reality, non-bonded
interactions are governed by complex, non-linear functions of distance with atom type-specific co-
efficients (Leach, 2001).

Consequently, this abstraction leads to performance degradation in atoms dominated by non-bonded
potential Enon-bonded, and furthermore, E. We believe that atoms with fewer covalent bonds (i.e.,
low-degree atoms) correspond to such cases, due to being associated with fewer bonded potentials
and hence being more sensitive to inaccuracies in the modeling of non-bonded interactions. We
empirically verify this assertion in the subsequent paragraph.

Experimental verification. To validate our assertion, we conduct an analysis on how prediction
errors vary with respect to their node degree. Specifically, we calculated an atom-wise Root Mean
Square Deviation (RMSD) and Mean Absolute Error (MAE) of conformation predictions on the
QM9 dataset. The calculation of atom-wise RMSD and MAE for each atom i are as follows:

RMSD(i) = ∥Ĉi −Ci∥2, MAE(i) =
1

N − 1

∑
j∈V\{i}

|D̂ij −Dij |1

Subsequently, we categorize nodes into low-degree (degrel
i ∈ (0, 0.3]) and high-degree (degrel

i ∈
[0.7, 1]) groups based on their relative degree degrel

i = deg(m)
i /maxn∈[1,N ] deg(m)

n , then visualize
the average errors for each group in Figure 1. We evaluate upon GINE, GATv2 and GraphGPS
which utilize covalent bond adjacency Abond and GTMGC which additionally incorporates inter-
atomic distance Drow-sub. As illustrated, the low-degree atoms exhibit significantly higher errors
compared to high-degree atoms, with deviations up to 0.488 for RMSD(i) and 0.123 for MAE(i).
This demonstrates that previous works fail to sufficiently model inter-atomic forces between non-
bonded atomic pairs, hindering the effective modeling of Enon-bonded.

4 REBIND: ENHANCING GROUND-STATE MOLECULAR CONFORMATION VIA
FORCE-BASED GRAPH REWIRING

Given the limitation of previous studies, we introduce REBIND, a novel graph rewiring framework
that selectively adds edges in a force-aware manner, prioritizing atoms with low-degree. In Sec-
tion 4.1, we provide an overview of the REBIND architecture. Section 4.2 details the force-aware
graph rewiring component, and Section 4.3 describes the integration of the augmented edges into the
multi-head self-attention. Finally, the learning objective of REBIND and comparison with existing
studies are detailed in Section 4.4.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

X

Add &
 N

orm

Feed Forw
ard

Add &
 N

orm

Encoder Attention Mechanism

𝑺"! = 𝑺! +	𝑺!⊙ (𝛽!"	×																								)

Attention Block

×	𝑲

Encoder

M
HA w

ith 
boded adjacency

Add &
 N

orm

Feed Forw
ard

Add &
 N

orm

Attention Block

×	𝑲

Decoder

M
HA w

ith 
boded adjacency

Decoder Attention Mechanism

𝑺"! = 𝑺! +	𝑺!⊙ (𝛽!"	×																				+		𝛽!#	×																						+	𝛽!#	×																						)

Conformation 
Prediction Head

Conformation 
Prediction Head

Laplacian Positional
Embedding

𝑺!

=
= Original Self-Attention

𝑨"#$% 𝑨"#$%

𝑨&''(, 𝑨()*𝑪%+,- 𝑪%

𝑨&''( 𝑨()*

Figure 2: Overview of the REBIND framework.

4.1 OVERVIEW

The overall architecture of REBIND is illustrated in Figure 2. Our framework receives a 2D molec-
ular graph as input, characterized by its bonded adjacency matrix Abond and node feature or em-
beddings augmented with Laplacian positional encoding L. The framework outputs a predicted
molecular conformation, denoted as Ĉ. We employ a standard encoder-decoder architecture with
multi-head self-attention, following the approaches presented in (Vaswani, 2017; Cai & Lam, 2020;
Xu et al., 2024). In this setup, the encoder processes the input graph to generate hidden represen-
tations Henc. A task-specific prediction head then produces an initial conformation prediction Ĉenc

from Henc. From this intermediate prediction, we derive 1) an inter-atomic distance matrix D̂enc

and 2) force-aware adjacency matrices Aforce = {Aattr,Arep}, where Aattr and Arep denote adja-
cency matrices identifying attractive and repulsive atomic pairs. The hidden representation Henc,
along with Abond and Aforce, are subsequently fed into the decoder to generate the refined, residual
molecular representation.

4.2 FORCE-AWARE GRAPH REWIRING

Here, we outline the construction of force-aware adjacency matrix Aforce, which connects non-
bonded atomic pairs exerting significant forces to one another, mitigating the shortfalls of prior
works identified in Section 3.

Force modeling with Lennard-Jones potential. To capture the interactions between non-bonded
atomic pairs, we leverage the Lennard-Jones (LJ) potential (Jones, 1924), a well-established model
for non-bonded interactions such as van der Waals forces. The LJ potential is defined as:

V (r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (7)

where r is the distance between two atoms, ε is the depth of the potential well (representing the
strength of the interaction), and σ is the finite distance at which the inter-atomic potential is zero.
The first term

(
σ
r

)12
accounts for the repulsion when atoms are too close, while the second term(

σ
r

)6
accounts for the attraction at moderate distances. By using the derivative of this potential, we

compute the inter-atomic forces acting upon non-bonded atom pairs, which is critical for modeling
the equilibrium conformation of the molecule. This force model provides a more realistic represen-
tation of how spatial positions are influenced, especially for low-degree atoms, where non-covalent
interactions dominate.

The values of σ and ε are assigned based on the specific pair of atom types being modeled (e.g.,
carbon, hydrogen, etc.). In line with conventional force-field modeling approaches used in com-
putational chemistry, we adopt the predefined parameter values from the Universal Force Field
(UFF) (Rappé et al., 1992). For interactions between different atom types, the parameters are deter-
mined using the Lorentz-Berthelot mixing rules. Specifically, the interaction parameters σij and εij
for atom pair i and j are defined as follows:

σij =
σi + σj

2
, εij =

√
εi · εj (8)

5
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Figure 3: An illustration of edge augmentation in REBIND using the LJ potential. Non-bonded
atomic pairs with the largest force magnitudes are added as edges to the molecular graph in a degree-
compensating manner. The augmented edges are treated according to the nature of the forces, dis-
tinguishing between attractive and repulsive interactions.

Thus, the full inter-atomic force between atom i and j can be written as:

F (r) = −dV (r)

dr
= 24εij

[
2
(σij
r

)12

−
(σij
r

)6
]
1

r
(9)

Here, the sign of F (r) denotes the directionality of the force, where positive values correspond to
repulsion, and negative values indicate attraction.

Construction of force adjacency matrix. Given the derived force function from the LJ potential,
we construct a set of force adjacency matricesdj Aforce which introduces additional edges to atoms
that significantly impact its spatial conformation, while prioritizing those of low-degree. Utilizing
the predicted distance matrix obtained from the encoder D̂enc, where D̂enc

ij = ∥Ci − Cj∥2 =√
(Ci −Cj)T(Ci −Cj), we compute the inter-atomic force F LJ for non-bonded atomic pairs

using the Equation 9. We then augment the graph by connecting each node i to the top Ki =
maxn∈[1,N ] degm

n − degim non-bonded atoms that exert the largest forces on i as follows:

E force
i =

{
j
∣∣ j ∈ TopKi

(
{j | |F LJ[i, j]|}

)
, eij /∈ Ebond} (10)

Here, for each atom i, we select non-bonded neighbors j that exert the largest forces on i, adding
up to the maximum possible degree maxn∈[1,N ] degmn − degmj without thresholding or introducing
any hyperparameters. To differentiate the nature of these forces, we decompose E force

i into separate
adjacency matrices Aattr and Arep which capture attraction and repulsion, respectively. With 1 as
the indicator function, we formalize Aattr and Arep as follows:

Aattr
ij = 1

[
(i, j) ∈ E force

i ∧ F LJ[i, j] < 0
]
,Arep

ij = −1
[
(i, j) ∈ E force

i ∧ F LJ[i, j] ≥ 0
]

Note that the edge weights of Aattr are positive ones (i.e. +1) while weights of Arep are negative
ones (i.e. −1), ensuring distinctiveness between the directionality of forces. The complete process
is outlined in Figure 3.

4.3 INTEGRATION WITH MULTI-HEAD SELF-ATTENTION

Leveraging the augmented edges, REBIND enhance the multi-head self-attention by incorporating
both bond-based and force-based adjacency matrices. Specifically, the augmented force-based adja-
cency matrices Aforce = {Aattr,Arep} and original bond-based adjacency matrix Abond are incorpo-
rated as residual components in the attention scores for each head h. This integration is formalized
as follows:

Ŝh = Sh + Sh ⊙ (βB
h ×Abond) + Sh ⊙ (βAttr

h ×Aattr) + Sh ⊙ (βRep
h ×Arep), (11)

where Sh = QhK
T
h = (ZWQ

h )(ZWK
h )T represents the global self-attention score. Here, Z =

Henc +L ∈ RN×d is the input to the decoder, combining the encoder’s hidden representations Henc

with Laplacian positional encoding L. βB
h , β

Attr
h , βRep

h are learnable parameters that modulate the
influence of 1) bonds, 2) attraction and 3)repulsion adjacency matrices, respectively. Subsequently,
the output of each attention head, Oh, is computed by applying a softmax normalization to the scaled
attention scores and then multiplying by the linear projection of the decoder input Vh ∈ RN×dk :

Oh = σsm

(
Ŝh√
dk

)
Vh, Vh = ZW V

h , (12)

6
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where σsm is a softmax function applied to the attention score scaled by
√
dk. The final confor-

mation Ĉ is obtained by refining the initial encoder representation Henc with the residual decoder
representation Hdec, which is achieved via channel-wise attention:

Ĉ = FFN(Y ) ∈ RN×3, Y =

2∑
i=1

α:,:,i ⊙H:,:,i ∈ RN×dc ,

α = σsm

(
HencWy || HdecWy√

dc

)
∈ RN×dc×2, H = Henc || Hdec ∈ RN×dmodel×2,

(13)

where FFN(·) is a task-specific head layer, Wy ∈ Rmodel×dc is a linear transformation applied to
the hidden representations, and || denotes concatenation along the last dimension. The channel-
wise attention weights α determine the contribution of the encoder and decoder representations in
producing the final conformation.

Throughout this attention mechanism, REBIND effectively models inter-atomic forces by learning
from both bonded and non-bonded atomic pairs. By incorporating the structural supervision from
Abond and the force-aware supervision from Aforce into the global attention scores S, REBIND
facilitates comprehensive force modeling, enhancing the accuracy of conformation predictions.

4.4 OBJECTIVE FUNCTION

To ensure that the predicted molecular conformation remains invariant to rotation and translation,
we adopt a loss function based on the difference between the predicted and ground-truth pairwise
Euclidean atomic distances, denoted as D̂ and D, respectively, which is also utilized in prior works
(Xu et al., 2021c; 2024). Additionally, to achieve precise force modeling within the decoder, we
apply the same loss objective to the initial conformation predictions D̂enc and D from the encoder.
The overall loss objective L is formulated as follows:

L =
1

N2

N∑
i

N∑
j

|D̂enc
ij −Dij |+

1

N2

N∑
i

N∑
j

|D̂ij −Dij | (14)

Comparison with existing graph transformers. Several existing works integrate inter-atomic
relationships as residuals within multi-head self-attention mechanisms. For instance, the Geometric
Transformer (Choukroun & Wolf, 2021) utilizes the pairwise Euclidean distances D, computed
from ground-truth atomic coordinates, to perform molecular property prediction. Similarly, MAT
(Maziarka et al., 2020) incorporates both the pairwise distances D and the bond adjacency matrix
Abond for the same task. In contrast, GTMGC (Xu et al., 2024) employs predicted inter-atomic
distances Drow-sub to forecast ground-state molecular conformations.

While our work also leverages pairwise atomic relationships as residuals in the computation of atten-
tion scores, REBIND distinguishes itself by enabling fine-grained force modeling. This is achieved
through the joint utilization of both bonded interactions and non-bonded interactions characterized
by the largest forces. Consequently, our framework attains more precise ground-state molecular
geometries, which is substantiated in the subsequent section.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluated REBIND on well-established benchmark datasets, including QM9 (Ra-
makrishnan et al., 2014), Molecule3D (Xu et al., 2021c), and GEOM-DRUGS (Axelrod & Gomez-
Bombarelli, 2022). QM9 consists of small organic molecules and is widely utilized for quantum
chemistry applications. Molecule3D is a large-scale dataset of molecular structures, for which we
employed two distinct splitting strategies: random split and scaffold split. The scaffold split groups
molecules based on their core substructures, enabling a more realistic evaluation. Additionally,
GEOM-DRUGS comprises large-size molecules relevant to drug discovery, providing a challenging
benchmark for assessing the scalability of our framework on complex molecular structures. Since

7
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Table 1: Conformer prediction performance and percentage reduction (%) of REBIND compared to
the best baseline performance on the QM9 and Molecule3D datasets.

Splits Validation Test
Datasets Methods D-MAE ↓ D-RMSE ↓ C-RMSD ↓ E-RMSD ↓ D-MAE ↓ D-RMSE ↓ C-RMSD ↓ E-RMSD ↓

QM9

RDKit-DG 0.328 0.570 0.502 1.044 0.330 0.573 0.504 1.266
RDKit-ETKDG 0.324 0.574 0.458 1.048 0.325 0.574 0.460 1.120

GINE 0.605 0.950 0.865 1.703 0.606 0.946 0.867 1.696
GATv2 0.382 0.695 0.711 1.371 0.382 0.690 0.712 1.358

GraphGPS (RW) 0.328 0.629 0.628 1.196 0.327 0.624 0.628 1.193
GraphGPS (LP) 0.283 0.500 0.544 1.049 0.283 0.499 0.546 1.064

GTMGC 0.280 0.470 0.415 0.792 0.281 0.471 0.414 0.800
REBIND 0.252 0.442 0.320 0.601 0.254 0.446 0.321 0.610

Reduction ↑ 10.00 5.96 22.89 24.12 9.61 5.31 22.46 23.75

Molecule3D
(random)

RDKit-DG 0.581 0.930 1.043 1.864 0.582 0.932 1.044 1.872
RDKit-ETKDG 0.575 0.942 0.981 1.700 0.576 0.943 0.983 1.710

DeeperGCN-DAGNN 0.509 0.849 N/A N/A 0.571 0.961 N/A N/A
GINE 0.591 1.016 1.103 2.227 0.592 1.019 1.104 2.230

GATv2 0.564 0.985 1.072 2.163 0.565 0.989 1.073 2.168
GraphGPS (RW) 0.512 0.900 1.006 2.089 0.513 0.903 1.008 2.094
GraphGPS (LP) 0.440 0.730 0.854 1.687 0.441 0.732 0.854 1.689

GTMGC 0.429 0.713 0.708 1.347 0.430 0.715 0.709 1.350
REBIND 0.418 0.706 0.698 1.314 0.419 0.708 0.699 1.317

Reduction ↑ 2.56 0.98 1.41 2.45 2.56 0.98 1.41 2.44

Molecule3D
(scaffold)

RDKit-DG 0.542 0.872 0.993 1.751 0.524 0.857 0.970 1.780
RDKit-ETKDG 0.531 0.874 0.916 1.565 0.511 0.858 0.892 1.595

DeeperGCN-DAGNN 0.617 0.930 N/A N/A 0.763 1.176 N/A N/A
GINE 0.889 1.517 1.398 3.007 1.388 2.200 1.928 4.142

GATv2 0.791 1.402 1.264 2.675 1.248 2.082 1.768 3.832
GraphGPS (RW) 0.503 0.853 0.978 2.047 0.595 1.024 1.065 2.203
GraphGPS (LP) 0.417 0.690 0.827 1.639 0.411 0.690 0.827 1.606

GTMGC 0.406 0.670 0.682 1.318 0.397 0.671 0.692 1.275
REBIND 0.391 0.661 0.640 1.174 0.386 0.663 0.667 1.182

Reduction ↑ 3.69 4.20 6.16 10.93 2.77 1.19 3.61 7.29

the original dataset includes multiple stable conformations, we choose the most stable conformation
with respect to the Boltzmann energy for each molecule. Detailed descriptions of each dataset are
provided in Appendix C.

Metrics. Following previous work (Xu et al., 2024), we evaluate the performance of our model
using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Root Mean Square
Deviation (RMSD). Additionally, we introduce a new metric, Energy-weighted RMSD (E-RMSD),
which accounts for the chemical feasibility of predicted conformations. By denoting Gi and G
as the aligned predicted and ground-state conformation via the Kabsch algorithm (Kabsch (1978)),
E-RMSD is calculated as:

E-RMSD(Ĝ,G) =
p

p̂

√∑
i∈V

wi∥Ĝi −Gi∥2 (15)

Here, p
p̂ denotes the Boltzmann factor denoted as exp

(
Ê−E
kT

)
, while atom-wise normalized force

wi is defined as wi = Fi∑
j∈V Fj

. E and Ê denotes the total energy of ground-truth and predicted
conformations, and Fi denotes the force calculated via the force-field defined from the predicted
conformation, both computed using the Merck Molecular Force Field (Halgren, 1996). The con-
stants k and T are each the Boltzmann constant and thermodynamic temperature, respectively. This
approach penalizes 1) errors of molecules that are energetically unstable via p

p̂ , and 2) errors of atoms
that are off-equilibrium with respect to net force via wi. Detailed descriptions of other metrics are
provided in Appendix C.2

Baselines. Following Xu et al. (2024), we compared our REBIND against traditional cheminfor-
matic methods, DG and ETKDG algorithms, from RDKit (Landrum et al., 2013) and five repre-
sentative GNNs. The GNNs considered in our experiments can be broadly broadly categorized as
(1) traditional GNNs such as GINE (Hu* et al., 2020), GATv2 (Brody et al., 2022), DeeperGCN-
DAGNN adapted from Xu et al. (2021c), (2) graph transformers including GraphGPS (Rampasek
et al., 2022) and GTMGC (Xu et al., 2024). For GraphGPS, we conducted experiments using both
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random walk (RW) and Laplacian (LP) positional encoding strategies. To ensure a fair comparison,
we trained the MoleBERT (Xia et al., 2023) tokenizer in GTMGC separately for each dataset, which
differs from the original setting where the tokenizer trained on a Molecule3D random split is used
universally across all benchmarks. To further validate the efficacy of our framework, we included a
comparison with the diffusion-based conformer generation model, Torsional Diffusion (Jing et al.,
2022). Detailed experimental configurations are specified in Appendix C.

5.2 MAIN RESULTS

We present the performance results with of REBIND in Table 1, where the percentage reduction is
calculated as the ratio of the performance improvement over the best baseline, expressed as a per-
centage. As demonstrated, our method achieves consistent superiority over baseline methods across
all datasets and evaluation splits. On the QM9 dataset, REBIND achieves notable improvements
across all evaluation metrics, with gains of up to 24% in both C-RMSD and E-RMSD. Additionally,
our method exhibits robust generalization capabilities on the larger Molecule3D dataset. Notably,
REBIND further excels in the scaffold split, where training and test sets contain structurally diverse
molecules, achieving up to a 10% reduction in E-RMSD. This highlights REBIND’s ability to gen-
eralize effectively to novel molecular scaffolds. Furthermore, it is worth emphasizing that higher
performance gains are observed in E-RMSD compared to C-RMSD. This suggests that REBIND
generates molecular conformations that are not only geometrically accurate but also more realistic
in terms of energetic stability, resulting in more physically plausible molecular structures.

5.3 SCALABILITY TO LARGE MOLECULES

Table 2: Conformer prediction performance and per-
centage reduction (%) of REBIND compared to the best
baseline performance on the GEOM-DRUGS dataset.

Splits Test
Datasets Methods D-MAE ↓ D-RMSE ↓ C-RMSD ↓ E-RMSD ↓

GEOM-DRUGS

RDKit-DG 1.181 2.132 2.097 3.623
RDKit-ETKDG 1.120 2.055 1.934 3.330

GINE 1.125 1.777 2.033 3.925
GATv2 1.042 1.662 1.901 3.728

GraphGPS (RW) 0.879 1.399 1.768 3.472
GraphGPS (LP) 0.815 1.300 1.698 3.171

GTMGC 0.823 1.319 1.458 2.830
Torsional Diffusion 0.959 1.648 1.751 2.992

REBIND 0.776 1.283 1.396 2.602
Percentage Reduction ↑ 4.79 1.31 4.25 8.06

We further validate REBIND on the
GEOM-DRUGS dataset with large
molecules by including Torsional Diffu-
sion (Jing et al., 2022)as an additional
baseline, which adopts the same dataset as
its benchmark. Since Torsional Diffusion
was originally designed to generate mul-
tiple conformers, we adapt it to produce
a single conformation per molecule for
evaluation.

As shown in Table 2, REBIND signifi-
cantly outperforms the baselines, achiev-
ing improvements of up to 4% in C-RMSD
and 8% in E-RMSD. Diffusion-based models like Torsional Diffusion are designed to generate mul-
tiple stable conformations and are not directly suited for predicting the single most stable conforma-
tion of a molecule, resulting in suboptimal performance. In contrast, REBIND demonstrates strong
generalizability to drug-like molecules, surpassing diffusion-based models with lower computational
costs and eliminating the need for multiple inference steps.

5.4 ABLATIVE STUDY

Table 3: Ablative study of REBIND.

L Abond Anear Aforce C-RMSD ↓ E-RMSD ↓
✓ 0.5294 1.0323
✓ ✓ 0.3524 0.6920
✓ ✓ ✓ 0.3522 0.6807
✓ ✓ ✓ 0.3209 0.6103

Ablation on components. We conduct
an ablation study on the components of
REBIND on the QM9 dataset, with the re-
sults presented in Table 3. Using a fully-
connected transformer with Laplacian po-
sitional embedding L results in limited
performance, highlighting that uniformly
connecting edges without accounting for inter-atomic forces is suboptimal. Integrating the bond-
based adjacency matrix Abond with L leads to substantial performance improvements. Moreover,
we evaluate the impact of incorporating force-aware edges (i.e., Aforce) compared to edge augmen-
tation based on proximity (i.e., Anear), the strategy adopted in Luo et al. (2021). The distance-based
edges Anear are constructed using the intermediate distance matrix D̂enc, connecting atoms i and j
when D̂enc

ij < δ. The threshold δ is set as 10Å, following the protocol in Luo et al. (2021). Our
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results demonstrate that Aforce, which accounts for significant inter-atomic forces influencing spatial
conformation, consistently outperforms Anear, showing up to 9% improvements in C-RMSD and
larger gains up to 10% in E-RMSD. This demonstrates the effectiveness of Aforce in aiding the
model to generate conformations that are both closer to the ground state and energetically stable.

Application to GNN-based architectures. The core concept of REBIND is adaptable to any
encoder-decoder framework. To demonstrate its versatility, we integrate REBIND with three GNN-
based architectures: GINE, GATv2, and GraphGPS (LP). We implement REBIND by dividing the L
layers of original GNNs into two halves, where the top half operates as the encoder and the bottom
half operates as the decoder. To compute Aforce , we follow the same procedure as REBIND, wherein
the encoder’s output is passed through a task-specific head layer to generate Ĉenc and D̂enc.

The results are shown in Table 4 of Appendix B. Results demonstrate that incorporating REBIND
significantly improves performance across all backbone architectures and metrics, with gains of
at least 5%. Notably, when applied to GraphGPS, we achieve the lowest prediction errors, with
improvements of 5.11% in C-RMSD and 8.74% in E-RMSD. These results underscore the versatility
of REBIND in boosting performance regardless of the underlying architecture. Moreover, REBIND’s
integration requires minimal implementation effort, making it compatible with any existing GNN-
based architecture through the proposed mechanism.

5.5 QUALITATIVE ANALYSIS

We present a qualitative comparison of REBIND against baseline architectures based on atom-wise
RMSD on the QM9 dataset, shown as blue bars in Figure 1. As illustrated, REBIND achieves sig-
nificant error reductions for both groups. Specifically, when compared against GTMGC, REBIND
further reduces the atom-wise RMSD for lower-degree groups by 0.11, compared to a reduction of
0.05 for high-degree groups, thereby verifying the efficacy of our degree-compensating augmenta-
tion. Moreover, our method greatly reduces the gap between the atom-wise errors of low-degree
and high-degree groups, achieving 15.16% and 20.91% percentage reduction in the gap for atom-
wise RMSD and MAE, respectively, compared to GTMGC. These results substantiates that REBIND
comprehensively captures non-bonded interactions through force-aware edge augmentation.

6 RELATED WORKS

There has been a growing interest in generating molecular conformations from 2D molecular graphs.
Traditional cheminformatics methods, such as DG and ETKDG from RDKit (Landrum et al., 2013),
are widely used for their efficiency, relying on chemical heuristics for fast generation. However,
their performance is limited due to insufficient handling of non-bonded interactions and minimal
energy optimization. To address this limitation, deep learning models have emerged as powerful
alternatives, producing multiple conformations for molecules using generative models (Mansimov
et al., 2019; Xu et al., 2021b;a; Luo et al., 2021; Shi et al., 2021b; Xu et al., 2022; Jing et al., 2022).
Recently, the focus has shifted to predicting ground-state molecular conformations, which is critical
for practical applications requiring stability and feasibility. A benchmark and training pipeline were
introduced in Xu et al. (2021c) for this task, followed by the graph transformer (Xu et al., 2024),
achieving state-of-the-art results. Further details on related works are provided in Appendix A.

7 CONCLUSION

Given the limitations of previous studies in modeling inter-atomic forces, we introduced REBIND, an
innovative framework that incorporates force-aware edge augmentation to accurately capture inter-
atomic interactions. We anticipate that REBIND can be extended to other critical applications such
as drug discovery or property prediction, particularly in scenarios where ground-truth coordinates
are unavailable. As a future work, we plan to integrate our framework with these applications to
enhance their predictive accuracy.
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SUPPLEMENTARY MATERIALS

Table 4: Conformer prediction performance and percentage reduction (%) of GNN-based backbones
integrated with REBIND on the QM9 dataset.

Method Test
Backbone Methods D-MAE ↓ D-RMSE ↓ C-RMSD ↓ E-RMSD ↓

GINE
Vanilla 0.606 0.946 0.867 1.696

+ REBIND 0.505 0.761 0.801 1.605
Reduction ↑ 16.65 19.55 7.61 5.36

GATv2
Vanilla 0.382 0.690 0.712 1.358

+ REBIND 0.319 0.523 0.611 1.198
Reduction ↑ 16.62 24.14 14.14 11.77

GraphGPS
(LP)

Vanilla 0.283 0.499 0.546 1.064
+ REBIND 0.211 0.361 0.518 0.971

Reduction ↑ 25.55 27.58 5.11 8.74

A RELATED WORKS

Molecular Conformer Generation. In recent years, there has been significant progress in the
field of molecular conformation generation from 2D molecular graphs. Traditional cheminformatics
approaches, such as Distance Geometry (DG) and its extension, ETKDG (Landrum et al., 2013),
have been widely employed due to their computational efficiency. These methods rely on chemical
heuristics and geometric rules to generate conformations efficiently, which makes them attractive
for large-scale applications. However, their reliance on approximations and minimal energy opti-
mization limits their ability to accurately capture non-bonded interactions, which play a crucial role
in determining the stability and realism of molecular conformations.

To overcome the limitations of traditional approaches, deep learning models have emerged as
promising choices. Generative models, in particular, have been extensively explored for molecu-
lar conformation generation, offering more accurate and realistic predictions. Early works (Mansi-
mov et al., 2019; Xu et al., 2021b) leverage variational autoencoders (VAEs) to encode molecular
information into latent spaces, where each molecule’s structure is represented as a probabilistic dis-
tribution. From this latent space, multiple plausible 3D conformations are sampled by decoding the
latent variables. Similarly, flow-based models (Xu et al., 2021a) generate molecular conformations
by transforming latent variables sampled from a Gaussian distribution into atomic distance matrices,
capturing long-range dependencies between atoms. The 3D coordinates are then derived from the
generated distances, followed by refinement using energy-based models. Score-based models have
also gained attention for molecular conformation generation. These models learn a score function
representing the gradient of the log probability density of atomic coordinates (Luo et al., 2021; Shi
et al., 2021b). By perturbing the molecular data with Gaussian noise at multiple levels, these models
iteratively denoise the data using the learned score function to guide the generation of valid confor-
mations. Building on the success of diffusion models (Ho et al., 2020) in the vision domain, their
application to molecular conformation generation has become another emerging area of interest (Xu
et al., 2022; Jing et al., 2022; Zhang et al., 2023; Fan et al., 2024). They have shown remarkable
success in generating diverse molecular geometries by learning the desired geometric distribution
from a noise distribution through a reverse diffusion process.

Ground-state molecular conformer prediction. While the one-to-many task of generating mul-
tiple conformations has been thoroughly studied, recent research has shifted toward the prediction
of a molecule’s ground-state conformation. This focus reflects the practical importance of identify-
ing the most stable and energetically favorable molecular structure, which is essential for real-world
applications such as drug design and material discovery. Ground-state conformation prediction re-
quires models to identify the most stable configuration on the molecule’s potential energy surface,
which is challenging for one-to-many methods to address.

To facilitate progress in this area, the Molecule3D benchmark and training pipeline are introduced
in Xu et al. (2021c). They provide a standardized dataset and evaluation protocols for predict-
ing a molecule’s ground-state geometry. Building on this, the graph transformer architecture (GT-
MGC) (Xu et al., 2024) was recently proposed, tailored to predict ground-state molecular confor-
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mations. GTMGC incorporates bonds and pairwise distances within the self-attention mechanism to
capture both local and global molecular interactions, achieving state-of-the-art performance on the
benchmarks with ground-state conformations.

Table 5: Examples of visualizations and RMSD predictions from RDKit-ETKDG, GTMGC, and
REBIND on the QM9 and GEOM-DRUGS datasets.

Datasets QM9 GEOM-DRUGS

Ground-truth

RDKit-ETKDG
1.233 0.844 1.621 3.033 2.515 3.470

GTMGC
1.242 1.168 1.479 2.295 2.232 2.521

REBIND
0.050 0.058 0.376 0.844 0.898 1.174

B ADDITIONAL EXPERIMENTS

B.1 MOLECULAR VISUALIZATIONS

In this section, we provide 3D visulaizations and corresponding RMSD predictions from our method,
RDKit-ETKDG, and GTMGC on the QM9 and GEOM-DRUGS dataset. As illustrated, the confor-
mations predicted by REBIND shows significantly closer alignment with the ground-truth conforma-
tions. This superiority is consistent across molecules of varying sizes, demonstrating the robustness
of our approach.

B.2 FURTHER QUALITATIVE ANALYSIS

Figure 4: Atom-wise E-RMSD analysis with re-
spect to the relative atom degree on REBIND and
baselines. ∆ denotes the gap between the errors
of the low-degree and high-degree bins.

We present an additional qualitative compari-
son of REBIND against baseline architectures
based on atom-wise E-RMSD, as shown in
Figure 1. Analogous to previous analyses,
we calculated the atom-wise E-RMSD between
the ground-truth 3D coordinates and predic-
tions on the QM9 dataset. For an atom i in
the m-th molecule, the atom-wise E-RMSD,
E-RMSD(i), is formulated as:

E-RMSD(i) =
p(m)

p̂(m)
wi∥Ĉi −Ci∥2, (16)

where Ĉi and Ci denotes the predicted and
ground-truth coordinates of atom i. p(m)

p̂(m) is a
Boltzmann factor of the m-th molecule and wi

denotes the normalized atom-wise force, as de-
tailed in Section 3. Following the same procedure, we categorized nodes into the low-degree and
high-degree groups based on the relative degree, and computed the average atom-wise RMSD for
each group, as depicted in Figure 4.

Consistent with the results in Section 5.5, REBIND achieves significant error reductions for both
low-degree and high-degree groups. Specifically, when compared against GTMGC, REBIND further
reduces the atom-wise E-RMSD for lower-degree groups by 0.18, compared to a reduction of 0.14
for high-degree groups. Furthermore, our method greatly reduces the gap between the atom-wise
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Figure 5: Further analysis of Atom-wise RMSD on (a) GEOM-DRUGS and (b) Molecule3D
datasets. ∆ denotes the gap between the errors of the low-degree and high-degree groups.

RMSD of low-degree and high-degree groups, achieving a 7.37% percentage reduction in the gap
compared to GTMGC, demonstrating the efficacy of REBIND in accurately modeling interatomic
interactions.

B.3 IMPORTANCE OF LOW-DEGREE ATOMS

Figure 6: Proportion of low-degree (degrel
i ∈

(0, 0.3]) within each atom, binned with respect to
their molecular sizes. Molecule3D is used during
visualization.

To highlight the performance disparities be-
tween low-degree and high-degree atoms dis-
cussed in Section 3, we further visualize the
proportion of low-degree atoms within each
molecule in Figure 6, using the Molecule3D
dataset. The visualization reveals that the pro-
portion of low-degree atoms (degrel

i ∈ (0, 0.3])
increases significantly as molecular size grows.
Combined with our findings in Section 3, this
suggests that inaccuracies in predicting the po-
sitions of low-degree atoms are a major con-
tributor to performance degradation in confor-
mation prediction for large molecules. These
observations emphasize the necessity of novel
methods, such as REBIND, to address the chal-
lenges associated with low-degree atoms effec-
tively.

C EXPERIMENTAL SETTINGS

C.1 DATASET DESCRIPTION

We evaluate our method on three benchmark datasets: QM9, Molecule3D, and GEOM-Drugs. De-
tails for each datasets are specified below.

• QM9 is a widely-used quantum chemistry dataset containing molecular geometries, elec-
tronic properties, and energy attributes for small organic molecules with up to 9 heavy
atoms. The 3D conformations are obtained using density functional theory (DFT). We
adopt the data split proposed by (Liao & Smidt, 2023).

• Molecule3D is a large-scale dataset consisting of approximately 4 million molecules. Each
molecule is annotated with 2D molecular graphs, ground-state 3D conformations, and var-
ious quantum properties. We follow the splits used in (Xu et al., 2024), including a random
split and a scaffold split. The scaffold split groups molecules based on their core substruc-
tures, allowing for a more realistic evaluation.
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• GEOM-Drugs is a subset of the GEOM dataset, focusing on drug-like molecules. For each
molecule, multiple conformation sets along with their chemical properties are provided.
Thus, we choose the most stable conformation with respect to Boltzmann energy for each
molecule for our experiments. For data splits, we adhere to the splits used in (Ganea et al.,
2021).

C.2 METRICS DESCRIPTION

We consider the following metrics for evaluation.

• MAE. Mean absolute Error (MAE) quantify the accuracy of predicted interatomic dis-
tances relative to the ground truth on a pairwise basis. Let D̂ij and Dij represent the
predicted and ground truth distances between atoms i and j, respectively. The metric is
formulated as follows:

MAE(D̂,D) =
1

N2

∑
i,j∈V

|D̂ij −Dij |

• RMSE. Root Mean Square Error (RMSE), also quantifies the error in interatomic distances,
on a pairwise basis. Specifically, the metric is formulated as follows:

RMSE(D̂,D) =

√
1

N2

∑
i,j∈V

(D̂ij −Dij)2

• RMSD. Root Mean Square Deviation measures the spatial deviation between two confor-
mations that are aligned using the Kabsch algorithm (Kabsch, 1978). Only heavy atoms
(i.e., excluding hydrogens) are considered during this calculation. Let Ĝi and Gi represent
the aligned conformations of atom i. RMSD is defined as:

RMSD(Ĝ,G) =

√
1

N

∑
i∈V

∥Ĝi −Gi∥2

• E-RMSD. Energy-weighted RMSD, considers chemical feasibility of the predictions on
top of the spatial deviations. The probability likelihood of the whole preicted confor-
mation Ĝ with respect to the ground state G is accounted via the Boltzmann factor
(i.e.pp̂ = exp

(
Ê−E
kT

)
), while the feasibility at atom-level is considered via sum-normalized

force (i.e.wi =
Fi∑

j∈V Fj
) acting upon each atom. Both the Boltzmann factor and force is

calculated using Merck Molecular Force Field (Halgren, 1996). For all our experiments,
we set T = 298.15 K and k = 0.001987 kcal mol−1K−1, reflecting standard laboratory
conditions.

C.3 IMPLEMENTATION DETAILS

We adopted the evaluation protocols and train/validation/test splits from Xu et al. (2024) for the
QM9 and Molecule3D datasets and from Jing et al. (2022) for the GEOM-DRUGS dataset. Test
results were derived from the best-performing model on the validation set based on the D-MAE
metric. All GNN architectures were implemented using PyTorch Paszke et al. (2019) and PyTorch
Geometric Fey & Lenssen (2019). The experiments were conducted on RTX Titan and RTX 3090
(24GB) GPU machines. Throughout all experiments except for Jing et al. (2022); Xu et al. (2024),
we set the hidden dimension to 512 and the number of layers to 8; for these references, we adopted
their optimal configurations. We employed the AdamW optimizer with a batch size of 100 and
no weight decay. Learning rates were initially warmed up from 0 and then fixed based on the best
validation performance on the QM9 dataset, within the range of [3e-5, 5e-5, 7e-5, 9e-5]. The number
of attention heads was set to 8. We used a seed of 42 for all experiments and trained all models for
20 epochs, following the configuration in Xu et al. (2024).
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