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ABSTRACT

Image deraining aims to remove rain streaks from rainy images and restore clear
backgrounds. Currently, some research that employs the Fourier transform has
proved to be effective for image deraining, due to it acting as an effective fre-
quency prior for capturing rain streaks. However, despite there exists dependency
of low frequency and high frequency in images, these Fourier-based methods
rarely exploit the correlation of different frequencies for conjuncting their learning
procedures, limiting the full utilization of frequency information for image derain-
ing. Alternatively, the recently emerged Mamba technique depicts its effectiveness
and efficiency for modeling correlation in various domains (e.g., spatial, tempo-
ral), and we argue that introducing Mamba into its unexplored Fourier spaces to
correlate different frequencies would help improve image deraining. This mo-
tivates us to propose a new framework termed FourierMamba, which performs
image deraining with Mamba in the Fourier space. Owing to the unique arrange-
ment of frequency orders in Fourier space, the core of FourierMamba lies in the
scanning encoding of different frequencies, where the low-high frequency order
formats exhibit differently in the spatial dimension (unarranged in axis) and chan-
nel dimension (arranged in axis). Therefore, we design FourierMamba that corre-
lates Fourier space information in the spatial and channel dimensions with distinct
designs. Specifically, in the spatial dimension Fourier space, we introduce the
zigzag coding to scan the frequencies to rearrange the orders from low to high fre-
quencies, thereby orderly correlating the connections between frequencies; in the
channel dimension Fourier space with arranged orders of frequencies in axis, we
can directly use Mamba to perform frequency correlation and improve the channel
information representation. Extensive experiments reveal that our method outper-
forms state-of-the-art methods both qualitatively and quantitatively.

1 INTRODUCTION

Images taken in rainy conditions exhibit significant degradation in detail and contrast due to rain in
the air, leading to unpleasant visual results and the loss of frequency information. This issue can
severely impact the performance of outdoor computer vision systems, such as autonomous driving
and video surveillance (Wang et al., 2022a). To mitigate the effects of rain, many image deraining
methods (Fu et al., 2011; Xiao et al., 2022) have emerged in recent years, aiming to remove rain
streaks and restore clear backgrounds in images.

The advent of deep learning has spurred this field forward, with several learning-based deraining
methods achieving remarkable success (Fu et al., 2017b; Yang et al., 2017; Zhang & Patel, 2018).
Among them, some studies utilize the Fourier transform for deraining in the frequency domain (Zhou
et al., 2023; Guo et al., 2022), proving effective. The key insights inspiring the use of the Fourier
transform for image deraining are twofold: 1) The Fourier transform can separate image degradation
and content components to some extent, serving as a prior for image deraining, as shown in Figure 1;
2) The Fourier domain possesses global properties, where each pixel in Fourier space is involved
with all spatial pixels. Thus, it makes sense to explore the task of rain removal using the Fourier
transform. However, despite the existence of low frequency and high frequency dependencies in
images, previous Fourier-based methods rarely utilize the correlation of different frequencies to
combine their learning process. As shown in Figure 1, the commonly used 1×1 convolutions cannot
correlate different frequencies, limiting the full utilization of frequency information in the image.
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Figure 1: Observation and comparison of different frequency modeling methods. (a) Observation
of the amplitude spectrum exchange. The degradation is mainly in amplitude components, so the
Fourier transform helps to disentangle the image content and rain. (b) The commonly used 1 × 1
convolution cannot model the relationship between different frequencies. (c) Previous scanning in
Fourier space will fail to establish the ordered dependence between frequencies. (d) Our proposed
method achieves ordered frequency dependence from low to high (or vice versa), thus fully utilizing
frequency information.

Therefore, we seek to exploit the beneficial properties of the Fourier transform while exploring
correlating different frequencies.

Recently, an improved structured state-space sequence model (S4) with a selective scanning mecha-
nism, Mamba, gives us hope. The selective methodology of Mamba can explicitly build the correla-
tion among image patches or pixels. Recent studies have witnessed the effectiveness and efficiency
of Mamba in various domains such as spatial and temporal. Therefore, we believe that introducing
Mamba into its unexplored Fourier space to correlate different frequencies will be advantageous for
improving image deraining.

In this paper, we propose a novel framework named FourierMamba, which performs image derain-
ing using mamba in the Fourier domain. Following the ”spatial interaction + channel evolution”
rule that has also been validated on Mamba (Guo et al., 2024; Behrouz et al., 2024), we design the
Mamba framework in the Fourier domain from both spatial and channel dimensions. Considering
the unique arrangement of frequency orders in the Fourier domain, the core of FourierMamba lies
in the scanning encoding of different frequencies, where the low-high frequency order formats unar-
ranged in the spatial axis and arranged in the channel axis. Therefore, our proposed FourierMamba
correlates Fourier space information in spatial and channel dimensions with distinct designs.

Specifically, in the spatial dimension of the Fourier space, low-high frequencies follow a con-
centric circular arrangement with lower frequencies near the center and higher frequencies around
the periphery. If previous scanning method (Liu et al., 2024) is used directly, the orderliness be-
tween frequencies will be destroyed, as shown in Figure 1. We note that the zigzag coding in the
JPEG compression field can place lower-frequency coefficients at the forefront of the array, while
higher-frequency coefficients are positioned at the end. Hence, we introduce the zigzag coding to
scan the frequency in the spatial dimension, rearranging the order from low to high frequency. Due
to the symmetry of the frequency orders in the Fourier space, we do not directly employ the zigzag
coding in its originally used space; instead, we implement it in a circling-like manner that matches
the symmetric frequency orders in Fourier space. In this way, this method orderly correlates the
connections between frequencies, as shown in Figure 1. In the channel dimension of the Fourier
space, the frequency order is arranged along the axis, following the order of low in the middle to
high on both sides. Therefore, we can directly use Mamba for frequency correlation, thus improving
channel information representation and enhancing global properties on the channels.

In summary, our contributions are as follows: (1) We propose a novel framework FourierMamba that
combines Fourier priors and State Space Model for correlating different frequencies in the Fourier
space to enhance image deraining. (2) To rearrange the order from low to high frequency in the
spatial dimension Fourier space, we propose a scanning method based on zigzag coding to orderly
correlate different frequencies. (3) Based on the channel-dimension Fourier transform, we utilize
Mamba to scan on the channels and correlate different frequencies to improve channel information
representation. Extensive experiments demonstrate that the proposed FourierMamba surpasses state-
of-the-art methods both qualitatively and quantitatively.
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2 RELATED WORKS

Image deraining. Traditional image deraining methods focus on separating rain components by
utilizing meticulously designed priors, such as Gaussian Mixture Models (Li et al., 2016), Sparse
Representation Learning (Gu et al., 2017; Fu et al., 2011), and Directional Gradient Priors (Ran
et al., 2020). Although these methods are insightful, they often struggle to cope with complex
precipitation patterns and the diverse real-world scenarios. The advent of deep learning has heralded
a new era for image deraining. (Fu et al., 2017b) introduces pioneering deep residual networks
for image deraining. The initiation of CNNs marked a significant advancement, facilitating more
nuanced and adaptive processing of rain streaks across a vast array of images (Yang et al., 2017;
Zhang & Patel, 2018). With the evolution of transformers, the development of architectures that
incorporate attention mechanisms (Valanarasu et al., 2022; Wang et al., 2022b) has further refined
the capacity to recognize and eliminate rain components, addressing previous shortcomings in model
generalization and detail preservation. COIC (Ran et al., 2024) presents a Context-based Instance-
level Modulation mechanism integrated with rain-/detail-aware contrastive learning to enhance CNN
and Transformer models for improved image deraining on mixed datasets. (Hsu & Chang, 2023)
proposes a wavelet approximation-aware residual network, which efficiently removes rain from low-
frequency structures and high-frequency details at each level separately. In this work, we propose a
novel baseline with a block based on Fourier and Mamba to enhance deraining performance.

Fourier transform. Recently, the Fourier Transform has demonstrated its effectiveness in global
modeling (Chi et al., 2019; 2020). This transformation converts signals into a domain character-
ized by global statistical properties, facilitating advancements across various fields (Huang et al.,
2022; Lee et al., 2018; Li et al., 2023; Pratt et al., 2017; Xu et al., 2021; Yang & Soatto, 2020).
Due to its efficacy in global modeling, the Fourier Transform has been introduced into low-level
vision tasks (Fuoli et al., 2021; Mao et al., 2023). As an early attempt, (Fuoli et al., 2021) proposes
a Fourier Transform-based loss to optimize global high-frequency information for efficient image
super-resolution. DeepRFT (Mao et al., 2023) is proposed for image deblurring, employing a global
receptive field to capture both low and high-frequency characteristics of various blurs, a concept sim-
ilarly applied in image inpainting (Suvorov et al., 2022). FECNet (Huang et al., 2022) demonstrates
that the amplitude of Fourier features decouples global luminance components, thereby proving ef-
fective for image enhancement. (Yu et al., 2022) observes a similar phenomenon in image dehazing,
where the amplitude reflects global haze-related information. In contrast, we introduce a progressive
scanning strategy in the Fourier domain, enhancing the global modeling capability while addressing
the directional sensitivity issues of visual Mamba.

State Space Models. State Space Models (SSMs) have received a lot of attention recently due to
their global modeling capabilities as well as linear complexity, with (Gu et al., 2022) initially intro-
ducing the base design of SSM models, and (Mehta et al., 2022) further enhancing their performance
through gating units.More recently, the performance of Mamba (Gu & Dao, 2023), proposed based
on selective scan mechanism and efficient hardware design, has seen significant enhancement. It
stands as an efficient alternative to Transformers, finding applications in various domains including
image classification (Zhu et al., 2024)(Liu et al., 2024), object detection(Chen et al., 2024), and re-
mote sensing(Zhao et al., 2024).In the field of image restoration, (Guo et al., 2024) (Shi et al., 2024)
initially introduced a general restoration framework based on the Mamba module but did not fully
exploit the frequency domain information of images. (Sun et al., 2024) introduces a network com-
bining Transformer and Mamba to capture long-range dependencies related to rain. (Yamashita &
Ikehara, 2024) achieves effective deraining by parallelizing frequency-domain processing branches
with the Mamba branch. (Zhen et al., 2024) introduced a wavelet transform branch, yet the scanning
in the wavelet domain fails to fully extract global frequency domain information. This paper pro-
poses a novel Mamba restoration network based on Fourier transform, aiming to comprehensively
exploit the frequency domain information of images.

3 METHODOLOGY

3.1 PRELIMINARY

Fourier transform. Fourier transform is a widely used technique for analyzing the frequency con-
tent of an image. For images with multiple color channels, the Fourier transform is applied to each

3
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Figure 2: Our proposed Fourier space scanning method in the spatial dimension (top) and channel
dimension (bottom). For simplicity, only one direction is shown for each scanning method, and in
fact each method also performs a scan opposite to that shown.

channel separately. Given an image X ∈ RH×W×C , the Fourier transform F converts it to Fourier
space as the complex component F(x), which is expressed as:

F (x) (u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x (h,w) e−j2π( h
H u+ w

W v), (1)

where u and v indicate the coordinates of the Fourier space. F−1 (x) defines the inverse Fourier
transform accordingly. Both the Fourier transform and its inverse procedure can be efficiently
implemented using FFT/IFFT algorithms (Frigo & Johnson, 1998). The amplitude component
A (x) (u, v) and phase component P (x) (u, v) are expressed as:

A (x) (u, v) =
√

R2 (x) (u, v) + I2 (x) (u, v),

P (x) (u, v) = arctan

[
I (x) (u, v)

R (x) (u, v)

]
,

(2)

where R(x) (u, v) and I(x) (u, v) represent the real and imaginary parts respectively. The Fourier
transform and its inverse procedure are applied independently to each channel of the feature maps.

Channel-dimension Fourier transform. We introduce the channel-dimension Fourier transform
(C-FFT) by individually applying the Fourier transform along the channel dimension for each spatial
position. For each position (h ∈ RH−1, w ∈ RW−1) within X ∈ RH×W×C , denoted as x(h,w, 0 :
C − 1) and abbreviated as y(0 : C − 1), Fourier transform F (·) converts it to Fourier space as the
complex component F (y), which is expressed as:

F(y(0 : C − 1))(z) =
1

C

C−1∑
c=0

y(c)e−j2π c
C z, (3)

.

Similarly, the amplitude component A(y(0 : C − 1))(z) and phase component P(y(0 : C − 1))(z)
of F(y(0 : C − 1))(z) are expressed as:

A(y(0 : C − 1))(z) =
√
R2 (y(0 : C − 1)) (z) + I2 (y(0 : C − 1)) (z),

P(y(0 : C − 1))(z) = arctan

[
I (y(0 : C − 1)) (z)

R (y(0 : C − 1)) (z)

]
.

(4)

These operations can also be applied for the global vector derived by the pooling operation. In
this way, A(z) and P(z) signify the magnitude and directional changes in the magnitude of vari-
ous channel frequencies, respectively. Both of these metrics encapsulate global statistics related to
channel information.

State Space Models. State Space Models (SSMs) serve as the cornerstone for transforming one-
dimensional inputs into outputs through latent states, utilizing a framework of linear ordinary differ-
ential equations. Mathematically, SSMs can be formulated as follows, representing linear ordinary
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Figure 3: The overall architecture of the FourierMamba. Our FourierMamba consists of multiscale
hierarchical design Fourier Residual State-Space Blocks(FRSSB). The core modules of FRSSB are
Fourier Spatial Interaction SSM(FSI-SSM) and Fourier Channel Evolution SSM(FCE-SSM).

differential equations (ODEs):
h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t),
(5)

where, h(t) ∈ RN denotes the hidden state vector, where N represents the size of the state. The
parametersA ∈ RN×N , B ∈ RN , and C ∈ RN are associated with the state size N, while D ∈ R1

represents the skip connection.

Discrete versions of these models, such as Mamba(Gu & Dao, 2023), include a discretization step
via the zero-order hold (ZOH) method. This enables the models to adaptively scan and adjust to the
input data using a selective scanning mechanism. This mechanism provides a global receptive field
with linear complexity, which is advantageous for image restoration tasks.

3.2 SCANNING IN FOURIER SPACE

Despite the unique characteristics of the selective scan mechanism (S6), it processes input data
causally. Given the non-causal nature of visual data, directly applying this strategy to patches and flat
images fails to estimate relations with unscanned patches, leading to a ”directional sensitivity” issue
constrained by the acceptance domain. Numerous methods have attempted to tackle this problem in
the spatial domain (Liu et al., 2024; Guo et al., 2024). However, for image restoration, the Fourier
space and its associated priors are crucial. Hence, we explore addressing the ”directional sensitivity”
issue within this domain. Specifically, we customize Fourier scanning strategies from both spatial
and channel dimensions.

For the spatial dimension, each pixel point in the Fourier space contains global information, with its
frequencies distributed in concentric circles. Scanning methods based on spatial arrangements (Liu
et al., 2024) disrupt the high-low frequency relationships in the frequency domain, thus hindering
the modeling of image degradation information.

Therefore, we aim to devise a scanning method in the Fourier space to progressively model the
frequency characteristics of images. An intuitive approach is to calculate the Euclidean distance
from each point in the spectrum to the center point. On the shifted Fourier spectrum, the smaller
the distance to the center point, the lower the frequency. The flaw of this intuitive approach is that
for images of different sizes, it requires recalculating the Euclidean distance from each point to the

5
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OursProgressiveBilateralClassicalInput GT

Figure 4: The error map between the GT and the restored images using various scanning methods in
Fourier space. The two scanning methods we propose can achieve smaller errors than using classical
scanning method (Liu et al., 2024). And the combination of the two scanning methods is better than
either one.

center point. The additional computational overhead introduced by this flaw makes this approach
impractical in the field of image restoration.

In JPEG compression, zigzag coding is commonly used among the Discrete Cosine Transform
(DCT) coefficients of JPEG, where it prioritizes the energy-concentrated low-frequency coefficients
at the beginning of the array, and places the less significant high-frequency coefficients towards
the end, thereby facilitating more effective compression. Inspired by compression algorithms, we
introduce a method that adopts the zigzag coding approach to scan the magnitude and phase spectra.

Additionally, due to the symmetry of the two-dimensional Fourier transform, scanning the entire
spectrum would disrupt the symmetry in the Fourier space, potentially leading to the collapse of
network optimization. Therefore, we scan half of the spectrum and then deduce the other half based
on the central symmetry of the amplitude and the anti-central symmetry of the phase.

Specifically, we design two scanning strategies, as illustrated in the Figure 2. The first scanning
method employs a dual zigzag pattern named bilateral zigzag, starting from the vertex of the highest
frequency on one side of the spectrum, progressing in a zigzag pattern toward the center’s low fre-
quencies; similarly, it then zigzags to the opposite side’s highest frequency. This scanning approach
not only models the association between high and low frequencies but also takes into account the
periodicity of the Fourier spectrum. Due to the periodic nature of the Fourier transform, the high-
frequency ends on either side should, in fact, be contiguous. The second method builds upon the
low-to-high frequency sequence established by zigzag scanning and conducts a scan from low to
high frequencies, which is named progressive zigzag. This method is motivated by the tendency
of neural networks to initially learn low-frequency information when extracting image characteris-
tics. Following the previous method (Liu et al., 2024; Guo et al., 2024), we reverse the above two
scanning methods as additional scanning directions.

For the channel dimension Fourier space, since it is a one-dimensional sequence arranged in order
of low to high frequencies, we directly scan it one-dimensionally. Similarly, due to the symmetry of
the Fourier transform, we scan only half and derive the other half. Through Fourier space scanning
in both spatial and channel dimensions, we can correlate the connections between frequencies in an
orderly manner, thereby making full use of frequency information to improve rain removal.

3.3 FOURIERMAMBA

3.3.1 OVERALL FRAMEWORK

In Figure 3, we illustrate our proposed FourierMamba. Given a rainy image I ∈ RH×W×3,
FourierMamba first uses 3 × 3 convolution layers to generate shallow features with dimensions
of H×W ×C, where H and W represent height and width, and C denotes the number of channels.
Subsequently, we employ a multi-scale U-Net architecture to obtain deep features. This stage con-
sists of a stack of Fourier Residual State-Space Groups, each containing several Fourier Residual
State-Space Blocks (FRSSB). The FRSSB incorporates our two core designs: the Fourier Spatial
Interaction SSM block and the Fourier Channel Evolution SSM block. They correlate Fourier do-
main information from spatial and channel dimensions, respectively, to fully leverage frequency
information.

6
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3.3.2 FOURIER SPATIAL INTERACTION SSM

The structure of the Fourier Spatial Interaction State Space Model (FSI-SSM) is shown in Figure 3.
We first apply LayerNorm to transform the input features Fin into Fl. To facilitate the interaction
between spatial and frequency information, FSI-SSM employs both a Fourier branch and a spatial
branch to collaboratively process Fin.

Fourier Branch: Fl is transformed into the Fourier spectrum through the Fast Fourier Transform,
subsequently decomposed into the amplitude spectrum A(Fl) and phase spectrum P(Fl). The am-
plitude spectrum and phase spectrum are then processed separately using the progressive frequency
scanning method illustrated in Figure 2 to obtain A′(Fl) and P ′(Fl).

A′(Fl) = FourScan(A(Fl)),

P ′(Fl) = FourScan(P(Fl)),
(6)

where FourScan is the sequence transformation using the Fourier space scan described in Sec. 3.2.
Following a series of works (Liu et al., 2024; Guo et al., 2024; Zhen et al., 2024), the sequence
transformation employs the following operation sequence: DWConv → SiLU → SSM →
LayerNorm. We then perform an inverse Fourier transform on the processed spectrum and multi-
ply it with the output of SiLU.

Ff = (F−1(A′(Fl),P ′(Fl)))⊙ SiLU(Fl), (7)

where Ff is the output of the fourier branch, and ⊙ is the Hadamard product.

Spatial Branch In the spatial domain, we feed the input features Fl into two parallel sub-branches.
One sub-branch activates the features using the SiLU function. The other sub-branch performs
spatial Mamba on features after 1 × 1 convolution. Specifically, spatial Mamba adopts the same
operation sequence as the above frequency branch but the scanning in SSM uses the two-dimensional
selective scanning module shown in Figure 3, which follows previous work (Liu et al., 2024; Guo
et al., 2024). Finally, the outputs of the two sub-branches are multiplied element-wise to obtain the
output Fs.

Fs = SpaScan(Conv(Fl))⊙ SiLU(Fl), (8)
where Conv is 1×1 convolution and SpaScan is the spatial Mamba mentioned above. Subsequently,
we employ a residual connection to add the spatial output to Fin. The spatial branch captures global
features in the spatial domain which complement the frequency correlations captured by the Fourier
branch in the frequency domain, thereby benefiting the performance of image deraining. Hence, we
concatenate the outputs of the spatial and frequency branches and use a 1 × 1 convolution for the
fusion of spatial and frequency information.

3.3.3 FOURIER CHANNEL EVOLUTION SSM

Previous work (Guo et al., 2024) claims that selecting key channels can avoid channel redundancy
in SSM. Since each channel contains the information of all channels after the channel-dimension
Fourier transform (C-FFT), we perform channel interaction in the Fourier domain to efficiently
correlate different frequencies of channels. As depicted in Figure 3, our proposed Fourier Channel
Evolution SSM (FCE-SSM) consists of three sequential parts: applying the Fourier transform along
the channel dimension to obtain channel-wise Fourier domain features, scanning its amplitude and
phase, then restoring to the spatial domain. Specifically, assuming the input features are denoted as
Fr ∈ RHr×Wr×Cr , we first perform global average pooling on it.

Fg =
1

HrWr

Hr−1∑
h=0

Wr−1∑
w=0

Fg(h,w), (9)

where Fg ∈ R1×1×Cr corresponds to the center point of the amplitude spectrum of Fr (see supple-
mentary material), which effectively encapsulates the global information of the feature. Then, we
use the channel-dimensional Fourier transform shown in Equ. 3 on Fg to obtain F(Fg)(z). Based on
this, we use Equ. 4 for F(Fg)(z) to obtain its amplitude component A(Fg)(z) and phase component
P(Fg)(z). Since the amplitude spectrum and phase spectrum have obvious information meaning,
we choose to perform Mamba scanning on these two components.

A(Fg)(z)
′ = ChaScan(A(Fg)(z)),

P(Fg)(z)
′ = ChaScan(P(Fg)(z)),

(10)
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Figure 5: Qualitative comparison on Rain100H (Yang et al., 2017). Zoom in for better visualization.
where ChaScan is a one-dimensional sequence transformation that uses the following sequence of
operations: DWConv → SiLU → SSM → LayerNorm. Its scanning method is shown in
Figure 2. After the Mamba correlates different frequencies in the channel dimension, we perform
an inverse Fourier transform on it and multiply the result with the channel features after SiLU
activation.

Fa = (F−1(A(Fg)(z)
′,P(Fg)(z)

′))⊙ SiLU(Fg), (11)

where Fa ∈ R1×1×Cr is the channel feature after correlating different frequencies. Finally, we
multiply it with the spatial feature in a form of attention to get the output Fc ∈ RHr×Wr×Cr .

Fc = Fa ⊙ Fr. (12)

3.3.4 OPTIMIZATION

We impose constraints in both the spatial and frequency domains. In the spatial domain, we utilize
the L1 loss between the final output Yout and the ground truth Ygt. In the frequency domain, we
apply the L1 loss based on the Fourier transform. The overall loss function is formulated as follows:

Ltotal = ∥Yout − Ygt∥1 + λ ∥F(Yout)−F(Ygt)∥1 , (13)

where λ is the balancing weight. In particular,λ is set to 0.02 empirically.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. For training, we employ the widely used Rain13k dataset (Chen et al., 2021). It contains
13,712 image pairs in the training set, and we evaluate the results on Rain100H (Yang et al., 2017),
Rain100L (Yang et al., 2017), Test2800 (Fu et al., 2017b), and Test1200 (Zhang & Patel, 2018).

Evaluation Metrics. Following previous work (Zamir et al., 2021; 2022), we adopt two commonly
used quantitative metrics for evaluations: Peak Signal-to-Noise Ratio (PSNR) (Huynh-Thu & Ghan-
bari, 2008) and Structural Similarity Index (SSIM) (Wang et al., 2004).

Implementation details. Our model is implemented within the PyTorch framework and executed on
an NVIDIA A100 GPU. The number of blocks per layer has an impact on both the model’s parameter
count and its deraining performance. After balancing the weights, we configure the blocks per layer
as [2, 3, 3, 4, 3, 3, 2], which allows us to achieve commendable performance with a reasonable
number of parameters. We adopt the progressive training strategy. Specifically, we set the total
number of iterations to 80,000 and image sizes to [160, 256, 320, 384], with the corresponding batch
sizes of [8, 4, 2, 1]. We utilize the Adam optimizer with default parameters. The initial learning rate
is established at 3× e−4, followed by a gradual decay to 1× e−6 using a cosine annealing schedule.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Comparison on Benchmark Datasets. We first verify the effectiveness of FourierMamba through
training models on a mixture of synthetic datasets. We compare our method with these deraining
methods: DerainNet (Fu et al., 2017a), UMRL (Yasarla & Patel, 2019), RESCAN (Li et al., 2018),
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Table 1: Quantitative comparison (PSNR/SSIM) for Image Deraining on five benchmark datasets.
The highest and second-highest performances are marked in bold and underlined. ’-’ indicates the
result is not available.

Method Venue Rain100H (Yang et al., 2017) Rain100L (Yang et al., 2017) Test2800 (Fu et al., 2017b) Test1200 (Zhang & Patel, 2018) Param(M) GFlopsPNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑
DerainNet (Fu et al., 2017b) TIP’17 14.92 0.592 27.03 0.884 24.31 0.861 23.38 0.835 0.058 1.453

UMRL (Yasarla & Patel, 2019) CVPR’19 26.01 0.832 29.18 0.923 29.97 0.905 30.55 0.910 0.98 -
RESCAN (Li et al., 2018) ECCV’18 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882 1.04 20.361
PreNet (Ren et al., 2019) CVPR’19 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 0.17 73.021

MSPFN (Jiang et al., 2020) CVPR’20 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 13.22 604.70
SPAIR (Purohit et al., 2021) ICCV’21 30.95 0.892 36.93 0.969 33.34 0.936 33.04 0.922 - -
MPRNet (Zamir et al., 2021) CVPR’21 30.41 0.890 36.40 0.965 33.64 0.938 32.91 0.916 3.64 141.28

Restormer (Zamir et al., 2022) CVPR’22 31.46 0.904 38.99 0.978 34.18 0.944 33.19 0.926 24.53 174.7
Fourmer (Zhou et al., 2023) ICML’23 30.76 0.896 37.47 0.970 - - 33.05 0.921 0.4 16.753
IR-SDE (Luo et al., 2023a) ICML’23 31.65 0.904 38.30 0.980 30.42 0.891 - - 135.3 119.1

MambaIR (Guo et al., 2024) arxiv’24 30.62 0.893 38.78 0.977 33.58 0.927 32.56 0.923 31.51 80.64
VMambaIR (Shi et al., 2024) arxiv’24 31.66 0.909 39.09 0.979 34.01 0.944 33.33 0.926 - -

FreqMamba (Zhen et al., 2024) arxiv’24 31.74 0.912 39.18 0.981 34.25 0.951 33.36 0.931 14.52 36.49

FourierMamba(Ours) - 31.79 0.913 39.73 0.986 34.23 0.949 34.76 0.938 17.62 22.56

Input PreNet MPRNet Restormer MambaIR VmambaIR FreqMamba Ours

Figure 6: Qualitative comparison of real-world rainy images from Internet-Data (Wang et al., 2019).

PreNet (Ren et al., 2019), MSPFN (Jiang et al., 2020) , SPAIR (Purohit et al., 2021) , MPRNet (Za-
mir et al., 2021) , Restormer(Zamir et al., 2022), Fourmer (Zhou et al., 2023), IR-SDE (Luo et al.,
2023b), MambaIR (Guo et al., 2024) VMambaIR(Shi et al., 2024) and FreqMamba(Zhen et al.,
2024). Table 1 reports the performance evaluation on four datasets. It can be seen that our method
achieves the best performance on most datasets, which emphasizes the effectiveness of Fourier-
Mamba in improving deraining performance. The suboptimal results are obtained on Test2800,
which may be because the results of FreqMamba are obtained on the training set of Test2800, while
we are trained on rain13k.

To demonstrate the enhanced fidelity and detail levels exhibited by the images generated by our
proposed FourierMamba, we compare the visual quality of challenging degraded images from the
Rain100H dataset in Figure 5. Our method achieves excellent results when faced with complex or
extremely severe rain streaks. Compared to previous methods, our FourierMamba achieves impec-
cable performance in both global and local restoration. For instance, by zooming into the red boxed
area in Figure 5, our method removes more rain streak residues while better restoring texture details.
We provide additional visual results in the Appendix.

Real-world Deraining Transferred from Synthetic Datasets.

To verify the generalization of the proposed method in real-world scenarios, we use the model
trained on Rain13k to examine the real-world deraining capabilities. We evaluate the model trained
on the synthetic dataset on the real-world dataset Inrernet-Data (Wang et al., 2019) without ground
truth. As shown in Figure 6, FourierMamba is able to remove these complex rains and restore the
clean background. In contrast, other deraining methods do not handle the effect of rain cleanly.
More generalization results in real-world scenarios can be found in the Appendix.

Training On Real-world Rainy Datasets.

To further explore the potential of the proposed method, we use the real-world dataset SPAData
(Wang et al., 2019) to train FourierMamba. In Table 2, our method is compared with these methods
RESCAN (Li et al., 2018), PReNet (Ren et al., 2019), SPDNet (Yi et al., 2021), DualGCN (Fu
et al., 2021), Restormer (Zamir et al., 2022), and DRSformer (Chen et al., 2023a) with the same
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Table 2: Quantitative comparison of training and testing on the real-world dataset SPA-Data.

Method RESCAN PReNet SPDNet DualGCN Restormer DRSformer Ours
PSNR 38.11 40.16 43.20 44.18 47.98 48.54 49.18
SSIM 0.9707 0.9816 0.9871 0.9902 0.9921 0.9924 0.9931

experimental settings. Surprisingly, we observe that FourierMamba acquires significant real-world
rain removal capabilities. This shows that our method can effectively learn the precipitation model
of real rain.

4.3 ABLATION STUDIES

We perform ablations on the key designs and scanning methods of the framework on the Rain100L.

Fourier Spatial Interaction SSM (FSI-SSM) and Fourier Channel Evolution SSM (FCE-SSM).
We replace the mamba scan in FSI-SSM and FCE-SSM with 1×1 convolution, called w/o FSI-SSM
and w/o FCE-SSM respectively. It can be seen from Table 3 that since 1 × 1 convolution cannot
model the dependence of different frequencies, its performance is worse than the mamba scan in the
Fourier domain in both the spatial dimension and the channel dimension.

Fourier prior. We do not use Fourier transform in the spatial dimension and channel dimension re-
spectively, but directly perform mamba scanning, which are called without spatial dimension Fourier
(w/o SDF) and without channel dimension Fourier (w/o CDF) respectively. It can be seen from
Table 3 that after losing the Fourier prior in the spatial dimension and channel dimension, the per-
formance drops significantly. This proves the effectiveness of Fourier prior for removing rain from
images. The Fourier prior is also helpful to improve the visual effect, please refer to the Appendix.

Table 3: Ablation studies of key designs in the proposed method.

w/o FSI-SSM w/o FCE-SSM w/o SDF w/o CDF Ours
PSNR 39.05 39.08 38.25 38.72 39.73
SSIM 0.9835 0.9836 0.9810 0.9827 0.9856

Scanning method in Fourier space. We compare several scanning methods of the spatial dimension
Fourier space, with the same amount of calculation. Table 4 illustrates that the performance of the
two scanning methods we proposed is better than the classic two-dimensional scanning method (Liu
et al., 2024). And thanks to complementarity, the combination of the two methods can also further
improve performance. The visual comparison in Figure 4 supports this.

Table 4: Ablation study of different scanning methods in Fourier space.

Classic(Liu et al., 2024) Bilateral Progressive Ours
PSNR 38.82 39.31 39.28 39.73
SSIM 0.9817 0.9844 0.9843 0.9856

5 CONCLUSION

In this paper, we propose a novel image deraining framework, FourierMamba, which utilizes mamba
to correlate frequencies in the Fourier space, thus fully exploiting frequency information. Specifi-
cally, we design the mamba framework by integrating the unique arrangement of frequency order-
ings within the Fourier domain across spatial and channel dimensions. In the spatial dimension,
we devise two zigzag-based methods to scan frequencies, systematically correlating them. In the
channel dimension, due to the ordered arrangement of frequencies along the axis, we directly ap-
ply mamba for frequency correlation. This work introduces a new research strategy to address the
underutilization of frequency information in image deraining that affects performance. Extensive
experimental results on multiple benchmarks validate the effectiveness of the proposed method.
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A APPENDIX

A.1 LIMITATION

In this work, we introduce FourierMamba and extensively validate its efficacy for image deraining
through experiments. Our experiments primarily leverage the widely used U-shaped architecture.
We plan to further validate the effectiveness of combining Fourier priors with Mamba on more
architectures, such as isotropic and multi-stage architecture.

Furthermore, given the proven priors of Fourier transform for capturing rain streaks, we choose to
first validate FourierMamba on image deraining. Our work could also offer novel insights for other
low-level vision fields, though it may necessitate integrating priors tailored to the distinct differences
between various low-level tasks. Given the universal need across various low-level tasks for Fourier
priors and the importance of correlating frequencies, the performing improvements can be positively
anticipated. We will explore applications in other low-level tasks in our future work.

A.2 BROADER IMPACTS

Due to uncontrollable weather conditions, image acquisition systems inevitably suffer interference
from rain. Images captured during rainy conditions experience a significant decline in the quality of
object details and contrast due to rain present in the air. Images tainted by rain can also severely im-
pact the performance of outdoor computer vision systems, including autonomous driving and video
surveillance. Therefore, image deraining itself holds significant research and application value. Our
proposed FourierMamba combines the priors of Fourier space and the correlation modeling capabil-
ity of Mamba, enabling the network to tackle more complex image deraining tasks. However, from
a societal perspective, negative consequences might also follow. For instance, over-reliance on im-
age deraining technology could introduce deviations from actual image textures, affecting effective
judgment in autonomous driving and video surveillance. In these cases, it is necessary to combine
expert knowledge to make rational decisions.

A.3 INFERENCE TIME OF THE MODEL

In this section, we compare the inference time of the proposed method with several state-of-the-art
methods. The comparison results of the model inference time using 512 × 512 images on NVIDIA
RTX 4090 GPU are shown in Table 5. It can be seen that the inference time of our model is compa-
rable to that of other methods.

Table 5: Runtime comparison between our method and other approaches.

Method MambaIR VmambaIR FreqMamba Restormer Ours
Runtime (s) 0.534 0.423 1.837 0.253 0.523

A.4 RESULTS ON TEST100

In this section, we add some performance comparisons with other methods on Test100 as shown
in Table 6. All methods are trained on rain13k and then tested on Test100. It can be seen that our
method still achieves excellent deraining performance.

Table 6: Performance comparison on Test100. PSNR (↑) and SSIM (↑) are reported.

Metric PReNet MPRNet Restormer MambaIR VmambaIR FreqMamba Ours
PSNR 24.81 30.27 32.00 31.82 31.84 31.89 32.07
SSIM 0.851 0.897 0.923 0.922 0.918 0.921 0.925

A.5 ABLATION STUDIES AND COMPUTATIONAL OVERHEAD

To further demonstrate the effectiveness of Mamba, we present the impact of computational over-
head in the first ablation study. For the ablation of FSI-SSM, we compress our model by reducing
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the number of channels and blocks, achieving a computational cost similar to that of the ”w/o FSI-
SSM” variant. The comparison is shown in Table 7. As observed, the model with FSI-SSM still
achieves better performance. For the ablation of FCE-SSM, the computational overhead of the vari-
ant without FCE-SSM (w/o FCE-SSM) in Table 3 is similar to that of the model with FCE-SSM.
The ”w/o FCE-SSM” variant stacks several 1 × 1 convolutions with residual connections to match
the parameter count of Mamba. The specific computational overhead and performance are shown
in Table 8. It is evident that, with a similar parameter count, our method outperforms the ”w/o
FCE-SSM” variant.

Table 7: The computational overhead of the ablation study on FSI-SSM.

Method PSNR SSIM Flops(G) Params(M)
w/o FSI-SSM 39.05 0.9835 14.42 10.82

Ours 39.37 0.9845 14.64 10.12

Table 8: The computational overhead of the ablation study on FCE-SSM.

Method PSNR SSIM Flops(G) Params(M)
w/o FCE-SSM 39.08 0.9836 21.08 17.81

Ours 39.73 0.9856 22.56 17.62

A.6 REASONS FOR USING CHANNEL-DIMENSIONAL FOURIER

To address the limitation of Fourier transform not accounting for channel evolution, we introduce
channel-dimension Fourier transform. A pivotal motivation is due to different channels often dis-
playing varying properties of degradation information, which also determine the global information
of the image when conjunct different channels. A comparable deduction can be drawn from style
transfer research, where the Gram matrix signifies global style information (Li et al., 2017). This
inspires us to employ Fourier transform on the channel dimension to enrich the representation of
global information.

A.7 THE RELATIONSHIP BETWEEN GLOBAL AVERAGE POOLING AND FOURIER
TRANSFORM

We believe that the global average pooling equals A(0, 0) in the amplitude. In the Appendix, we
further verify this. Typically, the Spatail Fourier transform is expressed as:

F (x) (u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x (h,w) e−j2π( h
H u+ w

W v). (14)

The center point of the amplitude spectrum means that u and v are 0. The formula is as follows:

F (x) (0, 0) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x (h,w) . (15)

It can be seen that the above formula is essentially to find the average value of the entire feature map.
Therefore, global average pooling (GAP) is equivalent to taking the center point of the amplitude
spectrum.

A.8 PERFORMANCE ON OTHER LOW-LEVEL VISION TASKS

To further demonstrate the effectiveness of our approach, we investigate the performance of our
model on other low-level vision tasks. Following FreqMamba (Zhen et al., 2024), we evaluate our
method on low-light enhancement and image dehazing. We use the LOL-V1 (Wei et al., 2018) and
LOL-V2-synthetic (Wei et al., 2018) datasets to evaluate the performance of our method on low-light
enhancement, and the Dense-Haze (Ancuti et al., 2019) and NH-HAZE (Ancuti et al., 2020) datasets
are used to evaluate the performance of our method on real-world image dehazing. The results for
low-light enhancement are shown in the Table 9. The comparison results for image dehazing are
presented in the Table 10. It can be seen that our method also demonstrates significant potential for
other image restoration tasks.
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Table 9: Comparison of methods on LOL-V1 and LOL-V2-Syn datasets.

Method LOL-V1 LOL-V2-Syn
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

RetinexNet (Wei et al., 2018) 18.38 0.7756 19.92 0.8847
KinD (Zhang et al., 2019) 20.38 0.8248 22.62 0.9041
ZeroDCE (Guo et al., 2020) 16.80 0.5573 17.53 0.6072
KinD++ (Zhang et al., 2021) 21.30 0.8226 21.17 0.8814
URetinex-Net (Wu et al., 2022) 21.33 0.8348 22.89 0.8950
FECNet (Huang et al., 2022) 22.24 0.8372 22.57 0.8938
SNR-Aware (Xu et al., 2022) 23.38 0.8441 24.12 0.9222
FreqMamba (Zhen et al., 2024) 23.57 0.8453 24.46 0.9355
Ours 23.78 0.8467 24.75 0.9452

Table 10: Comparison of methods on Dense-Haze and NH-HAZE datasets.

Method Dense-Haze NH-HAZE
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

DCP (He et al., 2010) 10.06 0.3856 10.57 0.5196
DehazeNet (Cai et al., 2016) 13.84 0.4252 16.62 0.5238
GridNet (Bozcan et al., 2021) 13.31 0.3681 13.80 0.5370
MSBDN (Dong et al., 2020) 15.37 0.4858 19.23 0.7056
AECR-Net (Wu et al., 2021) 15.80 0.4660 19.88 0.7173
FreqMamba (Zhen et al., 2024) 17.35 0.5827 19.93 0.7372
Ours 18.91 0.6763 20.03 0.7508

A.9 DIFFERENCES BETWEEN THE PROPOSED METHOD AND FREQMAMBA

Our method focuses on customized design based on the characteristics of Fourier space, combining
Fourier priors with state space models and exploring the potential of introducing Mamba directly in
the Fourier domain. In contrast, FreqMamba operates in the Fourier space using only 1 × 1 con-
volutions, which fails to fully utilize the rich frequency information inherent to the Fourier domain.
Specifically, FreqMamba applies Mamba scanning in a wavelet-transformed domain. However, the
wavelet-transformed domain lacks the notable advantages of the Fourier domain, such as the Fourier
transform’s ability to decouple degradations and its global representation properties. Additionally,
after wavelet decomposition, FreqMamba divides the image into multiple patches and performs
spatial scanning within each patch. This design limits FreqMamba’s ability to effectively model
frequency correlations.

In contrast, our method performs Mamba scanning directly in the Fourier domain, fully leveraging
the global characteristics of the Fourier transform. This allows our approach to better capture rain
streaks, which often exhibit high apparent repetitiveness. Consequently, from a visual perspective,
our method demonstrates significantly better performance in removing rain streaks. As shown in
Figure 7, we show the feature maps and restoration results of FreqMamba and our method. It can be
seen that our method can better capture the rain lines and thus remove the rain lines more cleanly.

Input Freq_fea Ours_fea Freq_result Ours_result GT

Figure 7: Feature maps and restoration results of FreqMamba and our method.

Furthermore, the performance of FreqMamba shown in Table 1 is actually obtained by training and
testing separately on each dataset. In contrast, like most other methods, we train on Rain13k and
then test on individual datasets. This discrepancy may lead to an overestimation of FreqMamba’s
performance in Table 1. We used the open-source code of FreqMamba to train on rain13k and then
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tested on various datasets. The results are shown in Table 11. It can be seen that under the same
experimental settings, our performance is better than FreMamba.

Table 11: Performance comparison with FreqMamba.

Method Test100 Rain100H Rain100L Test2800 Test1200 Average
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

FreqMamba 31.89 0.921 31.67 0.910 39.08 0.977 33.96 0.943 33.31 0.925 33.98 0.9352
Ours 32.07 0.925 31.79 0.913 39.73 0.986 34.23 0.949 34.76 0.938 34.52 0.9422

A.10 COMPARISON WITH OTHER METHODS SUCH AS DRSFORMER AND FADFORMER

In this section, we compare our method with RCDNet (Wang et al., 2020),MPRNet (Zamir et al.,
2021), SPDNet (Yi et al., 2021),DualGCN (Fu et al., 2021),HCN (Fu et al., 2023),Uformer (Wang
et al., 2022b),IDT (Xiao et al., 2022),Restormer (Zamir et al., 2022),DRSformer (Chen et al., 2023a)
and FADformer (Gao et al.), as shown in Table 12. To ensure fairness, we adopt the same exper-
imental setup as the other methods, performing independent training and testing on each dataset,
including Rain200L/H (Yang et al., 2017), DID-Data (Zhang & Patel, 2018), DDN-Data (Fu et al.,
2017b), and SPA (Wang et al., 2019). The results demonstrate that our method achieves superior
performance on the majority of the datasets.

Table 12: Performance comparison of methods across various datasets.

Method Rain200L Rain200H DID-Data DDN-Data SPA-Data Average
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

RCDNet 39.17 0.9885 30.24 0.9048 34.08 0.9532 33.04 0.9472 43.36 0.9831 35.97 0.9554
MPRNet 39.47 0.9825 30.67 0.911 33.99 0.959 33.1 0.9347 43.64 0.9844 36.17 0.9543
SPDNet 40.5 0.9875 31.28 0.9207 34.57 0.956 33.15 0.9457 43.2 0.9871 36.54 0.9594

DualGCN 40.73 0.9886 31.15 0.9125 34.37 0.962 33.01 0.9489 44.18 0.9902 36.68 0.9604
HCN 41.31 0.9892 31.34 0.9248 34.7 0.9613 33.42 0.9512 45.03 0.9907 37.16 0.9634

Uformer 40.2 0.986 30.8 0.9105 35.02 0.9621 33.95 0.9545 46.13 0.9913 37.22 0.9609
IDT 40.74 0.9884 32.1 0.9344 34.89 0.9623 33.84 0.9549 47.35 0.993 37.78 0.9666

Restormer 40.99 0.989 32.0 0.9329 35.29 0.9641 34.20 0.9571 47.98 0.9921 38.09 0.9670
DRSformer 41.23 0.9894 32.17 0.9326 35.35 0.9646 34.35 0.9588 48.54 0.9924 38.32 0.9676
FADformer 41.80 0.9906 32.48 0.9359 35.48 0.9657 34.42 0.9602 49.21 0.9934 38.67 0.9691

Ours 42.27 0.9908 32.71 0.9395 35.49 0.9659 35.58 0.9599 49.18 0.9931 39.05 0.9698

A.11 DIFFERENCE BETWEEN MAMBA AND CONVOLUTION IN PROCESSING FOURIER
FREQUENCIES

First, Mamba utilizes sequence modeling to integrate information across all frequency bands, effec-
tively leveraging the complementary relationships between different bands. In contrast, convolution,
as a local operation, struggles to holistically model global features across all frequency bands when
processing frequency information in the Fourier domain. This limitation significantly constrains its
capacity in the Fourier space. Second, Mamba’s sequence modeling is orderly, which can help the
network establish an orderly dependency relationship between different frequencies. This character-
istic is critical for modeling image degradation information. Conversely, convolution is insufficient
in capturing the dependencies between high and low frequencies in the Fourier domain, thereby
weakening its ability to accurately represent degradation features. In summary, based on these two
advantages, Mamba achieves better coordination of high-frequency and low-frequency information
in the Fourier domain during the image restoration process.

We process the Fourier frequencies using both Mamba and convolution separately, and then visualize
their features, as shown in Figure 8. It can be seen our method (i.e., Mamba) not only captures rain
streaks effectively but also extracts structural information from the background with high accuracy.

A.12 MORE VISUAL DEAINING COMPARISON ON SYNTHETIC DATASETS

In this section, we provide more visual deraining comparisons on synthetic datasets to further
demonstrate the effectiveness of our method. Specifically, we perform visual comparisons on sev-
eral datasets in Table 1. Figure 9 shows more visualization results on Rain100H. As with the results
in the main text, it shows that our method can better remove rain effects and prevent artifacts, which
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Input Mamba GTConvolution

Figure 8: Feature visualization comparison of convolution and mamba on Rain100H.
MAXIM RestormerPreNet MPRNet Ours GTInput

Figure 9: More qualitative comparison on Rain100H (Yang et al., 2017).

is attributed to the progressive frequency correlation. Figures 10, 11, and 12 show the visualization
results on the simulation datasets Rain100L, Test2800, and Test1200, respectively.

A.13 MORE REAL-WORLD DETRAINING RESULTS BY USING SYNTHETIC DATA

In this section, we provide more real-world rain removal cases to verify the generalization ability of
the model trained on the synthetic dataset (rain13k). The quantitative comparisons directly tested
on SPA-Data are shown in Table 13. The visualization results are shown in Figure 13. Our method
is superior to other methods in rain removal and detail recovery. To further demonstrate its general-
ization ability in the real world, we also tested it on a real-world dataset RE-RAIN —(Chen et al.,
2023b) , as shown in Figure 14. FourierMamba can obtain the most visually pleasing results. In ad-
dition, we also tested our method directly on RainDS-Real (Quan et al., 2021), and the quantitative
results are shown in the table 14. Figure 15 shows the visualization results on RainDS-Real. It can
be seen that our method can effectively remove real rain.

A.14 MORE REAL-WORLD VISUAL DERAINING RESULTS BY TRAINING REAL-WORLD RAINY
IMAGES

Training and testing on real-world rainy images can verify the representation ability of the model in
the real world. In Section 4.2, we use the real-world dataset SPA-Data to train FourierMamba and
report quantitative results. In this section, we show the visualization results of training and testing

Table 13: Quantitative comparison of testing on the real-world dataset SPA-Data.

Method PReNet RESCAN HiNet MSPFN Restormer MPRNet Ours
PSNR 31.33 31.56 33.89 34.03 34.18 34.54 35.27
SSIM 0.9501 0.9423 0.9500 0.9471 0.9493 0.9548 0.9575
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Input PreNet MPRNet MAXIM Restormer Ours GT

Figure 10: Qualitative comparison on Rain100L (Yang et al., 2017). Zoom in for better visualization.

OursInput GTMAXIM RestormerMPRNet

Figure 11: Qualitative comparison on Test2800 (Fu et al., 2017b). Zoom in for better visualization.

Input PreNet MPRNet MAXIM Restormer Ours GT

Figure 12: Qualitative comparison on Test1200 (Zhang & Patel, 2018). Zoom in for better visual-
ization.
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Table 14: Quantitative results of testing on the real-world dataset RainDS-Real (Quan et al., 2021).

Method PReNet RESCAN Restormer HINet MSPFN MPRNet Ours
PSNR 24.15 24.29 24.54 24.71 24.76 25.07 25.12
SSIM 0.711 0.717 0.727 0.9731 0.729 0.736 0.738

Input PreNet MPRNet Restormer Ours GT

Figure 13: Qualitative comparison of real-world rainy images from SPA-Data(Wang et al., 2019).

Input PreNet MPRNet Restormer Ours

Figure 14: Qualitative comparison of real-world rainy images from RE-RAIN (Chen et al., 2023b).
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Input PreNet MPRNet Restormer Ours GT

Figure 15: Qualitative results of real-world rainy images from RainDS-Real. (Quan et al., 2021).

Restormer DRSformerDualGCN SPDNet Ours GTInput

Figure 16: Qualitative results of training and testing on SPA-Data. (Wang et al., 2019).

using SPA-Data, as shown in Figure 16. It can be seen that our method excels at removing rain and
recovering details to obtain pleasing visual results. In addition, we also train and test FourierMamba
on RainDS-Real (Quan et al., 2021) to further verify its effectiveness in real-world scenes. As shown
in Table 15, our method can still achieve excellent performance.

Table 15: Quantitative comparison of training and testing on the real-world dataset RainDS-Real.

Method PReNet MSPFN RCDNet MPRNet SwinIR Restormer Ours
PSNR 26.43 26.45 26.71 27.51 27.53 27.57 27.69
SSIM 0.7294 0.7270 0.7180 0.7355 0.7425 0.7438 0.7482

A.15 COMPARISON WITH FREMAMBA ON SPA-DATA

We use the recently open-source code of FreqMamba to train and test on the SPA-Data dataset, and
the results are shown in Table 16. It can be seen that our method performs better than FreqMamba
in real-world rain removal.

A.16 COMPARISON WITH FREMAMBA ON TEST2800

In Table 1, our method achieves suboptimal results on Test2800, lagging behind FreMamba (Zhen
et al., 2024). FreMamba is trained exclusively on the training set of TEST2800 and then tested on
its test set, whereas we train on rain13k and test on Test2800. The rain13k dataset not only contains
the training set of Test2800 but also a significant number of additional images, which may lead
to potential forgetting and consequently affect the network’s performance on Test2800. When we
apply the same setup as FreqMamba for training on Test2800, the results are shown in the Table 17.
It can be seen that our method outperforms FreqMamba with uniform settings.

A.17 METRICS THAT CAN BETTER REFLECT HUMAN PERCEPTIONS

In this section, we use some metrics that better reflect human perception to evaluate our method. We
use the more widely used perceptual metrics BRISQUE (Mittal et al., 2012b), NIQE (Mittal et al.,
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Table 16: Quantitative comparison with FreMamba on the SPA-Data.

SPA FreqMamba Ours
PSNR 48.47 49.18
SSIM 0.9923 0.9931

Table 17: Quantitative comparison with FreMamba on Test2800 with uniform settings.

Method FreqMamba Ours
PSNR 34.25 34.32
SSIM 0.951 0.964

2012a), SSEQ (Liu et al., 2014), as shown in Table 18. It can be seen that our method can also
achieve excellent performance on perceptual metrics.

Table 18: Performance comparison of different methods on various datasets. Metrics include
BRISQUE, NIQE, and SSEQ.

Dataset Rain100L Rain100H Test2800 Test1200 Test100
Method BRISQUE ↓ NIQE ↓ SSEQ ↓ BRISQUE ↓ NIQE ↓ SSEQ ↓ BRISQUE ↓ NIQE ↓ SSEQ ↓ BRISQUE ↓ NIQE ↓ SSEQ↓ BRISQUE ↓ NIQE ↓ SSEQ ↓
MPRNet 17.791 6.816 12.702 16.287 6.973 13.860 15.782 6.251 9.470 23.434 5.742 12.653 23.526 6.903 12.767
MAXIM 11.960 6.402 9.658 14.622 6.929 8.034 15.272 6.114 8.760 25.026 5.573 14.760 22.433 6.770 12.615
Restormer 16.253 6.555 11.480 17.606 6.843 13.953 18.601 6.169 9.579 25.507 5.534 16.121 23.937 7.024 14.382
MambaIR 15.662 6.553 11.527 10.350 6.104 8.719 13.246 6.165 8.332 20.743 5.570 10.877 17.886 5.969 8.390
VmambaIR 16.073 6.651 11.061 11.686 5.713 8.302 13.465 6.114 8.306 20.851 5.553 10.610 17.805 5.751 8.548
FreqMamba 14.894 6.465 10.286 15.151 5.450 4.704 19.942 5.439 10.371 22.132 5.785 10.742 18.934 5.898 7.247
Ours 12.178 6.261 10.008 10.607 6.009 5.826 12.895 5.258 8.286 21.467 5.538 10.839 17.738 5.958 7.102

A.18 MORE ABOUT THE OPTIMIZATION

In the main body, we describe that apply the L1 loss based on the Fourier transform. Here, we intro-
duce the loss function in the frequency domain in further detail. we first use the Fourier transform
to convert Yout and Ygt into the Fourier space. Then, the L1-norm of the amplitude difference and
phase difference between Yout and Ygt are calculated and summed to produce the total frequency
loss as following:

∥F(Yout)−F(Ygt)∥1 = ∥A(Yout)−A(Ygt)∥1 + ∥P(Yout)− P(Ygt)∥1 . (16)

A.19 ABLATION STUDY ON DIFFERENT FREQUENCY DOMAIN LOSS FUNCTIONS

We use three additional frequency domain loss functions: Phase Consistency Loss (PCL), Frequency
Distribution Loss (PDL), and Focal Frequency Loss (FFL) (Jiang et al., 2021) for comparison with
the L1 frequency domain loss we use. PCL is defined as the mean squared error of the phase
difference between two images in the frequency domain, expressed as:

LPCL =
1

HW

∑
u,v

|P(Yout)(u, v)− P(Ygt)(u, v)|2 . (17)

FDL represents the difference in frequency domain amplitude distributions between two images,
expressed as:

LFDL =
1

HW

∑
u,v

|A(Yout)(u, v)−A(Ygt)(u, v)|2 . (18)

FFL focuses on frequency components that are difficult to synthesize by down-weighting the easier
ones, expressed as:

w(u, v) = |F(Yout)(u, v)−F(Ygt)(u, v)|α ,

LFFL =
1

HW

H−1∑
u=0

W−1∑
v=0

w(u, v) |F(Yout)(u, v)−F(Ygt)(u, v)|2 ,
(19)

where F(·)(u, v) represents the Fourier Transform, w(u, v) is the weight for the spatial frequency
at(u, v), and α is the scaling factor for flexibility (α = 1 in the experiments).
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We conduct ablation comparison experiments on these loss functions, as shown in Table 19. It can
be seen that the performance obtained by these four loss functions is similar. The focus of this work
is on the design of the network architecture, so we follow existing methods (Zhou et al., 2023; Zhen
et al., 2024) to use the L1 norm in the frequency domain. We will explore more frequency-domain
loss functions in future work.

Table 19: Comparison results of different frequency-domain loss functions.

PCL FDL FFL Ours
PSNR 39.67 39.69 39.75 39.73
SSIM 0.9848 0.9852 0.9859 0.9856

A.20 MORE VISUALIZATIONS FOR ABLATION STUDIES

In Section 4.3, we perform ablation studies on the key designs and scanning methods of the proposed
method. To further verify the effectiveness of the proposed method, we provide visualizations of the
above ablation studies. Specifically, we subtract the restored images obtained from each ablation
study from the ground truth to show the effect of each design. Figure 17 shows the visualization of
the ablation study in Table 3. It can be seen that all designs have a significant effect on rain removal.
Figure 18 shows the visualization of the ablation study of various scanning methods in Table 4. Both
Figures 4 and Figures 18 illustrate that orderly correlation of different frequencies can promote rain
removal.

Input OursW/o FCE SSM W/o CDFW/o SDFW/o FSI SSM

Figure 17: Visualization of ablation studies of various key designs of the proposed method.

Input GT Classical OursProgressiveBilateral

Figure 18: Visualization of ablation studies of different scanning methods in Fourier space.
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