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Abstract001

Vision-and-Language Navigation (VLN) re-002
quires an agent to interpret natural language in-003
structions and navigate complex environments.004
Existing approaches often fail to stop at targets005
due to incorrect endpoint recognition or fail to006
reach targets in long-distance tasks. Inspired by007
human navigation, we devise a solution to these008
challenges, proposing Human-Inspired Naviga-009
tion (HiNav), a modular framework that mimics010
human cognitive processes for efficient naviga-011
tion. HiNav integrates four components that012
emulate key human abilities: HiView for opti-013
mal viewpoint selection; HiMem for selective014
memory and map maintenance, enhancing long-015
range exploration; HiSpace for spatial reason-016
ing and object relationship inference, improv-017
ing endpoint recognition; and HiDecision for018
Large Language Model (LLM)-based path plan-019
ning. We also introduce an Instruction-Object-020
Space (I-O-S) dataset and fine-tune the Qwen3-021
4B model into Qwen-Spatial (Qwen-Sp), which022
outperforms leading commercial LLMs (e.g.,023
GPT-4o, Gemini-2.5-Flash, Grok3) in object024
list extraction, achieving higher F1 and NDCG025
scores on the I-O-S test set. Extensive ex-026
periments on the Room-to-Room (R2R) and027
REVERIE datasets demonstrate HiNav’s state-028
of-the-art performance with significant im-029
provements in Success Rate (SR) and Success030
weighted by Path Length (SPL).031

1 Introduction032

Humans navigate complex environments with re-033

markable efficiency, relying on precise observation034

to select informative viewpoints, selective memory035

to retain task-relevant information, spatial reason-036

ing to infer object locations from linguistic cues,037

and precise decision-making. For example, when038

instructed to “reach the kitchen’s refrigerator,” hu-039

mans visualize the kitchen layout, focus on key land-040

marks, and filter out irrelevant details from memory.041

However, VLN agents, which aim to replicate this042

capability by interpreting natural language instruc- 043

tions and analyzing visual observations, often strug- 044

gle to perform effectively. Existing LLM-based 045

Zero-Shot VLN (ZS-VLN) solutions frequently fal- 046

ter in complex, long-distance tasks and scenarios 047

with ambiguous endpoints (Zhou et al., 2023; Long 048

et al., 2023; Chen et al., 2024). 049

Inspired by human navigation and the failures in 050

prior VLN solutions, we propose Human-Inspired 051

Navigation (HiNav), a modular ZS-VLN frame- 052

work that mimics human cognitive processes for 053

efficient navigation. HiNav comprises four com- 054

ponents: (1) HiView, drawing from how humans 055

center objects of interest in their visual field, opti- 056

mizes viewpoint selection by identifying the most 057

informative perspectives; (2) HiMem, based on the 058

forgetting mechanism in human memory, creates 059

a dynamic topological map that selectively retains 060

important spatial information while discarding out- 061

dated or irrelevant details; (3) HiSpace, reflecting 062

human spatial imagination and reasoning capabili- 063

ties, analyzes instructions and infers spatial layouts 064

from linguistic cues, enhancing the agent’s abil- 065

ity to understand environmental context; and (4) 066

HiDecision, modeled after human decision-making 067

processes, leverages advanced LLMs to determine 068

navigation actions based on instructions, processed 069

observations, object spatial layouts, and map infor- 070

mation. 071

Additionally, we construct an Instruction-Object- 072

Space (I-O-S) dataset, derived from oracle paths 073

across indoor environments, to support instruction 074

analysis and spatial reasoning. We have also fine- 075

tuned the Qwen3-4B model(Yang et al., 2025) on 076

this I-O-S dataset to create the Qwen-Sp model, 077

which can analyze language instructions for VLN 078

tasks, extract and reason about objects along the 079

navigation path, and infer spatial layouts of objects 080

at the destination. Extensive experiments on the 081

Room-to-Room (R2R) and REVERIE datasets (An- 082

derson et al., 2018; Qi et al., 2020b) demonstrate Hi- 083
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Nav’s state-of-the-art performance, with significant084

gains in Success Rate (SR) and Success weighted085

by Path Length (SPL).086

Our contributions are:087

• We introduce HiNav, achieving state-of-the-088

art performance with a 5.1% improvement in089

SR and 5.0% in SPL on the R2R subset (An-090

derson et al., 2018). We will release the HiNav091

codebase.092

• We demonstrate the versatility of the HiSpace093

module, which can be seamlessly integrated094

into other VLN frameworks to enhance their095

performance, whether map-based or not.096

• We present the I-O-S dataset, comprising097

28,414 samples, enabling fine-grained analy-098

sis of navigation instructions. We will release099

this dataset to foster VLN research and LLM100

spatial inference.101

• We develop Qwen-Sp, outperforming leading102

commercial LLMs (e.g., GPT-4o, Gemini-2.5-103

Flash, Grok3) (OpenAI, 2024; Google Deep-104

Mind, 2025; xAI, 2025) in the task of object105

extraction, achieving a higher F1 score (0.316106

vs. 0.270 for GPT-4o) and NDCG score (0.388107

vs. 0.325 for GPT-4o) on the I-O-S test set.108

We will release Qwen-Sp to support research109

on the spatial inference ability of LLMs.110

2 Related Work111

Vision-and-Language Navigation Vision-and-112

Language Navigation (VLN) requires agents to fol-113

low natural language instructions in 3D environ-114

ments (Anderson et al., 2018; Krantz et al., 2020;115

Chen et al., 2019; Qi et al., 2020b). Early VLN116

research predominantly involved supervised learn-117

ing, focusing on cross-modal alignment between118

vision and language (Hao et al., 2020; Hong et al.,119

2021a; Chen et al., 2021b), often leveraging visual-120

linguistic representations (Chen et al., 2020; Li121

et al., 2020). Data augmentation techniques (Fried122

et al., 2018; Tan et al., 2019; Wang et al., 2023)123

and specific training strategies (Wang et al., 2019;124

Huang et al., 2019) were also explored. Other re-125

search focused on state memorization (Chen et al.,126

2021c; Deng et al., 2020), self-correction mecha-127

nisms (Ke et al., 2019; Ma et al., 2019), and the128

use of external knowledge (Gao et al., 2021; Qi129

et al., 2020a). A significant subfield is Zero-Shot130

VLN (ZS-VLN), where agents navigate without131

task-specific training, heavily relying on Large Lan- 132

guage Models (LLMs). NavGPT (Zhou et al., 2023) 133

showed that LLMs can make navigation decisions 134

from prompted inputs. DiscussNav (Long et al., 135

2023) used a multi-expert LLM system. MapGPT 136

(Chen et al., 2024) integrated an online linguistic 137

map for LLM-based global planning. 138

Large Language Models in VLN Large Language 139

Models (LLMs) (Brown et al., 2020; Touvron et al., 140

2023; OpenAI, 2023; Yang et al., 2025) are central 141

to modern VLN due to their strong language under- 142

standing and reasoning. In ZS-VLN, they primarily 143

act as decision-makers (Zhou et al., 2023; Chen 144

et al., 2024; Long et al., 2023; Huang et al., 2023). 145

Beyond zero-shot applications, LLMs are also fine- 146

tuned on VLN data. LangNav (Pan et al., 2023) 147

and NavCoT (Lin et al., 2024) fine-tuned LLaMA 148

models for navigation tasks. Effective prompting 149

techniques (Wei et al., 2022; Kojima et al., 2022; 150

Yao et al., 2022) remain key to LLM performance 151

in ZS-VLN. 152

Human-Inspired Approaches and Navigation 153

Maps Human-inspired navigation strategies lever- 154

age cognitive processes to enhance robotic nav- 155

igation, with memory-adaptive models filtering 156

historical data to improve decision-making (He 157

et al., 2024), datasets like Touchdown emphasizing 158

spatial reasoning for complex instructions (Chen 159

et al., 2019), and VLN frameworks incorporating 160

dynamic human activities for social navigation (Li 161

et al., 2024). Map-based methods provide spatial 162

memory, where metric maps built via Simultane- 163

ous Localization and Mapping (SLAM) offer de- 164

tailed geometry at high computational cost (Thrun, 165

1998; Fuentes-Pacheco et al., 2015), and topologi- 166

cal maps abstract environments into efficient graphs 167

(Chen et al., 2021a, 2022). Recent efforts, such as 168

MapGPT, integrate topological maps with LLMs 169

to enable spatial reasoning in ZS-VLN (Chen et al., 170

2024). 171

3 Method 172

Task Description VLN tasks require an agent 173

to interpret a natural language instruction I = 174

{w1, w2, . . . , wL} and navigate a 3D environment 175

to a target location. At each step t, given the current 176

pose pt, the simulator provides several neighboring 177

viewpoints that are currently navigable. The agent 178

observes its state st, including a set of navigable 179

viewpoints Vt = {vt,i}Ki=1, where K is the number 180

of navigable viewpoints, and visual observations 181
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Action

HiSpace

Environment

Visual Observation

Enhanced Visual 
Observation

Instruction

Walk up the stairs and 

take a right. Wait in the 

entrance if the kitchen 

and wait there.

agent_pose

neighbor_viewpoint

State

"The destination is a kitchen or dining room.",

"The spatial layout of the room is that several 

chairs are placed in the center of the room, and 

there is a fireplace.”

Destination Spatial Layout 

HiView

current

explored

visited

new

HiMem

HiDecision

GoTo(vt)/Stop

Figure 1: The HiNav architecture, integrating HiView, HiMem, HiSpace, and HiDecision to emulate human observa-
tion, memory, spatial reasoning, and decision-making. The agent receives visual observations from the environment,
where HiView optimizes viewpoint selection by centering navigable viewpoints (yellow dots), enhanced by HiSpace
to represent nodes in HiMem’s topological map, while HiSpace processes instructions and images to generate
destination spatial layouts and enhanced visual observations. HiDecision then uses these layouts and HiMem’s map
prompts to output navigation actions (stop or proceed to a selected viewpoint).

O, and selects an action at from a discrete action182

space At (e.g., navigate to an adjacent viewpoint183

or stop). The action is sent to the control mod-184

ule to execute the corresponding movement. The185

challenge lies in grounding linguistic instructions186

in visual scenes to generate an action sequence187

A = {a1, a2, . . . , aT }.188

HiNav adopts a human-inspired modular frame-189

work that integrates four key cognitive pro-190

cesses: observation, memory, spatial reasoning,191

and decision-making. The framework comprises192

HiView (Section 3.1), HiMem (Section 3.2), HiS-193

pace (Section 3.3), and HiDecision (Section 3.4),194

which work together to process visual and linguistic195

inputs efficiently, as illustrated in Figure 1. These196

modules emulate human navigation strategies to197

achieve robust and effective navigation in complex198

indoor environments.199

3.1 HiView: Observation Module200

To emulate human visual behavior of centering ob-201

jects of interest (Skaramagkas et al., 2023), the202

HiView module selects the visual observation clos-203

est to each navigable viewpoint’s direction as its204

representation. From a predefined set of 36 obser-205

vation directions (12 horizontal at 30-degree inter-206

vals and three vertical: up, middle, down), only the 207

direction aligned with the camera’s orientation is 208

processed, reducing computational overhead. 209

For a set of reachable viewpoints Vt from the 210

agent’s current pose pt, HiView computes the di- 211

rection vector ~d = pc − pt for each candidate view- 212

point vc ∈ Vt with position pc. This yields the 213

target heading θtg and elevation φtg. The module 214

then identifies the optimal view index k∗ from the 215

available views, each characterized by orientations 216

(θk, φk), by minimizing the L1 angular distance: 217

k∗ = arg min
k∈available views

D((θk, φk), (θtg, φtg)). (1) 218

The selected visual observation Ok∗ , captured in 219

the direction of the camera’s orientation, serves as 220

the visual representation of the viewpoint vc after 221

being enhanced by the HiSpace module, ensuring 222

that the representation encapsulates sufficient spa- 223

tial information and visual features for effective 224

navigation. 225

3.2 HiMem: Memory Module 226

Humans navigate complex environments efficiently 227

by selectively retaining task-relevant information 228

and discarding irrelevant details through mecha- 229

nisms like cognitive maps (Epstein et al., 2017) 230

3



and working memory (Baddeley and Hitch, 1974;231

Malleret et al., 2024). Inspired by this, we inves-232

tigated VLN failures, noting that existing meth-233

ods (Zhou et al., 2023; Long et al., 2023; Chen234

et al., 2024) falter in prolonged tasks, particularly235

beyond 13 steps in the R2R dataset (Anderson et al.,236

2018). Excessive node accumulation in topological237

maps overwhelms LLM context limits, reducing238

success rates. Unlike prior approaches that retain239

all observations in an expanding map (Chen et al.,240

2022; Chen et al., 2024), our HiMem framework241

dynamically filters irrelevant nodes, sustaining per-242

formance and mitigating LLM context constraints.243

The overall workflow of HiMem is illustrated in244

Figure 2.245

3.2.1 Map Construction246

In VLN, the agent builds a real-time map of an247

unfamiliar environment using observations from248

exploration. Following prior work (Chen et al.,249

2022; Chen et al., 2024), we use a topological graph250

Gt = (Vt, Et), where Vt = {vt,i}Ki=1 represents251

viewpoint nodes observed up to time step t, and Et252

denotes navigable connections between them.253

At each step t, the agent records new viewpoints254

and their connections based on the simulator’s feed-255

back about neighboring nodes. These are added to256

an intermediate graph G
tmp
t , updated from the pre-257

vious graph Gt−1. After obtaining the intermediate258

graph G
tmp
t , it is dynamically pruned to produce259

the final graph Gt.260

3.2.2 Dynamic Map Pruning261

To maintain a compact and task-relevant topolog-262

ical map, the HiMem module dynamically evalu-263

ates and prunes nodes from the intermediate graph264

G
tmp
t that are no longer pertinent to the navigation265

task. This process begins after an initial explo-266

ration phase (t ≥ tstart), ensuring the map remains267

efficient by removing outdated or irrelevant infor-268

mation. By selectively filtering nodes, HiMem re-269

duces memory overhead and mitigates interference270

from obsolete data, producing the final graph Gt.271

The set Tt ⊆ V
tmp
t represents all viewpoint272

nodes that the agent has visited up to time step273

t. This set tracks the agent’s exploration history274

and is used to assess node relevance.275

HiMem identifies a subset of nodes Vassess ⊆276

V
tmp
t for relevance evaluation based on three crite-277

ria: nodes must be non-current, meaning they are278

not the agent’s current viewpoint (vt,i 6= vt); they279

must be previously visited, having been explored280

(vt,i ∈ Tt); and they must be temporally stale, not 281

revisited recently, satisfying t−τ(vt,i) > θkeep and 282

t − τ(vt,i) > θage, where τ(vt,i) is the time step 283

when node vt,i was last visited, θkeep is the mini- 284

mum time elapsed since the last visit to consider 285

a node for pruning, and θage is the threshold for 286

determining node staleness based on its age. 287

Nodes in Vassess are assigned a pruning priority 288

score P (vt,i), which quantifies their relevance to 289

the ongoing task: 290

P (vt,i) = λtft(vt,i) + λdfd(vt,i) 291

+ λfff (vt,i) + λdistfdist(vt,i) (2) 292

where: 293

• ft(vt,i) = max(1, t − τ(vt,i) − θage): Mea- 294

sures temporal staleness, prioritizing older 295

nodes. 296

• fd(vt,i) = − degGtmp
t
(vt,i): Penalizes nodes 297

with low connectivity, as they are less critical 298

to navigation. 299

• ff (vt,i) = −|{vt,j | (vt,i, vt,j) ∈ E
tmp
t ∧ 300

vt,j /∈ Tt}|: Favors nodes with fewer unex- 301

plored neighbors, indicating lower exploration 302

potential. 303

• fdist(vt,i) = dGtmp
t
(vt, vt,i): Considers the 304

graph distance from the current viewpoint, pri- 305

oritizing distant nodes. 306

The coefficients λt, λd, λf , λdist balance the con- 307

tributions of each factor. Details on the specific 308

selection of coefficients are provided in the Ap- 309

pendix A.2. 310

Based on the pruning priority scores, the top 311

Nremove nodes with the highest P (vt,i) are removed 312

from G
tmp
t , yielding the final map Gt = (Vt, Et). 313

This selective pruning ensures that the topologi- 314

cal map remains concise, relevant, and computa- 315

tionally efficient, supporting robust navigation over 316

extended periods. 317

3.2.3 Map Representation 318

The HiMem module structures the filtered topo- 319

logical map Gt = (Vt, Et) into prompts for the 320

HiDecision module, adapting insights from prior 321

work (Chen et al., 2024). The prompts include: (1) 322

Trajectory, listing visited node identifiers in Vt; (2) 323

Map, detailing node connectivity in Et; and (3) 324

Supplementary Information, linking nodes vt to 325
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current

explored

visited

new

𝐺𝑡−1 𝐺𝑡
𝑡𝑚𝑝 𝐺𝑡𝐺2𝐺1

Enhanced Visual Observation (from HiSpace)

Pruned

𝒕 ≥ 𝒕𝒔𝒕𝒂𝒓𝒕

Figure 2: The HiMem architecture, illustrating the dynamic construction and pruning of a task-relevant topological
map. At step t, HiMem observes navigable viewpoints and uses their enhanced visual observations as representations,
adding them as new nodes (gray) to the previous map Gt−1 to form an intermediate map Gtmp

t ; if t ≥ tstart, a pruning
operation is triggered, removing Nremove nodes based on their pruning priority scores (Nremove = 1 in this figure),
resulting in a compact map Gt.

enhanced visual observations Oe
k∗ from HiSpace.326

This ensures a concise, task-relevant spatial rep-327

resentation for the LLM. Detailed prompts are in328

Appendix B.329

3.3 HiSpace: Spatial Reasoning Module330

Humans navigate by recognizing landmarks and331

mentally constructing spatial configurations at des-332

tinations, enabling precise location identification.333

In VLN, agents often misidentify targets, such as334

stopping in a hallway instead of a kitchen in R2R335

tasks (Anderson et al., 2018), due to weak spatial336

reasoning. HiSpace addresses this by extracting337

task-relevant objects from instructions and infer-338

ring destination layouts. Using our I-O-S dataset,339

we fine-tuned Qwen3-4B into Qwen-Sp to generate340

accurate object lists and layouts, boosting naviga-341

tion precision. The HiSpace architecture is shown342

in Figure 3. Beyond VLN, the I-O-S dataset also343

enhances LLMs’ spatial imagination and reasoning344

capabilities.345

3.3.1 I-O-S Dataset346

The Instruction-Object-Space (I-O-S) dataset is a347

novel resource designed to enhance spatial reason-348

ing in VLN by providing structured data that links349

natural language instructions to objects and their350

spatial arrangements. Comprising 28,414 samples351

derived from expert trajectories in indoor environ-352

ments, the I-O-S dataset captures three key compo-353

nents: (1) Instructions, which are natural language354

navigation directives; (2) Objects, a list of task-355

relevant objects encountered along the trajectory356

or at the destination; and (3) Destination Spatial 357

Layouts, describing the relative positions of objects 358

at the destination (e.g., “The spatial layout of the 359

room is that several chairs are placed in the center 360

of the room, and there is a fireplace”). 361

To construct the dataset, we extracted oracle 362

paths from indoor environments, which provide op- 363

timal navigation trajectories. Objects along the path 364

and at the destination were identified using the sim- 365

ulator’s ground-truth object annotations. Spatial 366

arrangements were generated through a two-step 367

process: first, an LLM proposed candidate layouts 368

based on object relationships observed in the desti- 369

nation scenes; second, human annotators verified 370

and refined these layouts to ensure accuracy and 371

consistency. 372

Each sample in the I-O-S dataset is formatted 373

as a tuple (I,O, S), where I is the instruction, O 374

is the set of objects, and S is the description of 375

destination spatial layout. The dataset is split into 376

25,694 training samples and 2,720 test samples. 377

By providing fine-grained annotations, the I-O-S 378

dataset enables models to learn how to extract task- 379

relevant objects from instructions and infer their 380

spatial configurations. See Appendix D for details. 381

3.3.2 Spatial Reasoning Model 382

To enable robust spatial reasoning, we developed 383

Qwen-Sp by fine-tuning Qwen3-4B (Yang et al., 384

2025) on the I-O-S dataset using Low-Rank Adap- 385

tation (LoRA) (Hu et al., 2022). Qwen-Sp employs 386

two LoRA adapters: one to extract task-relevant ob- 387

jects from navigation instructions (e.g., identifying 388
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Detection 
Model

Qwen-Sp

Enhanced Visual 
Observation

Visual Observation

Instruction

Walk up the stairs and 

take a right. Wait in the 

entrance if the kitchen 

and wait there.

"The destination is a kitchen or dining room.",

"The spatial layout of the room is that several chairs are 

placed in the center of the room, and there is a fireplace.”

Destination Spatial Layout 

Objects List

direct_objlist = [stair, chair, table, cabinet]

inferred_objlist = [fireplace, microwave, lamp, pillar, window ...]

Figure 3: The HiSpace architecture, depicting the pipeline for spatial reasoning. Qwen-Sp processes instructions to
extract object lists and infer destination spatial layouts, while the detection model, implemented using YOLO-World,
enhances visual observations to enable the agent to better identify and navigate toward task-relevant objects.

“refrigerator” from “go to the kitchen’s refrigera-389

tor”) and another to infer their spatial arrangements390

at the destination (e.g., “the refrigerator is against391

the kitchen’s back wall”). Fine-tuned on 25,694392

I-O-S samples, Qwen-Sp achieves superior perfor-393

mance in object list extraction compared to lead-394

ing commercial LLMs, including GPT-4o, Gemini-395

2.5-Flash, and Grok3 (xAI, 2025). This highlights396

Qwen-Sp’s ability to accurately identify and prior-397

itize task-relevant objects, which is critical for ef-398

fective navigation. For zero-shot REVERIE experi-399

ments (Qi et al., 2020b), we avoid direct use of the400

fine-tuned model, instead leveraging its learned pat-401

terns to design prompts for commercial LLMs (e.g.,402

GPT-4o). Qwen-Sp is to be released open-source,403

with training details provided in Appendix A.4.404

3.3.3 Visual Input Enhancement405

The Visual Input Enhancement component en-406

ables landmark-based pathfinding by enhancing vi-407

sual observations with task-relevant objects from408

the spatial reasoning model’s object list, mim-409

icking how humans use landmarks to navigate410

(Skaramagkas et al., 2023). Using YOLO-World411

(Cheng et al., 2024), a lightweight, fast, and high-412

performance open-vocabulary object detection sys-413

tem, we annotate objects (e.g., “chair”, “fireplace”)414

in the visual observation Ok∗ selected by HiView,415

guiding the agent along the instruction-specified416

path. The enhanced inputs Oe
k∗ , integrating visual417

and textual object information, inform the HiDe- 418

cision module’s LLM, improving navigation pre- 419

cision. Performance impacts are reported in Sec- 420

tion 4. 421

3.4 HiDecision: Decision-Making Module 422

LLMs exhibit reasoning and decision-making capa- 423

bilities that, to a certain extent, parallel those of hu- 424

mans. To harness these capabilities, we introduce 425

HiDecision, a module that employs an advanced 426

LLM, GPT-4o, to facilitate high-level decision- 427

making. At each time step t, HiDecision processes 428

the following inputs: the natural language instruc- 429

tion (I), specifying the navigation goal; the HiMem 430

context (CHiMem
t ), including the trajectory and the 431

map; the destination spatial layout ( SLHiSpace) pro- 432

vided by HiSpace; and other prompt information 433

(e.g., history, previous planning, and action options, 434

denoted as Pt). The LLM integrates these inputs 435

to output an action at, which is either the selection 436

of a neighboring viewpoint or a decision to stop: 437

at = HiDecision(I, CHiMem
t , SLHiSpace, Pt). (3) 438

The complete prompt structure is detailed in Ap- 439

pendix B. 440

4 Experiments 441

4.1 Experimental Settings 442

HiNav is evaluated on the R2R (Anderson et al., 443

2018) and REVERIE (Qi et al., 2020b) datasets in 444
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a zero-shot setting, with the I-O-S dataset used to445

assess Qwen-Sp’s spatial inferring ability. HiNav is446

compared to NavGPT (Zhou et al., 2023), Discuss-447

Nav (Long et al., 2023), and MapGPT (Chen et al.,448

2024), using GPT-4o for a fair comparison. Qwen-449

Sp is also tested against GPT-4o, Gemini-2.5-Flash,450

and Grok3 on the I-O-S dataset. We conduct VLN451

experiments on the Matterport3D simulator(Chang452

et al., 2017). The implementation details are in453

Appendix A.454

Evaluation Metrics Performance is assessed using455

the following metrics. For VLN tasks: (1) Success456

Rate (SR), the percentage of successful episodes;457

(2) Success weighted by Path Length (SPL), which458

balances success and path efficiency; (3) Oracle459

Success Rate (OSR), the SR with an oracle stop460

policy; and (4) Navigation Error (NE), the aver-461

age distance in meters to the target. For evaluat-462

ing the spatial inference capabilities of LLMs: (5)463

F1 Score, measuring precision and recall for ob-464

ject list extraction; and (6) Normalized Discounted465

Cumulative Gain (NDCG), assessing the ranking466

quality of extracted objects. Additionally, we intro-467

duce a novel metric, Map Efficiency (ME), which468

reflects the HiMem module’s ability to maintain469

task-relevant spatial information. Details of these470

metrics are in Appendix A.471

4.2 Experimental Results472

ZS-VLN Benchmark Comparison Following473

prior work (Zhou et al., 2023; Chen et al., 2024),474

we evaluate HiNav on the standard R2R subset con-475

sisting of 72 scenes and 216 samples, as shown476

in Table 1. HiNav achieves an SR of 50.9% and477

SPL of an 42.6%, outperforming MapGPT by 5.1%478

and 5.0%, respectively. HiView’s viewpoint op-479

timization captures critical landmarks, providing480

the most complete visual representation of the481

viewpoint. HiMem’s pruning maintains compact482

maps, with an ME of 40.4% , enabling stable explo-483

ration in long trajectories. Notably, HiNav’s higher484

OSR (7.3% higher than MapGPT) likely stems485

from HiMem’s pruning, facilitating late-stage ex-486

ploration without increased resource demands.487

REVERIE Complex Task Evaluation In line with488

prior benchmarks (Chen et al., 2024), we evalu-489

ate HiNav on a randomly sampled subset of the490

REVERIE dataset, containing 70 scenes and 140491

samples, as shown in Table 2. HiNav achieves492

an SR of 45.7% and an SPL of 32.8%, outper-493

forming MapGPT by 4.3% and 4.4%, respectively.494

The HiMem module demonstrates significant pro-495

Methods SR ↑ SPL ↑ OSR ↑ NE ↓ ME ↑

NavGPT (Zhou et al., 2023) 36.1 31.6 40.3 6.26 -
DiscussNav (Long et al., 2023) 37.5 33.3 51.0 6.30 -
MapGPT (Chen et al., 2024) 45.8 37.6 56.5 5.31 38.0
HiNav (Ours) 50.9 42.6 63.9 5.02 40.4

Table 1: Comparison of ZS-VLN performance on the
standard R2R subset (72 scenes, 216 samples). NavGPT
and MapGPT results are reproduced using GPT-4o to
ensure a fair comparison.

Methods SR ↑ SPL ↑ OSR ↑ NE ↓ ME ↑

NavGPT (Zhou et al., 2023) 28.9 23.0 32.6 7.86 -
MapGPT (Chen et al., 2024) 41.4 28.4 56.4 7.12 34.7
HiNav (Ours) 45.7 32.8 59.3 7.89 35.6

Table 2: Comparison of ZS-VLN performance on a
randomly sampled REVERIE subset (70 scenes, 140
samples). NavGPT and MapGPT results are reproduced
using GPT-4o to ensure fair comparison. To maintain
the zero-shot evaluation setting, HiNav employs GPT-4o
instead of Qwen-Sp for the HiSpace module in this ex-
periment, as the I-O-S dataset includes samples derived
from the REVERIE dataset.

ficiency in handling complex, long-range tasks in- 496

herent in REVERIE. However, HiNav’s ME shows 497

limited improvement, likely due to the richness of 498

REVERIE instructions, which allow even frame- 499

works less adept at long-range tasks to construct 500

comprehensive maps by leveraging detailed infor- 501

mation. Moreover, HiSpace effectively leverages 502

the dataset’s diverse object categories to enhance 503

task-relevant object extraction, while HiView pro- 504

vides comprehensive observations that facilitate 505

more effective landmark detection. 506

R2R Large-Scale Evaluation To compare with 507

prior VLN and ZS-VLN work, we evaluate HiNav 508

on the R2R full validation unseen set (11 scenes, 509

783 samples), as shown in Table 3. HiNav achieves 510

an SR of 46% and an SPL of 40%, surpassing 511

MapGPT by 2% and 5%, respectively. The rela- 512

tively moderate improvements observed here can be 513

attributed to the limited scene diversity within the 514

11-scene subset, which restricts the effectiveness of 515

HiMem’s pruning and HiSpace’s spatial reasoning 516

capabilities. However, HiNav’s SR outperforms 517

three trained and pretrained methods, achieving 518

state-of-the-art zero-shot performance. 519

LLM Spatial Inference Comparison We evalu- 520

ate Qwen-Sp’s spatial inference capability against 521

leading LLMs (GPT-4o, Gemini-2.5-Flash, Grok3) 522

as well as the baseline non-fine-tuned Qwen3-4B 523

model on the I-O-S test set consisting of 2,720 sam- 524
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Settings Methods SR SPL OSR NE

Train
Seq2Seq (Anderson et al., 2018) 21 - 28 7.81
Speaker (Fried et al., 2018) 35 - 45 6.62
EnvDrop (Tan et al., 2019) 52 48 - 5.22

Pre-
train

LangNav (Pan et al., 2023) 43 - - -
PREVALENT (Hao et al., 2020) 58 53 - 4.71
RecBERT (Hong et al., 2021b) 63 57 69 3.93
HAMT (Chen et al., 2021c) 66 61 73 2.29
DUET (Chen et al., 2022) 72 60 81 3.31
ScaleVLN (Wang et al., 2023) 81 70 88 2.09

ZS
NavGPT (Zhou et al., 2023) 34 29 42 6.46
DiscussNav (Long et al., 2023) 43 40 61 5.32
MapGPT (Chen et al., 2024) 44 35 58 5.63
HiNav (Ours) 46 40 65 5.24

Table 3: Performance comparison on the complete val-
idation unseen set of the R2R dataset (11 scenes, 783
samples). HiNav achieves the highest SR among all
zero-shot methods and surpasses three trained and pre-
trained approaches.

Model F1DO ↑ F1IO ↑ F1 ↑ NDCG ↑

GPT-4o 0.258 0.150 0.270 0.325
Grok3 0.055 0.057 0.096 0.095
Gemini-2.5-Flash 0.023 0.055 0.096 0.106
Qwen3-4B 0.236 0.039 0.138 0.198
Qwen-Sp (Ours) 0.357 0.179 0.316 0.388

Table 4: Comparative evaluation of object extraction ca-
pabilities of different LLMs on the I-O-S test set (2,720
samples). F1DO and F1IO represent the F1 scores for
direct and inferred objects, respectively. Qwen-Sp out-
performs other models across all metrics.

ples, as shown in Table 4. Qwen-Sp, fine-tuned on525

the I-O-S training set (25,694 samples), achieves526

an F1 score of 0.316 and an NDCG of 0.388, sur-527

passing GPT-4o by 0.046 and 0.063, respectively.528

Non-fine-tuned LLMs employed a one-shot prompt529

for evaluation, as shown in Appendix B. The su-530

perior performance of Qwen-Sp underscores the531

effectiveness of targeted fine-tuning in enhancing532

task-relevant object identification. In contrast, GPT-533

4o exhibits robust spatial reasoning without spe-534

cialized training. Interestingly, Grok3 and Gemini-535

2.5-Flash considerably underperform, even relative536

to the much smaller-scale Qwen3-4B, highlight-537

ing notable limitations in spatial inference among538

these large models and emphasizing the potential539

advantages of smaller LLMs. While HiSpace sig-540

nificantly enhances object layout inference from di-541

verse instructions, the indoor-centric I-O-S dataset542

may constrain Qwen-Sp’s applicability to outdoor543

environments, suggesting the potential value of ex-544

panding the dataset scope in future work.545

Methods SR ↑ SPL ↑ OSR ↑ NE ↓

NavGPT (Zhou et al., 2023) 36.1 31.6 40.3 6.26
NavGPT+HiSpace 38.9 34.1 43.1 5.96
MapGPT (Chen et al., 2024) 45.8 37.6 56.5 5.31
MapGPT+HiSpace 48.1 39.6 58.3 5.11
HiNav w/o HiView 49.5 41.4 62.5 5.17
HiNav w/o HiMem 48.1 40.1 58.8 5.32
HiNav w/o HiSpace 47.7 39.6 61.1 5.37
HiNav 50.9 42.6 63.9 5.02

Table 5: Ablation study on the R2R subset (72 scenes,
216 samples). This table presents the performance of
HiNav with individual modules removed, and demon-
strates the performance improvement achieved by inte-
grating the HiSpace module into other frameworks. For
NavGPT, which converts visual inputs to text using a
grounding model, only HiSpace’s Destination Spatial
Layout was incorporated.

4.3 Ablation Study 546

As shown in Table 5, we conducted ablation experi- 547

ments on the R2R subset to evaluate HiNav’s mod- 548

ules and integrated our pluggable HiSpace mod- 549

ule into other zero-shot VLN frameworks. For 550

NavGPT, which processes visual inputs into text 551

via a grounding model, only HiSpace’s Destina- 552

tion Spatial Layout was applied. Results confirm 553

the effectiveness of each HiNav module. Notably, 554

removing HiMem significantly reduces OSR, as 555

its proficiency in long-range exploration enhances 556

success under oracle stopping conditions, align- 557

ing with its design. Incorporating HiSpace into 558

other frameworks via simple prompt modifications 559

yields substantial improvements, demonstrating its 560

effectiveness and seamless transferability across 561

map-based and non-map-based VLN frameworks. 562

5 Conclusion 563

This paper introduces HiNav, a novel zero-shot 564

vision-and-language navigation (ZS-VLN) frame- 565

work that enhances navigation by emulating human 566

cognitive processes through its modular architec- 567

ture. HiNav demonstrates state-of-the-art perfor- 568

mance on the R2R and REVERIE datasets, and its 569

HiSpace module offers versatile plug-and-play inte- 570

gration to augment existing VLN frameworks. To 571

further advance spatial understanding in large mod- 572

els, we introduced the Instruction-Object-Space 573

(I-O-S) dataset. Leveraging this resource, we fine- 574

tuned Qwen3-4B to develop Qwen-Sp, a model 575

that demonstrably surpasses leading commercial 576

LLMs like GPT-4o in critical instruction analysis 577

and object extraction tasks. 578
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Limitations579

Despite HiNav’s strong performance in ZS-VLN580

tasks, the sub-optimality of single-pass LLM deci-581

sions persists, a challenge clearly evidenced by the582

performance gap compared to idealized iterative583

correction (detailed in Appendix A.1). This under-584

scores the significant potential to enhance LLM585

performance in ZS-VLN tasks by stabilizing and586

optimizing their decision outputs. Furthermore,587

while our I-O-S dataset aims to bolster LLM spatial588

reasoning, evaluating its impact on inferred spatial589

layouts is methodologically challenging. Unlike ob-590

ject list extraction, which uses direct metrics, spa-591

tial layout assessment currently relies on indirect592

validation through VLN task performance, high-593

lighting the need for dedicated metrics for a more594

direct and streamlined evaluation of this capability.595
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Appendices 860

A Experiment Details 861

A.1 Analysis of HiNav Potential with Multi 862

Round Experiment 863

While HiNav demonstrates strong zero-shot per- 864

formance (Table 1), we further conducted an ex- 865

ploratory analysis to estimate its potential upper 866

bound. This iterative refinement process, with 867

round-by-round results detailed in Table 6, showed 868

that by cumulatively refining performance—in each 869

round, we re-evaluated samples that had failed 870

in the previous round’s cumulative results, and 871

then updated the overall results with these new 872

outcomes—HiNav’s SR could be significantly en- 873

hanced. This process was halted after five rounds 874

because the improvement in Oracle Success Rate 875

(OSR) became marginal (increasing from 76.4% 876

in the fourth round to 77.8% in the fifth round). 877

This saturation suggested that the remaining fail- 878

ures were largely due to episodes where the target 879

was fundamentally unreachable by the agent, rather 880

than sub-optimal local decisions. Through this it- 881

erative refinement, HiNav’s SR was progressively 882

improved from its initial 50.9% to a remarkable 883

73.6%, with a corresponding increase in SPL from 884

42.6% to 59.3%. 885

This significant gap primarily highlights the cur- 886

rent variability and sub-optimality in the LLM’s 887

decision-making process for VLN tasks. While 888

strategies such as reducing LLM temperature can 889

enhance output consistency, they often bias the 890

agent towards overly conservative actions (e.g., pre- 891

mature STOP decisions), which can be detrimen- 892

tal, particularly in long-horizon navigation tasks. 893

Nevertheless, achieving a 73.6% SR through the 894

described iterative refinement—a figure that sur- 895

passes many fully supervised or pretrained meth- 896

ods—underscores the immense, albeit not fully re- 897

alized, potential of LLMs in this domain. This 898

strongly suggests that future efforts focused on opti- 899

mizing the LLM’s output for navigational decision- 900

making are crucial for substantially advancing the 901
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Iteration Round SR ↑ SPL ↑ OSR ↑ NE ↓

1 (Base HiNav) 50.9 42.6 63.9 5.02
2 62.5 51.3 70.8 4.46
3 67.1 54.3 74.5 4.31
4 69.9 56.2 76.4 4.05
5 73.6 59.3 77.8 3.67

Table 6: HiNav performance progression on the R2R
subset (72 scenes, 216 samples) with 5 iterative rounds.
Each round addresses failures from the preceding one.

performance of LLM-based ZS-VLN systems like902

HiNav.903

A.2 Himem Details904

The HiMem module’s dynamic map pruning, de-905

scribed in Section 3.2, uses optimized parameters906

to maintain a compact topological map. The pa-907

rameters include tstart = 15, θkeep = 3, θage = 10,908

Nremove = 1, λt = 1.0, λd = 2.0, λf = 5.0, and909

λdist = 0.5. These values, tuned empirically via910

grid search on the R2R subset (Anderson et al.,911

2018), balance map compactness and navigation912

efficiency. Validated on R2R and REVERIE (Qi913

et al., 2020b), these settings achieved ME scores914

of 40.4% and 35.6%, respectively (Section 4).915

A.3 Metric Details916

This section provides definitions for all evaluation917

metrics used in the experiments to ensure clarity918

and reproducibility. Standard VLN metrics (NE,919

SR, OSR, SPL) follow established definitions (An-920

derson et al., 2018), while F1 and NDCG are tai-921

lored to the I-O-S dataset’s object extraction task.922

The novel Map Efficiency (ME) metric is detailed923

to highlight its role in evaluating topological map924

quality.925

Navigation Error (NE) NE measures the average926

Euclidean distance (in meters) between the agent’s927

final position and the target location at the end of928

an episode.929

Success Rate (SR) SR is the percentage of episodes930

where the agent stops within 3 meters of the target931

location.932

Oracle Success Rate (OSR) OSR is the percent-933

age of episodes where the agent passes within 3934

meters of the target at any point during navigation,935

assuming an oracle stop policy.936

Success weighted by Path Length (SPL) SPL bal-937

ances navigation success and path efficiency, com-938

puted as the ratio of the shortest path length to the939

actual path length, weighted by success.940

F1 Score The F1 score measures the precision and 941

recall of extracted object lists in the I-O-S dataset. 942

It is computed separately for direct objects (F1DO, 943

objects explicitly mentioned in instructions) and 944

inferred objects (F1IO, objects implicitly relevant 945

based on context). The overall F1 score is calcu- 946

lated for the entire object list, which combines both 947

direct and inferred objects into a single set. 948

Normalized Discounted Cumulative Gain 949

(NDCG) NDCG assesses the ranking quality of 950

extracted objects by comparing the predicted 951

object list to the ground-truth list. It accounts for 952

the relevance order of objects, with higher scores 953

indicating better alignment with the ground-truth 954

ranking. For each sample, NDCG is calculated as: 955

NDCG =
DCG
IDCG

, (4) 956

where DCG is the discounted cumulative gain 957

based on predicted object ranks, and IDCG is the 958

ideal DCG based on the ground-truth ranks. 959

Map Efficiency (ME) The Map Efficiency (ME) 960

metric evaluates the quality of topological maps in 961

VLN tasks. It is defined as: 962

ME =
|Tt ∩ Texpert|

|Texpert|
· 1

1 + α · |Vt|
|Texpert|

, (5) 963

where Tt represents the agent’s trajectory, Texpert 964

denotes the expert path node set, Vt is the agent’s 965

map node set, and α = 0.25. The first term quanti- 966

fies the proportion of expert nodes covered by the 967

trajectory, while the second term penalizes overly 968

large maps. A higher ME score indicates a more 969

compact and efficient map. HiNav’s HiMem prun- 970

ing strategy yields superior ME scores, demonstrat- 971

ing enhanced map efficiency. The penalty factor 972

α = 0.25 was optimized through a grid search over 973

the range [0.1, 1.0] using the R2R subset. 974

A.4 Qwen-Sp Fine-tuning Details 975

This study employs the pretrained Qwen3-4B, a 976

causal language model with approximately 4 bil- 977

lion parameters, as the base model. To adapt it 978

for instruction-following and scene understanding 979

tasks in vision-language navigation (VLN), we uti- 980

lize Low-Rank Adaptation (LoRA), a parameter- 981

efficient fine-tuning (PEFT) technique. Specifically, 982

we train two independent LoRA adapters on the I- 983

O-S dataset, comprising 25,694 training samples: 984

the Object Adapter, which predicts task-relevant 985
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object pairs from instructions, and the Spatial Rela-986

tion Adapter, which infers spatial relationships and987

overall layouts among objects.988

To ensure consistency and comparability, both989

adapters share the same LoRA configuration. The990

rank of the low-rank matrices is set to r = 16,991

the scaling factor to α = 32, and the dropout rate992

for LoRA layers to 0.05. The LoRA adapters are993

applied to key layers of the Qwen3 model, specif-994

ically the projection layers of the multi-head self-995

attention (MHSA) mechanism—namely, the query996

(qproj), key (kproj), value (vproj), and output (oproj)997

projections—as well as the linear layers of the998

feed-forward network (FFN), comprising the gate999

(gateproj), up (upproj), and down (downproj) pro-1000

jections in the SwiGLU-based FFN. These layers1001

are selected due to their critical role in instruction1002

understanding, as MHSA layers effectively model1003

complex dependencies within text sequences, and1004

FFN layers enable nonlinear transformations and1005

high-level feature abstraction. This targeted appli-1006

cation of LoRA facilitates efficient learning of task-1007

specific patterns while minimizing computational1008

and storage requirements.1009

The fine-tuning process employs the AdamW op-1010

timizer in PyTorch, with an initial learning rate of1011

1 × 10−4, a cosine decay schedule, and a weight1012

decay of 0.1 for L2 regularization. The maximum1013

gradient norm is clipped at 1.0, and training is per-1014

formed using bfloat16 (bf16) mixed precision with-1015

out gradient accumulation. The Object Adapter is1016

trained for 1 epoch with a per-device batch size of1017

64, while the Spatial Relation Adapter is trained1018

for 8 epochs with a per-device batch size of 48.1019

  1020

B Prompt Structures1021

ZS-VLN Prompts This section describes the1022

prompt structures employed by HiNav to guide the1023

LLM in ZS-VLN tasks. The overall prompt archi-1024

tecture is depicted in Figure 4. The task descrip-1025

tion prompt is elaborated in Figure 5, while the1026

single-round prompt input to the HiDecision mod-1027

ule is shown in Figure 6. For experiments on the1028

REVERIE dataset, only the instruction component1029

is modified to:1030

“‘Instruction’ serves as global guidance1031

that you should follow. Your task is to lo-1032

cate the specified or hidden target object,1033

stop, and disregard any actions related1034

to the target object mentioned in the ‘In-1035

Query to LLM
Task Description (System-level prompt, provided to 

LLM only at the start):

[Task Background] [Input Definitions] [Output 

Requirements]

Prompts of HiDecision (Provided to LLM in every 

round):

[Instruction]

[History]

[Trajectory] [Map] [Supplementary Info] (from HiMem)

[Previous Planning]

[Possible Destination Info] (from HiSpace)

[Action Options]

LLM Response
[Thought]

[New Planning]

[Action]

Figure 4: Complete prompt structure. The top section
specifies the static system-level task description prompt
provided to the LLM at the outset. The middle sec-
tion elaborates on the dynamic prompts supplied during
each navigation round. The bottom section presents the
LLM’s response.

struction’. You should not overly focus 1036

on color details of landmarks or the tar- 1037

get object described in the ‘Instruction’, 1038

as these color descriptions may be inac- 1039

curate.” 1040

All other components remain consistent with those 1041

used for the R2R dataset. Our prompt design draws 1042

on insights from prior work (Chen et al., 2024) 1043

while incorporating adaptations tailored to HiNav’s 1044

framework. 1045

Spatial Inferring Prompts To evaluate the spatial 1046

imagination and reasoning capabilities of leading 1047

commercial large language models (LLMs), we 1048

utilize the prompt shown in Figure 7 to evaluate 1049

their ability to extract objects from instructions. 1050

For experiments on the REVERIE dataset, to en- 1051

sure a zero-shot setting, we refrain from using our 1052

Qwen-Sp model. Instead, we employ GPT-4o for 1053

extracting the object list and predicting the destina- 1054

tion spatial layout. The corresponding prompts are 1055

presented in Figures 7 and 8, respectively. 1056

C Qualitative Analysis of HiNav 1057

C.1 Successful Case Study 1058

This successful case demonstrates that the 1059

HiNav framework effectively tackles complex 1060

instruction-guided navigation problems for 1061

challenging pathfinding tasks. It achieves this 1062

by integrating several key capabilities: HiMem’s 1063

dynamic pruning, HiSpace’s spatial relationship 1064
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Task Description
Task Background

You are an embodied robot that navigates in the real world. You need to explore between some places marked with IDs and ultimately find the destination 

to stop. At each step, a series of images corresponding to the places you have explored and have observed will be provided to you. Target detection 

boxes in images may highlight objects relevant to the optimal navigation path, so take them into account as needed. 

Input Definitions

'Instruction' is a global, step-by-step detailed guidance, but you might have already executed some of the commands. You need to carefully discern the 

commands that have not been executed yet. 

'History' represents the places you have explored in previous steps along with their corresponding images. It may include the correct 

landmarks mentioned in the 'Instruction' as well as some past erroneous explorations. Due to map optimization, images for older places in 

history may be placeholders, and these places might not be in the current 'Map’. Rely on textual context then. 

'Trajectory' represents the ID info of the places you have explored. You start navigating from Place 0. 

'Map' refers to the connectivity between the places you have explored and other places you have observed. This map is dynamically updated; 

some previously seen places/connections might be optimized (pruned) for clarity. 

'Supplementary Info' records some places and their corresponding images you have ever seen but have not yet visited. These places are only considered 

when there is a navigation error, and you decide to backtrack for further exploration. 

'Previous Planning' records previous long-term multi-step planning info that you can refer to now. 

'Possible Destination Info' describes a possible spatial layout of objects for the target destination. This is intended as a reference and may not 

be completely accurate. 

'Action options' are some actions that you can take at this step. 

Output Requirements

For each provided image of the places, you should combine the 'Instruction' and carefully examine the relevant information, such as scene descriptions, 

landmarks, and objects. You need to align 'Instruction' with 'History' (including corresponding images) to estimate your instruction execution progress and 

refer to 'Map' for path planning. Check the Place IDs in the 'History' and 'Trajectory', avoiding repeated exploration that leads to getting stuck in a loop, 

unless it is necessary to backtrack to a specific place. If you can already see the destination, estimate the distance between you and it. If the distance is 

far, continue moving and try to stop within 1 meter of the destination. 

Your answer should be JSON format and must include three fields: 'Thought', 'New Planning', and 'Action'. You need to combine 'Instruction', 

'Trajectory', 'Map', 'Supplementary Info', your past 'History', 'Previous Planning', 'Possible Destination Info', 'Action Options' and the provided 

images to think about what to do next and why, and complete your thinking into 'Thought'. Based on your 'Map', 'Previous Planning' and current 

'Thought', you also need to update your new multi-step path planning to 'New Planning’. At the end of your output, you must provide a single capital letter 

in the 'Action options' that corresponds to the action you have decided to take, and place only the letter into 'Action', such as "Action: A".

Figure 5: Task description prompts for the R2R dataset. The bolded sections in the figure highlight the prompt
representations of each HiNav module. For the REVERIE dataset, only the instruction section was modified, while
the other sections remained unchanged.

information, and HiView’s visual enhancement.1065

Consider the instruction: “Walk down the stairs1066

all the way and past the Christmas tree. Make a1067

right turn and walk past the blue chair into the room1068

with the white sink.” This instruction delineates1069

transitions across three key locations: the stairs, the1070

room with the blue chair, and the room with the1071

white sink. HiSpace provides HiNav with potential1072

destination information, including a detailed lin-1073

guistic description of the final destination extracted1074

from the instruction and the spatial relationships1075

of objects surrounding it. Meanwhile, HiView en-1076

hances the visual scene images by highlighting ob-1077

ject pairs inferred by Qwen-SP, marking existing1078

objects in green (as shown in Figures 9, 10, and 11).1079

These enhanced images are then fed into HiNav.1080

After step 15, HiNav activates HiMem’s dy-1081

namic pruning mechanism. In each subsequent1082

step, it calculates a “pruning priority score” for tra-1083

jectory points meeting specific criteria and removes1084

the point with the highest score. As illustrated in1085

the figures, at step 15, the point with the highest1086

pruning priority score is “forgotten” (removed from1087

the map) based on the calculated scores. This pro-1088

cess eliminates trajectory points irrelevant to the1089

current decision, thereby increasing the likelihood1090

of progressing toward the final destination. In ev-1091

ery subsequent decision step, HiNav continues this 1092

dynamic pruning, retaining only those trajectory 1093

points likely to lead to the final destination. This 1094

iterative process, akin to human pathfinding, en- 1095

ables robust and successful navigation in complex 1096

environments. 1097

C.2 Failed Case Study 1098

This case illustrates a failure in instruction- 1099

following navigation, with the instruction: “Turn 1100

right to exit the room. Turn right when you reach 1101

the end of the hallway. Walk toward the couches 1102

and stop there by the couches.” The instruction out- 1103

lines clear sequential sub-goals: (1) exit the current 1104

room, (2) turn right at the end of the hallway, and 1105

(3) walk toward the couches and stop nearby. 1106

The agent successfully completed the first sub- 1107

goal in Step 0 (moving from Place 0 to Place 3), 1108

correctly turning right to exit the room. However, 1109

the failure occurred during the execution of the sec- 1110

ond sub-goal, which required the agent to “turn 1111

right when you reach the end of the hallway.” After 1112

reaching Place 3 in Step 0, the agent proceeded 1113

to “go forward to Place 6” in Step 1. Critically, 1114

upon arriving at Place 6, the agent failed to execute 1115

the required second “right turn” as specified. In- 1116

stead, in Step 2 (moving from Place 6 to Place 8), 1117
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Query to LLM
Instruction

Turn left and to towards the kitchen, turn left at the kitchen and go until you are right before the yellow couch by the picture on your right.

History

step 0: turn left to Place 2 which is corresponding to Image 2, step 1: turn left to Place 3 which is corresponding to Image 3, step 2: go forward to Place 6 

which is corresponding to Image 6, step 3: go forward to Place 8 which is corresponding to Image 8

Trajectory

Place 0 2 3 6 8

Map

Place 0 is connected with Places 1, 2

Place 2 is connected with Places 0, 3, 4, 5

Place 3 is connected with Places 1, 6, 7, 2

Place 6 is connected with Places 1, 8, 9, 7, 3

Place 8 is connected with Places 10, 11, 9, 6

Supplementary Info

Place 1, which is corresponding to Image 1

Place 4, which is corresponding to Image 4

Place 5, which is corresponding to Image 5

Place 7, which is corresponding to Image 7

Previous Planning

1. Go forward to Place 8.

2. Stop before the yellow couch by the picture.

Possible Destination Info (For reference only, may not be completely accurate)

The destination is the living room, located near a couch. The spatial layout of the destination is centered around a couch with a pillow, with a 

picture nearby and a bench also in the vicinity.

Action Options (step 4)

['A. stop', 'B. go forward to Place 10 which is corresponding to Image 10', 'C. turn right to Place 11 which is corresponding to Image 11', 'D. turn right to 

Place 9 which is corresponding to Image 9', 'E. turn around to Place 6 which is corresponding to Image 6']

LLM Response
Thought

I am currently at Place 8, which corresponds to Image 8. The instruction is to stop right before the yellow couch by the picture on the right. Image 8 shows a 

living room with a sofa and a picture, but no yellow couch is visible. The Possible Destination Info suggests the destination is near a couch with a 

picture nearby. I should explore further to find the yellow couch and picture.

New Planning

1. Turn right to Place 11 to check for the yellow couch and picture. 2. If not found, explore Place 9."

Action: "C"

Figure 6: Prompt input to the HiDecision module for a specific example in a single navigation round. The bolded
sections highlight the contributions of HiNav’s modules, with the Map and Supplementary Info components
dynamically updated based on pruning. The LLM Response’s thought section demonstrates the influence of Possible
Destination Info, showing how the LLM incorporates the provided destination description into its decision-making
process.

it performed a “left turn to Place 8,” as depicted1118

in Figure 12. Relying on the “Possible Destina-1119

tion Info,” which provided clues about the couches1120

(Place 8 contains a sofa chair and side table), the1121

agent incorrectly identified Place 8 as the destina-1122

tion and executed the stop action. Consequently, it1123

failed to complete the full navigation path and all1124

intermediate steps, as shown in Figure 13.1125

The agent appears to have over-prioritized reach-1126

ing a location matching the final destination’s de-1127

scription, stopping prematurely after mistakenly1128

assuming it had completed all necessary interme-1129

diate navigation steps.1130

D I-O-S Dataset Details1131

The Instruction-Object-Space (I-O-S) dataset is de-1132

signed to enhance spatial reasoning in vision-and-1133

language navigation (VLN) by integrating natural1134

language instructions, task-relevant objects, and1135

their spatial configurations. The dataset contains1136

28,414 samples, with 25,694 allocated for training1137

and 2,720 for testing. These samples are derived1138

from oracle paths in the REVERIE dataset (Qi et al.,1139

2020b) and manually crafted trajectories developed1140

for this study. Each sample consists of a natural lan- 1141

guage instruction I , a list of relevant objects O, and 1142

the spatial arrangement at the destination S. The 1143

average instruction length is 23.05 words. Object 1144

lists are categorized into direct and inferred objects, 1145

with averages of 3.99 and 9.98 objects, respectively. 1146

Descriptions of the spatial layout at the destination 1147

have an average length of 39.12 words. An example 1148

from the I-O-S dataset is provided below: 1149

• Instruction: Exit the kitchen area through the 1150

doorway slightly to your left. Walk across the 1151

dining table area. Turn right and pass the blue 1152

chair or sofa near the Christmas tree. Stop there. 1153

• Direct Objects: [“chair”, “sofa chair”, “table”, 1154

“Christmas tree”] 1155

• Inferred Objects: [“mirror”, “lamp”, “plant”, 1156

“picture”, “painting”, “decoration”, “fan”, 1157

“light”, “island”, “heater”, “trash can”, “stool”, 1158

“cabinet”, “coffee table”] 1159

• Destination Spatial Layout: “The destination is 1160

the foyer or entryway, located near a blue chair 1161

and a Christmas tree. The spatial layout includes 1162
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a blue chair or sofa positioned beside a Christmas1163

tree, with a coffee table and a lamp also present1164

in the area.”1165

To construct the I-O-S dataset, we processed1166

data from the REVERIE dataset and our manu-1167

ally annotated trajectories as follows. For samples1168

derived from REVERIE, we directly used its pre-1169

generated bounding box files, which contains ob-1170

ject IDs, names, visible view indices, and bounding1171

boxes in [x, y, w, h] format. For our custom instruc-1172

tions and trajectories, we adopted the REVERIE1173

methodology (Qi et al., 2020b) to generate bound-1174

ing boxes by (1) using Matterport3D’s 3D object1175

annotations (center point, axis directions, radii)1176

to define object vertices, (2) projecting these ver-1177

tices onto 2D image planes using viewpoint camera1178

poses to form [x, y, w, h] bounding boxes, (3) filter-1179

ing occluded objects by comparing depth overlaps1180

with closer objects, and (4) including only objects1181

within 3 meters of the viewpoint. These annota-1182

tions are stored in JSON files matching REVERIE’s1183

format for consistency.1184

After obtaining the objects observed along the ex-1185

pert trajectories (i.e., the bounding box files for each1186

navigation point), we processed them as follows to1187

derive the corresponding object lists and destina-1188

tion spatial layouts. We used the LLM Gemini-2.5-1189

Flash to analyze the instructions, bounding box data1190

from navigation points along the path, and the des-1191

tination, generating the object list for each sample1192

and the spatial layout of objects at the destination.1193

These outputs were then manually inspected and1194

refined.1195
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Objective
•Add two new fields to each JSON entry: direct_obj and potential_obj, based on the instruction field.

•direct_obj: A list of all objects explicitly mentioned in instruction (e.g., ["sink", "table"] in "clean the sink and table").

•potential_obj: A list of objects reasonably inferred based on the task or room type, describing the environment or related to the task.

•Retain original fields ( instruction`) unchanged in the output.

Processing Steps
Identify Direct Object (direct_obj)
•Extract all objects explicitly named in instruction as targets of the main task or verbs.

•Focus on nouns syntactically tied to task-related verbs (e.g., "sink" and "table" in "clean the sink and table").

•Use syntactic parsing (e.g., dependency parsing) to identify direct objects of verbs when possible.

•Include all objects explicitly mentioned as task targets, even if tied to different verbs (e.g., "clean the sink and organize the table" → ["sink", "table"]).

•Sort direct_obj using:

1.Frequency (40%): Objects mentioned multiple times rank higher.

2.Task Relevance (40%): Objects tied to the primary task or verb rank higher (e.g., "sink" in "clean the sink and check the table").

3.Order of Mention (20%): Earlier-mentioned objects rank higher if frequency and relevance are equal.

•If no objects are mentioned (e.g., "go to the spa") or only pronouns/vague terms are used (e.g., "clean it"), set direct_obj to [].

•Match nouns exactly as in instruction (e.g., "sink", not "basin").

•Do not infer objects for direct_obj; they must be explicitly stated.

Identify Potential Objects (potential_obj)
•Include objects that are:

•Inferred based on the task or room type, up to a maximum of 3 inferred objects (5 for vague instructions), describing the environment or context (e.g., 

"bed", "tiles" in "Go to the spa with one bed, brown tiles").

•Guidelines for inference:

•Select inferred objects most relevant to the task (e.g., "sponge" for cleaning) or room type (e.g., "towel" in a spa).

•Avoid speculative inferences (e.g., do not infer "chandelier" in a spa unless mentioned).

•Use singular nouns for inferred objects unless context suggests plural.

•If more than 3 (or 5 for vague instructions) inferred objects are possible, prioritize by typicality (e.g., "sponge" over "toaster" for cleaning in a kitchen).

•Sort potential_obj by:

1.Explicit Mention (40%): Explicitly mentioned objects rank higher.

2.Frequency (30%): Objects mentioned multiple times rank higher.

3.Task Relevance (30%): Objects closer to the task or central to the environment rank higher (e.g., "sponge" for cleaning over "lamp").

•If no objects are inferred, set potential_obj to [].

Handle Special Cases
•Vague Instructions:

•An instruction is vague if it lacks specific object nouns (e.g., "clean the room") or uses generic verbs without clear targets (e.g., "fix something").

•Set direct_obj to [] and infer up to 5 typical objects for potential_obj based on room type (e.g., ["table", "chair", "lamp"] for a generic room).

•Compound Objects:

•Include all explicitly mentioned task targets in direct_obj (e.g., "clean the sink and table" → ["sink", "table"]), sorted as above.

•Non-Physical Objects:

•Exclude abstract entities (e.g., "mess" in "clean the mess") from both direct_obj and potential_obj, setting to [].

•Allow inferred physical objects relevant to the task (e.g., "sponge" for cleaning).

•Multi-Room Instructions:

•Infer potential_obj based on the room where the task occurs (e.g., spa for "go from kitchen to spa and clean the sink"). If unclear, use the last-mentioned 

room.

•Empty/Malformed Instructions:

•If instruction is empty, null, or malformed (e.g., ""), set direct_obj to [] and potential_obj to [].

Input Validation
•Validate input JSON before processing:

•If instruction is missing, set direct_obj to [] and potential_obj to [].

•If other required fields (path, heading, scan, path_id, instr_id) are missing, retain them as null or their default type (e.g., empty list for path) and proceed.

Output Format
•Generate a JSON dictionary with fields in order: instruction, direct_obj, potential_obj.

•Ensure:

•direct_obj is a list of strings, sorted by frequency, task relevance, order of mention, and alphabetical tiebreaker.

•potential_obj is a list of strings, sorted by explicit mention, frequency, task relevance, and alphabetical tiebreaker.

•JSON is well-formed, with 2-space indentation, no trailing commas, and consistent double quotes.

•Original fields (instruction) are unchanged.

•Validate output:

•All required fields are present in the specified order.

•direct_obj and potential_obj are lists of strings.

•JSON syntax is correct with no trailing commas or missing brackets.

Notes
•Exact Matching for direct_obj: Match nouns exactly as in instruction.

•Inference for potential_obj: Limited to 5 inferred objects to ensure relevance.

•Language Consistency: Use singular/plural as in instruction for mentioned objects; inferred objects use singular unless context suggests plural.

Examples
Example 1

Input:

{"instruction": "Go to the spa with one bed, brown tiles on the walls, a visible white radiator, and clean out the sink and bed"}

Output:

{"instruction": "Go to the spa with one bed, brown tiles on the walls, a visible white radiator, and clean out the sink and bed",

"direct_obj": ["sink", "bed", "tiles", "radiator", ],

"potential_obj": ["towel", "tub"]}

Task
•Process the JSON input provided by me and return a complete JSON output adhering to the above requirements.

•Ensure the output is correctly formatted, readable, and both direct_obj and potential_obj are sorted by specified criteria.

•Wait for the my JSON input to process. Do not process sample inputs unless explicitly provided.

  

Figure 7: Prompt designed for object list extraction in spatial inference experiments, applied to non-fine-tuned
LLMs (GPT-4o, Grok3, Gemini-2.5-Flash, Qwen3-4B). This structured prompt directs the LLM to accurately
identify and enumerate task-relevant objects from navigation instructions. The same prompt is used for GPT-4o in
REVERIE dataset experiments.
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You are tasked with processing a JSON input containing navigation instructions and generating a new JSON output. The input JSON has the 

following structure:

{

"path": [string, ...],

"objId": number,

"heading": number,

"scan": string,

"path_id": string,

"instr_id": string,

"instruction": string

}

Your goal is to create a valid JSON output that meets these requirements:

1.Retained Fields:

•Copy path, heading, scan, path_id, instr_id, and instruction from the input, unchanged.

•Exclude objId.

2.Final Destination Spatial Relations:

•Include exactly two strings:

•First: Starts with "The destination is ..." and describes the final location based on the instruction (e.g., "the laundry room on the first 

level"). If the destination is unclear, use a generic description (e.g., "the specified location").

•Second: Starts with "The spatial layout of the destination is ..." and infers a simple, typical layout for the destination type (e.g., for a 

laundry room, a shelf above a washing machine). Base inferences on common knowledge, avoiding overly specific assumptions.

3.Output Constraints:

•Include only the specified fields (path, heading, scan, path_id, instr_id, instruction, final_destination_spatial_relations).

•Ensure the output is a valid JSON object.

•Assume the input JSON is valid.

Example Input:
{

"path": [

"faa7088781e647d09df1d5b470609aa3",

"7d708a5b80ee45979870bae83b2bdd44",

"c29e99f090194613b5b11af906c47dab",

"aa4cfd0126dd4c6a9c533ca9cb4a033d",

"5bc41a6e3b7748149e0e8592c5b4d142",

"3f432ddd169d4433979e004d1237d029",

"3e51eeaac8404b31ad8a950bb2bb953d"

],

"objId": 156,

"heading": 0.32,

"scan": "cV4RVeZvu5T",

"path_id": "7172_156",

"instr_id": "7172_156_0",

"instruction": "Go to the laundry room on the first level and remove the leopard trinket from the shelf"

}

Example Output:
{

"path": [

"faa7088781e647d09df1d5b470609aa3",

"7d708a5b80ee45979870bae83b2bdd44",

"c29e99f090194613b5b11af906c47dab",

"aa4cfd0126dd4c6a9c533ca9cb4a033d",

"5bc41a6e3b7748149e0e8592c5b4d142",

"3f432ddd169d4433979e004d1237d029",

"3e51eeaac8404b31ad8a950bb2bb953d"

],

"heading": 0.32,

"scan": "cV4RVeZvu5T",

"path_id": "7172_156",

"instr_id": "7172_156_0",

"instruction": "Go to the laundry room on the first level and remove the leopard trinket from the shelf",

"final_destination_spatial_relations": [

"The destination is the laundry room on the first level.",

"The spatial layout of the destination is a shelf above a washing machine with the leopard trinket on it."

]

}

Task:
•Wait for the my JSON input to process.

•Generate a complete JSON output adhering to the requirements.

•Ensure the final_destination_spatial_relations field reflects the instruction's destination and a simple, typical layout

Figure 8: Prompt employed for destination spatial layout inference using GPT-4o in REVERIE experiments. This
prompt directs the LLM to generate accurate spatial arrangements of objects at the target location.
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Instruction: Walk down the stairs all the way and past the Christmas tree. Make a right turn and walk past the blue chair into the room with the white sink.

History: step 0: go down to Place 3 which is corresponding to Image 3 (Omitted for brevity)

Trajectory: Place 0 3 4 5 6 8 9 10 12 18 20 22 20 18 19

Map

Place 0 is connected with Places 1, 2, 3, 4

Place 3 is connected with Places 5, 4, 0, 2

Place 4 is connected with Places 6, 5, 0, 3

Place 5 is connected with Places 6, 3, 4

Place 6 is connected with Places 7, 8, 5, 4

Place 8 is connected with Places 9, 10, 6, 7

(Omitted for brevity)

Supplementary Info: (Omitted for brevity)

Previous Planning: (Omitted for brevity)

Possible Destination Info (For reference only, may not be completely accurate)

The destination is the bathroom, positioned in front of the sink. The spatial layout of the destination includes a sink directly in front, a toilet positioned to the left, and a shelf located to the right and above. 

Action Options (step 14): ['A. stop', …'D. go up to Place 6 which is corresponding to Image 6', ...]

Thought: …Based on the map, I need to explore connected places to find the room with the white sink. The possible destination info suggests a bathroom layout...

New Planning: 1. Turn left to Place 28. 2. Explore connected places to find the room with the white sink.

Action: "D”

Pruning Scores Detail (Step 15, Current VP: 77a6b37bf22f49afae1a9d30d736a00b (Place 19) )

Node be3d7ae0352d481191e4c9e351e71b08 (Place 0):

Raw: age=15, deg=4, unexpl_neigh=2, dist=N/A

Contrib: time=5.00 (eff_age=5), deg=-8.00, front=-10.00, dist=0.00

Total Score: -13.00

Node bec7a60657d6483996aa2f0d03b9d691(Place 3):

Raw: age=14, deg=4, unexpl_neigh=1, dist=N/A

Contrib: time=4.00 (eff_age=4), deg=-8.00, front=-5.00, dist=0.00

Total Score: -9.00

Node f17bd928d5c84ebbb4d2d8806682f4af (Place 4):

Raw: age=13, deg=4, unexpl_neigh=0, dist=N/A

Contrib: time=3.00 (eff_age=3), deg=-8.00, front=0.00, dist=0.00

Total Score: -5.00

Node 80befc44c6d14348a3f9bda8ba719d70 (Place 5):

Raw: age=12, deg=3, unexpl_neigh=0, dist=N/A

Contrib: time=2.00 (eff_age=2), deg=-6.00, front=0.00, dist=0.00

Total Score: -4.00

Node 024edcc6db70425aaa54f5596b0ebda8 (Place 6):

Raw: age=11, deg=4, unexpl_neigh=1, dist=N/A

Contrib: time=1.00 (eff_age=1), deg=-8.00, front=-5.00, dist=0.00

Total Score: -12.00

Place 5 for pruning

Place 19 (current)

Place 0 Place 3

Place 4 Place 6

  

Figure 9: Step 15 in a Successful Case Study of HiNav. HiSpace, based on the instructions, accurately and precisely
describes information related to the final destination and the relationships of surrounding objects. By highlighting
scene objects (e.g., pictures, lamps), HiView guides HiNav, increasing the likelihood of reaching the desired
destination. The field ’Pruning Scores Detail’ illustrates the complete calculation process and the resulting pruned
nodes from HiMem’s dynamic pruning. As the current navigation point is already located in a downstairs room,
HiNav removes the upstairs navigation point place 5.

Instruction: Walk down the stairs all the way and past the Christmas tree. Make a right turn and walk past the blue chair into the room with the white sink.

History: step 0: go down to Place 3 which is corresponding to Image 3 (Omitted for brevity)

Trajectory: Place 0 3 4 5 6 8 9 10 12 18 20 22 20 18 19 28

Map:

Place 0 is connected with Places 1, 2, 3, 4

Place 3 is connected with Places 4, 0, 2

Place 4 is connected with Places 6, 0, 3

Place 6 is connected with Places 7, 8, 4

Place 8 is connected with Places 9, 10, 6, 7

(Omitted for brevity)

Supplementary Info: (Omitted for brevity)

Previous Planning: (Omitted for brevity)

Possible Destination Info (For reference only, may not be completely accurate): 

The destination is the bathroom, positioned in front of the sink. The spatial layout of the destination includes a sink directly in front, a toilet positioned to the left, and a shelf located to the right and above.

Action Options (step 15): ['A. stop’, ...'D. turn right to Place 30 which is corresponding to Image 30', ...]

Thought: …Based on the map, I should explore the connected places to find this room. The possible destination info suggests a bathroom layout, which might be in one of the unexplored connected 

places. …

New Planning: 1. Turn right to Place 30. 2. Check for the room with the white sink.

Action: "D“

Pruning Scores Detail (Step 16, Current VP: ccfdfc7612ee4530887682d5e9c8e279 (Place 28) )

Node be3d7ae0352d481191e4c9e351e71b08 (Place 0):

Raw: age=16, deg=4, unexpl_neigh=2, dist=N/A

Contrib: time=6.00 (eff_age=6), deg=-8.00, front=-10.00, dist=0.00

Total Score: -12.00

Node bec7a60657d6483996aa2f0d03b9d691 (Place 3):

Raw: age=15, deg=3, unexpl_neigh=1, dist=N/A

Contrib: time=5.00 (eff_age=5), deg=-6.00, front=-5.00, dist=0.00

Total Score: -6.00

Node f17bd928d5c84ebbb4d2d8806682f4af (Place 4):

Raw: age=14, deg=3, unexpl_neigh=0, dist=N/A

Contrib: time=4.00 (eff_age=4), deg=-6.00, front=0.00, dist=0.00

Total Score: -2.00

Node 024edcc6db70425aaa54f5596b0ebda8 (Place 6):

Raw: age=12, deg=3, unexpl_neigh=1, dist=N/A

Contrib: time=2.00 (eff_age=2), deg=-6.00, front=-5.00, dist=0.00

Total Score: -9.00

Node 61aa57f78ebf40dd9bc04e27b1a4c80f (Place 8):

Raw: age=11, deg=4, unexpl_neigh=1, dist=N/A

Contrib: time=1.00 (eff_age=1), deg=-8.00, front=-5.00, dist=0.00

Total Score: -12.00

Place 28 (current)

Place 4 for pruning

Place 0

Place 6 Place 8

Place 3

  

Figure 10: Step 16 follows by Step 15 in this successful case study. The navigation point removed during the pruning
in step 15 (Place 5) has already been removed from the set of active nodes considered in this step’s memory/map.
HiMem now initiates a new round of dynamic pruning. From the five navigation points currently under consideration,
Place 4 is identified and subsequently removed.
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Instruction: Walk down the stairs all the way and past the Christmas tree. Make a right turn and walk past the blue chair into the room with the white sink.

History: step 0…step 22: turn left to Place 9 which is corresponding to Image 9

Trajectory: Place 0 3 4 5 6 8 9 10 12 18 20 22 20 18 19 28 30 29 32 33 31 19 11 9

Map:

Place 9 is connected with Places 11, 13, 14, 15, 7

Place 18 is connected with Places 20, 21, 19, 15

Place 20 is connected with Places 23, 24, 18, 25, 26

(Omitted for brevity)

Supplementary Info: (Omitted for brevity)

Previous Planning: (Omitted for brevity)

1. Turn left to Place 9. 2. Explore connected places to find the room with the white sink.

Possible Destination Info (For reference only, may not be completely accurate): 

The destination is the bathroom, positioned in front of the sink.The spatial layout of the destination includes a sink directly in front, a toilet positioned to the left, and a shelf located 

to the right and above.

Action Options (step 23): ['A. stop', ...'F. turn left to Place 14 which is corresponding to Image 14', ...]

Thought: I am currently at Place 9, and I need to find the room with the white sink. According to the map, Place 9 is connected to several places, including Place 11, 13, 14, 15, 

and 7. I have previously explored Place 11, which did not have the white sink. I should explore a new place connected to Place 9 to find the room with the white sink.

New Planning: 1. Turn left to Place 14. 2. Explore connected places to find the room with the white sink.

Action: "F"

Pruning Scores Detail (Step 24, Current VP: 7a489c31ceb14eca8783e4f1d8dc1c41 (Place 9) )

Node 0acbbb92572f437faef8da9b991412f6 (Place 18):

Raw: age=11, deg=4, unexpl_neigh=2, dist=N/A

Contrib: time=1.00 (eff_age=1), deg=-8.00, front=-10.00, dist=0.00

Total Score: -17.00

Node 595344b8d6a7471691be526b8b9d685f (Place 20):

Raw: age=12, deg=5, unexpl_neigh=4, dist=N/A

Contrib: time=2.00 (eff_age=2), deg=-10.00, front=-20.00, dist=0.00

Total Score: -28.00

Place 9 (current)

Place 18 for pruning

Place 14 (destination)

Place 20   

Figure 11: The final step in the successful case study of HiNav. HiMem continued its dynamic pruning process after
step 15 to the final step. Leveraging the precise destination information and object visual enhancements inferred by
HiSpace and HiView respectively, HiNav successfully selected the crucial Action in this step: F. turn left to Place
14 which is corresponding to Image 14. Ultimately, the agent successfully reached the intended destination after a
total of 25 steps.

Instruction: Turn right to exit the room. Turn right when you get to the end of the hallway. Walk toward the couches and stop there by the couches.

History: step 0: turn right to Place 3 which is corresponding to Image 3, step 1: go forward to Place 6 which is corresponding to Image 6

Trajectory: Place 0 3 6

Map:

Place 0 is connected with Places 1, 2, 3, 4

Place 3 is connected with Places 5, 6, 7, 4, 0

Place 6 is connected with Places 5, 8, 9, 10, 3

Supplementary Info: 

Place 1, which is corresponding to Image 1

Place 2, which is corresponding to Image 2

Place 4, which is corresponding to Image 4

Place 7, which is corresponding to Image 7

Previous Planning:

1. Turn right to Place 3 to exit the room. 2. Turn right at the end of the hallway by going forward to Place 6. 3. Walk toward the couches and stop there.

Possible Destination Info (For reference only, may not be completely accurate): 

The destination is the living room, located near the couches. The spatial layout of the destination includes couches, primarily located on the left side, adorned with numerous 

pillows, a table situated nearby, and a vase also being present.

Action Options (step 2): ['A. turn left to Place 5 which is corresponding to Image 5', 'B. turn left to Place 8 which is corresponding to Image 8', 'C. turn left to Place 9 which is 

corresponding to Image 9', 'D. turn right to Place 10 which is corresponding to Image 10', 'E. turn around to Place 3 which is corresponding to Image 3']

Thought: I have turned right to exit the room and then turned right at the end of the hallway. Now, I need to walk toward the couches and stop there. The Possible 

Destination Info suggests that the destination includes couches with pillows and a nearby table. From the current options, Place 8, corresponding to Image 8, shows a sofa chair 

and side table, which aligns with the description of the destination.

New Planning: 1. Turn left to Place 8 to approach the couches. 2. Stop near the couches as it matches the destination description.

Action: "B"

Wrong thought leads to mistaken place

  

Figure 12: The key step 2 of a failure case for HiNav. Following the instruction to navigate to the room with couches,
after executing the initial steps, HiNav, at step 2, selected the action to proceed to Place 8 based on the possible
destination information (describing the living room and couches). However, this choice did not successfully guide
the agent to ultimately reach the specific couch destination specified in the instruction.
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Instruction: Turn right to exit the room. Turn right when you get to the end of the hallway. Walk toward the couches and stop there by the couches.

History: step 0: turn right to Place 3 which is corresponding to Image 3, step 1: go forward to Place 6 which is corresponding to Image 6, step 2: turn left to Place 8 which is 

corresponding to Image 8

Trajectory: Place 0 3 6 8

Map:

Place 0 is connected with Places 1, 2, 3, 4

Place 3 is connected with Places 5, 6, 7, 4, 0

Place 6 is connected with Places 5, 8, 9, 10, 3

Place 8 is connected with Places 11, 12, 13, 6, 5

Supplementary Info: 

Place 1, which is corresponding to Image 1

Place 2, which is corresponding to Image 2

Place 4, which is corresponding to Image 4

Place 7, which is corresponding to Image 7

Place 9, which is corresponding to Image 9

Place 10, which is corresponding to Image 10

Previous Planning:

1. Turn left to Place 8 to approach the couches. 2. Stop near the couches as it matches the destination description.

Possible Destination Info (For reference only, may not be completely accurate): 

The destination is the living room, located near the couches. The spatial layout of the destination includes couches, primarily located on the left side, adorned with numerous 

pillows, a table situated nearby, and a vase also being present.

Action Options (step 3): ['A. stop', 'B. turn left to Place 11 which is corresponding to Image 11', 'C. go forward to Place 12 which is corresponding to Image 12', 'D. turn right to 

Place 13 which is corresponding to Image 13', 'E. turn around to Place 6 which is corresponding to Image 6', 'F. turn around to Place 5 which is corresponding to Image 5']

Thought: I have reached Place 8, which matches the description of the destination with couches and a side table. The instruction was to stop by the couches, and the previous 

planning also indicated that Place 8 is the destination. Therefore, I should stop here.

New Planning: Stop at Place 8 as it matches the destination description with couches and a side table.

Action: "A"

Intended Destination Actual Destination (Place 8)

  

Figure 13: The final step of the failure case for HiNav. Following the instruction to navigate to the room with
couches, after executing the first two steps to reach Place 8, HiNav, at step 3, mistakenly determined that the current
location (Place 8) was the final destination based on its internal planning and possible destination information, and
chose to stop. As the agent failed to reach the actual couch destination specified in the instruction, this navigation
attempt ultimately failed.
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