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Abstract

Vision-and-Language Navigation (VLN) re-
quires an agent to interpret natural language in-
structions and navigate complex environments.
Existing approaches often fail to stop at targets
due to incorrect endpoint recognition or fail to
reach targets in long-distance tasks. Inspired by
human navigation, we devise a solution to these
challenges, proposing Human-Inspired Naviga-
tion (HiNav), a modular framework that mimics
human cognitive processes for efficient naviga-
tion. HiNav integrates four components that
emulate key human abilities: HiView for opti-
mal viewpoint selection; HiMem for selective
memory and map maintenance, enhancing long-
range exploration; HiSpace for spatial reason-
ing and object relationship inference, improv-
ing endpoint recognition; and HiDecision for
Large Language Model (LLM)-based path plan-
ning. We also introduce an Instruction-Object-
Space (I-O-S) dataset and fine-tune the Qwen3-
4B model into Qwen-Spatial (Qwen-Sp), which
outperforms leading commercial LLMs (e.g.,
GPT-40, Gemini-2.5-Flash, Grok3) in object
list extraction, achieving higher F1 and NDCG
scores on the I-O-S test set. Extensive ex-
periments on the Room-to-Room (R2R) and
REVERIE datasets demonstrate HiNav’s state-
of-the-art performance with significant im-
provements in Success Rate (SR) and Success
weighted by Path Length (SPL).

1 Introduction

Humans navigate complex environments with re-
markable efficiency, relying on precise observation
to select informative viewpoints, selective memory
to retain task-relevant information, spatial reason-
ing to infer object locations from linguistic cues,
and precise decision-making. For example, when
instructed to “reach the kitchen’s refrigerator,” hu-
mans visualize the kitchen layout, focus on key land-
marks, and filter out irrelevant details from memory.
However, VLN agents, which aim to replicate this

capability by interpreting natural language instruc-
tions and analyzing visual observations, often strug-
gle to perform effectively. Existing LLM-based
Zero-Shot VLN (ZS-VLN) solutions frequently fal-
ter in complex, long-distance tasks and scenarios
with ambiguous endpoints (Zhou et al., 2023; Long
et al., 2023; Chen et al., 2024).

Inspired by human navigation and the failures in
prior VLN solutions, we propose Human-Inspired
Navigation (HiNav), a modular ZS-VLN frame-
work that mimics human cognitive processes for
efficient navigation. HiNav comprises four com-
ponents: (1) HiView, drawing from how humans
center objects of interest in their visual field, opti-
mizes viewpoint selection by identifying the most
informative perspectives; (2) HiMem, based on the
forgetting mechanism in human memory, creates
a dynamic topological map that selectively retains
important spatial information while discarding out-
dated or irrelevant details; (3) HiSpace, reflecting
human spatial imagination and reasoning capabili-
ties, analyzes instructions and infers spatial layouts
from linguistic cues, enhancing the agent’s abil-
ity to understand environmental context; and (4)
HiDecision, modeled after human decision-making
processes, leverages advanced LLMs to determine
navigation actions based on instructions, processed
observations, object spatial layouts, and map infor-
mation.

Additionally, we construct an Instruction-Object-
Space (I-O-S) dataset, derived from oracle paths
across indoor environments, to support instruction
analysis and spatial reasoning. We have also fine-
tuned the Qwen3-4B model(Yang et al., 2025) on
this I-O-S dataset to create the Qwen-Sp model,
which can analyze language instructions for VLN
tasks, extract and reason about objects along the
navigation path, and infer spatial layouts of objects
at the destination. Extensive experiments on the
Room-to-Room (R2R) and REVERIE datasets (An-
dersonetal., 2018; Qi et al., 2020b) demonstrate Hi-



Nav’s state-of-the-art performance, with significant
gains in Success Rate (SR) and Success weighted
by Path Length (SPL).

Our contributions are:

* We introduce HiNav, achieving state-of-the-
art performance with a 5.1% improvement in
SR and 5.0% in SPL on the R2R subset (An-
derson et al., 2018). We will release the HiNav
codebase.

* We demonstrate the versatility of the HiSpace
module, which can be seamlessly integrated
into other VLN frameworks to enhance their
performance, whether map-based or not.

* We present the I-O-S dataset, comprising
28,414 samples, enabling fine-grained analy-
sis of navigation instructions. We will release
this dataset to foster VLN research and LLM
spatial inference.

* We develop Qwen-Sp, outperforming leading
commercial LLMs (e.g., GPT-40, Gemini-2.5-
Flash, Grok3) (OpenAl, 2024; Google Deep-
Mind, 2025; xAl, 2025) in the task of object
extraction, achieving a higher F1 score (0.316
vs. 0.270 for GPT-40) and NDCG score (0.388
vs. 0.325 for GPT-40) on the I-O-S test set.
We will release Qwen-Sp to support research
on the spatial inference ability of LLMs.

2 Related Work

Vision-and-Language Navigation Vision-and-
Language Navigation (VLN) requires agents to fol-
low natural language instructions in 3D environ-
ments (Anderson et al., 2018; Krantz et al., 2020;
Chen et al., 2019; Qi et al., 2020b). Early VLN
research predominantly involved supervised learn-
ing, focusing on cross-modal alignment between
vision and language (Hao et al., 2020; Hong et al.,
2021a; Chen et al., 2021b), often leveraging visual-
linguistic representations (Chen et al., 2020; Li
et al., 2020). Data augmentation techniques (Fried
et al., 2018; Tan et al., 2019; Wang et al., 2023)
and specific training strategies (Wang et al., 2019;
Huang et al., 2019) were also explored. Other re-
search focused on state memorization (Chen et al.,
2021c; Deng et al., 2020), self-correction mecha-
nisms (Ke et al., 2019; Ma et al., 2019), and the
use of external knowledge (Gao et al., 2021; Qi
et al., 2020a). A significant subfield is Zero-Shot
VLN (ZS-VLN), where agents navigate without

task-specific training, heavily relying on Large Lan-
guage Models (LLMs). NavGPT (Zhou et al., 2023)
showed that LLMs can make navigation decisions
from prompted inputs. DiscussNav (Long et al.,
2023) used a multi-expert LLM system. MapGPT
(Chen et al., 2024) integrated an online linguistic
map for LLM-based global planning.

Large Language Models in VLN Large Language
Models (LLMs) (Brown et al., 2020; Touvron et al.,
2023; OpenAl, 2023; Yang et al., 2025) are central
to modern VLN due to their strong language under-
standing and reasoning. In ZS-VLN, they primarily
act as decision-makers (Zhou et al., 2023; Chen
et al., 2024; Long et al., 2023; Huang et al., 2023).
Beyond zero-shot applications, LLMs are also fine-
tuned on VLN data. LangNav (Pan et al., 2023)
and NavCoT (Lin et al., 2024) fine-tuned LLaMA
models for navigation tasks. Effective prompting
techniques (Wei et al., 2022; Kojima et al., 2022;
Yao et al., 2022) remain key to LLM performance
in ZS-VLN.

Human-Inspired Approaches and Navigation
Maps Human-inspired navigation strategies lever-
age cognitive processes to enhance robotic nav-
igation, with memory-adaptive models filtering
historical data to improve decision-making (He
et al., 2024), datasets like Touchdown emphasizing
spatial reasoning for complex instructions (Chen
et al., 2019), and VLN frameworks incorporating
dynamic human activities for social navigation (Li
et al., 2024). Map-based methods provide spatial
memory, where metric maps built via Simultane-
ous Localization and Mapping (SLAM) offer de-
tailed geometry at high computational cost (Thrun,
1998; Fuentes-Pacheco et al., 2015), and topologi-
cal maps abstract environments into efficient graphs
(Chen et al., 2021a, 2022). Recent efforts, such as
MapGPT, integrate topological maps with LLMs
to enable spatial reasoning in ZS-VLN (Chen et al.,
2024).

3 Method

Task Description VLN tasks require an agent
to interpret a natural language instruction I =
{w1,wa,...,wr} and navigate a 3D environment
to a target location. At each step ¢, given the current
pose py, the simulator provides several neighboring
viewpoints that are currently navigable. The agent
observes its state s;, including a set of navigable
viewpoints V; = {v;;}X |, where K is the number
of navigable viewpoints, and visual observations
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Figure 1: The HiNav architecture, integrating HiView, HiMem, HiSpace, and HiDecision to emulate human observa-
tion, memory, spatial reasoning, and decision-making. The agent receives visual observations from the environment,
where HiView optimizes viewpoint selection by centering navigable viewpoints (yellow dots), enhanced by HiSpace
to represent nodes in HiMem’s topological map, while HiSpace processes instructions and images to generate
destination spatial layouts and enhanced visual observations. HiDecision then uses these layouts and HiMem’s map
prompts to output navigation actions (stop or proceed to a selected viewpoint).

O, and selects an action a; from a discrete action
space Ay (e.g., navigate to an adjacent viewpoint
or stop). The action is sent to the control mod-
ule to execute the corresponding movement. The
challenge lies in grounding linguistic instructions
in visual scenes to generate an action sequence
A= {al,ag, ce ,CLT}.

HiNav adopts a human-inspired modular frame-
work that integrates four key cognitive pro-
cesses: observation, memory, spatial reasoning,
and decision-making. The framework comprises
HiView (Section 3.1), HiMem (Section 3.2), HiS-
pace (Section 3.3), and HiDecision (Section 3.4),
which work together to process visual and linguistic
inputs efficiently, as illustrated in Figure 1. These
modules emulate human navigation strategies to
achieve robust and effective navigation in complex
indoor environments.

3.1 HiView: Observation Module

To emulate human visual behavior of centering ob-
jects of interest (Skaramagkas et al., 2023), the
HiView module selects the visual observation clos-
est to each navigable viewpoint’s direction as its
representation. From a predefined set of 36 obser-
vation directions (12 horizontal at 30-degree inter-

vals and three vertical: up, middle, down), only the
direction aligned with the camera’s orientation is
processed, reducing computational overhead.

For a set of reachable viewpoints V; from the
agent’s current pose p;, HiView computes the di-
rection vector d = pe — py for each candidate view-
point v. € V; with position p.. This yields the
target heading 0, and elevation ¢y,. The module
then identifies the optimal view index k* from the
available views, each characterized by orientations
(0k, bk ), by minimizing the L, angular distance:

k*= argmin  D((Ok, ), (Big, dg)). (1)

k€available views

The selected visual observation Oy, captured in
the direction of the camera’s orientation, serves as
the visual representation of the viewpoint v, after
being enhanced by the HiSpace module, ensuring
that the representation encapsulates sufficient spa-
tial information and visual features for effective
navigation.

3.2 HiMem: Memory Module

Humans navigate complex environments efficiently
by selectively retaining task-relevant information
and discarding irrelevant details through mecha-
nisms like cognitive maps (Epstein et al., 2017)



and working memory (Baddeley and Hitch, 1974;
Malleret et al., 2024). Inspired by this, we inves-
tigated VLN failures, noting that existing meth-
ods (Zhou et al., 2023; Long et al., 2023; Chen
et al., 2024) falter in prolonged tasks, particularly
beyond 13 steps in the R2R dataset (Anderson et al.,
2018). Excessive node accumulation in topological
maps overwhelms LLLM context limits, reducing
success rates. Unlike prior approaches that retain
all observations in an expanding map (Chen et al.,
2022; Chen et al., 2024), our HiMem framework
dynamically filters irrelevant nodes, sustaining per-
formance and mitigating LLM context constraints.
The overall workflow of HiMem is illustrated in
Figure 2.

3.21

In VLN, the agent builds a real-time map of an
unfamiliar environment using observations from
exploration. Following prior work (Chen et al.,
2022; Chen et al., 2024), we use a topological graph
Gy = (Vi, Ey), where V;, = {Ut,i}fil represents
viewpoint nodes observed up to time step ¢, and F;
denotes navigable connections between them.

At each step ¢, the agent records new viewpoints
and their connections based on the simulator’s feed-
back about neighboring nodes. These are added to
an intermediate graph G;mp, updated from the pre-
vious graph G;_;. After obtaining the intermediate
graph G;mp, it is dynamically pruned to produce
the final graph Gj.

Map Construction

3.2.2 Dynamic Map Pruning

To maintain a compact and task-relevant topolog-
ical map, the HiMem module dynamically evalu-
ates and prunes nodes from the intermediate graph
G;mp that are no longer pertinent to the navigation
task. This process begins after an initial explo-
ration phase (¢ > tgart), €nsuring the map remains
efficient by removing outdated or irrelevant infor-
mation. By selectively filtering nodes, HiMem re-
duces memory overhead and mitigates interference
from obsolete data, producing the final graph G;.

The set T; C V;tmp represents all viewpoint
nodes that the agent has visited up to time step
t. This set tracks the agent’s exploration history
and is used to assess node relevance.

HiMem identifies a subset of nodes Vgess <
V?mp for relevance evaluation based on three crite-
ria: nodes must be non-current, meaning they are
not the agent’s current viewpoint (v ; # v;); they
must be previously visited, having been explored

(vt,; € T}); and they must be temporally stale, not
revisited recently, satisfying ¢ — 7 (v ;) > Okeep and
t — T(vei) > Bage, Where 7(vy;) is the time step
when node v; ; was last visited, Oyeep is the mini-
mum time elapsed since the last visit to consider
a node for pruning, and 0,4 is the threshold for
determining node staleness based on its age.

Nodes in Vjgsess are assigned a pruning priority
score P(vq;), which quantifies their relevance to
the ongoing task:

P(vgi) = M fi(vei) + Mafa(ves)
+ A fr(ved) + Adiscfaist (Vi) (2)

where:

* fi(vei) = max(1,t — 7(ve;) — Oage): Mea-
sures temporal staleness, prioritizing older
nodes.

* fa(ve;) = —deggme(vt,:): Penalizes nodes
t
with low connectivity, as they are less critical
to navigation.

 frlv) = —vey | (vei oeg) € B™ A
v ¢ T;}|: Favors nodes with fewer unex-
plored neighbors, indicating lower exploration
potential.

* faist(vi) = dGlimp (vg,ve4): Considers the
graph distance from the current viewpoint, pri-
oritizing distant nodes.

The coeflicients A;, Ay, Af, Agise balance the con-
tributions of each factor. Details on the specific
selection of coefficients are provided in the Ap-
pendix A.2.

Based on the pruning priority scores, the top
Nremove nodes with the highest P(v; ;) are removed
from G;mp, yielding the final map G; = (V;, Ey).
This selective pruning ensures that the topologi-
cal map remains concise, relevant, and computa-
tionally efficient, supporting robust navigation over
extended periods.

3.2.3 Map Representation

The HiMem module structures the filtered topo-
logical map G; = (V;, E;) into prompts for the
HiDecision module, adapting insights from prior
work (Chen et al., 2024). The prompts include: (1)
Trajectory, listing visited node identifiers in V; (2)
Map, detailing node connectivity in F;; and (3)
Supplementary Information, linking nodes v; to
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Figure 2: The HiMem architecture, illustrating the dynamic construction and pruning of a task-relevant topological
map. At step ¢, HIMem observes navigable viewpoints and uses their enhanced visual observations as representations,

tmp .

adding them as new nodes (gray) to the previous map G;_; to form an intermediate map G, *; if t > tgr, @ pruning
operation is triggered, removing Niemove N0des based on their pruning priority scores (Nemove = 1 in this figure),

resulting in a compact map G4.

enhanced visual observations Of. from HiSpace.
This ensures a concise, task-relevant spatial rep-
resentation for the LLM. Detailed prompts are in
Appendix B.

3.3 HiSpace: Spatial Reasoning Module

Humans navigate by recognizing landmarks and
mentally constructing spatial configurations at des-
tinations, enabling precise location identification.
In VLN, agents often misidentify targets, such as
stopping in a hallway instead of a kitchen in R2R
tasks (Anderson et al., 2018), due to weak spatial
reasoning. HiSpace addresses this by extracting
task-relevant objects from instructions and infer-
ring destination layouts. Using our I-O-S dataset,
we fine-tuned Qwen3-4B into Qwen-Sp to generate
accurate object lists and layouts, boosting naviga-
tion precision. The HiSpace architecture is shown
in Figure 3. Beyond VLN, the I-O-S dataset also
enhances LLMs’ spatial imagination and reasoning
capabilities.

3.3.1 I-O-S Dataset

The Instruction-Object-Space (I-O-S) dataset is a
novel resource designed to enhance spatial reason-
ing in VLN by providing structured data that links
natural language instructions to objects and their
spatial arrangements. Comprising 28,414 samples
derived from expert trajectories in indoor environ-
ments, the [-O-S dataset captures three key compo-
nents: (1) Instructions, which are natural language
navigation directives; (2) Objects, a list of task-
relevant objects encountered along the trajectory

or at the destination; and (3) Destination Spatial
Layouts, describing the relative positions of objects
at the destination (e.g., “The spatial layout of the
room is that several chairs are placed in the center
of the room, and there is a fireplace”).

To construct the dataset, we extracted oracle
paths from indoor environments, which provide op-
timal navigation trajectories. Objects along the path
and at the destination were identified using the sim-
ulator’s ground-truth object annotations. Spatial
arrangements were generated through a two-step
process: first, an LLM proposed candidate layouts
based on object relationships observed in the desti-
nation scenes; second, human annotators verified
and refined these layouts to ensure accuracy and
consistency.

Each sample in the I-O-S dataset is formatted
as atuple (1,0, .S5), where [ is the instruction, O
is the set of objects, and S is the description of
destination spatial layout. The dataset is split into
25,694 training samples and 2,720 test samples.
By providing fine-grained annotations, the I-O-S
dataset enables models to learn how to extract task-
relevant objects from instructions and infer their
spatial configurations. See Appendix D for details.

3.3.2 Spatial Reasoning Model

To enable robust spatial reasoning, we developed
Qwen-Sp by fine-tuning Qwen3-4B (Yang et al.,
2025) on the I-O-S dataset using Low-Rank Adap-
tation (LoRA) (Hu et al., 2022). Qwen-Sp employs
two LoRA adapters: one to extract task-relevant ob-
jects from navigation instructions (e.g., identifying
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Figure 3: The HiSpace architecture, depicting the pipeline for spatial reasoning. Qwen-Sp processes instructions to
extract object lists and infer destination spatial layouts, while the detection model, implemented using YOLO-World,
enhances visual observations to enable the agent to better identify and navigate toward task-relevant objects.

“refrigerator” from “go to the kitchen’s refrigera-
tor”’) and another to infer their spatial arrangements
at the destination (e.g., “the refrigerator is against
the kitchen’s back wall”). Fine-tuned on 25,694
I-O-S samples, Qwen-Sp achieves superior perfor-
mance in object list extraction compared to lead-
ing commercial LLMs, including GPT-40, Gemini-
2.5-Flash, and Grok3 (xAl, 2025). This highlights
Qwen-Sp’s ability to accurately identify and prior-
itize task-relevant objects, which is critical for ef-
fective navigation. For zero-shot REVERIE experi-
ments (Qi et al., 2020b), we avoid direct use of the
fine-tuned model, instead leveraging its learned pat-
terns to design prompts for commercial LLMs (e.g.,
GPT-40). Qwen-Sp is to be released open-source,
with training details provided in Appendix A.4.

3.3.3 Visual Input Enhancement

The Visual Input Enhancement component en-
ables landmark-based pathfinding by enhancing vi-
sual observations with task-relevant objects from
the spatial reasoning model’s object list, mim-
icking how humans use landmarks to navigate
(Skaramagkas et al., 2023). Using YOLO-World
(Cheng et al., 2024), a lightweight, fast, and high-
performance open-vocabulary object detection sys-
tem, we annotate objects (e.g., “chair”, “fireplace”)
in the visual observation Oy« selected by HiView,
guiding the agent along the instruction-specified
path. The enhanced inputs Of., integrating visual

and textual object information, inform the HiDe-
cision module’s LLLM, improving navigation pre-
cision. Performance impacts are reported in Sec-
tion 4.

3.4 HiDecision: Decision-Making Module

LLMs exhibit reasoning and decision-making capa-
bilities that, to a certain extent, parallel those of hu-
mans. To harness these capabilities, we introduce
HiDecision, a module that employs an advanced
LLM, GPT-4o, to facilitate high-level decision-
making. At each time step ¢, HiDecision processes
the following inputs: the natural language instruc-
tion (/), specifying the navigation goal; the HiMem
context (CHMem) ‘including the trajectory and the
map; the destination spatial layout ( S LHP3€) pro-
vided by HiSpace; and other prompt information
(e.g., history, previous planning, and action options,
denoted as P;). The LLM integrates these inputs
to output an action a;, which is either the selection
of a neighboring viewpoint or a decision to stop:

a; = HiDecision(I, CHiMem g pHiSpace py = (3)

The complete prompt structure is detailed in Ap-
pendix B.

4 Experiments

4.1 Experimental Settings

HiNav is evaluated on the R2R (Anderson et al.,
2018) and REVERIE (Qi et al., 2020b) datasets in



a zero-shot setting, with the I-O-S dataset used to
assess Qwen-Sp’s spatial inferring ability. HiNav is
compared to NavGPT (Zhou et al., 2023), Discuss-
Nav (Long et al., 2023), and MapGPT (Chen et al.,
2024), using GPT-40 for a fair comparison. Qwen-
Sp is also tested against GPT-40, Gemini-2.5-Flash,
and Grok3 on the I-O-S dataset. We conduct VLN
experiments on the Matterport3D simulator(Chang
et al., 2017). The implementation details are in
Appendix A.

Evaluation Metrics Performance is assessed using
the following metrics. For VLN tasks: (1) Success
Rate (SR), the percentage of successful episodes;
(2) Success weighted by Path Length (SPL), which
balances success and path efficiency; (3) Oracle
Success Rate (OSR), the SR with an oracle stop
policy; and (4) Navigation Error (NE), the aver-
age distance in meters to the target. For evaluat-
ing the spatial inference capabilities of LLMs: (5)
F1 Score, measuring precision and recall for ob-
ject list extraction; and (6) Normalized Discounted
Cumulative Gain (NDCG), assessing the ranking
quality of extracted objects. Additionally, we intro-
duce a novel metric, Map Efficiency (ME), which
reflects the HiMem module’s ability to maintain
task-relevant spatial information. Details of these
metrics are in Appendix A.

4.2 Experimental Results

ZS-VLN Benchmark Comparison Following
prior work (Zhou et al., 2023; Chen et al., 2024),
we evaluate HiNav on the standard R2R subset con-
sisting of 72 scenes and 216 samples, as shown
in Table 1. HiNav achieves an SR of 50.9% and
SPL of an 42.6%, outperforming MapGPT by 5.1%
and 5.0%, respectively. HiView’s viewpoint op-
timization captures critical landmarks, providing
the most complete visual representation of the
viewpoint. HiMem’s pruning maintains compact
maps, with an ME of 40.4% , enabling stable explo-
ration in long trajectories. Notably, HiNav’s higher
OSR (7.3% higher than MapGPT) likely stems
from HiMem’s pruning, facilitating late-stage ex-
ploration without increased resource demands.

REVERIE Complex Task Evaluation In line with
prior benchmarks (Chen et al., 2024), we evalu-
ate HiNav on a randomly sampled subset of the
REVERIE dataset, containing 70 scenes and 140
samples, as shown in Table 2. HiNav achieves
an SR of 45.7% and an SPL of 32.8%, outper-
forming MapGPT by 4.3% and 4.4%, respectively.
The HiMem module demonstrates significant pro-

Methods ISR 1 SPL 1 OSR 1 NE | ME 1

NavGPT (Zhou et al., 2023)  [36.1 31.6 40.3 6.26
DiscussNav (Long et al., 2023)|37.5 333 51.0 630 -
MapGPT (Chen et al., 2024) |45.8 37.6 56.5 5.31 38.0
HiNav (Ours) 50.9 42.6 63.9 5.02 40.4

Table 1: Comparison of ZS-VLN performance on the
standard R2R subset (72 scenes, 216 samples). NavGPT
and MapGPT results are reproduced using GPT-40 to
ensure a fair comparison.

Methods ISR 1 SPL 1 OSR 4 NE | ME 1

NavGPT (Zhou et al., 2023) [28.9 23.0 32.6 7.86 -
MapGPT (Chen et al., 2024)|41.4 28.4 56.4 7.12 34.7
HiNav (Ours) 45.7 328 59.3 7.89 35.6

Table 2: Comparison of ZS-VLN performance on a
randomly sampled REVERIE subset (70 scenes, 140
samples). NavGPT and MapGPT results are reproduced
using GPT-40 to ensure fair comparison. To maintain
the zero-shot evaluation setting, HiNav employs GPT-40
instead of Qwen-Sp for the HiSpace module in this ex-
periment, as the I-O-S dataset includes samples derived
from the REVERIE dataset.

ficiency in handling complex, long-range tasks in-
herent in REVERIE. However, HiNav’s ME shows
limited improvement, likely due to the richness of
REVERIE instructions, which allow even frame-
works less adept at long-range tasks to construct
comprehensive maps by leveraging detailed infor-
mation. Moreover, HiSpace effectively leverages
the dataset’s diverse object categories to enhance
task-relevant object extraction, while HiView pro-
vides comprehensive observations that facilitate
more effective landmark detection.

R2R Large-Scale Evaluation To compare with
prior VLN and ZS-VLN work, we evaluate HiNav
on the R2R full validation unseen set (11 scenes,
783 samples), as shown in Table 3. HiNav achieves
an SR of 46% and an SPL of 40%, surpassing
MapGPT by 2% and 5%, respectively. The rela-
tively moderate improvements observed here can be
attributed to the limited scene diversity within the
11-scene subset, which restricts the effectiveness of
HiMem’s pruning and HiSpace’s spatial reasoning
capabilities. However, HiNav’s SR outperforms
three trained and pretrained methods, achieving
state-of-the-art zero-shot performance.

LLM Spatial Inference Comparison We evalu-
ate Qwen-Sp’s spatial inference capability against
leading LLMs (GPT-40, Gemini-2.5-Flash, Grok3)
as well as the baseline non-fine-tuned Qwen3-4B
model on the I-O-S test set consisting of 2,720 sam-



Settings Methods SR SPL OSR NE
Seq2Seq (Anderson et al., 2018) 21 - 28 7.81

Train  Speaker (Fried et al., 2018) 35 - 45 6.62
EnvDrop (Tan et al., 2019) 52 48 - 522
LangNav (Pan et al., 2023) 43 - - -
PREVALENT (Hao et al., 2020) 58 53 - 4.71

Pre- RecBERT (Hong et al., 2021b) 63 57 69 3.93
train ~ HAMT (Chen et al., 2021¢) 66 61 73 2.29
DUET (Chen et al., 2022) 72 60 81 3.31
ScaleVLN (Wang et al., 2023) 81 70 88 2.09

NavGPT (Zhou et al., 2023) 34 29 42 6.46
7S DiscussNav (Long et al., 2023) 43 40 61 5.32
MapGPT (Chen et al., 2024) 44 35 58 5.63
HiNav (Ours) 46 40 65 5.24

Table 3: Performance comparison on the complete val-
idation unseen set of the R2R dataset (11 scenes, 783
samples). HiNav achieves the highest SR among all
zero-shot methods and surpasses three trained and pre-
trained approaches.

Model |FIDO 1 F1IO+ F11 NDCG ¢
GPT-40 0.258 0.150 0.270 0.325
Grok3 0.055 0.057 0.096 0.095
Gemini-2.5-Flash| 0.023  0.055 0.096 0.106
Qwen3-4B 0.236  0.039 0.138 0.198
Qwen-Sp (Ours) | 0.357 0.179 0.316 0.388

Table 4: Comparative evaluation of object extraction ca-
pabilities of different LLMs on the I-O-S test set (2,720
samples). F1DO and F1IO represent the F1 scores for
direct and inferred objects, respectively. Qwen-Sp out-
performs other models across all metrics.

ples, as shown in Table 4. Qwen-Sp, fine-tuned on
the I-O-S training set (25,694 samples), achieves
an F1 score of 0.316 and an NDCG of 0.388, sur-
passing GPT-40 by 0.046 and 0.063, respectively.
Non-fine-tuned LLMs employed a one-shot prompt
for evaluation, as shown in Appendix B. The su-
perior performance of Qwen-Sp underscores the
effectiveness of targeted fine-tuning in enhancing
task-relevant object identification. In contrast, GPT-
40 exhibits robust spatial reasoning without spe-
cialized training. Interestingly, Grok3 and Gemini-
2.5-Flash considerably underperform, even relative
to the much smaller-scale Qwen3-4B, highlight-
ing notable limitations in spatial inference among
these large models and emphasizing the potential
advantages of smaller LLMs. While HiSpace sig-
nificantly enhances object layout inference from di-
verse instructions, the indoor-centric I-O-S dataset
may constrain Qwen-Sp’s applicability to outdoor
environments, suggesting the potential value of ex-
panding the dataset scope in future work.

Methods ISR 1 SPL + OSR T NE |
NavGPT (Zhou et al., 2023) [36.1 31.6 40.3 6.26
NavGPT+HiSpace 389 34.1 43.1 5.96
MapGPT (Chen et al., 2024)(45.8 37.6 56.5 5.31
MapGPT+HiSpace 48.1 39.6 583 5.11
HiNav w/o HiView 49.5 414 625 5.17
HiNav w/o HiMem 48.1 40.1 58.8 5.32
HiNav w/o HiSpace 477 39.6 61.1 5.37
HiNav 50.9 42.6 639 5.02

Table 5: Ablation study on the R2R subset (72 scenes,
216 samples). This table presents the performance of
HiNav with individual modules removed, and demon-
strates the performance improvement achieved by inte-
grating the HiSpace module into other frameworks. For
NavGPT, which converts visual inputs to text using a
grounding model, only HiSpace’s Destination Spatial
Layout was incorporated.

4.3 Ablation Study

As shown in Table 5, we conducted ablation experi-
ments on the R2R subset to evaluate HiNav’s mod-
ules and integrated our pluggable HiSpace mod-
ule into other zero-shot VLN frameworks. For
NavGPT, which processes visual inputs into text
via a grounding model, only HiSpace’s Destina-
tion Spatial Layout was applied. Results confirm
the effectiveness of each HiNav module. Notably,
removing HiMem significantly reduces OSR, as
its proficiency in long-range exploration enhances
success under oracle stopping conditions, align-
ing with its design. Incorporating HiSpace into
other frameworks via simple prompt modifications
yields substantial improvements, demonstrating its
effectiveness and seamless transferability across
map-based and non-map-based VLN frameworks.

5 Conclusion

This paper introduces HiNav, a novel zero-shot
vision-and-language navigation (ZS-VLN) frame-
work that enhances navigation by emulating human
cognitive processes through its modular architec-
ture. HiNav demonstrates state-of-the-art perfor-
mance on the R2R and REVERIE datasets, and its
HiSpace module offers versatile plug-and-play inte-
gration to augment existing VLN frameworks. To
further advance spatial understanding in large mod-
els, we introduced the Instruction-Object-Space
(I-O-S) dataset. Leveraging this resource, we fine-
tuned Qwen3-4B to develop Qwen-Sp, a model
that demonstrably surpasses leading commercial
LLMs like GPT-40 in critical instruction analysis
and object extraction tasks.



Limitations

Despite HiNav’s strong performance in ZS-VLN
tasks, the sub-optimality of single-pass LLM deci-
sions persists, a challenge clearly evidenced by the
performance gap compared to idealized iterative
correction (detailed in Appendix A.1). This under-
scores the significant potential to enhance LLM
performance in ZS-VLN tasks by stabilizing and
optimizing their decision outputs. Furthermore,
while our I-O-S dataset aims to bolster LLM spatial
reasoning, evaluating its impact on inferred spatial
layouts is methodologically challenging. Unlike ob-
ject list extraction, which uses direct metrics, spa-
tial layout assessment currently relies on indirect
validation through VLN task performance, high-
lighting the need for dedicated metrics for a more
direct and streamlined evaluation of this capability.
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Appendices
A Experiment Details

A.1 Analysis of HiNav Potential with Multi
Round Experiment

While HiNav demonstrates strong zero-shot per-
formance (Table 1), we further conducted an ex-
ploratory analysis to estimate its potential upper
bound. This iterative refinement process, with
round-by-round results detailed in Table 6, showed
that by cumulatively refining performance—in each
round, we re-evaluated samples that had failed
in the previous round’s cumulative results, and
then updated the overall results with these new
outcomes—HiNav’s SR could be significantly en-
hanced. This process was halted after five rounds
because the improvement in Oracle Success Rate
(OSR) became marginal (increasing from 76.4%
in the fourth round to 77.8% in the fifth round).
This saturation suggested that the remaining fail-
ures were largely due to episodes where the target
was fundamentally unreachable by the agent, rather
than sub-optimal local decisions. Through this it-
erative refinement, HiNav’s SR was progressively
improved from its initial 50.9% to a remarkable
73.6%, with a corresponding increase in SPL from
42.6% to 59.3%.

This significant gap primarily highlights the cur-
rent variability and sub-optimality in the LLM’s
decision-making process for VLN tasks. While
strategies such as reducing LLM temperature can
enhance output consistency, they often bias the
agent towards overly conservative actions (e.g., pre-
mature STOP decisions), which can be detrimen-
tal, particularly in long-horizon navigation tasks.
Nevertheless, achieving a 73.6% SR through the
described iterative refinement—a figure that sur-
passes many fully supervised or pretrained meth-
ods—underscores the immense, albeit not fully re-
alized, potential of LLMs in this domain. This
strongly suggests that future efforts focused on opti-
mizing the LLM’s output for navigational decision-
making are crucial for substantially advancing the
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Iteration Round SRT SPL1T OSR1 NE|

1 (Base HiNav) 50.9 42.6 639 5.02
2 62.5 513 70.8 446
3 67.1 543 745 431
4 69.9 56.2 764  4.05
5 73.6 593 718  3.67

Table 6: HiNav performance progression on the R2R
subset (72 scenes, 216 samples) with 5 iterative rounds.
Each round addresses failures from the preceding one.

performance of LLM-based ZS-VLN systems like
HiNav.

A.2 Himem Details

The HiMem module’s dynamic map pruning, de-
scribed in Section 3.2, uses optimized parameters
to maintain a compact topological map. The pa-
rameters include tgar = 15, Ogeep = 3, Oage = 10,
Nremove = 1, At = 1.0, A\g = 2.0, Ay = 5.0, and
Adgist = 0.5. These values, tuned empirically via
grid search on the R2R subset (Anderson et al.,
2018), balance map compactness and navigation
efficiency. Validated on R2R and REVERIE (Qi
et al., 2020b), these settings achieved ME scores
of 40.4% and 35.6%, respectively (Section 4).

A.3 Metric Details

This section provides definitions for all evaluation
metrics used in the experiments to ensure clarity
and reproducibility. Standard VLN metrics (NE,
SR, OSR, SPL) follow established definitions (An-
derson et al., 2018), while F1 and NDCG are tai-
lored to the I-O-S dataset’s object extraction task.
The novel Map Efficiency (ME) metric is detailed
to highlight its role in evaluating topological map
quality.

Navigation Error (NE) NE measures the average
Euclidean distance (in meters) between the agent’s
final position and the target location at the end of
an episode.

Success Rate (SR) SR is the percentage of episodes
where the agent stops within 3 meters of the target
location.

Oracle Success Rate (OSR) OSR is the percent-
age of episodes where the agent passes within 3
meters of the target at any point during navigation,
assuming an oracle stop policy.

Success weighted by Path Length (SPL) SPL bal-
ances navigation success and path efficiency, com-
puted as the ratio of the shortest path length to the
actual path length, weighted by success.
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F1 Score The F1 score measures the precision and
recall of extracted object lists in the I-O-S dataset.
It is computed separately for direct objects (F1DO,
objects explicitly mentioned in instructions) and
inferred objects (F110, objects implicitly relevant
based on context). The overall F1 score is calcu-
lated for the entire object list, which combines both
direct and inferred objects into a single set.

Normalized Discounted Cumulative Gain
(NDCG) NDCG assesses the ranking quality of
extracted objects by comparing the predicted
object list to the ground-truth list. It accounts for
the relevance order of objects, with higher scores
indicating better alignment with the ground-truth
ranking. For each sample, NDCG is calculated as:

DCG

DCG = ——
N IDCG’

CG 4)
where DCG is the discounted cumulative gain
based on predicted object ranks, and IDCG is the
ideal DCG based on the ground-truth ranks.

Map Efficiency (ME) The Map Efficiency (ME)
metric evaluates the quality of topological maps in
VLN tasks. It is defined as:

. ‘Tt N Texpert‘

1
ME =

l1+o-

(&)

Vel

T
‘ expert ‘ ‘Texpert |

where T} represents the agent’s trajectory, Texpert
denotes the expert path node set, V; is the agent’s
map node set, and o = 0.25. The first term quanti-
fies the proportion of expert nodes covered by the
trajectory, while the second term penalizes overly
large maps. A higher ME score indicates a more
compact and efficient map. HiNav’s HiMem prun-
ing strategy yields superior ME scores, demonstrat-
ing enhanced map efficiency. The penalty factor
a = 0.25 was optimized through a grid search over
the range [0.1, 1.0] using the R2R subset.

A4 Qwen-Sp Fine-tuning Details

This study employs the pretrained Qwen3-4B, a
causal language model with approximately 4 bil-
lion parameters, as the base model. To adapt it
for instruction-following and scene understanding
tasks in vision-language navigation (VLN), we uti-
lize Low-Rank Adaptation (LoRA), a parameter-
efficient fine-tuning (PEFT) technique. Specifically,
we train two independent LoRA adapters on the I-
O-S dataset, comprising 25,694 training samples:
the Object Adapter, which predicts task-relevant



object pairs from instructions, and the Spatial Rela-
tion Adapter, which infers spatial relationships and
overall layouts among objects.

To ensure consistency and comparability, both
adapters share the same LoRA configuration. The
rank of the low-rank matrices is set to r = 16,
the scaling factor to o = 32, and the dropout rate
for LoRA layers to 0.05. The LoRA adapters are
applied to key layers of the Qwen3 model, specit-
ically the projection layers of the multi-head self-
attention (MHSA) mechanism—namely, the query
(Gproj)s key (Kproj), value (vpro)), and output (0proj)
projections—as well as the linear layers of the
feed-forward network (FFN), comprising the gate
(gateproj), up (Upproj), and down (downpyej) pro-
jections in the SwiGLU-based FEN. These layers
are selected due to their critical role in instruction
understanding, as MHSA layers effectively model
complex dependencies within text sequences, and
FFN layers enable nonlinear transformations and
high-level feature abstraction. This targeted appli-
cation of LoRA facilitates efficient learning of task-
specific patterns while minimizing computational
and storage requirements.

The fine-tuning process employs the AdamW op-
timizer in PyTorch, with an initial learning rate of
1 x 1074, a cosine decay schedule, and a weight
decay of 0.1 for L2 regularization. The maximum
gradient norm is clipped at 1.0, and training is per-
formed using bfloat16 (bf16) mixed precision with-
out gradient accumulation. The Object Adapter is
trained for 1 epoch with a per-device batch size of
64, while the Spatial Relation Adapter is trained
for 8 epochs with a per-device batch size of 48.

B Prompt Structures

ZS-VLN Prompts This section describes the
prompt structures employed by HiNav to guide the
LLM in ZS-VLN tasks. The overall prompt archi-
tecture is depicted in Figure 4. The task descrip-
tion prompt is elaborated in Figure 5, while the
single-round prompt input to the HiDecision mod-
ule is shown in Figure 6. For experiments on the
REVERIE dataset, only the instruction component
is modified to:

“‘Instruction’ serves as global guidance
that you should follow. Your task is to lo-
cate the specified or hidden target object,
stop, and disregard any actions related
to the target object mentioned in the ‘In-
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Query to LLM

[Task Background] [Input Definitions] [Output
Requirements]

[Instruction]

[History]

[Trajectory] [Map] [Supplementary Info] (from HiMem)
[Previous Planning]

[Possible Destination Info] (from HiSpace)

[Action Options]

LLM Response
[Thought]

[New Planning]
[Action]

Figure 4: Complete prompt structure. The top section
specifies the static system-level task description prompt
provided to the LLM at the outset. The middle sec-
tion elaborates on the dynamic prompts supplied during
each navigation round. The bottom section presents the
LLM’s response.

struction’. You should not overly focus
on color details of landmarks or the tar-
get object described in the ‘Instruction’,
as these color descriptions may be inac-
curate.”

All other components remain consistent with those
used for the R2R dataset. Our prompt design draws
on insights from prior work (Chen et al., 2024)
while incorporating adaptations tailored to HiNav’s
framework.

Spatial Inferring Prompts To evaluate the spatial
imagination and reasoning capabilities of leading
commercial large language models (LLMs), we
utilize the prompt shown in Figure 7 to evaluate
their ability to extract objects from instructions.
For experiments on the REVERIE dataset, to en-
sure a zero-shot setting, we refrain from using our
Qwen-Sp model. Instead, we employ GPT-4o for
extracting the object list and predicting the destina-
tion spatial layout. The corresponding prompts are
presented in Figures 7 and 8, respectively.

C Qualitative Analysis of HiNav

C.1 Successful Case Study

This successful case demonstrates that the
HiNav framework effectively tackles complex
instruction-guided navigation problems for
challenging pathfinding tasks. It achieves this
by integrating several key capabilities: HiMem’s
dynamic pruning, HiSpace’s spatial relationship



Task Description

You are an embodied robot that navigates in the real world. You need to explore between some places marked with IDs and ultimately find the destination
to stop. At each step, a series of images corresponding to the places you have explored and have observed will be provided to you. Target detection
boxes in images may highlight objects relevant to the optimal navigation path, so take them into account as needed.

‘Instruction’ is a global, step-by-step detailed guidance, but you might have already executed some of the commands. You need to carefully discern the

commands that have not been executed yet.

‘'History' represents the places you have explored in previous steps along with their corresponding images. It may include the correct
landmarks mentioned in the 'Instruction’ as well as some past erroneous explorations. Due to map optimization, images for older places in
history may be placeholders, and these places might not be in the current 'Map’. Rely on textual context then.

‘Trajectory' represents the ID info of the places you have explored. You start navigating from Place 0.

‘Map' refers to the connectivity between the places you have explored and other places you have observed. This map is dynamically updated;
some previously seen places/connections might be optimized (pruned) for clarity.

‘Supplementary Info' records some places and their corresponding images you have ever seen but have not yet visited. These places are only considered
when there is a navigation error, and you decide to backtrack for further exploration.

'Previous Planning' records previous long-term multi-step planning info that you can refer to now.

'Possible Destination Info' describes a possible spatial layout of objects for the target destination. This is intended as a reference and may not

be completely accurate.
‘Action options' are some actions that you can take at this step.

For each provided image of the places, you should combine the 'Instruction' and carefully examine the relevant information, such as scene descriptions,
landmarks, and objects. You need to align 'Instruction’ with 'History" (including corresponding images) to estimate your instruction execution progress and
refer to ‘Map' for path planning. Check the Place IDs in the 'History' and ‘Trajectory', avoiding repeated exploration that leads to getting stuck in a loop,
unless it is necessary to backtrack to a specific place. If you can already see the destination, estimate the distance between you and it. If the distance is

far, continue moving and try to stop within 1 meter of the destination.

Your answer should be JSON format and must include three fields: 'Thought', ‘New Planning', and 'Action’. You need to combine ‘Instruction’,
'Trajectory’, ‘Map', 'Supplementary Info', your past 'History', 'Previous Planning’, 'Possible Destination Info', 'Action Options’ and the provided
images to think about what to do next and why, and complete your thinking into 'Thought'. Based on your ‘Map', 'Previous Planning’ and current
‘Thought', you also need to update your new multi-step path planning to 'New Planning’. At the end of your output, you must provide a single capital letter
in the 'Action options' that corresponds to the action you have decided to take, and place only the letter into 'Action’, such as "Action: A".

Figure 5: Task description prompts for the R2R dataset. The bolded sections in the figure highlight the prompt
representations of each HiNav module. For the REVERIE dataset, only the instruction section was modified, while

the other sections remained unchanged.

information, and HiView’s visual enhancement.

Consider the instruction: “Walk down the stairs
all the way and past the Christmas tree. Make a
right turn and walk past the blue chair into the room
with the white sink.” This instruction delineates
transitions across three key locations: the stairs, the
room with the blue chair, and the room with the
white sink. HiSpace provides HiNav with potential
destination information, including a detailed lin-
guistic description of the final destination extracted
from the instruction and the spatial relationships
of objects surrounding it. Meanwhile, HiView en-
hances the visual scene images by highlighting ob-
ject pairs inferred by Qwen-SP, marking existing
objects in green (as shown in Figures 9, 10, and 11).
These enhanced images are then fed into HiNav.

After step 15, HiNav activates HiMem’s dy-
namic pruning mechanism. In each subsequent
step, it calculates a “pruning priority score” for tra-
jectory points meeting specific criteria and removes
the point with the highest score. As illustrated in
the figures, at step 15, the point with the highest
pruning priority score is “forgotten” (removed from
the map) based on the calculated scores. This pro-
cess eliminates trajectory points irrelevant to the
current decision, thereby increasing the likelihood
of progressing toward the final destination. In ev-
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ery subsequent decision step, HiNav continues this
dynamic pruning, retaining only those trajectory
points likely to lead to the final destination. This
iterative process, akin to human pathfinding, en-
ables robust and successful navigation in complex
environments.

C.2 Failed Case Study

This case illustrates a failure in instruction-
following navigation, with the instruction: “Turn
right to exit the room. Turn right when you reach
the end of the hallway. Walk toward the couches
and stop there by the couches.” The instruction out-
lines clear sequential sub-goals: (1) exit the current
room, (2) turn right at the end of the hallway, and
(3) walk toward the couches and stop nearby.

The agent successfully completed the first sub-
goal in Step 0 (moving from Place O to Place 3),
correctly turning right to exit the room. However,
the failure occurred during the execution of the sec-
ond sub-goal, which required the agent to “turn
right when you reach the end of the hallway.” After
reaching Place 3 in Step 0, the agent proceeded
to “go forward to Place 6” in Step 1. Critically,
upon arriving at Place 6, the agent failed to execute
the required second “right turn” as specified. In-
stead, in Step 2 (moving from Place 6 to Place 8),



Query to LLM

Turn left and to towards the kitchen, turn left at the kitchen and go until you are right before the yellow couch by the picture on your right.

step O: turn left to Place 2 which is corresponding to Image 2, step 1: turn left to Place 3 which is corresponding to Image 3, step 2: go forward to Place 6
which is corresponding to Image 6, step 3: go forward to Place 8 which is corresponding to Image 8

Place 02368

Place 0 is connected with Places 1, 2

Place 2 is connected with Places 0, 3, 4,
Place 3 is connected with Places 1, 6, 7,
Place 6 is connected with Places 1, 8, 9
Place 8 is connected with Places 10, 11,

5
2
7,3
9,6
Place 1, which is corresponding to Image 1
Place 4, which is corresponding to Image 4

Place 5, which is corresponding to Image 5
Place 7, which is corresponding to Image 7

1. Go forward to Place 8.
2. Stop before the yellow couch by the picture.

The destination is the living room, located near a couch. The spatial layout of the destination is centered around a couch with a pillow, with a

picture nearby and a bench also in the vicinity.

['A. stop’, 'B. go forward to Place 10 which is corresponding to Image 10', 'C. turn right to Place 11 which is corresponding to Image 11', 'D. turn right to
Place 9 which is corresponding to Image 9', ‘E. turn around to Place 6 which is corresponding to Image 6]

LLM Response

| am currently at Place 8, which corresponds to Image 8. The instruction is to stop right before the yellow couch by the picture on the right. Image 8 shows a
living room with a sofa and a picture, but no yellow couch is visible. The Possible Destination Info suggests the destination is near a couch with a
picture nearby. | should explore further to find the yellow couch and picture.

1. Turn right to Place 11 to check for the yellow couch and picture. 2. If not found, explore Place 9."

C

Figure 6: Prompt input to the HiDecision module for a specific example in a single navigation round. The bolded
sections highlight the contributions of HiNav’s modules, with the Map and Supplementary Info components
dynamically updated based on pruning. The LLM Response’s thought section demonstrates the influence of Possible
Destination Info, showing how the LLM incorporates the provided destination description into its decision-making

process.

it performed a “left turn to Place 8,” as depicted
in Figure 12. Relying on the “Possible Destina-
tion Info,” which provided clues about the couches
(Place 8 contains a sofa chair and side table), the
agent incorrectly identified Place 8 as the destina-
tion and executed the stop action. Consequently, it
failed to complete the full navigation path and all
intermediate steps, as shown in Figure 13.

The agent appears to have over-prioritized reach-
ing a location matching the final destination’s de-
scription, stopping prematurely after mistakenly
assuming it had completed all necessary interme-
diate navigation steps.

D I-O-S Dataset Details

The Instruction-Object-Space (I-O-S) dataset is de-
signed to enhance spatial reasoning in vision-and-
language navigation (VLN) by integrating natural
language instructions, task-relevant objects, and
their spatial configurations. The dataset contains
28,414 samples, with 25,694 allocated for training
and 2,720 for testing. These samples are derived
from oracle paths in the REVERIE dataset (Qi et al.,
2020b) and manually crafted trajectories developed
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for this study. Each sample consists of a natural lan-
guage instruction I, a list of relevant objects O, and
the spatial arrangement at the destination S. The
average instruction length is 23.05 words. Object
lists are categorized into direct and inferred objects,
with averages of 3.99 and 9.98 objects, respectively.
Descriptions of the spatial layout at the destination
have an average length of 39.12 words. An example
from the I-O-S dataset is provided below:

Instruction: Exit the kitchen area through the
doorway slightly to your left. Walk across the
dining table area. Turn right and pass the blue
chair or sofa near the Christmas tree. Stop there.

Direct Objects: [“chair”, “sofa chair”, “table”,
“Christmas tree”]

Inferred Objects: [“mirror”, “lamp”, “plant”,
“picture”, “painting”, ‘“decoration”, ‘“fan”,
“light”, “island”™, “heater”, “trash can”, “stool”,

“cabinet”, “coffee table”]

Destination Spatial Layout: “The destination is
the foyer or entryway, located near a blue chair
and a Christmas tree. The spatial layout includes



a blue chair or sofa positioned beside a Christmas
tree, with a coffee table and a lamp also present
in the area.”

To construct the I-O-S dataset, we processed
data from the REVERIE dataset and our manu-
ally annotated trajectories as follows. For samples
derived from REVERIE, we directly used its pre-
generated bounding box files, which contains ob-
ject IDs, names, visible view indices, and bounding
boxes in [z, y, w, h] format. For our custom instruc-
tions and trajectories, we adopted the REVERIE
methodology (Qi et al., 2020b) to generate bound-
ing boxes by (1) using Matterport3D’s 3D object
annotations (center point, axis directions, radii)
to define object vertices, (2) projecting these ver-
tices onto 2D image planes using viewpoint camera
poses to form [z, y, w, h] bounding boxes, (3) filter-
ing occluded objects by comparing depth overlaps
with closer objects, and (4) including only objects
within 3 meters of the viewpoint. These annota-
tions are stored in JSON files matching REVERIE’s
format for consistency.

After obtaining the objects observed along the ex-
pert trajectories (i.e., the bounding box files for each
navigation point), we processed them as follows to
derive the corresponding object lists and destina-
tion spatial layouts. We used the LLM Gemini-2.5-
Flash to analyze the instructions, bounding box data
from navigation points along the path, and the des-
tination, generating the object list for each sample
and the spatial layout of objects at the destination.
These outputs were then manually inspected and
refined.
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Objective
*Add two new fields to each JSON entry: direct_obj and potential_obj, based on the instruction field.

«direct_obj: A list of all objects explicitly mentioned in instruction (e.g., ['sink", “table"] in “clean the sink and table").

potential_obj: A list of objects reasonably inferred based on the task or room type, describing the environment or related to the task.
*Retain original fields ( instruction) unchanged in the output.

Processing Steps

Extract all objects explicitly named in instruction as targets of the main task or verbs.
*Focus on nouns syntactically tied to task-related verbs (e.g., "sink" and "table" in "clean the sink and table").
*Use syntactic parsing (e.g., dependency parsing) to identify direct objects of verbs when possible.
«Include all objects explicitly mentioned as task targets, even if tied to different verbs (e.g., “clean the sink and organize the table" — ["sink", "table"]).
«Sort direct_obj using:
1.Frequency (40%): Objects mentioned multiple times rank higher.
2.Task Relevance (40%): Objects tied to the primary task or verb rank higher (e.g., "sink" in "clean the sink and check the table").
3.0rder of Mention (20%): Earlier-mentioned objects rank higher if frequency and relevance are equal.
«If no objects are mentioned (e.g., "go to the spa") or only pronouns/vague terms are used (e.g., "clean it"), set direct_obj to [].
*Match nouns exactly as in instruction (e.g., "sink", not "basin").
Do not infer objects for direct_obj; they must be explicitly stated.

«Include objects that are:
«Inferred based on the task or room type, up to a maximum of 3 inferred objects (5 for vague instructions), describing the environment or context (e.g.,
"bed", “tiles" in "Go to the spa with one bed, brown tiles").
*Guidelines for inference:
Select inferred objects most relevant to the task (e.g., "sponge" for cleaning) or room type (e.g., "towel" in a spa).
*Avoid speculative inferences (e.g., do not infer “chandelier” in a spa unless mentioned).
*Use singular nouns for inferred objects unless context suggests plural.
«If more than 3 (or 5 for vague instructions) inferred objects are possible, prioritize by typicality (e.g., "sponge" over "toaster" for cleaning in a kitchen).
«Sort potential_obj by:
1.Explicit Mention (40%): Explicitly mentioned objects rank higher.
2.Frequency (30%): Objects mentioned multiple times rank higher.
3.Task Relevance (30%): Objects closer to the task or central to the environment rank higher (e.g., "sponge" for cleaning over "lamp").
«If no objects are inferred, set potential_obj to [].

*Vague Instructions:
<An instruction is vague if it lacks specific object nouns (e.g., "clean the room") or uses generic verbs without clear targets (e.qg., "fix something").
«Set direct_obj to [] and infer up to 5 typical objects for potential_obj based on room type (e.g., [‘table", “chair", "lamp"] for a generic room).
*Compound Objects:
«Include all explicitly mentioned task targets in direct_obj (e.g., "clean the sink and table" — ["sink", "table"]), sorted as above.
*Non-Physical Objects:
*Exclude abstract entities (e.g., "mess" in "clean the mess") from both direct_obj and potential_obj, setting to [].
«Allow inferred physical objects relevant to the task (e.g., "sponge" for cleaning).
*Multi-Room Instructions:
«Infer potential_obj based on the room where the task occurs (e.g., spa for "go from kitchen to spa and clean the sink"). If unclear, use the last-mentioned
room.
*Empty/Malformed Instructions:
«If instruction is empty, null, or malformed (e.g.,

), set direct_obj to [] and potential_obj to [].

«Validate input JSON before processing:
«If instruction is missing, set direct_obj to [] and potential_obj to [].
«If other required fields (path, heading, scan, path_id, instr_id) are missing, retain them as null or their default type (e.g., empty list for path) and proceed.
Output Format
*Generate a JSON dictionary with fields in order: instruction, direct_obj, potential_obj.
*Ensure:
«direct_obj is a list of strings, sorted by frequency, task relevance, order of mention, and alphabetical tiebreaker.
potential_obj is a list of strings, sorted by explicit mention, frequency, task relevance, and alphabetical tiebreaker.
«JSON is well-formed, with 2-space indentation, no trailing commas, and consistent double quotes.
«Original fields (instruction) are unchanged.
+Validate output:
«All required fields are present in the specified order.
«direct_obj and potential_obj are lists of strings.
+JSON syntax is correct with no trailing commas or missing brackets.
Notes
*Exact Matching for direct_obj: Match nouns exactly as in instruction.
«Inference for potential_obj: Limited to 5 inferred objects to ensure relevance.
*Language Consistency: Use singular/plural as in instruction for mentioned objects; inferred objects use singular unless context suggests plural.
Examples
Example 1
Input:
{"instruction": "Go to the spa with one bed, brown tiles on the walls, a visible white radiator, and clean out the sink and bed"}
Output:
{"instruction": "Go to the spa with one bed, brown tiles on the walls, a visible white radiator, and clean out the sink and bed",
“direct_obj": ["sink", "bed", "tiles", "radiator", ],
"potential_obj": ["towel", "tub"]}
Task
*Process the JSON input provided by me and return a complete JSON output adhering to the above requirements.
*Ensure the output is correctly formatted, readable, and both direct_obj and potential_obj are sorted by specified criteria.
*Wait for the my JSON input to process. Do not process sample inputs unless explicitly provided.

Figure 7: Prompt designed for object list extraction in spatial inference experiments, applied to non-fine-tuned
LLMs (GPT-40, Grok3, Gemini-2.5-Flash, Qwen3-4B). This structured prompt directs the LLM to accurately
identify and enumerate task-relevant objects from navigation instructions. The same prompt is used for GPT-40 in
REVERIE dataset experiments.
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You are tasked with processing a JSON input containing navigation instructions and generating a new JSON output. The input JSON has the
following structure:

"path": [string, ...],
"objld": number,
"heading": number,
"scan": string,
"path_id": string,
"instr_id": string,
"instruction™: string
}
Your goal is to create a valid JSON output that meets these requirements:
1.Retained Fields:
«Copy path, heading, scan, path_id, instr_id, and instruction from the input, unchanged.
«Exclude objld.
2.Final Destination Spatial Relations:
«Include exactly two strings:
«First: Starts with "The destination is ..." and describes the final location based on the instruction (e.g., "the laundry room on the first
level"). If the destination is unclear, use a generic description (e.g., "the specified location").
«Second: Starts with "The spatial layout of the destination is ..." and infers a simple, typical layout for the destination type (e.qg., for a
laundry room, a shelf above a washing machine). Base inferences on common knowledge, avoiding overly specific assumptions.
3.Output Constraints:
«Include only the specified fields (path, heading, scan, path_id, instr_id, instruction, final_destination_spatial_relations).
*Ensure the output is a valid JSON object.
*Assume the input JSON is valid.
Example Input:

"path": [
"faa7088781e647d09df1d5b470609aa3",
"7d708a5b80ee45979870bae83b2bdd44",
"c29e99f090194613b5b11af906c47dab",
"aa4cfd0126dd4c6a9c533ca9ch4a033d",
"5bc41a6e3b7748149e0e8592c5b4d 142",
"3f432ddd169d4433979e004d1237d029",
"3e5leeaac8404b31ad8a950bb2bb953d"

Ik

"objld": 156,

"heading": 0.32,

"scan": "cV4RVeZvu5T",

"path_id": "7172_156",

“instr_id": "7172_156_0",

"instruction": "Go to the laundry room on the first level and remove the leopard trinket from the shelf"
}

Example Output:

"path”: [
"faa7088781e647d09df1d5b470609aa3",
"7d708a5b80ee45979870bae83b2bdd44",
"c29e99f090194613b5b11af906c47dab",
"aadcfd0126dd4c6a9c533ca9ch4a033d",
"5bc41a6e3b7748149e0e8592c5b4d142",
"3f432ddd169d4433979e004d1237d029",
"3e51eeaac8404b31ad8a950bb2bb953d"
I
"heading": 0.32,
"scan": "cV4RVeZvu5T",
"path_id": "7172_156",
“instr_id": "7172_156_0",
"instruction": "Go to the laundry room on the first level and remove the leopard trinket from the shelf",
"final_destination_spatial_relations™: [
"The destination is the laundry room on the first level.",
"The spatial layout of the destination is a shelf above a washing machine with the leopard trinket on it."
|
}
Task:

*Wait for the my JSON input to process.

*Generate a complete JSON output adhering to the requirements.

«Ensure the final_destination_spatial_relations field reflects the instruction's destination and a simple, typical layout

Figure 8: Prompt employed for destination spatial layout inference using GPT-40 in REVERIE experiments. This
prompt directs the LLM to generate accurate spatial arrangements of objects at the target location.
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Walk down the stairs all the way and past the Christmas tree. Make a right turn and walk past the blue chair into the room with the white sink.
step 0: go down to Place 3 which is corresponding to Image 3 (Omitted for brevity)
Place 03456891012 18 20 22 20 18 19

Place 0 is connected with Places 1, 2, 3, 4
Place 3 is connected with Places 5, 4, 0, 2
Place 4 is connected with Places 6, 5, 0, 3
Place 5 is connected with Places 6, 3, 4
Place 6 is connected with Places 7, 8, 5, 4
Place 8 is connected with Places 9, 1
(Omitted for brevity)

(Omitted for brevity)

(Omitted for brevity)

,6,7

Place 19 (current)

The destination is the bathroom, positioned in front of the sink. The spatial layout of the destination includes a sink directly in front, a toilet positioned to the left, and a shelf located to the right and above.
['A. stop', ...'D. go up to Place 6 which is corresponding to Image €', ...]
...Based on the map, | need to explore connected places to find the room with the white sink. The il ination info a layout...
1. Turn left to Place 28. 2. Explore connected places to find the room with the white sink.

"D

Node be3d7ae0352d481191e4c9e351e71b08 (Place 0):
Raw: age=15, deg=4, unexpl_neigh=2, dist=N/A
Contrib: time=5.00 (eff_age=5), deg=-8.00, front=-10.00, dist=0.00
Total Score: -13.00
Node bec7a60657d6483996aa2f0d03b9d691(Place 3):
Raw: age=14, deg=4, unexpl_neigh=1, dist=N/A
Contrib: time=4.00 (eff_age=4), deg=-8.00, front=-5.00, dist=0.00
Total Score: -9.00
Node f17bd928d! bbb4d2d8806682f4af (Place 4):
Raw: age=13, deg=4, unexpl_neigh=0, dist=N/A
Contrib: time=3.00 (eff_age=3), deg=-8.00, front=0.00, dist=0.00
Total Score: -5.00
Node 80befc44c6d14348a3f9bda8ba719d70 (Place 5):
Raw: age=12, deg=3, unexpl_neigh=0, dist=N/A
Contrib: time=2.00 (eff_age=2), deg=-6.00, front=0.00, dist=0.00
Total Score: -4.00
Node 024edcc6db70425aaa54f5596b0ebda8 (Place 6):
Raw: age=11, deg=4, unexpl_neigh=1, dist=N/A
Contrib: time=1.00 (eff_age=1), deg=-8.00, front=-5.00, dist=0.00
Total Score: -12.00

Place 6

Figure 9: Step 15 in a Successful Case Study of HiNav. HiSpace, based on the instructions, accurately and precisely
describes information related to the final destination and the relationships of surrounding objects. By highlighting
scene objects (e.g., pictures, lamps), HiView guides HiNav, increasing the likelihood of reaching the desired
destination. The field ’Pruning Scores Detail’ illustrates the complete calculation process and the resulting pruned
nodes from HiMem’s dynamic pruning. As the current navigation point is already located in a downstairs room,
HiNav removes the upstairs navigation point place 5.

Walk down the stairs all the way and past the Christmas tree. Make a right turn and walk past the blue chair into the room with the white sink.
step 0: go down to Place 3 which is corresponding to Image 3 (Omitted for brevity)
Place 03456891012 18202220 181928

Place 0 is connected with Places 1, 2, 3, 4
Place 3 is connected with Places 4, 0, 2
Place 4 is connected with Places 3
Place 6 is connected with Places 7, 8, 4
Place 8 is connected with Places 9, 10, 6, 7
(Omitted for brevity)
(Omitted for brevity)
(Omitted for brevity)

Place 28 (current)

The ination is the iti in front of the sink. The spatial layout of the destination includes a sink directly in front, a toilet positioned to the left, and a shelf located to the right and above.
P: y( ly p ft]
[A. stop’, ...'D. turn right to Place 30 which is corresponding to Image 30', ...]
...Based on the map, | should explore the connected places to find this room. The il info a layout, which might be in one of the unexplored connected
places. ...

1. Turn right to Place 30. 2. Check for the room with the white sink.
"D

Node be3d7ae0352d481191e4c9e351e71b08 (Place 0):
Raw: age=16, deg=4, unexpl_neigh=2, dist=N/A
Contrib: time=6.00 (eff_age=6), deg=-8.00, front=-10.00, dist=0.00
Total Score: -12.00

Node bec7a60657d6483996aa2f0d03b9d691 (Place 3):
Raw: age=15, deg=3, unexpl_neigh=1, dist=N/A
Contrib: time=5.00 (eff_age=5), deg=-6.00, front=-5.00, dist=0.00
Total Score: -6.00

Node f17 (Place 4):
Raw: age=14, deg=3, unexpl_neigh=0, dist=N/A
Contrib: time=4.00 (eff_age=4), deg=-6.00, front=0.00, dist=0.00
Total Score: -2.00

Place 3

Node 0 04 (Place 6):
Raw: age=12, deg=3, unexpl_neigh=1, dist=N/A »
Contrib: time=2.00 (eff_age=2), deg=-6.00, front=-5.00, dist=0.00 4 e
Total Score: -9.00 Place 4 for pruning

Node 61aa57f78ebf40dd9bc04e27h1a4c80f (Place 8):
Raw: age=11, deg=4, unexpl_neigh=1, dist=N/A
Contrib: time=1.00 (eff_age=1), deg=-8.00, front=-5.00, dist=0.00
Total Score: -12.00

Place 6 Place 8

Figure 10: Step 16 follows by Step 15 in this successful case study. The navigation point removed during the pruning
in step 15 (Place 5) has already been removed from the set of active nodes considered in this step’s memory/map.
HiMem now initiates a new round of dynamic pruning. From the five navigation points currently under consideration,
Place 4 is identified and subsequently removed.
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Walk down the stairs all the way and past the Christmas tree. Make a right turn and walk past the blue chair into the room with the white sink.
step 0...step 22: turn left to Place 9 which is corresponding to Image 9 - —
Place 0345689101218202220181928302932333119119

Place 9 is connected with Places 11, 13, 14, 15, 7
Place 18 is connected with Places 20, 21, 19, 15
Place 20 is connected with Places 23, 24, 18, 25, 26
(Omitted for brevity)
(Omitted for brevity)
(Omitted for brevity)
1. Turn left to Place 9. 2. Explore connected places to find the room with the white sink.

. ]
Place 9 (current) Place 14 (destination)

The destination is the bathroom, positioned in front of the sink.The spatial layout of the destination includes a sink directly in front, a toilet positioned to the left, and a shelf located
to the right and above.

['A. stop', ...'F. turn left to Place 14 which is corresponding to Image 14, ...]
1 am currently at Place 9, and | need to find the room with the white sink. According to the map, Place 9 is connected to several places, including Place 11, 13, 14, 15,
and 7. | have previously explored Place 11, which did not have the white sink. | should explore a new place connected to Place 9 to find the room with the white sink.
1. Turn left to Place 14. 2. Explore connected places to find the room with the white sink.
=

Node 0acbbb92572f437faef8da9b991412f6 (Place 18):
Raw: age=11, deg=4, unexpl_neigh=2, dist=N/A
Contrib: time=1.00 (eff_age=1), deg=-8.00, front=-10.00, dist=0.00
Total Score: -17.00

Node 595344b8d6a7471691be526b8b9d685f (Place 20):
Raw: age=12, deg=5, unexpl_neigh=4, dist=N/A
Contrib: time=2.00 (eff_age=2), deg=-10.00, front=-20.00, dist=0.00
Total Score: -28.00

Place 20

Place 18 for pruning

Figure 11: The final step in the successful case study of HiNav. HiMem continued its dynamic pruning process after
step 15 to the final step. Leveraging the precise destination information and object visual enhancements inferred by
HiSpace and HiView respectively, HiNav successfully selected the crucial Action in this step: F. turn left to Place
14 which is corresponding to Image 14. Ultimately, the agent successfully reached the intended destination after a
total of 25 steps.

Turn right to exit the room. Turn right when you get to the end of the hallway. Walk toward the couches and stop there by the couches.
step O: turn right to Place 3 which is corresponding to Image 3, step 1: go forward to Place 6 which is corresponding to Image 6
Place 03 6

Place 0 is connected with Places 1, 2, 3, 4
Place 3 is connected with Places 5, 6, 7, 4, 0
Place 6 is connected with Places 5, 8, 9, 10, 3

Place 1, which is corresponding to Image 1

Place 2, which is corresponding to Image 2 o b
Place 4, which is corresponding to Image 4 . .
Place 7, which is corresponding to Image 7 Wrong thought leads to mistaken place

1. Turn right to Place 3 to exit the room. 2. Turn right at the end of the hallway by going forward to Place 6. 3. Walk toward the couches and stop there.
The destination is the living room, located near the couches. The spatial layout of the destination includes couches, primarily located on the left side, adorned with numerous
pillows, a table situated nearby, and a vase also being present.
['A. turn left to Place 5 which is corresponding to Image 5', 'B. turn left to Place 8 which is corresponding to Image 8', 'C. turn left to Place 9 which is
corresponding to Image 9', 'D. turn right to Place 10 which is corresponding to Image 10', 'E. turn around to Place 3 which is corresponding to Image 3']
| have turned right to exit the room and then turned right at the end of the hallway. Now, | need to walk toward the couches and stop there. The Possible
Destination Info suggests that the destination includes couches with pillows and a nearby table. From the current options, Place 8, corresponding to Image 8, shows a sofa chair
and side table, which aligns with the description of the destination.
1. Turn left to Place 8 to approach the couches. 2. Stop near the couches as it matches the destination description.
g

Figure 12: The key step 2 of a failure case for HiNav. Following the instruction to navigate to the room with couches,
after executing the initial steps, HiNav, at step 2, selected the action to proceed to Place 8 based on the possible
destination information (describing the living room and couches). However, this choice did not successfully guide
the agent to ultimately reach the specific couch destination specified in the instruction.
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Turn right to exit the room. Turn right when you get to the end of the hallway. Walk toward the couches and stop there by the couches.
step O: turn right to Place 3 which is corresponding to Image 3, step 1: go forward to Place 6 which is corresponding to Image 6, step 2: turn left to Place 8 which is
corresponding to Image 8
Place 036 8

Place 0 is connected with Places 1, 2, 3, 4
Place 3 is connected with Places 5, 6, 7, 4, 0
Place 6 is connected with Places 5, 8, 9, 1
Place 8 is connected with Places 11, 12

Place 1, which is corresponding to Image 1
Place 2, which is corresponding to Image 2
Place 4, which is corresponding to Image 4
Place 7, which is corresponding to Image 7
Place 9, which is corresponding to Image 9 5
Place 10, which is corresponding to Image 10 Intended Destination

Actual Destination (Place 8)
1. Turn left to Place 8 to approach the couches. 2. Stop near the couches as it matches the destination description.
The destination is the living room, located near the couches. The spatial layout of the destination includes couches, primarily located on the left side, adorned with numerous
pillows, a table situated nearby, and a vase also being present.
['A. stop’, 'B. turn left to Place 11 which is corresponding to Image 11', 'C. go forward to Place 12 which is corresponding to Image 12', 'D. turn right to

Place 13 which is corresponding to Image 13', 'E. turn around to Place 6 which is corresponding to Image 6', 'F. turn around to Place 5 which is corresponding to Image 5]

I have reached Place 8, which matches the description of the destination with couches and a side table. The instruction was to stop by the couches, and the previous
planning also indicated that Place 8 is the destination. Therefore, | should stop here.

Stop at Place 8 as it matches the destination description with couches and a side table.
"An

Figure 13: The final step of the failure case for HiNav. Following the instruction to navigate to the room with
couches, after executing the first two steps to reach Place 8, HiNav, at step 3, mistakenly determined that the current
location (Place 8) was the final destination based on its internal planning and possible destination information, and
chose to stop. As the agent failed to reach the actual couch destination specified in the instruction, this navigation
attempt ultimately failed.
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