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Abstract

The considerable size of Large Language Mod-
els (LLMs) presents notable deployment chal-
lenges, particularly on resource-constrained
hardware. Structured pruning, offers an ef-
fective means to compress LLMs, thereby re-
ducing storage costs and enhancing inference
speed for more efficient utilization. In this
work, we study data-efficient and resource-
efficient structure pruning methods to obtain
smaller yet still powerful models. Knowledge
Distillation is well-suited for pruning, as the
intact model can serve as an excellent teacher
for pruned students. However, it becomes chal-
lenging in the context of LLMs due to memory
constraints. To address this, we propose an
efficient progressive Numerous-teacher prun-
ing method (NutePrune). NutePrune mitigates
excessive memory costs by loading only one
intact model and integrating it with various
masks and LoRA modules, enabling it to seam-
lessly switch between teacher and student roles.
This approach allows us to leverage numer-
ous teachers with varying capacities to progres-
sively guide the pruned model, enhancing over-
all performance. Extensive experiments across
various tasks demonstrate the effectiveness of
NutePrune. In LLaMA-7B zero-shot experi-
ments, NutePrune retains 97.17% of the perfor-
mance of the original model at 20% sparsity
and 95.07% at 25% sparsity.

1 Introduction

Large Language Models (LLMs) excel in language
tasks (OpenAl, 2023; Touvron et al., 2023; Thoppi-
lan et al., 2022; Scao et al., 2022), but their substan-
tial size poses deployment and inference challenges
(Frantar et al., 2022). Techniques like model prun-
ing (Molchanov et al., 2016), knowledge distilla-
tion (Jiao et al., 2019), and quantization (Dettmers
et al., 2023) have been proposed to address compu-
tational demands. The exploration of LLM pruning,
especially structured pruning (Frantar and Alistarh,
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Figure 1: The advantage of our NutePrune. Left: Pro-
gressive distillation guides the student with teachers
from easy to hard to avoid large capacity gap harm-
ing learning. But it suffers from multiple-fold costs
of loading numerous teachers. Right: Our NutePrune
leverages models with varying sparsity, enabling pro-
gressive distillation with negligible additional cost.

2023), holds great significance. Structured pruning
reduces model size by removing coherent parame-
ter groups, cutting inference costs on standard hard-
ware. But it is more challenging than unstructured
pruning in retaining the capabilities of LLMs (Hoe-
fler et al., 2021). Existing methods either adopt
data-efficient approaches, causing a performance
decline (Ma et al., 2023), or require extensive post-
training to recover model performance (Xia et al.,
2023). In this work, we investigate efficient meth-
ods to prune the model to higher sparsity without
significant performance decline.

Knowledge distillation (KD) aims to train a more
compact student model with supervision from a
larger teacher model (Sanh et al., 2019; Gou et al.,
2021). It’s widely adopted and proven highly ef-
fective in the field of LLMs. Progressive learning,



utilizing intermediate teachers with a reduced gap
in capabilities, has been demonstrated to improve
performance in KD (Xiang et al., 2020). Previous
work has shown that pruning with a distillation ob-
jective can improve performance (Xia et al., 2022).
Distillation is particularly suitable for pruning since
the full original model inherently serves as an ex-
cellent teacher for the pruned model (Sanh et al.,
2020), which can offer a more detailed supervisory
signal than conventional supervised training, en-
hancing the effectiveness of pruning with limited
data (Lagunas et al., 2021).

However, applying this method in the realm of
LLMs proves challenging. Given the vastness of
an LLM, loading it onto GPUs consumes a substan-
tial amount of memory. Introducing an additional
teacher model requires twice the memory, mak-
ing it impractical with limited memory resources.
Furthermore, relying on a single teacher may not
be the best practice (Liu et al., 2020; Wu et al.,
2021). With the increasing gap of sparsity between
teacher and student, the capacity gap is also widen-
ing, which toughens distillation. Employing mul-
tiple teachers with varying capacities can enhance
the transfer of knowledge to students (Yuan et al.,
2021). However, when it comes to the distillation
of LLMs, memory consumption of multiple teach-
ers becomes an even more pressing concern.

In this paper, we address the above challenges
with an efficient progressive Numerous-teacher
pruning method (NutePrune). Our motivation is
demonstrated in Figure 1. NutePrune aims to di-
minish the capacity gap between the full teacher
model and the highly sparse student, thereby alle-
viating the difficulty of distillation (Su et al., 2021;
Mukherjee et al., 2023; Xiang et al., 2020). Instead
of relying solely on a single full teacher, we in-
struct the student with many teachers with varying
sparsity. To achieve this, we formulate pruning as
a optimization problem where we learn masks to
prune sub-modules while updating model param-
eters through LoRA (Hu et al., 2021). Specially,
we load an intact model, serving dual roles as both
a teacher and a student. In teacher mode, we in-
corporate the original model with collected frozen
low-sparsity masks and corresponding LoRA mod-
ules. And in student mode, we incorporate it with
learnable high-sparsity masks and LoRA modules.
Since the masks and LoRA modules are highly
parameter efficient, we collect and leverage numer-
ous modules with different sparsity to incorporate
numerous teachers and progressively prune the stu-

dent. Our contributions can be summarized as fol-
lows:

* We propose a novel distillation method that
progressively guide the student using numer-
ous teachers with varying sparsity to narrow
the capacity gap. Through progressive KD,
we achieve higher model sparsity without sig-
nificant performance decline on limited data.

* Our NutePrune only loads one intact model
and switch it between teacher and student
modes by incorporating various masks and
LoRA modules. This novel efficient distilling
method for pruning enables using numerous
teachers and introduces no extra memory cost,
which is especially critical for LLMs.

» Extensive experiments across perplexity met-
ric, commonsense reasoning, and MMLU
demonstrate the effectiveness of our method.

2 Related Works

Pruning for LLMs For LLMs, SparseGPT
(Frantar and Alistarh, 2023) and WANDA (Sun
et al., 2023) employ unstructured pruning methods,
while N:M sparsity (Zhou et al., 2021) is consid-
ered semi-structured. Despite the effectiveness of
these methods, their intricate structures do not yield
significant inference speedup on standard hardware
(Frantar and Alistarh, 2023). Consequently, struc-
tured pruning has emerged as a recent consensus.
CoFi (Xia et al., 2022) and nn pruning (Lagunas
et al., 2021) are proposed for smaller language mod-
els like BERT (Devlin et al., 2018), often designed
for specific tasks. CoFi loads both the teacher and
student models, which is impractical for LLM:s.
Sheared-LLaMA (Xia et al., 2023) proposes prun-
ing LLMs using a dynamic pre-training method,
enhancing performance through extensive data and
training resources.

However, concerns persist regarding limited
memory and training resources for LLMs. In a
pioneering effort, LLM-Pruner (Ma et al., 2023)
prunes LLMs in one-shot and utilizes LoRA (Hu
et al., 2021) for fine-tuning. LoRAPrune (Zhang
et al., 2023) employs iterative pruning, replacing
gradients on full weights with gradients on LoRA
to calculate group importance. Compresso (Guo
et al., 2023) leverages LoRA and elaborately de-
signed prompts for training and inference. Mean-
while, LoRAShear (Chen et al., 2023) employs



LoRA and a dynamic fine-tuning scheme to recover
knowledge.

Knowledge Distillation (KD) for LLMs KD
(Hinton et al., 2015) has emerged as a vital tech-
nique to reduce inference costs while maintaining
performance quality in the context of LLMs. Prior
work of KD (Taori et al., 2023; Fu et al., 2023)
mostly focuse on black-box KD, using teacher’s
generations to fine-tune the student. With the rise
of open-source LLMs (Zhang et al., 2022; Touvron
et al., 2023), interest in white-box KD is growing.
White-box KD, leveraging teacher weights and log-
its, provides richer supervision signals, enhancing
language abilities (Agarwal et al., 2023; Gu et al.,
2023; Wen et al., 2023). Despite progress on small
language models, significant performance gaps be-
tween large and small models persist (Achiam et al.,
2023; Anil et al., 2023).

Progressive knowledge distillation (Xiang et al.,
2020) has proven effective by using intermediate
teachers to bridge the capacity gap with LLMs, es-
pecially in scenarios reliant on data generated by
multiple teachers (Mukherjee et al., 2023). Orca
(Mukherjee et al., 2023) first learns from easier ex-
amples from ChatGPT and then from harder ones
from GPT-4, enhancing performance for smaller
students in KD. However, applying white-box KD
to LLMs poses challenges due to substantial mem-
ory requirements for loading both teacher and stu-
dent models. This challenge becomes even more
difficult when attempting to load multiple teachers.

3 Methodology

In this section, we first introduce how our
NutePrune enables efficient knowledge distillation
for structured pruning in 3.1. Then, to narrow ca-
pacity gap during distillation, we introduce the pro-
gressive knowledge distillation method that col-
lects and incorporates numerous teachers in 3.2.
The overview framework is illustrated in Figure 2.

3.1 Efficient Distillation for Structured
Pruning

We formulate structure pruning as a constrained
optimization problem where we optimize masks
and model to prune the structure to a target sparsity
while maximizing performance. We use distillation
loss instead of original language model loss and use
L regularization to control the pruned sparsity. To
mitigate substantial memory consumption during
LLM training, we utilize LoRA for model updates,

making pruning the process of training these masks
and LoRA parameters.

Learning masks to control the pruned structure
We allow for three types of structured pruning: at-
tention heads, FFN intermediate dimensions, and
hidden dimensions. It is achieved by learning cor-
responding masks Zjeqd;, Zint, Zria € {0, 1}. For-
mally, the multi-head attention module MHA ()
and feed-forward networks FFN(z) of layer [ are
pruned as:

Nhead
MHA'(X) = zpia - Yz  Atth"(X). (1)
h=1

FEN'(X) = 2piq
Wh (Zhos - WH(X) - Act(W5(X))
(@)
where Att() is the attention module and Act() is
the activation. Wp, Wy, W are down projection,
up projection, and gating projection.

During mask training, we calculate the remain-
ing size to obtain the expected sparsity s:

1 L Npead d Lh
N _ s k
S(Z) = M -4 dh . E E Zheadzhid
l h k
3

1 l7' k
T "3 E ,E : Zgi Zhids
ik

where M denotes full model size. L is number of
layers. dp,, Npead, d, dint are head dimension, num-
ber of head, hidden dimension, and intermediate
dimension, correspondingly.

All masking variables are learned as real num-
bers in [0, 1] during training. We follow (Louizos
et al., 2017; Guo et al., 2023) and employ the aug-
mented L regularization:

u~U(0,1)

1
s = sigmoid < log
g

S=sx(r—10)+1

z = min(1, max(0,S)),

1_u+loga)

“

where u is uniformly sampled between O to 1. « is
the parameter to be learned and f is a hyperparam-
eter. [, r is often —0.1 and 1.1 to ensure most z are
either O or 1 after training.
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Figure 2: The overall framework of NutePrune. The pruned model is frozen and incorporated with learnable masks
and LoRA. During pruning, the model is guided by numerous teachers. Before pruned to the target sparsity (e.g.
30%), it learns from teachers with a fixed capacity gap. Once the target sparsity is achieved, it continues to learn
from all previous teachers from weak to strong. All these teachers are derived from snapshots of the student model
itself. Since only the mask and LoRA modules are snapshotted, the additional memory cost is negligible.

To prevent models from drastically converging
to different sizes, we follow (Wang et al., 2019) to
use this Lagrangian term:

Lo=A-(8—t)+ - (812 (5

where \; and \9 are both learnable. This loss term
Ly will impose § to gradually converge to target
sparsity ¢.

Updating parameters with LoRA  Considering
massive memory usage during full fine-tuning for
LLM:s, we incorporate lightweight LoRA (Hu et al.,
2021) modules into LLM weights to update param-
eters during pruning.

An incorporated module W is consisted of the
original weight W : R® — R™ and sequential
LoRA weights parallel to W:

W/(X)=W(X)+Wg(Wa(X)), (6)

where W, : R* - R",Wp : R™ — R™ and
r < m,n. During training, W is frozen and only
W4 and Wp are learnable.

Efficient distillation Instead of simultaneously
loading two massive models into memory, we pro-
pose to incorporate the frozen and intact model M
with different lightweight masks and LoRA mod-
ules for the teacher and the student. Formally, let
I = {z, W4, Wpg} denotes the set of all masks

and LoRA modules which is highly parameter effi-
cient (|I| < |M|). By incorporating I into M, we
obtain Mj. The objective of knowledge distillation
is the KL-divergence (Van Erven and Harremos,
2014) between teacher’s and student’s output prob-
ability distributions p:

£KL:DKL(p(MIsux>7p(MIT7x))7 (7)

where z denotes training data. Is and I denote
the lightweight modules of student and teacher.

Additionally, intermediate layers of a teacher
model can serve as effective targets for training a
student model (Chen et al., 2021). This objective
can be formulated as:

L
Elayer = Z MSE(hl(MIS7 ), hl(MIw 7)),
l

(®)
where h; is the hidden embedding of the [-th layer.
Therefore, the overall objective is:

L= Lk + a1Ligyer + 2Ly, )

where a1, ag are hyperparameters to control the
importance of different loss terms.

3.2 Progressive Knowledge Distillation with
Numerous Teachers

All teachers are collected from the snapshot of stu-
dents as the dotted line illustrated in Figure 2. To
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Figure 3: Illustration of the sparsity of teacher and stu-
dent models during pruning. Take the example with the
target sparsity ¢ = 50% and sparsity gap g = 10%.

narrow the capacity gap between the intact teacher
and high sparsity students, we leverage a novel pro-
gressive knowledge distillation (PKD) method for
pruning. It consists of two stages when pruning a
model from 0% sparsity as illustrated in Figure 3.

Before reaching target sparsity The sparsity of
pruned model gradually increase from O to ¢. To
narrow the sparsity gap, we set a fixed gap value
g and make the pruned model S guided by teach-
ers 1" whose sparsity $(7") is approximately g less
than §(5): $(T) = 3(S) — g. These teachers are
snapshots of previous students. The original intact
model serves as the teacher for student 5(5) < g.

To avoid collecting too many teachers, we only
collect teachers with an interval of 7. Therefore, for
any teacher with sparsity $(7'), it is responsible for
guiding a student set within a range of sparsity. We
use — to denote the relationship in which a teacher
distills knowledge to students.

T — {S|3(T)+g < 3(S) < §(T)+g+i}. (10)

And the intact model M = Tj is responsible for
the early students whose sparsity is less than g + i:
To — {S]5(S) < g +i}. an
After reaching target sparsity When the pruned
model reaches the target sparsity ¢, we proceed to
the second stage of PKD. The model undergoes dis-
tillation by all preceding teachers, with a reduction
of sparsity in the teachers. This gradual process
guides the model’s learning trajectory from weaker
to stronger knowledge and from easier to more
challenging concepts. Throughout this stage, the
sparsity of the pruned model $ remains close to
the target sparsity ¢, while the masks z and LoRA
modeuls W 4, W p are continually optimized.

To receive sufficient instruction from the best
model (the intact model M), the teacher model is
maintained as M during the final period.

3.3 Post Fine-tuning

After the pruning phase, to obtain better perfor-
mance, we undergo a post fine-tuning stage fol-
lowing LLM-Pruner (Ma et al., 2023). We fix the
masks and only fine-tune LoRA modules on the
Standford Alpaca (Taori et al., 2023) dataset.

4 Experiments

4.1 Experimental Setup

Datasets To assess the zero-shot ability of LLMs,
we perform zero-shot classification tasks on seven
commonsense reasoning benchmarks: BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2020), Hel-
laSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), ARC-easy (Clark et al., 2018),
ARC-challenge (Clark et al., 2018), and Open-
BookQA (OBQA) (Mihaylov et al., 2018). We
evaluate the general capcability of LLMs on the per-
plexity metric with WikiText (Merity et al., 2016)
and PTB (Marcus et al., 1993) dataset. Addition-
ally, We report the results on 5-shot MMLU to
evaluate the in-context learning ability (Hendrycks
et al., 2020), which consists of 57 tasks covering
STEM, humanities, social science, etc.

Models We assess the performance of NutePrune
on the LLaMA-1 family (Thoppilan et al., 2022),
comprising LLaMA-7B, LLaMA-13B. Our experi-
ments primarily center on pruning the LLaMA-7B
model to provide a comprehensive comparison with
previous studies. We primarily evaluate at sparsity
levels of 20% and 50%.

Baselines Numerous works delve into pruning
techniques for LLMs, including SparseGPT (Fran-
tar and Alistarh, 2023) and WANDA (Sun et al.,
2023). Considering the benefits of inference ac-
celeration, we mainly focus on structure pruning
methods. For open-source methods as far as we
know, we implement LLM-Pruner (Ma et al., 2023)
and Compresso (Guo et al., 2023) and conduct de-
tailed comparisons with our NutePrune. For more
recent works that are not publicly available, We
assess NutePrune using the same settings as theirs
for comparison with their reported results. This
includes LoRAPrune (Zhang et al., 2023) and Lo-
RAShear (Chen et al., 2023).



Ratio Tune Method \ BoolQ PIQA  HellaSwag WinoGrande ARC-e ARC-c  OBQA \ Avg.  xAvg.
0% LLaMA-7B | 73.18 78.35 7299 67.01 67.45 41.38 4240 | 63.25 66.39
LLM-Pruner | 59.39 7557 65.34 61.33 59.18 37.12 39.80 | 56.82 59.01

20% LoRAPrune | 57.98 75.11 65.81 59.90 62.14 34.59 39.98 | 56.50 -
tNutePrune | 63.21 76.55 67.96 66.69 63.72 38.05 40.00 | 5946 63.03

WANDA 65.75 747710 64.52 59.35 60.65 36.26 39.40 | 57.23 -
LLM-Pruner | 69.54 76.44 68.11 65.11 63.43 37.88 40.00 | 60.07 61.94

LoRAPrune | 65.82  79.31 70.00 62.76 65.87 37.69 39.14 | 60.05 -

20% v LoRAShear | 70.17 76.89 68.69 65.83 64.11 38.77 39.97 | 60.63 -
Compresso 73.64  75.08 64.77 67.72 66.12 37.54 4040 | 60.75 62.60
iNutePrune | 72.69 76.71 68.99 65.51 65.49 38.48 40.20 | 61.15 63.57
NutePrune | 74.56 77.04 70.01 65.67 65.78 37.97 39.20 | 6146 64.39
25% tNutePrune | 68.10 7535 66.75 62.04 58.08 36.77 39.00 | 58.01 61.72
25% v iNutePrune | 65.84 76.17 66.69 64.56 61.49 37.03 39.20 | 58.71 63.12
NutePrune | 68.99 77.20 67.90 65.04 63.76 37.80 40.20 | 60.13 63.78
LLM-Pruner | 52.32 59.63 35.64 53.20 33.50 27.22 3340 | 42.13 4094

50% LoRAPrune | 51.78 56.90 36.76 53.80 33.82 26.93 33.10 | 41.87 -
tNutePrune | 62.29 6795 53.03 57.06 45.45 30.03 36.60 | 50.35 53.14

WANDA 50.90  57.38 38.12 55.98 42.68 34.20 38.78 | 45.43 -
LLM-Pruner | 61.47 68.82 47.56 55.09 46.46 28.24 3520 | 48.98 48.97

LoRAPrune | 61.88 71.53 47.86 55.01 45.13 31.62 3498 | 49.71 -

50% v LoRAShear | 62.12 71.80 48.01 56.29 47.68 32.26 34.61 50.39 -
Compresso 60.09  66.70  39.31 51.93 48.82 27.82 3340 | 46.87 47.43
iNutePrune | 62.20 6991 53.87 57.77 46.59 31.74 35.8 51.13  53.94
NutePrune | 62.26 71.00 55.88 57.54 51.68 32.17 3440 | 5213 5491

1 only prunes the model by training masks without incorporating LoRA modules.
1 prunes the model by co-training the masks and LoRA modules but without post fine-tuning on Alpaca.
* includes our reproduced results with the newer version of Im-evaluation-harness that fixes a LLaMA tokenization issue.

See Appendix A for detailed results.

Table 1: Zero-shot performance (%) of the compressed LLaMA models. Bold denotes the best average performance

at the same setting.

Implementation details For pruning stage, we
sample 20,000 sentences from the C4 (Raffel et al.,
2020) dataset with a length of 512 tokens. We train
with AdamW optimizer, a batch size of 16, and
learning rates of 0.1 for masks and 0.001 for LoRA.
We prune the model for 7 epochs. We use a linear
sparsity schedule to gradually increase the target
sparsity from O to the target ratio. We set sparsity
warmup to 4 epochs for pruning of 20% sparsity
and 1 epoch for 50%. The sparsity gap between
the teacher and student g is 10% and the snapshot
interval ¢ of teachers is 1%. After pruning, we post
fine-tune the pruned model on the Alpaca dataset
(Taori et al., 2023) for 3 epochs. All experiments
are conducted on one A100 GPU (80G).

4.2 Results

Zero-shot performance Table 1 demonstrates
the zero-shot performance on commonsense rea-
soning tasks for compressed LLaMA models. We
mainly present results with the previous version of
Im-evaluation-harness for comprehensive compari-
son, which is widely employed in prior studies (Ma
et al., 2023). Additionally, we present results with
a newer version that addressed a tokenization issue

in LLaMA for more accurate evaluation, where we
report our reproduced results of publicly available
methods. The reported results include experiments
for 20%, 25% and 50% sparsity levels, covering
scenarios with and without parameter tuning.

The average performance of NutePrune consis-
tently outperforms previous methods across all
settings. For pruning without tuning, NutePrune
outperforms LLM-Pruner by 2.64%/8.22% at
20%/50% sparsity, underscoring its ability to de-
rive a more effective pruned structure compared
to other methods. For pruning with LoRA con-
trained, NutePrune improves from 59.46%/50.35%
to 61.46%/52.13% at 20%/50% sparsity, indicat-
ing co-training with LoRA could help recover
model capability damaged by pruning. And with
addtional post fine-tuning on Alpaca, notably, it
retains 97.17% of the performance of the orig-
inal model at 20% sparsity and 95.07% at 25%
sparsity. NutePrune exhibits more noticeable im-
provements at higher sparsity levels, proving the
effectiveness of our PKD in mitigating the capac-
ity gap between teacher and student. Specifically,
NutePrune achieves comparable performance to
other methods at 20% sparsity when operating at



25% sparsity. And even without parameter tuning,
NutePrune achieves results comparable to other
methods at 50% sparsity. These findings suggest
that NutePrune is particularly effective in compress-
ing models to higher sparsity levels.

Perplexity The perplexity (PPL) is a metric re-
flecting the generation ability of LLMs. The results
on WikiText2 and PTB are presented in Table 2.
Compresso prunes on an instruction dataset and de-
pends on a meticulously crafted instructing prompt,
enabling it to outperform LLM-Pruner on zero-shot
tasks at low sparsity but yielding inferior perfor-
mance on PPL, especially at high sparsity. In con-
trast, NutePrune utilizes a more general 20k C4
dataset, preserving overall language ability. This
distinction allows NutePrune to avoid degradation
of generalization and achieve superior performance
in terms of PPL compared to both Compresso and
LLM-Pruner.

Ratio  Tune Method | WikiText2| PTB|
0% LLaMA-7B 5.68 8.81
20% LLM-Pruner 9.96 15.61
tNutePrune 8.02 14.41
LLM-Pruner 8.57 12.84
20% v Compresso 10.38 16.14
NutePrune 7.65 12.40
25% tNutePrune 9.04 14.35
25% v NutePrune 7.85 13.10
50% LLM-Pruner 98.1 224.54
{NutePrune 17.45 34.77
LLM-Pruner 22.76 339
50% v Compresso 59.73 80.38
NutePrune 13.20 21.97

Table 2: Perplexity metric on WikiText2 and PTB.

Pruning of larger model In addition to evaluat-
ing LLaMA-7B, we assess the larger LLaMA-13B
with 20% sparsity. As demonstrated in Table 3, our
approach yield an average zero-shot performance
of 67.51%, which is only 0.12% lower than the
full model and 1.75% higher than LLM-Pruner.
It also outperforms LLM-Pruner in terms of PPL.
Besides, in-context learning is a crucial capabil-
ity for LLMs (Brown et al., 2020), particularly for
larger language models such as LLaMA-13B. To
assess it, we conduct evaluations using the MMLU
with a 5-shot setting. Results demonstrates that
NutePrune can also perform well on MMLU met-
rics with larger models.

Inference latency We test the inference latency
by generating from 64 tokens to 256 tokens on

Method | Zero-Shot (%) WikiText2] MMLU
0% Baseline 67.63 5.62 0.426
LLM-Pruner 65.76 6.95 0.351

NutePrune 67.51 6.55 0.355

Table 3: Performance of the compressed LLaMA-13B
models with 20% sparsity.

vLLM (Kwon et al., 2023), which is a fast and
widely deployed library for LLM inference and
serving. The results are presented in Table 4.
NutePrune achieves latency savings of 11% and
29% at sparsity levels of 20% and 50%, respec-
tively. While LLM-Pruner can save slightly more
latency due to its predefined neater structure, it
comes at the cost of reduced flexibility in tailor-
ing. However, as sparsity increases, the difference
becomes negligible.

Method 20% 50%
0% Baseline 3.06
LLM-Pruner | 2.63(-14%) 2.17(-29%)

NutePrune | 2.72(-11%) 2.18(-29%)

Table 4: Inference latency of pruned LLaMA-7B.

Training cost We report the memory and latency
cost on different settings in Table 5. For extra
GPU memory cost of PKD, NutePrune snapshot
lightweight modules (masks and LoRA) of numer-
ous teachers into CPU. Only one teacher module is
loaded onto the GPU when needed, resulting in neg-
ligible memory cost compared with KD. In terms
of extra time cost, compared with supervised train-
ing, KD requires one extra forward pass of teacher
model, which is inevitable and cost 18.0% extra la-
tency. When snapshoting a teacher or switching to
a new teacher, due to the extremely low frequency
of operations, the time can be ignored. Introducing
Liqyer requires additional 32% memory which is
also efficient compared to conventional KD.

Progressive KD Ljqyer | Memory — Latency
27.68 3.67
v 28.67 4.33
v v 28.69 4.33
v v v 38.00 5.52

Table 5: Training cost measured by average GPU mem-
ory (GB) and per step latency (s/iter).



4.3 Ablation Study

We validate the effectiveness of NutePrune and
investigate which properties make for a good
NutePrune. Results are average zero-shot perfor-
mance with tuning but without post fine-tuning,
unless otherwise stated.

Effectiveness of PKD To validate progressive
knowledege distillation (PKD) in our NutePrune,
we conduct ablation studies on various learning
strategies. We eliminate the progressive schedule
and adopt standard KD, where the intact model
serves as the teacher throughout. Subsequently, we
exclude the entire distillation procedure and em-
ploy the standard generative language model loss,
specifically next-token prediction, to train masks
and LoRA modules. The results presented in Table
6 demonstrate the critical role of KD in enhancing
performance, with further improvements achieved
through PKD. This phenomenon is particularly pro-
nounced at higher sparsity.

Progressive KD | 20%  50%

v v | 63.57 53.94
v | 63.19 52.73
59.98 41.77

Table 6: NutePrune and variants at 20%/50% sparsity.

Two stages of PKD PKD includes one stage be-
fore reaching target sparsity and the other stage
after that. Different progressive schedules are
adopted. To assess the effectiveness of them, we
conducted an ablation study at 50% sparsity under
two training settings, as shown in Table 7: training
masks only and co-training masks with LoRA. In
a stage without a progressive schedule, the intact
model serves as the teacher. For the masks-only
scenario, adopting either stage 1 or 2 alone yields
significant improvements over KD. And for co-
training, significant improvement is observed when
both stages are adopted simultaneously.

Sparsity gap between teacher and student Dur-
ing stage 1, the sparsity gap between teacher and
student model is an important hyperparameter. We
conduct experiments with various sparsity gaps and
the results are presented in Table 8. A 10% gap
is deemed appropriate to prevent a gap that is too
small, as it may result in insufficient guidance, or
a gap that is too large, which would also toughing
distillation.

Avg.(%)
Stage 1 ~ Stage 2 masks-only  co-train
v v 53.14 53.94
Y 5231 52.79
v 52.40 52.53
51.83 52.73

Table 7: Performance of two stages of PKD.

Sparsity Gap ‘ Avg.(%)

5% 53.62
10% (ours) 53.94
20% 53.04

Table 8: Performance of various sparsity gap.

Snapshot interval of teachers When taking
snapshots of students as teachers, it is preferable to
save as many teachers as possible to facilitate more
comprehensive training. However, the additional
CPU storage for these teachers incurs extra costs.
As demonstrated in Table 9, selecting an interval
of 1% leads to significant improvement over the
10% interval, and the associated extra storage is
acceptable, which means we use 10 teachers for
20% sparsity and 40 teachers for 50% sparsity.

Snapshot Interval ‘ CPU Storage ‘ Avg.(%)

1% (ours) 728MB 53.94
10% 73MB 53.27

Table 9: Storage and performance of various intervals.

5 Conclusion

In this work, we propose NutePrune as a novel ef-
ficient pregressive structured pruning method for
LLMs. By minimizing the cost of KD, NutePrune
aligns closely with the memory and time require-
ments of conventional training, allowing the utiliza-
tion of numerous teachers for distillation. This ap-
proach mitigates the capacity gap between teacher
and student, preserving the quality of the distil-
lation process. We showcase the effectiveness
of NutePrune, particularly at high sparsity levels,
across various tasks and metrics for LLMs. The
findings of this work contribute to the advancement
of structured pruning techniques for LLMs, partic-
ularly in resource-constrained scenarios.



6 Limitations

We acknowledge the main limitation of this work is
that we only evaluate our methods on LLaMA with
7B and 13B due to limited computation resources.
And other model families, such as LLaMA-v2, are
not included due to the absence of results for com-
parison from state-of-the-art methods. Recent work
(Ma et al., 2023; Xia et al., 2023) proves that using
extensive data for post-training could substantially
enhance the performance, but it comes with a sub-
stantial increase in computational costs. We target
on pruning on resource-constraint scenarios and
leave pruning with extensive data for future work.
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A Zero-shot Performance with Newer
Version

Im-evaluation-harness released a new version in
June 2023 to assess the zero-shot performance of
LLaMA '. This update addressed a tokenization
bug specific to LLaMA, resulting in higher and
more accurate performance results compared to the
older version. Despite these improvements, current
state-of-the-art reports continue to reference the
older version. Consequently, we conducted experi-
ments using both the new and old versions, and the
detailed results for the new version are presented
in Table 10.

B Pruned Structure

To gain insights into the pruned model, we present
a detailed overview of the pruned structure at spar-
sity levels of 20% and 50%. The original hidden

"https://github.com/EleutherAl/lm-evaluation-
harness/pull/531
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dimension is 4096, with a number of heads set at
32 and an intermediate dimension of 11008. Tables
11 and 12 reveal several observations. Notably,
NutePrune tends to avoid pruning the hidden di-
mension, which aligns with the observation that
pruning it may result in significant performance
degradation (Ma et al., 2023). Regarding heads
and intermediate dimensions, NutePrune tends to
prune the the last few layers. This observation
differs from LLM-Pruner, which asserts the impor-
tance of the last layers. Further analysis of this
phenomenon is left for future work.

C Generated Examples

We present generated examples from our pruned
model using NutePrune at 20% sparsity. We pro-
vide examples of three types: without tuning (w/o
tune), with tuning but without post-finetuning (w/
tune), and with tuning and post fine-tuning (w/ tune
+ post FT). The results are displayed in Table 13.



Ratio  Tune Method | BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA | Avg.

0% LLaMA-7B | 75.11  79.16 76.21 69.85 75.29 44.71 44.40 | 66.39
20% LLM-Pruner | 57.49  76.06 69.53 63.93 67.17 38.05 40.80 | 59.01
fNutePrune | 70.21  76.93 71.66 68.27 71.09 40.44 42.60 | 63.03

LLM-Pruner | 67.37 77.86 71.47 65.90 69.57 39.59 41.80 | 61.94

20% v Compresso 73.21  75.90 66.90 68.90 69.99 41.47 41.80 | 62.60
iNutePrune | 73.79  77.37 72.27 67.48 72.77 38.91 4240 | 63.57

NutePrune | 75.38  78.02 72.97 67.40 73.82 40.36 42.80 | 64.39

25% TNutePrune | 71.53  76.50 70.60 65.98 69.11 39.93 38.40 | 61.72
25% v iNutePrune | 7291 77.42 70.34 68.11 70.92 41.55 40.60 | 63.12
NutePrune | 7495 77.75 71.27 67.40 71.25 41.81 42.00 | 63.78

50% LLM-Pruner | 4648 61.10 36.87 51.78 35.10 27.65 27.60 | 40.94
tNutePrune | 6538 69.04 55.08 61.33 55.72 30.80 34.60 | 53.14

LLM-Pruner | 57.89  69.97 50.06 52.64 49.66 28.58 34.00 | 48.97

50% v Compresso 61.31 66.32 40.73 52.41 51.18 27.65 3240 | 4743
iNutePrune | 67.25 70.67 56.64 59.83 57.07 31.74 3440 | 53.94

NutePrune | 67.52  71.60 58.64 60.14 59.72 32.94 33.80 | 54.91

Table 10: Zero-shot performance of the compressed LLaMA models in the new version of Im-evaluation-harness.
Bold denotes the best average performance at the same setting.

# Hidden Dim 4070
Layer 1 2 3 4 5 6 7 8
# Head 23 22 30 22 29 27 30 28
# Intermediate Dim 5832 7820 9169 9187 8967 9163 9186 9112
Layer 9 10 11 12 13 14 15 16
# Head 30 30 31 30 32 27 30 30
# Intermediate Dim 9261 9165 9303 9695 10005 10258 10417 10564
Layer 17 18 19 20 21 22 23 24
# Head 30 29 26 25 23 21 16 21
# Intermediate Dim 10715 10759 10785 10790 10808 10778 10729 10707
Layer 25 26 27 28 29 30 31 32
# Head 14 15 6 7 11 8 7 9

# Intermediate Dim 10568 10366 10054 9403 8519 7297 6588 5164

Table 11: Detailed structure of compressed 20% LLaMA.

# Hidden Dim 4021
Layer 1 2 3 4 5 6 7 8
# Head 24 21 27 18 26 21 20 20
# Intermediate Dim 3980 6216 7120 6590 5889 5731 5283 4944
Layer 9 10 11 12 13 14 15 16
# Head 25 21 27 26 23 21 25 21
# Intermediate Dim 4879 4563 4590 5040 5469 5832 6215 778
Layer 17 18 19 20 21 22 23 24
# Head 23 23 21 19 16 15 6 13
# Intermediate Dim 7706 8121 8005 8091 8232 7705 6879 6134
Layer 25 26 27 28 29 30 31 32
# Head 7 8 2 5 7 5 3 8

# Intermediate Dim 4912 3762 3107 2527 2357 2314 2931 2622

Table 12: Detailed structure of compressed 50% LLaMA.
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Model

Generated Sentences

w/o Tune

Neural Sequential Model, especially transformers, are used to model the human brain. The model is based on the
assumption that the brain is a system of interconnected modules, each of which is responsible for a specific function.
The modules are connected by synapses, which are the synaptic connections between neurons. The synapsis are
responsible for the transfer of information between the modules. The information is transferred in the form of a signal,
which is a combination of the input signal and the output signal. The input signal is the signal that is received by the
module, while the output is the output of the module. The output signal is then passed on to the next ...

Al can create a logo in seconds . It can also create a logo that is more creative than a human designer. Al can also
create logos that are more creative and unique than a human can. Al is also able to create logos in a short time. Al
has the ability to create logotypes. Al will be able to create a logo for a company in a short period of time. A logo is
a symbol that is used to identify a company. A logo can be used to identify the company. Al also has the ability of
creating logos that can be used in different ways. Al creates logos that have ...

What’s great about the holiday season ? The holiday spirit, of course! But it’s also a time for giving. And giving is
what we do best at the Chamber. We give you the opportunity to give back to your community. We’ve got a great list
of charitable organizations that are looking for your help. And we’ve made it easy for you to give. Just click on the
link below and you’ll be taken to the website of the charity of your choice. You can make a donation online, or you
can mail a check. Either way, you’re giving back to the community. And that’s what the ...

w/ Tune

Neural Sequential Model, especially transformers, are used to model the human brain. The model is a neural network
that is trained to recognize patterns in data. The network is trained by feeding it data and then testing it on new data.
This is a form of machine learning. The neural network is a type of artificial neural network. The term neural network
refers to a group of neurons that are connected together. The neurons are connected by synapses. The synapsis are
the connections between the neurons. The connections are called weights. The weights are used by the network to
determine how much influence each neuron has on the other neurons in the network ...

Al can create a logo in seconds , but it can’t design a logo that will work for a company. Al is great for creating a
logo, but not for designing a logo. A logo is a visual representation of a company’s brand. It’s a visual symbol that
represents the company’ logo. It is a symbol that is used to identify a company and its products. A good logo is
one that is memorable and easy to recognize. A great logo is memorably and easy recognizable. A bad logo is not
memorable or easy to recognize. A poorly designed logo is also not memorably or easy recognized. A ...

What’s great about the holiday season is that it’s a time for giving. And what better way to give than to give the gift
of a new home? Whether you’re buying a home for the first time or you’ve been in the market for a while, there are
a few things you should know before you start looking. 1. Know your budget. This is the most important thing to
consider when you’ll be looking for a home. You’ll want to know how much you can afford to spend on a home, and
you’d want to make sure you don’t go over your budget when you start searching for homes ...

w/ Tune +
Post FT

Neural Sequential Model, especially transformers, is a popular model for deep learning. It is a model that can be
trained on large datasets. It is used for tasks such as image classification, natural language processing, and other tasks.
It is an effective model for tasks such as image classification and natural language processing. It is also used for tasks
like natural language understanding and natural film fiction. It is able to learn from large datasets and can be trained
for various tasks. It can be used for tasks that require a large amount of data. It is capable of learning from large
datasets. It is used to train neural networks for tasks such image classification ...

Al can create a logo in seconds. Al Logo Designer. A Logo Al Can Create. A logo is a key element of any business.
It helps to create a unique identity and helps to stand out from the crowd. A good logo can help to build trust and
credibility. It can also help to increase the sales. Alogoai.com is a Al logo design service. We can design logos for any
business, with the latest technology. We provide high quality logos at affordable prices. Logo design service provided
by Alogo Al Logos designed by Al are more accurate and effective. Logs designed by ...

What’s great about the holiday season is the opportunity to give back to the community. Whether it’s donating to a
local charity or giving to a needy family, it’ll make you feel good to know that you’re making a difference. Here are
some ideas to get started. Volunteer at a local organization. If you have some free time, consider volunteering at a
nonprofit organization. You can help with the holidays by helping with the decorations, helping with food preparation,
or even helping with some of the administrative tasks. You’ll feel great knowing that you are making a contribution to
the organization. Donate ...

Table 13: Generated Examples from the Compressed LLaMA-7B at 20% sparsity
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