
Under review as a conference paper at ICLR 2024

WHO LEAKED THE MODEL? TRACKING IP INFRINGERS
IN ACCOUNTABLE FEDERATED LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Federated learning (FL) emerges as an effective collaborative learning framework
to coordinate data and computation resources from massive and distributed clients
in training. Such collaboration results in non-trivial intellectual property (IP)
represented by the model parameters that should be protected and shared by the
whole party rather than an individual user. Meanwhile, the distributed nature of
FL endorses a malicious client the convenience to compromise IP through illegal
model leakage to unauthorized third parties. To block such IP leakage, it is essential
to make the IP identifiable in the shared model and locate the anonymous infringer
who first leaks it. The collective challenges call for accountable federated learning,
which requires verifiable ownership of the model and is capable of revealing the
infringer’s identity upon leakage. In this paper, we propose Decodable Unique
Watermarking (DUW) for complying with the requirements of accountable FL.
Specifically, before a global model is sent to a client in an FL round, DUW encodes
a client-unique key into the model by leveraging a backdoor-based watermark
injection. To identify the infringer of a leaked model, DUW examines the model
and checks if the triggers can be decoded as the corresponding keys. Extensive
empirical results show that DUW is highly effective and robust, achieving over
99% watermark success rate for Digits, CIFAR-10, and CIFAR-100 datasets under
heterogeneous FL settings, and identifying the IP infringer with 100% accuracy
even after common watermark removal attempts.

1 INTRODUCTION

Federated learning (FL) (Konečnỳ et al., 2015) has been widely explored as a distributed learning
paradigm to enable remote clients to collaboratively learn a central model without sharing their raw
data, effectively leveraging the massive and diverse data available in clients for learning and protecting
the data confidentiality. The learning process of FL models typically requires the coordination of
significant computing resources from a multitude of clients to curate the valuable information in the
client’s data, and the FL models usually have improved performance than isolated learning and thus
high commercial value. Recently, the risk of leaking such high-value models has drawn the attention
of the public. One notable example is the leakage of the foundation model from Meta (Vincent, 2023)
by users who gained the restricted distribution of models. The leakage through restricted distribution
could be even more severe in FL which allows all participating clients to gain access to the valued
model. For each iterative communication round, a central server consolidates models from various
client devices, forming a global or central model. This model is then disseminated back to the clients
for the next update, and therefore the malicious clients have full access to the global models. As such,
effectively protecting the global models in FL is a grand challenge.

Watermarking techniques (Adi et al., 2018; Chen et al., 2021; Darvish Rouhani et al., 2019; Fan et al.,
2019; Uchida et al., 2017; Zhang et al., 2018) are recently introduced to verify the IP ownership
of models. Among them, backdoor-based watermarking shows strong applicability because of its
model-agnostic nature, which repurposes the backdoor attacks of deep models and uses special-
purposed data (trigger set) to insert hidden patterns in the model to produce undesired outputs given
inputs with triggers (Zhang et al., 2018; Le Merrer et al., 2020; Goldblum et al., 2022; Li et al.,
2022). A typical backdoor-based watermarking operates as follows: The model owner first generates
a trigger set consisting of samples paired with pre-defined target labels. The owner then embeds
the watermark into the model by fine-tuning the model with the trigger set and the original training

1

Under review as a conference paper at ICLR 2024

Global Model

Client key s1

Client key sK

Client key sk OoD Images

Encoder

Decoder

Trigger
Set DTk

G
lo

ba
l M

od
el

Replace

Step 2: Trigger Set Generation

Step 1: Trigger Set Generation

Watermarked
Model for client 1

h

f

Watermarked
Model for client k

…

Trigger Set
DT1

Trigger Set
DTk

WSR

1.0000

0.0001

Client 1 has highest
WSR and is the IP
infringer!

… …

Federated A
ggregation

Server: Watermark injection Client: Local training Server: Verification

IP infringer detection

Linear layer

Suspect model

Decoder

Replace

Linear layer

……

Local training

Local training

Figure 1: The proposed Decodable Unique Watermarking (DUW) for watermark injection and
verification. During watermark injection, the server first uses client-unique keys and an OoD dataset
as the input for the pre-trained encoder to generate trigger sets. When the server implants the
watermark based on the objective function J 0(✓k) (Eq. (5)), a decoder is utilized to replace the
classifier head. During verification, the suspect model is tested on all the trigger sets, and the client
that leaked the model is identified as the one that achieves the highest WSR (Eq. (3)) in trigger sets.

samples. To establish the ownership of the model, one evaluates the accuracy of the suspect model
using the trigger set. The mechanism safeguards the assumption that only the watermarked model
would perform exceptionally well on the unique trigger set. If the model’s accuracy on the trigger set
surpasses a significant threshold, the model likely belongs to the owner.

Conventional backdoor-based watermarking, however, does not apply to FL settings because of the
required access to the training data to maintain model utility. To address the challenge, Tekgul et al.
(2021) proposed WAFFLE, which utilized only random noise and class-consistent patterns to embed a
backdoor-based watermark into the FL model. However, since WAFFLE injected a unified watermark
for all the clients, it cannot solve another critical question: Who is the IP infringer among the FL
clients? Based on WAFFLE, Shao et al. (2022) introduced a two-step method FedTracker to verify the
ownership of the model with the central watermark from WAFFLE, and track the malicious clients in
FL by embedding unique local fingerprints into local models. However, the local fingerprint in Shao
et al. (2022) is a parameter-based method, which is not applicable for many practical scenarios,
where many re-sale models are reluctant to expose their parameters, and the two-step verification
is redundant. Therefore, how to spend the least effort on changing the model while verifying and
tracking the IP infringers using the same watermark in FL remains to be a challenging problem.

The aforementioned challenges call for a holistic solution towards accountable federated learning,
which is characterized by the following essential requirements: R1) Accurate IP tracking: Each client
has a unique ID to trace back. IP tracking should be confident to identify one and only one client.
R2) Confident verification: The ownership verification should be confident. R3) Model utility: The
watermark injected should have minimal impact on standard FL accuracy. R4) Robustness: The
watermark should be robust and resilient against various watermark removal attacks. In this paper,
we propose a practical watermarking framework for FL called Decodable Unique Watermarking
(DUW) to comply with these requirements. Specifically, we first generate unique trigger sets for
each client by using a pre-trained encoder (Li et al., 2021c) to embed client-wise unique keys to
one randomly chosen out-of-distribution (OoD) dataset. During each communication round, the
server watermarks the aggregated global model using the client-wise trigger sets before dispatching
the model. A decoder replaces the classifier head in the FL model during injection so that we can
decode the model output to the client-wise keys. We propose a regularized watermark injection
optimization process to preserve the model’s utility. During verification, the suspect model is tested
on the trigger sets of all the clients, and the client that achieves the highest watermark success rate
(WSR) is considered to be the IP infringer. The framework of method is shown in Fig. 1.

The contributions of our work can be summarized in three folds:
• We make the FL model leakage from anonymity to accountability by injecting DUW. DUW enables
ownership verification and leakage tracing at the same time without access to model parameters
during verification.

2

Under review as a conference paper at ICLR 2024

• With utility preserved, both the ownership verification and IP tracking of our DUW are not only
accurate but also confident without collisions.
• Our DUW is robust against existing watermarking removal attacks, including fine-tuning, pruning,
model extraction, and parameter perturbation.

2 RELATED WORK AND BACKGROUND

Federated learning (FL) is a distributed learning framework that enables massive and remote clients
to collaboratively train a high-quality central model (Konečnỳ et al., 2016). This paper targets the
cross-silo FL with at most hundreds of clients (Marfoq et al., 2020). In the cross-silo setting, each
client is an institute, like a hospital or a bank. It is widely adopted in practical scenario (Bagdasaryan
et al., 2020; T Dinh et al., 2020; Zhu et al., 2021; Tekgul et al., 2021). FedAvg (McMahan et al., 2017)
is one of the representative methods for FL, which averages local models during aggregation. This
work is based on the FedAvg. Suppose we have K clients, and our FL model M used for standard
training consists of two components, including a feature extractor f : X ! Z governed by ✓f , and
a classifier h : Z ! Y governed by ✓h, where Z is the latent feature space. The collective model
parameter is ✓ = (✓h, ✓f). The objective for a client’s local training is:

Jk(✓) :=
1

|Dk|
X

(x,y)2Dk

`(h(f(x; ✓f); ✓h), y), (1)

where Dk is the local dataset for client k, and ` is the cross-entropy loss. The overall objective
function of FL is thus given by min✓

1
K

P
K

k=1 Jk(✓).

DNN watermarking can be categorized into two main streams: parameter-based watermarking and
backdoor-based watermarking.
Parameter-based watermarking approaches (Darvish Rouhani et al., 2019; Uchida et al., 2017;
Kuribayashi et al., 2021; Mehta et al., 2022) embed a bit string as the watermark into the parameter
space of the model. The ownership of the model can be verified by comparing the watermark extracted
from the parameter space of the suspect model and the owner model. Shao et al. (2022) proposed a
parameter-based watermarking method for FL called FedTracker. It inserts a unique parameter-based
watermark into the models of each client to verify the ownership. However, all parameter-based
watermarking requires an inspection of the parameters of the suspect models, which is not applicable
enough for many re-sale models.
Backdoor-based watermarking (Zhang et al., 2018; Le Merrer et al., 2020; Goldblum et al., 2022;
Li et al., 2022) does not require access to model parameters during verification. The watermark is
embedded by fine-tuning the model with a trigger set DT and clean dataset D. Pre-defined target
label t is assigned to DT . The objective for the backdoor-based watermarking is formulated as:

J(✓) :=
1

|D|
X

(x,y)2D
`(h(f(x; ✓f); ✓h), y) +

1

|DT |
X

(x,t)2DT

`(h(f(x; ✓f); ✓h), t), (2)

Upon verification, we verify the suspect model Ms on the trigger set DT . If the accuracy of the
trigger set is larger than a certain threshold �, the ownership of the model can be established. We
formally define the ownership verification of the backdoor-based model as follows:
Definition 2.1 (Ownership verification). We define watermark success rate (WSR) as the accuracy
on the trigger set DT :

WSR = Acc(Ms,DT). (3)
If WSR > �, the ownership of the model is established.

WAFFLE (Tekgul et al., 2021) is the first FL backdoor-based watermarking, which utilized random
noise and class-consistent patterns to embed a backdoor-based watermark into the FL model. However,
WAFFLE can only verify the ownership of the model, yet it cannot track the specific IP infringers.

3 METHOD

Watermarking has shown to be a feasible solution for IP verification, and the major goal of this work
is to seek a powerful extension for traceable IP verification for accountable FL that can accurately
identify the infringers among a scalable number of clients. A straightforward solution is injecting

3

Under review as a conference paper at ICLR 2024

different watermarks for different clients. However, increasing the number of watermarks could
lower the model’s utility as measured by the standard accuracy due to increased forged knowledge
(Tang et al., 2020) (R3). Meanwhile, maintaining multiple watermarks could be less robust to
watermark removal because of the inconsistency between injections (R4). Accurate IP tracking (R1)
is one unique requirement we seek to identify the infringer’s identity as compared with traditional
watermarking in central training. The greatest challenge in satisfying R1 is addressing the watermark
collisions between different clients. A watermark collision is when the suspect model produces
similar watermark responses on different individual verification datasets in FL systems. Formally:
Definition 3.1 (Watermark collision). During verification in Definition 2.1, we test the suspect model
Ms on all the verification datasets DT = {DT1 , . . . ,DTk

, . . . ,DTK
} of all the clients to identify

the malicious client, and WSR for the k-th verification datasets is defined as WSRk. If we have
multiple clients k satisfying WSRk = Acc(Ms,DTk

) > �, the ownership of suspect model Ms can
be claimed for more than one client, then the watermark collisions happen between clients.

3.1 PITFALLS FOR WATERMARK COLLISION

To avoid watermark collision, one straightforward solution is to simply design different trigger sets
for different clients. However, this strategy may easily lead to the watermark-collision pitfall. We
use traditional backdoor-based watermarking by adding arbitrary badnet (Gu et al., 2019) triggers
using random noise or 0-1 coding trigger for each client as examples to demonstrate this pitfall. We
conduct the experiments on CIFAR-10 with 100 clients, during 4 injection rounds, at least 89% and
87% of the clients have watermark collisions for two kinds of triggers, respectively.

To analyze why these backdoor-based watermarkings lead us into the trap, we list all the clients with
watermark collisions for one trial, and define the client_ID with the highest WSR as the predicted
client_ID. We found that 87.5% of the predicted client_ID share the same target label as the ground
truth client, and for the rest 12.5% clients, both the trigger pattern and target label are different.
Based on the results, we summarize two possible reasons: 1) The same target labels will easily lead
to the watermark collision. 2) The trigger pattern differences between clients are quite subtle, so the
differences between the watermarked models for different clients are hard to detect. Thus, in order
to avoid this pitfall, we have to ensure the uniqueness of both the triggers and target labels between
different clients. More experiment settings and results for pitfalls can be referred to Appendix B.1.

3.2 DECODABLE UNIQUE WATERMARKING

In this section, we propose the Decodable Unique Watermark (DUW) that can simultaneously ad-
dress the four requirements of accountable FL summarized in Section 1: R1 (accurate IP tracking),
R2 (confident verification), R3 (model utility), R4 (robustness). In DUW, all the watermarking is
conducted on the server side, so no computational overhead is introduced to clients. Before broad-
casting the global model to each local client, the server will inject a unique watermark for each client.
The watermark is unknown to clients but known to the server (see Fig. 1 server watermark injection).
Our DUW consists of the following two steps for encoding and decoding the client-unique keys.

Step 1: Client-unique trigger encoding. Due to the data confidentiality of FL, the server has no
access to any data from any of the clients. Therefore for watermark injection, the server needs to
collect or synthesize some OoD data for trigger set generation. The performance of the watermark is
not sensitive to the choice of the OoD datasets.

To accurately track the malicious client, we have to distinguish between watermarks for different
clients. High similarity between trigger sets of different clients is likely to cause watermark collisions
among the clients (see Section 3.1), which makes it difficult to identify which client leaked the model.

To solve this problem, we propose to use a pre-trained encoder E : X ! X governed by ✓E
from Li et al. (2021c) to generate unique trigger sets for each client. This backdoor-based method
provides a successful injection of watermarks with close to 100% WSR, which ensures the confident
verification (R2). We design a unique key corresponding to each client ID as a one-hot binary string
to differentiate clients. For instance, for the k-th client, the k-th entry of the key string sk is 1, and
the other entries are 0. We set the length of the key as d, where d � K. For each client, the key can
then be embedded into the sample-wise triggers of the OoD samples by feeding the unique key and
OoD data to the pre-trained encoder. The output of the encoder makes up the trigger sets. The trigger

4

Under review as a conference paper at ICLR 2024

set for the k-th client is defined in DTk
= {(x0, tk)|x0 ⇠ Ex2DOoD

(x, sk; ✓E)}, where DOoD is a
randomly chosen OoD dataset, and tk is the target label for client k. To this end, different trigger sets
for different clients will differ by their unique keys, and watermark collision can be alleviated (R1).
Note that our trigger sets will be the same as verification datasets.

Step 2: Client-unique target label by decoding triggers to client keys. The main intuition is that
the same target label of the trigger sets may still lead to watermark collisions even if the keys are
different (see Section 3.1). Thus, we propose to project the output dimension of the original model
M to a higher dimension, larger than the client number K, to allow each client to have a unique
target label. To achieve this goal, we first set the target label tk in the trigger set DTk

to be the same
as the input key sk corresponding to each client, and then use a decoder D : Z ! Y parameterized
by ✓D to replace the classifier h in the FL training model M . The decoder D only has one linear
layer, whose input dimension is the same as the input dimension of h, and its output dimension
is the length of the key. To avoid watermark collision between clients induced by the target label,
we make the decoder weights orthogonal with each other during the random initialization so that
the watermark injection tasks for each client can be independent (R1). The weights of the decoder
are frozen once initialized to preserve the independence of different watermark injection tasks for
different clients. Suppose ✓k = (✓f

k
, ✓h

k
) is the parameter which will be broadcast for client k, we

formulate the injection optimization as:

min
✓
f

k

J(✓f
k
) :=

1

|DTk
|
X

(x0,sk)2DTk

`(D(f(x0; ✓f
k
); ✓D), sk), (4)

The classifier h will be plugged back into the model before the server broadcasts the watermarked
models to clients. Compared with traditional backdoor-based watermarking (Eq. (2)), our watermark
injection requires no client training samples, which ensures the data confidentiality of FL.

Robustness. Our framework also brings in robustness against fine-tuning-based watermark removal
(R4). The main intuition is that replacing classifier h with decoder D also differs the watermark
injection task space from the original classification task space. Since the malicious clients have no
access to the decoder and can only conduct attacks on model M , the attacks have more impact on the
classification task instead of our watermark injection task, which makes our decodable watermark
more resilient against watermark removal attacks.

3.3 INJECTION OPTIMIZATION WITH PRESERVED UTILITY

While increasing the size of the client number, watermark injection in the OoD region may lead to a
significant drop in the standard FL accuracy (R3) because of the overload of irrelevant knowledge.
An ideal solution is to bundle the injection with training in-distribution (ID) data, which however is
impractical for a data-free server. Meanwhile, lacking ID data to maintain the standard task accuracy,
the distinct information between the increasing watermark sets and the task sets could cause the
fade-out of the task knowledge. We attribute such knowledge vanishing to the divergence in the
parameter space between the watermarked and the original models. Thus, we propose to augment the
injection objective Eq. (4) with a l2 regularization on the parameters:

min
✓k

J 0(✓f
k
) := J(✓f

k
) +

�

2
k✓f

k
� ✓f

g
k2, (5)

where ✓f
g

is the original parameter of the global model. The regularization term of Eq. (5) is used to
restrict the distance between the watermarked model and the non-watermarked one so that the utility
of the model can be better preserved (R3). Our proposed DUW is summarized in Algorithm 1.

3.4 VERIFICATION

During verification, we not only verify whether the suspect model Ms = (fs, hs) is a copy of
our model M , but also track who is the leaker among all the clients by examining if the triggers
can be decoded as the corresponding keys. To achieve this goal, we first use our decoder D to
replace the classifier hs in the suspect model Ms, then the suspect model can be restructured as
Ms = (fs, D). According to Definition 3.1, we test the suspect model Ms on all the verification
datasets DT = {DT1 , . . . ,DTk

, . . . ,DTK
} of all the clients to track the malicious clients, and report

WSRk on the k-th verification datasets correspondingly. The client whose verification dataset achieves

5

Under review as a conference paper at ICLR 2024

the highest WSR leaked the model (see Fig. 1 server verification). The tracking mechanism can be
defined as Track(Ms,DT) = argmaxk WSRk.

Suppose the ground truth malicious client is km. If WSRkm
> �, and WSRk for other verification

datasets is smaller than �, then the ownership of the model can be verified, and no watermark collision
happens. If Track(Ms,DT) = km, then the malicious client is identified correctly.

Algorithm 1 Injection of Decodable Unique Watermarking (DUW)

1: Input: Clients datasets{Dk}Kk=1, OoD dataset DOoD, secret key {sk}Kk=1, pre-trained encoder E,
pre-defined decoder D, global parameters ✓g , local parameters {✓k}Kk=1, learning rate ↵,�, local
training steps T , watermark injection steps Tw.

2: Step 1: Client-unique trigger encoding.

3: for k = 1,. . . ,K do

4: Generate trigger set for client k: DTk
= {(x0, sk)|x0 ⇠ Ex2DOoD

(x, sk; ✓E)}
5: end for

6: Step 2: Decoding triggers to client keys.

7: repeat

8: Server selects active clients A uniformly at random
9: for all client k 2 A do

10: Server initializes watermarked model for client k as: ✓k ✓g .
11: for t = 1, . . . , Tw do

12: Server replaces model classifier h with decoder D.
13: Server injects watermark to model using trigger set DTk

, and update ✓f
k

as:
✓f
k
 ✓f

k
� �r

✓
f

k

J 0(✓f
k
). . Optimize Eq. (5)

14: end for

15: Server broadcasts ✓k to the corresponding client k.
16: for t = 1, . . . , T do

17: Client local training using local set Dk: ✓k ✓k � ↵r✓k
Jk(✓k). . Optimize Eq. (1)

18: end for

19: Client k sends ✓k back to the server.
20: end for

21: Server updates ✓g 1
|A|

P
k2A ✓k.

22: until training stop

4 EXPERIMENTS

In this section, we empirically show how our proposed DUW can fulfill the requirements (R1-R4) for
tracking infringers as described in Section 1.
Datasets. To simulate class non-iid FL setting, we use CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), which contain 32 ⇥ 32 images with 10 and 100 classes, respectively. CIFAR-10 data is
uniformly split into 100 clients, and 3 random classes are assigned to each client. CIFAR-100 data is
split into 100 clients with Dirichlet distribution. For CIFAR-10 and CIFAR-100, the OoD dataset we
used for OoD injection is a subset of ImageNet-DS (Chrabaszcz et al., 2017) with randomly chosen
500 samples downsampled to 32⇥ 32. To simulate the feature non-iid FL setting, a multi-domain FL
benchmark, Digits (Li et al., 2020; Hong et al., 2022) is adopted. The dataset is composed of 28⇥ 28
images for recognizing 10 digit classes, which was widely used in the community (Caldas et al.,
2018; McMahan et al., 2017). The Digits includes five different domains: MNIST (LeCun et al.,
1998), SVHN (Netzer et al., 2011), USPS (Hull, 1994), SynthDigits (Ganin & Lempitsky, 2015),
and MNIST-M (Ganin & Lempitsky, 2015). We leave out USPS as the OoD dataset for watermark
injection (500 samples are chosen) and use the rest four domains for the standard FL training. Each
domain of digits is split into 10 different clients, thus, 40 clients will participate in the FL training.
Training setup. A preactivated ResNet (PreResNet18) (He et al., 2016) is used for CIFAR-10, a
preactivated ResNet (PreResNet50) (He et al., 2016) is used for CIFAR-100, and a CNN defined
in Li et al. (2021b) is used for Digits. For all three datasets, we leave out 10% of the training set as
the validation dataset to select the best FL model. The total training round is 300 for CIFAR-10 and
CIFAR-100, and 150 for Digits.

6

Under review as a conference paper at ICLR 2024

Dataset Acc �Acc WSR WSR_Gap TAcc
Digits 0.8855 0.0234 0.9909 0.9895 1.0000

CIFAR-10 0.5583 0.0003 1.0000 0.9998 1.0000
CIFAR-100 0.5745 0.0063 1.0000 0.9998 1.0000

Table 1: Benchmark results.
Watermark injection. The early training stage of FL is not worth protecting since the standard
accuracy is very low, we start watermark injection at round 20 for CIFAR-10 and Digits, and at round
40 for CIFAR-100. The standard accuracy before our watermark injection is 85.20%, 40.23%, and
29.41% for Digits, CIFAR-10, and CIFAR-100, respectively.
Evaluation metrics. For watermark verification, we use watermark success rate (WSR) which is the
accuracy of the trigger set for evaluation. To measure whether we track the malicious client (leaker)
correctly, we define tracking accuracy (TAcc) as the rate of the clients we track correctly. To further
evaluate the ability of our method for distinguishing between different watermarks for different
clients, we also report the difference between the highest WSR and second best WSR as WSR_Gap

to show the significance of verification and IP tracking. With a significant WSR_Gap, no watermark
collision will happen. To evaluate the utility of the model, we report the standard FL accuracy (Acc)
for each client’s individual test sets, whose classes match their training sets. We also report the
accuracy degradation (�Acc) of the watermarked model compared with the non-watermarked one.
Note that, to simulate the scenario where malicious clients leak their local model after local training,
we test the average WSR, TAcc and WSR_Gap for the local model of each client instead of the global
model. Acc and �Acc are evaluated on the best FL model selected using the validation datasets.

4.1 IP TRACKING BENCHMARK

We evaluate our method using the IP tracking benchmark with various metrics as shown in Table 1.
Our ownership verification is confident with all WSRs over 99% (R2). The model utility is also
preserved with accuracy degradation 2.34%, 0.03%, and 0.63%, respectively for Digits, CIFAR-10
and CIFAR-100 (R3). TAcc for all benchmark datasets is 100% which indicates accurate IP tracking
(R1). All WSR_Gap is over 98%, which means the WSRs for all other benign client’s verification
datasets are close to 0%. In this way, the malicious client can be tracked accurately with high
confidence, no collisions will occur within our tracking mechanism (R1).

4.2 ROBUSTNESS

Malicious clients can conduct watermark removal attacks before leaking the FL model to make it
harder for us to verify the model copyright, and track the IP infringers accurately. In this section, we
show the robustness of the watermarks under various watermark removal attacks (R4). Specifically,
we evaluate our method against 1) fine-tuning (Adi et al., 2018): Fine-tune the model using their
own local data; 2) pruning (Liu et al., 2018): prune the model parameters that have the smallest
absolute value according to a certain pruning rate, and then fine-tune the model on their local data; 3)
model extraction attack: first query the victim model for the label of an auxiliary dataset, and then
re-train the victim model on the annotated dataset. We take knockoff (Orekondy et al., 2019) as an
example of the model extraction attack; 4) parameter perturbations: add random noise to local
model parameters (Garg et al., 2020).

10 of the clients are selected as the malicious clients, and the metrics in this section are average
values for 10 malicious clients. All the watermark removal attacks are conducted for 50 epochs with
a learning rate 10�5. All the attacks are conducted for the local model of the last round.

Robustness against fine-tuning attack. We report the robustness of our proposed DUW against
fine-tuning in Table 2. �Acc and �WSR in this table indicate the accuracy and WSR drop compared
with accuracy and WSR before the attack. According to the results, after 50 epochs of fine-tuning, the
attacker can only decrease the WSR by less than 1%, and the TAcc is even not affected. Fine-tuning
with their limited local training samples can also cause a standard accuracy degradation. Fine-tuning
can neither remove our watermark nor affect our IP tracking, even if sacrifices their standard accuracy.

Robustness against pruning attack. We investigate the effect of pruning in Fig. 2 by varying the
pruning rate from 0 to 0.5. With the increase in the pruning ratio, both TAcc and WSR will not be

7

Under review as a conference paper at ICLR 2024

Dataset Acc �Acc WSR �WSR TAcc
Digits 0.9712 -0.0258 0.9924 0.0030 1.0000

CIFAR-10 0.7933 0.1521 1.0000 0.0000 1.0000
CIFAR-100 0.4580 0.0290 0.9930 0.0070 1.0000

Table 2: DUW is robust against fine-tuning.

Dataset Acc �Acc WSR �WSR TAcc
Digits 0.8811 0.0643 0.9780 0.0174 1.0000

CIFAR-10 0.5176 0.0010 0.6638 0.3362 1.0000
CIFAR-100 0.4190 0.0680 0.8828 0.1172 1.0000

Table 3: DUW is robust against model extraction.

(a) Digits. (b) CIFAR-10. (c) CIFAR-100.

Figure 2: DUW is robust against pruning.
affected. For CIFAR-10, standard accuracy will drop 5%. Therefore, pruning is not an effective
attack on our watermark, and it will even cause an accuracy degradation for the classification task.

Robustness against model extraction attack. To verify the robustness of our proposed DUW against
model extraction attack, we take knockoff (Orekondy et al., 2019) as an example, and STL10 (Coates
et al., 2011) cropped to the same size as the training data is used as the auxiliary dataset for this
attack. According to the results for three benchmark datasets in Table 3, after knockoff attack, WSR
for all three datasets is still over 65%, and our tracking mechanism is still not affected with TAcc
remains to be 100%. Therefore, our DUW is resilient to model extraction attacks.

Robustness against parameter perturbations attack. Malicious clients can also add random
noise to model parameters to remove watermarks, since Garg et al. (2020) found that backdoor-
based watermarks are usually not resilient to parameter perturbations. Adding random noise to the
local model parameters can also increase the chance of blurring the difference between different
watermarked models. We enable each malicious client to blend Gaussian noise to the parameters
of their local model, and set the parameter of the local model as ✓i = ✓i + ✓i ⇤ ↵noise, where
↵noise = {10�5, 10�4, 10�3, 10�2, 10�1}. We investigate the effect of parameter perturbation in
Fig. 3. According to the results, when ↵noise is smaller than 10�2, WSR, Acc, and TAcc will not be
affected. When ↵noise = 10�2, Acc will drop more than 10%, TAcc remains unchanged, and WSR is
still over 90%. When ↵noise = 10�1, Acc will drop to a random guess, thus, although the watermark
has been removed, the model has no utility. Therefore, parameter perturbation is not an effective
attack for removing our watermark and affecting our tracking mechanism.

(a) Digits. (b) CIFAR-10. (c) CIFAR-100.

Figure 3: DUW is robust against parameter perturbation.

4.3 QUALITATIVE STUDY

Effects of decoder. To investigate the effects of the decoder on avoiding watermark collision, we
compare the results of w/ and w/o decoder. When the decoder is removed, the task dimension of
the watermark injection will be the same as the FL classification, thus, we also have to change the
original target label (the same as the input key) to the FL classification task dimension. To achieve
this goal, we set the target label of w/o decoder case as (client_ID % class_number). We report the
results of w/ and w/o decoder on CIFAR-10 after 1 round of watermark injection at round 20 in
Table 4. According to the results, when we have 100 clients in total, w/o decoder can only achieve a
TAcc of 6%, while w/ decoder can increase TAcc to 100%. We also find that clients with the same

8

Under review as a conference paper at ICLR 2024

Method Acc �Acc WSR TAcc
w/ decoder 0.3287 0.0736 0.8778 1.0000

w/o decoder 0.3235 0.0788 0.8099 0.0600

Table 4: Effects of decoder: the decoder can
improve TAcc to avoid watermark collision.
�Acc in this table is the accuracy degradation
compared with the previous round.

Dataset Acc �Acc WSR WSR_Gap TAcc
USPS 0.8855 0.0234 0.9909 0.9895 1.0000

GTSRB 0.8716 0.0373 0.9972 0.9962 1.0000
Random noise 0.9007 0.0082 0.8422 0.8143 1.0000

Jigsaw 0.9013 0.0076 0.8789 0.8601 1.0000

Table 5: Effects of different OoD datasets: a
trade-off exists between Acc and WSR, given
different selections of OoD datasets.

target label are more likely to conflict with each other, which makes those clients difficult to be
identified, even if their trigger sets are different. Utilizing a decoder to increase the target label space
to a dimension larger than the client number allows all the clients to have their own target label. In
this way, watermark collision can be avoided. Besides, WSR of w/ decoder is also higher than w/o
decoder after 1 round of injection. One possible reason is that we differ the watermark injection task
from the original classification task using the decoder, thus, in this case, the watermark will be more
easily injected compared with directly injected to the original FL classification task.

Effects of l2 regularization. To show the effects of l2 regularization in Eq. (5), we report the
validation accuracy and WSR for 4 rounds of watermark injection on Digits with different values
of the hyperparameter � in Fig. 4a. Validation accuracy is the standard FL accuracy evaluated on a
validation dataset for every round. We see that with the increase of �, higher validation accuracy can
be achieved, but correspondingly, WSR drops from over 90% to only 35.65%. Larger � increases the
impact of l2 norm, which decreases the model difference between the watermarked model and the
non-watermarked one, so the validation accuracy will increase. At the same time, the updates during
watermark injection also have much more restriction due to l2 regularization, so the WSR drops to
a low value. Accordingly, we select � = 0.1 for all our experiments, since � = 0.1 can increase
validation accuracy by 6.88% compared with � = 0, while maintaining WSR over 90%.

(a) Acc and WSR for different values of �. (b) Acc and WSR for different OoD datasets.
Figure 4: Acc and WSR w.r.t. different communication rounds.

Effects of different OoD datasets for watermark injection. We investigate the effects of different
OoD datasets including USPS (Hull, 1994), GTSRB (Stallkamp et al., 2012), random noise, and
Jigsaw for watermark injection when the standard training data is Digits. All OoD images are cropped
to the same size as the training images. A jigsaw image is generated from a small 4 ⇥ 4 random
image, and then uses reflect padding mode from PyTorch to padding to the same size as the training
images. The effect of these different OoD datasets is shown in Table 5 and Fig. 4b. We see that all
OoD datasets can achieve 100% TAcc, suggesting the selection of OoD dataset will not affect the
tracking of the malicious client. There is a trade-off between the Acc and WSR: higher WSR always
leads to lower Acc. Random noise and jigsaw achieve high Acc, with accuracy degradation within
1%. These two noise OoD also have a faster recovery of the standard accuracy after the accuracy
drop at the watermark injection round as shown in Fig. 4b, but the WSR of random noise and Jigsaw
are lower than 90%. For two real OoD datasets USPS and GTSRB, the WSR quickly reaches over
99% after 1 communication round, but their accuracy degradation is larger than 2%.

5 CONCLUSION

In this paper, we target at accountable FL, and propose Decodable Unique Watermarking (DUW),
that can verify the FL model’s ownership and track the IP infringers in the FL system at the same
time. Specifically, the server will embed a client-unique key into each client’s local model before
broadcasting. The IP infringer can be tracked according to the decoded keys from the suspect model.
Extensive experimental results show the effectiveness of our method in accurate IP tracking, confident
verification, model utility preserving, and robustness against various watermark removal attacks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pp. 1615–1631, 2018.

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. In International conference on artificial intelligence and statistics,
pp. 2938–2948. PMLR, 2020.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Xuxi Chen, Tianlong Chen, Zhenyu Zhang, and Zhangyang Wang. You are caught stealing my
winning lottery ticket! making a lottery ticket claim its ownership. Advances in Neural Information
Processing Systems, 34:1780–1791, 2021.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An end-to-end watermarking
framework for ownership protection of deep neural networks. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 485–497, 2019.

Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking deep neural network ownership verifica-
tion: Embedding passports to defeat ambiguity attacks. Advances in neural information processing
systems, 32, 2019.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015.

Siddhant Garg, Adarsh Kumar, Vibhor Goel, and Yingyu Liang. Can adversarial weight perturbations
inject neural backdoors. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, pp. 2029–2032, 2020.

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
Aleksander Mądry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(2):1563–1580, 2022.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Junyuan Hong, Haotao Wang, Zhangyang Wang, and Jiayu Zhou. Efficient split-mix federated
learning for on-demand and in-situ customization. arXiv preprint arXiv:2203.09747, 2022.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions on pattern
analysis and machine intelligence, 16(5):550–554, 1994.

Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated optimization: Distributed
optimization beyond the datacenter. arXiv preprint arXiv:1511.03575, 2015.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

10

Under review as a conference paper at ICLR 2024

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Minoru Kuribayashi, Takuro Tanaka, Shunta Suzuki, Tatsuya Yasui, and Nobuo Funabiki. White-box
watermarking scheme for fully-connected layers in fine-tuning model. In Proceedings of the 2021
ACM Workshop on Information Hiding and Multimedia Security, pp. 165–170, 2021.

Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier stitching for remote neural
network watermarking. Neural Computing and Applications, 32:9233–9244, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Fang-Qi Li, Shi-Lin Wang, and Alan Wee-Chung Liew. Towards practical watermark for deep neural
networks in federated learning. arXiv preprint arXiv:2105.03167, 2021a.

Fangqi Li, Lei Yang, Shilin Wang, and Alan Wee-Chung Liew. Leveraging multi-task learning for
umambiguous and flexible deep neural network watermarking. In SafeAI@ AAAI, 2022.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021b.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor
attack with sample-specific triggers. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 16463–16472, 2021c.

Junchuan Liang and Rong Wang. Fedcip: Federated client intellectual property protection with traitor
tracking. arXiv preprint arXiv:2306.01356, 2023.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Othmane Marfoq, Chuan Xu, Giovanni Neglia, and Richard Vidal. Throughput-optimal topology
design for cross-silo federated learning. Advances in Neural Information Processing Systems, 33:
19478–19487, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Dhwani Mehta, Nurun Mondol, Farimah Farahmandi, and Mark Tehranipoor. Aime: watermarking
ai models by leveraging errors. In 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 304–309. IEEE, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality of
black-box models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4954–4963, 2019.

Shuo Shao, Wenyuan Yang, Hanlin Gu, Jian Lou, Zhan Qin, Lixin Fan, Qiang Yang, and Kui Ren.
Fedtracker: Furnishing ownership verification and traceability for federated learning model. arXiv
preprint arXiv:2211.07160, 2022.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer: Bench-
marking machine learning algorithms for traffic sign recognition. Neural networks, 32:323–332,
2012.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau envelopes.
Advances in Neural Information Processing Systems, 33:21394–21405, 2020.

11

Under review as a conference paper at ICLR 2024

Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang, and Xia Hu. An embarrassingly simple
approach for trojan attack in deep neural networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 218–228, 2020.

Buse GA Tekgul, Yuxi Xia, Samuel Marchal, and N Asokan. Waffle: Watermarking in federated
learning. In 2021 40th International Symposium on Reliable Distributed Systems (SRDS), pp.
310–320. IEEE, 2021.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks into
deep neural networks. In Proceedings of the 2017 ACM on international conference on multimedia
retrieval, pp. 269–277, 2017.

James Vincent. Meta’s powerful ai language model has leaked online — what
happens now? https://www.theverge.com/2023/3/8/23629362/
meta-ai-language-model-llama-leak-online-misuse, 2023. Accessed:
2023-03-08.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019
IEEE Symposium on Security and Privacy (SP), pp. 707–723. IEEE, 2019.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing Huang, and Ian
Molloy. Protecting intellectual property of deep neural networks with watermarking. In Proceedings
of the 2018 on Asia Conference on Computer and Communications Security, pp. 159–172, 2018.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International conference on machine learning, pp. 12878–12889. PMLR,
2021.

12

https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse
https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse

	Introduction
	Related Work and Background
	Method
	Pitfalls for Watermark Collision
	Decodable Unique Watermarking
	Injection Optimization with Preserved Utility
	Verification

	Experiments
	IP Tracking Benchmark
	Robustness
	Qualitative Study

	Conclusion
	Discussions
	Supplementary experiments
	Comparison with traditional backdoor-based watermarks
	Extended qualitative study
	Extended robustness study
	Hybrid watermark

