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ABSTRACT

Deception ranges from minor mischief to serious fraud, often leading to signifi-
cant psychological and financial harm. Effective deception detection is crucial to
mitigate these risks and preserve societal trust. Cognitive load is a useful indicator
for detecting deception, as lying causes individuals to experience greater mental
strain. While prior research leveraged cognitive load features, typically measured
through physiological signals such as pupil dilation, these methods often require
specialized equipment and can be subject to human bias. These limitations hinder
the scalability and automation of deception detection systems. Thus, we propose
a novel deception detection framework that automatically extracts cognitive load
features from audio-visual data, eliminating the need for specialized hardware or
subjective human input. Our approach integrates these features into the deception
detection pipeline, enhancing its robustness. Moreover, we introduce a focal loss
to address the inherent complexity of deception detection. This objective function
enables the model to focus on harder-to-detect instances of deception, thereby im-
proving the performance. Our approach achieves state-of-the-art results on bench-
mark audio-visual datasets, demonstrating improvements in automated deception
detection. Extensive experiments validate the effectiveness of both our cognitive
load feature extraction and the proposed objective function in advancing the field.

1 INTRODUCTION

Deception, the act of leading someone to believe false information as true, has been a subject of eth-
ical debate since ancient times. For millennia, lying has been viewed as a moral issue–St. Augustine
regarded every lie as a sin, while philosophers such as Aristotle and Kant expressed similarly strong
stances against deception (Zuckerman, 1981). In contemporary society, deception poses significant
challenges. It affects critical areas such as judicial proceedings, security protocols, and public trust,
with far-reaching consequences, including fraud and other societal harm. As deception is pervasive
in everyday life (Wu et al., 2018) and often serves as a social tool (Guerrero et al., 2017), there is
a growing demand for reliable, automated methods of deception detection across domains such as
airport security, criminal investigations, job interviews, and marketing (Pérez-Rosas et al., 2015b).

However, the human ability to detect deception is limited. Individuals overestimate their ability to
identify deception in others while underestimating their capacity to deceive (Elaad, 2003). Empirical
studies suggest that the average person detects deception with approximately 54% accuracy—barely
better than chance (Bond Jr & DePaulo, 2006). This limitation leads to substantial research to
develop more accurate and efficient deception detection techniques.

Recent deception detection work examined verbal and non-verbal cues to differentiate between truth-
tellers and liars. Verbal deception detection strategies include interrogation techniques, the role of
communication mode in deception, and structured interview approaches such as the PEACE model
(Bull et al., 2019; Hartwig et al., 2011; Strömwall & Anders Granhag, 2003). Non-verbal research
tended to focus on behavioral patterns during repeated questioning, the impact of speech disfluency
and gestures, and training methods to improve detection accuracy through non-verbal cues (Fiedler
& Walka, 1993; Granhag & Strömwall, 2002; King et al., 2020). Most prior research underscored
the effectiveness of verbal and non-verbal indicators in identifying deception.
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A key reason differentiating liars from truth-tellers is the cognitive load associated with deception.
Lying imposes higher cognitive demands than truth-telling, which can manifest in both verbal and
non-verbal behaviors (DePaulo et al., 2003b). Prior research explored the link between cognitive
load and deception detection, suggesting that liars experience greater cognitive strain, which can be
leveraged to improve detection accuracy (Bird et al., 2019; Blandón-Gitlin et al., 2014; Van’t Veer
et al., 2014; Wielgopolan & Imbir, 2023). To measure cognitive load, previous research exam-
ined physiological signals such as pupil dilation, blink rates, body movements, and response times
(Abouelenien et al., 2016; Constâncio et al., 2023; Elkins et al., 2012; Raiman et al., 2011; Walczyk
et al., 2012). Despite the promise of these approaches, practical limitations remain—reliance on spe-
cialized equipment, inconsistent physiological interpretations, and challenges in real-time analysis
restrict their scalability and portability (Joseph, 2013; Vanneste et al., 2021; Weber et al., 2021).

Inspired by the potential of cognitive load for deception detection, we propose a novel approach that
incorporates audio-visual cognitive load features into a fully automated deception detection frame-
work. Our proposed framework, AVDDCL (Audio-Visual Deception Detection with Cognitive
Load), extracts cognitive load features directly from audio-visual data, overcoming the limitations
of traditional methods that rely on specialized equipment or manual annotations. By automating the
detection process, our method offers a scalable and efficient solution for real-world applications.

To the best of our knowledge, this is one of the beginning steps in utilizing audio-visual cognitive
load features for deception detection. Our contributions are presented as follows:

• We introduce a novel framework that integrates audio-visual cognitive load features into
deception detection, moving beyond conventional physiological and behavioral analyses.
This approach offers a more scalable, automated, and comprehensive solution.

• We introduce the focal loss to address the specific challenges of deception detection, where
differentiating between truth and deception is inherently difficult. By focusing on harder-
to-detect cases, our model improves overall detection accuracy.

• Our proposed approach establishes a new state-of-the-art performance benchmark on the
DOLOS dataset (Guo et al., 2023), demonstrating significant improvements in both accu-
racy and robustness for fully automated deception detection systems.

2 RELATED WORKS

2.1 DECEPTION DETECTION APPROACHES

Deception detection is extensively investigated through various approaches, ranging from analyzing
physiological patterns to verbal and non-verbal cues. Early deception detection methods mainly
relied on physiological indicators such as heart rate, blood pressure, and skin conductivity, em-
ploying polygraph-based techniques. Despite their widespread use, polygraph tests faced consistent
criticism among scientists due to concerns over their validity (Meijer & Verschuere, 2014).

Following the limitations of physiological methods, the research mainstream shifted toward non-
verbal cues, emphasizing facial expressions and behavioral indicators. Ekman’s work on deception
detection through facial expressions became foundational (Ekman, 2009), while subsequent studies
explored the use of micro-expressions (Wu et al., 2018) and body movement analysis (Van der Zee
et al., 2019). Another line of research focuses on gaze tracking and eye interaction as deception
indicators (Kumar et al., 2021; Mirsadikov & George, 2023). However, micro-expressions could
not significantly enhance deception detection accuracy, leading to contradictory conclusions about
their effectiveness (Jordan et al., 2019). Several methods often required advanced and non-portable
equipment, limiting their practical applications in real-world settings (Dinges et al., 2023).

Recently, advancements in deep learning have propelled detection research beyond single-modality
approaches, encouraging multi-modality fusion. Several prior research integrated diverse informa-
tion sources (channels), including audio, visual, and EEG signals, into deep learning frameworks for
deception detection (Şen et al., 2020). Others combined physiological responses, thermal sensing,
and linguistic features to achieve multimodal deception detection (Abouelenien et al., 2014).
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2.2 DECEPTION DETECTION WITH COGNITIVE LOAD

Previous research suggested that liars experience more significant cognitive load and nervousness
than truth-tellers, as they exert additional mental effort to appear credible (Vrij, 2008). In many
situations, telling the truth is cognitively less demanding than lying, especially in face-to-face in-
teractions, where fabricating a lie requires more mental resources than simply recounting the truth
(Van’t Veer et al., 2014; Vrij, 2008). Lying imposes a cognitive burden, making it more effortful
than truth-telling (Van’t Veer et al., 2014), and liars often exhibit detectable signs of increased cog-
nitive load, such as subtle behavioral cues (Blandón-Gitlin et al., 2014). Notably, the effectiveness
of deception detection methods is often linked to the degree of cognitive load experienced by the
individual, with higher cognitive load improving detection accuracy (Wielgopolan & Imbir, 2023).

Several scholars utilized physiological indicators of cognitive load to improve deception detection.
For example, eye blinking and pupil dilation are closely associated with cognitive load (Stern et al.,
1984), making them reliable markers for detecting deception through eye-tracking technologies and
pupil diameter measurements (Labibah et al., 2018). Other scholars reinforced this finding, demon-
strating that increased pupil dilation during deception was a significant indicator of cognitive load
(Pasquali et al., 2020). Moreover, eye movement, response time, and eloquence were effective de-
ception indicators, as they were strongly tied to cognitive load (Gonzalez-Billandon et al., 2019).
Micro-expressions on the face, particularly under cognitive strain, were also examined to enhance
deception detection accuracy, with research suggesting that imposing cognitive demands during in-
terviews could significantly improve the identification of deceptive behaviors (Monaro et al., 2022).

Although physiological methods have the potential for assessing cognitive load in deception de-
tection, their practical application is limited by the need for specialized and non-portable equip-
ment (Weber et al., 2021). Furthermore, individual variability in physiological responses introduces
challenges in data interpretation (Joseph, 2013), and the complexity of real-time assessment com-
plicates practical deployment (Vanneste et al., 2021).

To overcome these limitations, the automatic extraction of cognitive load features presents a promis-
ing alternative. For example, the AVCAffe dataset (Sarkar et al., 2023) employs audio-visual data
to analyze cognitive load and affective states. Building on this foundation, we introduce the first
automated method to extract cognitive load indicators from audio-visual data specifically for decep-
tion detection, filling a significant gap in the current literature. Considering cognitive load features
as intermediate tasks, we propose a novel multimodal framework that improves deception detection
performance while overcoming the constraints related to traditional physiological methods. It pro-
vides us a foundation for scalable, practical applications in real-world deception detection scenarios.

3 PROPOSED METHOD

We propose a novel framework that integrates cognitive load features for deception detection. The
framework comprises a feature extraction network and a deception detection network. Figure 1
shows the overview of the architecture of AVDDCL.

3.1 FEATURE EXTRACTION NETWORK

We extract audio-visual features from the audio-visual parameter efficient fusion (AVPEF). We use
the feature extraction network proposed by the prior study (Guo et al., 2023) for efficient feature
extraction. Figure 2(a) shows the overall structure of AVPEF. AVPEF consists of a uniform tem-
poral encoder (UTE) and audio-visual fusion (AVF). In AVPEF, the input audio and visual data are
tokenized separately through 1D-CNN and 2D-CNN modules, and input data is converted into se-
quential representations. These sequences then pass UTE, which is based on W2V2 (Baevski et al.,
2020) and ViT (Dosovitskiy et al., 2021)-based transformer encoders, to extract modality-specific
features. The audio-visual integrated feature combines audio and visual features through AVF.

Uniform Temporal Encoder. The uniform temporal encoder (UTE) blocks are stacked in the
AVPEF to focus on temporal information. UTEA consists of the pre-trained W2V2 encoder, and
UTEV consists of the pre-trained ViT encoder. Given that W2V2 and ViT are large pre-trained
models, fully fine-tuning them can be inefficient and may lead to overfitting. So we only fine-tune a
small number of additional parameters with a uniform temporal adapter (UT-Adapter). With UTE,
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Figure 1: Overview of AVDDCL. AVDDCL receives audio-visual data as input and extracts audio-
visual features through AVPEF (Sec. 3.1). The cognitive load features are extracted from the pre-
trained AVPEF network (Sec. 3.2) and are concatenated with deception features. The deception
classifier (Sec. 3.3) detects the deception with the concatenate features.
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Figure 2: Overview of the Audio-Visual Parameter-Efficient Fusion network (AVPEF); (a) The
overall AVPEF structure, (b) Uniform Temporal Encoder (UTE), (c) Audio-Visual Fusion (AVF).

our proposed model improves the parameter efficiency and avoids the risk of overfitting. The struc-
ture of UTE is depicted in Figure 2(b). The UT-Adapter is designed to capture local temporal dy-
namics, complementing the Multi-Head Self-Attention (MSHA) module, which primarily captures
global temporal and spatial attention.

Audio-Visual Fusion. The audio-visual fusion (AVF) module facilitates the efficient fusion of audio
and visual features. The intermediate features of audio (IFA) and visual (IFV ) encoders are pro-
jected into a lower-dimensional embedding space to reduce computational costs. After the projec-
tion, the cross-modal correlations are calculated using a trainable weight matrix. Then cross-modal
attention is applied to refine the feature representations. The refined audio and visual features are
concatenated and the fused feature (FAV ) is obtained through the bottleneck layer.

Audio-Visual Feature Extraction. As the sequence of input audio (XA) and image (XV ) are input
in AVPEF, each intermediate feature IFA and IFV are extracted from the UTE block. The audio-
visual fusion feature (FAV ) is calculated through AVF, and this process is repeated. From the second
UTE block, the output of the previous block is received as input. In this study, four UTE blocks are
utilized, and the resulting fused representations FAV (1), FAV (2), FAV (3), FAV (4) as follows:

IF(i) =

{
UTE(i)(X) if y = 1

UTE(i)(IF(i−1)) otherwise.
(1)

FAV (i)
= AV F(i)(IFA(i)

, IFV(i)
) (2)
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The fused features are concatenated and form the final audio-visual features F as defined below.
The final feature F is subsequently used as the input for the classification layer to detect deception.

F = FAV (1)
⊕ FAV (2)

⊕ FAV (3)
⊕ FAV (4)

(3)

3.2 COGNITIVE LOAD FEATURE PRE-TRAINING

To extract cognitive load features, we employ the pre-trained AVPEF network, specifically designed
to capture the critical role of temporal information in cognitive load assessment (Liu et al., 2023;
Li et al., 2025; Puma et al., 2018). The network’s UT-Adapter effectively incorporates temporal dy-
namics, while its parameter efficiency ensures it remains computationally feasible, even in resource-
constrained environments. For pre-training, we utilize the AVCAffe dataset (Sarkar et al., 2023),
which includes 58,112 short video segments averaging 6.74 seconds each, totaling approximately
108.72 hours of data from 106 participants. These segments were extracted from longer task-based
recordings using a silence detection algorithm (Robert et al., 2018) to capture affective and cognitive
load attributes with high temporal granularity. This approach enables a more precise and scalable
analysis of cognitive load features, which is essential for advancing deception detection.

The dataset provides task-based self-reported labels for arousal, valence, and cognitive load at-
tributes. Cognitive scores, based on NASA-TLX (Hart, 2006), are rated on a 0-21 scale across
categories such as mental demand, physical demand, temporal demand, performance, effort, and
frustration. Scores above 10 are classified as high, and others as low. In the AVCAffe dataset, frus-
tration, physical demand, and performance were excluded due to minimal variance, with the focus
placed instead on mental demand, effort, and temporal demand.

3.2.1 PRE-TRAINED AVPEF

We pre-trained the AVPEF network to extract cognitive load features across three key dimensions:
mental demand, effort, and temporal demand. During pre-training, we integrated linear layers to
predict each of these dimensions from the audio-visual dataset, training them separately to capture
specific aspects of cognitive load. To ensure robust model evaluation and prevent information leak-
age, we divided the dataset into 86 participants for training and 20 for validation, carefully stratified
by age, gender, and ethnicity, with no overlap in recording sessions. The AVPEF module effectively
learns distinct audio-visual patterns associated with each cognitive load dimension. For the final de-
ception detection task, we removed the linear layers, retaining only the pre-trained AVPEF network
for feature extraction, ensuring a streamlined and effective analysis pipeline.

3.3 AUDIO-VISUAL BASED DECEPTION DETECTION

3.3.1 DETECTION PROCEDURES

As the audio and visual data are input, audio-visual features are extracted from the feature extraction
network. We extract four audio-visual features, three for cognitive load features, and one for decep-
tion features. For cognitive load features, we utilize the pre-trained AVPEF and freeze its weights.
This ensures that the network parameters remain fixed during feature extraction. This process is
represented as follows:

FM = FrAVPEFM(X), FE = FrAVPEFE(X), FT = FrAVPEFT(X) (4)
where FrAVPEF denote the Frozen AVPEF module, FM, FE, and FT denote the extracted cognitive
load features for the mental demand, effort, and temporal demand categories, respectively. X rep-
resents the input data. The output of the Frozen AVPEF module for cognitive load is collectively
referred to as FC . FC comprehensively represents the participant’s cognitive state. By combining
these three dimensions, the model captures a holistic view of the cognitive load experienced by
individuals, which is then utilized for subsequent prediction and analysis.

Meanwhile, for deception features (FD), the AVPEF module remains fully learnable, allowing it to
capture the subtle patterns present in the deception data. To incorporate cognitive load into deception
detection, the extracted cognitive load features are concatenated with the final output of the AVPEF
module for deception features. The final feature Ffinal is defined as the concatenation of FC and FD.

The final feature Ffinal is then fed into a classifier network for the final deception detection prediction.
The deception classifier consists of two linear layers.
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3.3.2 OBJECTIVE FUNCTION

In deception detection, deception is inherently more challenging to detect than truth, as it involves
greater cognitive load, leading to inconsistencies and complex behavioral patterns, which are often
masked by strategic actions, making accurate identification difficult (DePaulo et al., 2003a; Ekman,
2009; Vrij, 2008; Vrij & Granhag, 2012; Zuckerman, 1981). This contrast underscores the need for
a sophisticated approach capable of capturing the subtle differences between truth and deception.

In light of the inherent difficulty in distinguishing deception, we employ focal loss as the objective
function to optimize model performance. Focal loss mitigates the impact of easily classified in-
stances, allowing the model to prioritize more difficult cases, such as deception, which often involve
subtle, complex patterns (Ross & Dollár, 2017). The focal loss is as follows:

Ltotal = −
N∑
i=1

yi log(pi)−
N∑
i=1

(1− pi)
γyi log(pi) (5)

Here, pi is the model’s predicted probability for the true class. γ is the focusing parameter that
controls the contribution of hard-to-classify deceptive samples. This function enhances the model’s
ability to focus on deceptive instances that are often masked by strategic behaviors and varying
cognitive loads. By incorporating focal loss, we ensure that our model captures subtle distinctions
between truth and deception, improving classification performance on deceptive data.

4 EXPERIMENTS AND RESULTS

4.1 DATASET

DOLOS (Guo et al., 2023). The DOLOS dataset is a large game show deception detection dataset,
featuring rich deceptive conversations. This dataset is collected from a British reality comedy game
show. It includes 1,675 video clips featuring 213 participants (141 male and 72 female). For each
episode, video clips are extracted based on specific criteria: participants must speak only relevant
content (i.e., telling the truth or lies) clearly without significant background noise, and their faces
must be visible without occlusion. From 84 episodes, 1,675 clips, ranging from 2 to 19 seconds,
were chosen. However, due to some clips becoming unavailable, the final dataset contains 1,656
clips. Each clip is annotated with a MUMIN coding scheme, focusing on non-verbal deceptive cues.

Real Life Trail (Pérez-Rosas et al., 2015a). The Real Life Trail (RLT) dataset includes testimonies
from defendants or witnesses in real court trials, consisting of 121 video clips with 61 deceptive
and 60 truthful segments. The average duration of the clips is 28.0 seconds, with deceptive and
truthful clips averaging 27.7 and 28.3 seconds, respectively. The speakers consist of 21 female and
35 male speakers, with ages ranging from 16 to 60 years. This comprehensive collection offers
a robust resource for studying the nuances of deceptive and truthful behavior in high-stakes, real-
world scenarios, providing a valuable benchmark for evaluating deception detection methodologies.
Due to availability constraints, 110 out of the 121 clips were used in this study.

Box of Lies (Soldner et al., 2019). The Box of Lies (BOL) dataset, derived from ‘The Tonight Show
Starring Jimmy Fallon,’ features 25 video clips totaling 2 hours and 24 minutes. Each clip averages
6 minutes, with about three game rounds involving different guests and Jimmy Fallon. The dataset
contains 1,049 utterances, of which 862 are deceptive and 187 truthful, with annotations focusing
on verbal and non-verbal behaviors, including facial expressions and conversational cues, based on
the MUMIN coding scheme. Details on statistical analysis can be found in Appendix A.4

4.2 DATA PREPROCESSING

For all datasets, including AVCAffe, DOLOS, RLT, and BOL, we applied the same data pre-
processing pipeline. In each video, we uniformly selected 64 frames, applying the MTCNN (Zhang
et al., 2016) face detector to isolate the facial regions. The extracted face images were resized to
160x160 pixels and subsequently normalized. For the audio, speech signals were resampled to en-
sure the W2V2 feature extractor produced 64 tokens. Additionally, we utilized the Demucs (Copet
et al., 2024; Défossez et al., 2019) model to separate speech from background noise, minimizing
the impact of background sounds and ensuring that only the speech component was used for further
processing. Details on dataset preprocessing can be found in Appendix A.5

6
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Table 1: Comparison of cognitive load prediction models based on parameters (Millions) and F1
scores across TLX subscales (M: Mental Demand, E: Effort, T: Temporal Demand). We compare
the results with one of the representative approaches (Sarkar et al., 2023), which used audio (A)
and visual (V) modalities. Sarkar et al. (2023) used combinations of VGG and ResNet for the audio
modality, while the visual modality explored architectures such as ResNet3D, R(2+1)D, and MC3.

Audio Visual # Parameters (Millions) M E T
VGG16 - 138.5 58.8 - -

- R(2+1)D-18 33.3 60.5 - -
VGG16 ResNet3D-18 172.1 65.0 - -
VGG16 - 138.5 - 58.8 -

- R(2+1)D-18 33.3 - 65.5 -
ResNet18 R(2+1)D-18 43.5 - 60.8 -
ResNet18 - 11.4 - - 58.2

- MC3-18 11.6 - - 60.0
ResNet18 ResNet3D-18 45.4 - - 61.2

AVPEF 71.2 (Trainable 5.2) 63.6 61.5 58.2

4.3 EXPERIMENT DETAIL

To investigate the impact and combinations of cognitive load features on deception detection, de-
noted as Ffinal, seven different feature sets are used: mental demand (M), effort (E), temporal demand
(T), mental demand + effort (M + E), mental demand + temporal demand (M + T), effort + tempo-
ral demand(E + T), and mental demand + effort + temporal demand (M + E + T). These features
are concatenated with the final output of the deception detection AVPEF network for experimental
evaluation. The dimensions of each feature combination are standardized to 256, consistent with the
dimensionality of the AVPEF network’s feature.

For cognitive load feature extraction, we conduct experiments using the AVCAffe dataset, following
the data-splitting strategy described in 3.2.1 to ensure no information leakage between training and
validation sets ensuring that no information leakage occurred between the training and validation
sets. The model was trained with a learning rate of 3e-4, a batch size of 8, and cross-entropy loss as
the objective function. Four encoders were used, and training was carried out for 20 epochs with the
Adam optimizer. An early stopping mechanism based on the F1-score was applied, halting training
if no improvement was observed for 5 consecutive epochs.

For the deception detection framework, the average values of ACC, F1-score, and AUC are measured
based on the 3-folds defined by the train-test protocol in the DOLOS dataset. The experiments are
conducted over 20 epochs using the Adam optimizer, with an initial learning rate set to 1e-4. The
batch size is 16, and focal loss (FL) with γ = 2 is used as the objective function. Additionally,
the model architecture includes 4 encoders with a dropout rate of 0.5. The learning rate is adjusted
using the StepLR scheduler, where the learning rate is halved every 5 epochs. All experiments are
performed in a Python 3.8.19 and PyTorch 1.13.1 environment.

4.4 RESULT OF COGNITIVE LOAD PREDICTION

Table 1 presents the top-performing backbone combinations for each TLX subscale (Mental De-
mand, Effort, and Temporal Demand), evaluated using the F1-score. It includes the total and train-
able parameters for each model, with the parameters of AVPEF included for reference. Despite hav-
ing significantly fewer trainable parameters, AVPEF achieves competitive F1-scores, highlighting
its effectiveness and parameter efficiency in predicting cognitive load across multiple dimensions.

4.5 RESULTS ON DOLOS DATASET

The baseline model is trained using AVPEF on the DOLOS dataset, incorporating MUMIN features
for multi-task learning. The model uses cross-entropy loss and a four-layer encoder. The perfor-
mance of the AVPEF module combined with cognitive load features on the DOLOS dataset is pre-
sented in Table 2. For all seven combinations of cognitive load features, our AVDDCL outperforms
the baseline on the DOLOS dataset. Notably, the proposed method achieves superior performance

7
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compared to the multi-task approach using MUMIN (Allwood et al., 2005), demonstrating the feasi-
bility of automated deception detection without human labeling through the integration of cognitive
load features. An analysis of the individual cognitive load features reveals that mental demand
achieves the highest performance, followed by temporal demand and effort.

Notably, the best overall performance is
obtained when all three cognitive load
features are combined, highlighting the
value of feature integration for decep-
tion detection. The cognitive load fea-
tures are not independent of each other
but are related. By leveraging the com-
bination of these features, the proposed
method effectively captures subtle in-
teractions across cognitive load aspects,
providing a robust framework for auto-
mated deception detection. This finding
underscores the significance of adopting
a comprehensive approach to modeling
intricate human behaviors, as focusing
on isolated features can risk overlooking
the multifaceted nature of the cognitive
processes involved in deceptive actions.

Table 2: The deception detection performance on the DO-
LOS dataset; AVDDCL: Audio-Visual Deception Detec-
tion with Cognitive Load. Various combinations of these
cognitive load features are evaluated and compared with
existing benchmark results. The metrics are ACC (%),
F1-score (%), and AUC (%).

Method (w/ features) ACC F1 AUC
Guo et al. (2023) 64.8 71.2 62.7

Guo et al. (2023) (Multi) 66.8 73.4 64.6
AVDDCL (M) 67.7 73.0 66.3
AVDDCL (E) 63.0 70.5 60.7
AVDDCL (T) 67.0 72.8 65.3

AVDDCL (M+E) 66.7 71.9 65.3
AVDDCL (M+T) 67.4 73.3 65.6
AVDDCL (E+T) 66.1 71.4 64.6

AVDDCL (M+E+T) 68.0 73.4 66.5

4.6 EXPERIMENTS ON DIVERSE DATASETS FOR GENERALIZATION

We evaluate the generalization capabilities of the AVDDCL through a series of experiments on
high-stakes (RLT) and low-stakes (BOL) deception datasets. High-stakes deception, which carries
severe consequences such as legal penalties, differs significantly from low-stakes deception, where
the effects are minimal (Porter & ten Brinke, 2010; Wright Whelan et al., 2015). This disparity
introduces challenges for models attempting to generalize between the two contexts.

Table 3: Within-dataset experiments on RLT (high-stakes) and BOL (low-stakes) datasets. Metrics
are ACC (%), F1-score (%), and AUC (%) over 5-fold cross-validation.

Model Modality Train RLT / Test RLT Train BOL / Test BOL
ACC F1-score AUC ACC F1-score AUC

Camara et al. (2024) V 62.7 ± 1.0 62.8 ± 1.0 64.1 ± 1.1 62.4 ± 1.2 58.2 ± 2.2 62.4 ± 1.2
Guo et al. (2023) V + A 82.7 ± 1.3 83.3 ± 1.2 82.8 ± 1.3 67.0 ± 1.6 62.1 ± 2.4 67.0 ± 1.4
AVDDCL (Ours) V + A 86.4 ± 1.4 85.6 ± 1.6 86.6 ± 1.4 74.0 ± 1.9 68.5 ± 3.5 74.0 ± 1.9

Table 4: Cross-corpus experiments on RLT (high-stakes) and BOL (low-stakes) datasets. The met-
rics are ACC (%), F1-score (%), and AUC (%).

Model Modality Train RLT / Test BOL Train BOL / Test RLT
ACC F1-score AUC ACC F1-score AUC

Camara et al. (2024) V 42.8 39.8 50.9 50.2 46.6 49.7
Biçer & Dibeklioğlu (2023) V - 44.1 - - 44.7 -
Biçer & Dibeklioğlu (2023) A - 38.2 - - 45.6 -
Guo et al. (2023) V + A 48.6 15.7 48.6 52.6 58.8 53.2
AVDDCL (Ours) V + A 47.4 7.1 47.3 55.3 57.6 55.5

To evaluate AVDDCL’s performance, we employed 5-fold cross-validation to ensure robustness and
reduce the influence of data splits on the results. We conducted both within-dataset and cross-corpus
experiments, using accuracy, F1-score, and AUC as evaluation metrics. For the BOL dataset, data
preparation involved organizing utterances into rounds and applying under-sampling to the ‘decep-
tion’ class to address the class imbalance issue, resulting in a dataset of 128 videos. Comprehen-
sive data preparation steps and related statistics are detailed in Appendix A.4. AVDDCL showed
significant performance within datasets, achieving 86.4% accuracy for high-stakes and 74.0% for
low-stakes deception scenarios (Table 3). However, cross-dataset evaluations revealed variations in
performance due to domain differences between high-stakes and low-stakes deception. When trained

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

on BOL and evaluated on RLT, the model reached an accuracy of 55.3%, suggesting some degree
of pattern transferability between datasets. In contrast, training on RLT and testing on BOL resulted
in a lower accuracy (47.4%), likely due to the more subtle cues associated with low-stakes decep-
tion, as high-stakes scenarios generally involve more pronounced deceptive indicators compared to
the nuanced patterns in low-stakes contexts (Wright Whelan et al., 2014). These results highlight
the challenges posed by domain differences in deception detection. While AVDDCL demonstrates
robust performance in within-dataset evaluations, it also shows promise in improving generalization
from low-stakes to high-stakes scenarios through the integration of cognitive load features. Future
work is required to focus on refining the model to better capture subtle cues in low-stakes deception,
aiming to enhance cross-domain performance and generalize across diverse deception contexts.

4.7 ABLATION STUDY

4.7.1 IMPACT OF FOCAL LOSS AND GAMMA TUNING

To validate the effectiveness of focal
loss, we conducted a comprehensive
evaluation across a wide range of γ us-
ing the DOLOS dataset. We included
γ=0 as a baseline, equivalent to Cross
Entropy Loss, to assess the impact of fo-
cal loss on model performance. Table 5
shows that focal loss consistently outper-
formed cross-entropy loss, leading to im-
proved metrics across the board. More-
over, the model achieved the highest Ac-
curacy, F1-score, and AUC when γ=2,
which was selected as the optimal param-
eter for our analyses.

Table 5: AVDDCL(M+E+T) ablation study and hyper-
parameter tuning on DOLOS dataset. The metrics are
ACC(%), F1(%), and AUC(%). Note that C/E represents
Cross Entropy Loss.

Method γ ACC F1 AUC
AVDDCL (M+E+T) 0 (C/E) 66.2 72.5 64.3
AVDDCL (M+E+T) 0.5 66.8 72.3 65.4
AVDDCL (M+E+T) 1 65.3 70.4 64.1
AVDDCL (M+E+T) 1.5 66.6 72.6 64.5
AVDDCL (M+E+T) 2 68.0 73.4 66.5
AVDDCL (M+E+T) 3 67.5 73.3 65.7
AVDDCL (M+E+T) 5 66.3 70.7 65.5

This improvement highlights the effectiveness of focal loss in addressing the complexities of decep-
tion detection, enabling the model to focus on subtle cognitive and behavioral patterns that differ-
entiate deception from truth. This aligns with existing research emphasizing the cognitive demands
and behavioral inconsistencies inherent in deceptive actions (Vrij, 2008; Ekman, 2009).

4.7.2 VISUALIZATION OF EXTRACTED FEATURE

(a) (b) (c)

Figure 3: Visualization of audio-visual features using t-SNE: (a) Cognitive load feature, (b) Decep-
tion feature, (c) Cognitive + Deception feature. Reds indicate deception, blues indicate truth.

To gain further insights into the behavior of our AVDDCL model, we conduct t-SNE (Van der
Maaten & Hinton, 2008) visualizations for different feature sets extracted from the audio-visual data.
Figure 3 shows the visualization of audio-visual features from our AVDDCL model. Figure 3(a),
Figure 3(b), and Figure 3(c) depict the cognitive load features, deception features, and the integrated
features of cognitive load features and deception features, respectively.

In Figure 3(c), the combination of cognitive load and deception-specific features provides a more
refined differentiation between truth and deception. This result showcases not just a clear-cut bound-
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ary but a broader variety of how deception manifests. The additional cognitive load context, derived
from mental demand, temporal load, and effort, enriches the model’s ability to handle more com-
plex patterns of deceptive behavior. This expanded separation, rather than simplifying the distinc-
tion, highlights the varied and layered nature of deception, allowing the model to capture multiple
aspects of both cognitive and behavioral cues in deceptive instances.

This variation in observed patterns suggests the presence of distinct dimensions within deceptive
behaviors, supporting findings that deception is not a singular phenomenon but a complex and multi-
layered construct (Hartwig & Bond Jr, 2011; Porter & ten Brinke, 2010; Sporer & Schwandt, 2007).
Future research could integrate cognitive load and deception features to explore the diverse forms of
deception, enabling systems to categorize different deceptive strategies. This refined approach could
help in developing models that not only distinguish between truth and deception but also classify
deception into various subtypes, each characterized by distinct cognitive efforts and behavioral traits,
offering a deeper and more detailed analysis of deceptive behavior.

5 DISCUSSION AND FUTURE WORK

Existing studies emphasize that fully automated decision-making systems, while significantly
efficient, can raise concerns considering fairness and reliability when human judgment is ex-
cluded (Kern et al., 2022). It is important in high-stakes scenarios, such as law enforcement or
medical diagnosis, where automation bias can lead to over-reliance on or disregard for system out-
puts (Belavadi et al., 2020). In these contexts, false positives can carry substantial risks, underlining
the need for balanced and transparent systems. Misuse of automated systems may also erode public
trust, enable manipulation, spread misinformation, or perpetuate discrimination against marginalized
groups (Biçer & Dibeklioğlu, 2023). Therefore, rigorous ethical considerations are crucial before
implementing such systems. Incorporating human-in-the-loop systems is essential to contributing to
fairness and efficiency, leveraging human judgment alongside automated capabilities (Cummings,
2017; Khan et al., 2021)

Integrating human cognitive and psychological factors into system design can greatly enhance the
trustworthiness of models (Cummings, 2017; Mosier & Skitka, 2018). Building on this principle, we
integrate cognitive load-based features to address automation bias and ensure more reliable decision-
making. However, unresolved biases in datasets and demographic factors induced during training
pose challenges to generalization across diverse contexts. The lack of real-world datasets, such as the
Real-Life Trial dataset, exacerbates domain-specific overfitting, limiting the model’s applicability to
both high-stakes and low-stakes deception scenarios (King & Neal, 2024). In addition, demographic
factors like gender, age, and cultural differences significantly influence deception cues, impacting
model performance (Abouelenien et al., 2018; Levitan et al., 2016; Naven et al., 2020).

Future research should focus on creating more diverse datasets and enhancing domain generalization
to improve cross-context performance. Incorporating human-in-the-loop systems will be key to
ensuring fairness and reliability in automated deception detection. Improving explainability through
interpretable decision-making processes is also essential for building trust in high-stakes contexts.
Bias mitigation strategies, such as fairness-aware training and demographic balancing, are crucial for
ensuring equitable outcomes. Moreover, making the parameters α and γ in focal loss adaptive and
learnable could further enhance the model’s ability to generalize across diverse, real-time contexts.
Furthermore, optimizing models for real-time applications through pruning and quantization can
minimize latency and computational demands while balancing efficiency and reliability for robust
performance in real-world settings.

6 CONCLUSION

We propose the AVDDCL framework, a novel approach to automated deception detection using
cognitive load features extracted from audio-visual data. Our findings show that incorporating mul-
tiple cognitive load dimensions significantly improves model performance, supporting the idea that
cognitive load and its dimensions are key to detecting deception. The use of focal loss further en-
hances the model by targeting difficult instances, boosting accuracy and robustness. This scalable,
automated solution eliminates the need for specialized equipment or human annotations, enabling
more reliable and practical real-world applications.
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A APPENDIX

A.1 DETAILS ABOUT UT-ENCODER

The UT-Encoder (UTE) refers to the entire architecture that incorporates the W2V2 or ViT encoder
alongside UT-Adapters. UT-Adapters are placed in parallel with MHSA and feed-forward layer
(FFD) in each encoder of W2V2 and ViT. The encoder components, including MSHA, Multi-Layer
Perceptron(MLP), and normalization layers, remain frozen, while only the UT-Adapter parameters
are learnable. Each UT-Adapter consists of a series of linear layers and 1D-convolutional layers.
The architecture of the UT-Adapter is as follows:

U(X) = L2 (P (C (P (L1(X;W1)) ;WC)) ;W2) (6)

Here, L1 and L2 represent the Linear 1 and Linear 2 layers, respectively, and P and C denote
the permutation and 1D-convolutional Layers. The weights W1 ∈ RD×128 and W2 ∈ R128×D

are trainable parameters of the linear layers L1 and L2, while WC is the trainable weight for the
1D-convolutional layer with a kernel size of 3. Specifically, L1 projects the input X ∈ RL×D to
X ∈ RL×128. The Permutation layer P shifts the data from X ∈ RL×128 to X ∈ R128×L. The
convolutional layer C is then applied along the temporal dimension to capture temporal dynamics.
After the convolution operation, the Permutation layer and L2 project the data back from X ∈
R128×L to X ∈ RL×D.

UTE block effectively utilizes the UT-Adapter to capture local temporal information, while the
MHSA and MLP modules focus on learning global temporal and spatial attention. This architecture
allows the model to balance parameter efficiency and performance.

A.2 DEATILS ABOUT AUDIO-VISUAL FUSION

To facilitate fusion based on the interaction between Audio and Visual data, the output features from
both modalities are initially projected into a lower-dimensional embedding space to reduce compu-
tational costs. After projecting the inputs, the PAVF module calculates the cross-modal correlation
matrix Pi using a trainable weight matrix Wp as follows:
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Pi = X ′
aWP (X

′
v)

⊤ (7)

where X ′
a and X ′

v are the reduced-dimensional representations of the audio and visual encoder out-
puts, respectively. The cross-modal correlation matrix Pi indicates the importance of the interactions
between specific audio and visual sequences, which is crucial for tasks like deception detection.

The module then applies cross-modal attention to both modalities, refining the feature representa-
tions as:

X̃v = Softmax(Pi)Xv +Xv, X̃a = Softmax(P⊤
i )Xa +Xa, (8)

The attended features, X̃v and X̃a are concatenated to form a joint representation:

X̃va = X̃v ⊕ X̃a (9)

which is then processed through a fusion head comprising linear projection, normalization, and
ReLU activation:

X̃va = ReLU(LN(Lp(X̃va))) (10)

A.3 DETAILS ABOUT CROSS ENTROPY LOSS AND FOCAL LOSS

As mentioned in subsection 3.3.2, due to the inherent challenges in detecting deception, which often
requires handling more subtle and complex patterns, we utilize the focal loss, a function that builds
upon cross-entropy loss. Cross entropy loss is defined as follows:

CE(p, y) =
{
− log(p) if y = 1

− log(1− p) otherwise.
(11)

define pt:

pt =

{
p if y = 1

1− p otherwise.
(12)

and can rewrite

CE(p, y) = CE(pt) = − log(pt). (13)

In the given equation, y ∈ {±1} indicates the actual class label, while p ∈ [0, 1] represents the
model’s estimated probability for the class where y = 1.

However, one property of CE loss is even well-classified examples continue to contribute a sub-
stantial portion to the overall loss. When these relatively minor losses are aggregated across a large
number of easy examples, they can disproportionately diminish the influence of rarer, more chal-
lenging classes.

A simple method to address class imbalance is to introduce a weighting factor, α ∈ [0, 1], as a
hyperparameter for class 1 in CE, and 1− α for class -1 which can be expressed as follows:

CE(pt) = −αt log(pt) (14)

While α balances the importance of positive/negative examples, it does not differentiate between
easy/hard examples. Therefore, by adding the modulating factor −(1 − pt)

γ with tunable focusing
parameter γ ≥, the objective function is restructured to down-weight easy examples and focus on
the hard negatives as follows:

FocalLoss(pt) = −αt(1− pt)
γ log(pt) (15)
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A.4 DATA STATISTICS

To ensure a fair and rigorous evaluation of AVDDCL’s performance, we employed a 5-fold cross-
validation strategy for both the RLT and BOL datasets. This approach ensured robust results by
minimizing the effects of data splits and allowed for consistent comparison across different experi-
mental settings.

The original BOL dataset required specific preprocessing steps to align with the structure of the RLT
dataset and address its inherent class imbalance. First, the BOL dataset, which initially featured
utterance-based labeling, was adjusted by grouping utterances into “rounds” to reduce discrepancies
with the video-based labeling format of the RLT dataset. This grouping reflected the gameplay
structure observed in each video. Second, the significant imbalance between the ’deception’ and
’truth’ classes in the BOL dataset, with an overrepresentation of deceptive samples, was addressed
by applying random under-sampling of the ’deception’ class. This balancing ensured that the model
could effectively learn both classes without bias.

After these preprocessing steps, the balanced BOL dataset consisted of 128 videos, while the RLT
dataset included 110 videos. Detailed statistics of the preprocessed datasets, including the distribu-
tion of deceptive and truthful instances, are summarized in Table 6.

Table 6: Comparison of DOLOS, Real Life Trial(RLT), and Box of Lies(BOL) Dataset Statistics.
Dataset Total Files Avg Duration (s) Std Dev (s) # Deception # Truthful
DOLOS 1,656 5.4 4.7 886 690
Real Life Trial 110 28.0 13.3 53 57
Box of Lies 128 19.4 21.2 64 64

A.5 DATA PRE-PROCESSING

A.5.1 VIDEO PRE-PROCESSING

For all datasets, the video preprocessing pipeline involved a series of steps to extract meaningful
facial regions from video frames while maintaining temporal consistency.

Frames were sampled uniformly from each video at a fixed rate of 20 frames per second (FPS).
This was implemented using OpenCV, where the native FPS of each video was determined using the
cv2.VideoCapture function and its CAP PROP FPS property. For videos with an FPS greater
than 20, the interval between sampled frames was calculated as frame interval = max(1,
int(fps / 20)), ensuring an even distribution of frames. If the FPS was lower than 20, no
frames were skipped to preserve the temporal resolution.

Once frames were extracted, facial regions were detected using MTCNN. The MTCNN model pro-
vided bounding box coordinates and facial keypoints such as the positions of the eyes, nose, and
mouth. For frames containing multiple faces, a tracking mechanism was employed to assign unique
IDs to each detected face. This mechanism compared bounding box positions and used a Euclidean
distance threshold of 40 pixels between nose keypoints to determine if a detected face matched
an existing ID. Across all frames in a video, the face with the highest frequency of detection was
selected as the primary face for further processing.

The selected facial regions were cropped using the bounding box coordinates provided by MTCNN
and resized to a fixed resolution of 160×160 pixels using OpenCV’s cv2.resize function. Bilin-
ear interpolation was applied during resizing to preserve facial details.

Finally, 64 frames were uniformly sampled from each video to ensure consistent representation
across datasets.

A.5.2 AUDIO PRE-PROCESSING

The audio preprocessing pipeline was designed to extract and refine speech signals from the videos
while minimizing background noise.
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The first step involved extracting audio tracks from each video using the MoviePy library. The
VideoFileClip class was used to load each video, and its audio component was accessed and
exported as a .wav file. This ensured that the audio data retained the original fidelity of the record-
ing. Videos without audio tracks were logged and excluded from further processing to maintain
pipeline integrity.

To further refine the audio signals, we applied the Demucs model (Défossez et al., 2019), a deep
learning-based source separation model. The Demucs model was configured to separate the audio
into two components: vocals (speech) and non-vocals (background noise). Each .wav file was
processed using the two-stem configuration, which focuses on isolating speech content from other
sound elements.

By combining noise separation and structured organization, the preprocessing pipeline provided
clean and consistent speech signals for subsequent feature extraction and analysis. This ensured that
the audio data was of high quality and aligned with the temporal structure of the video data.

A.6 EVALUATING COGNITIVE LOAD SUBSCALES IN RELATION TO DECEPTION LABELS

Table 7: Confusion Matrix for Cognitive Load Subscale Classification and Deception Labels
Cognitive Load Subscale Deception/Truth Low High

Mental Demand Deception 77 811
Truth 71 697

Effort Deception 547 341
Truth 448 320

Temporal Demand Deception 156 732
Truth 147 621

This section quantifies the relationship between NASA-TLX cognitive load subscales (mental de-
mand, effort, and temporal demand) and deception labels. Using the pre-trained AVPEF(see 3.2.1)
with linear layers intact, we classified each subscale as high or low and compared these classifica-
tions to deception labels in the DOLOS dataset to evaluate their contributions to deception detection
accuracy.

The confusion matrix results (Table 7) reveal that individual TLX subscales have weak correlations
with deception labels, as indicated by Cramér’s V values below 0.1. However, as demonstrated in
our findings in 4.5 combining multiple subscales significantly enhances deception detection perfor-
mance. This aligns with prior research suggesting that TLX subscales interact rather than operate
independently (Nikulin et al., 2019).

These findings highlight the importance of interactions between cognitive load subscales in captur-
ing the complexities of deception. Future work will explore these interdependencies further using
larger datasets and advanced models to enhance the framework’s effectiveness.
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