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ABSTRACT

Recurrent neural networks have proven effective in modeling sequential user
feedbacks for recommender systems. However, they usually focus solely on item
relevance and fail to effectively explore diverse items for users, therefore harming
the system performance in the long run. To address this problem, we propose a new
type of recurrent neural networks, dubbed recurrent exploration networks (REN),
to jointly perform representation learning and effective exploration in the latent
space. REN tries to balance relevance and exploration while taking into account
the uncertainty in the representations. Our theoretical analysis shows that REN can
preserve the rate-optimal sublinear regret (Chu et al., 2011) even when there exists
uncertainty in the learned representations. Our empirical study demonstrates that
REN can achieve satisfactory long-term rewards on both synthetic and real-world
recommendation datasets, outperforming state-of-the-art models.

1 INTRODUCTION

Modeling and predicting sequential user feedbacks is a core problem in modern e-commerce recom-
mender systems. In this regard, recurrent neural networks (RNN) have shown great promise since
they can naturally handle sequential data (Hidasi et al., 2016; Quadrana et al., 2017; Belletti et al.,
2019; Ma et al., 2020). While these RNN-based models can effectively learn representations in the
latent space to achieve satisfactory immediate recommendation accuracy, they typically focus solely
on relevance and fall short of effective exploration in the latent space, leading to poor performance
in the long run. For example, a recommender system may keep recommending action movies to a
user once it learns that she likes such movies. This may increase immediate rewards, but the lack of
exploration in other movie genres can certainly be detrimental to long-term rewards.

So, how does one effectively explore diverse items for users while retaining the representation power
offered by RNN-based recommenders. We note that the learned representations in the latent space
are crucial for these models’ success. Therefore we propose recurrent exploration networks (REN)
to explore diverse items in the latent space learned by RNN-based models. REN tries to balance
relevance and exploration during recommendations using the learned representations.

One roadblock is that effective exploration relies heavily on well learned representations, which in
turn require sufficient exploration; this is a chicken-and-egg problem. In a case where RNN learns
unreasonable representations (e.g., all items have the same representations), exploration in the latent
space is meaningless. To address this problem, we enable REN to take into account the uncertainty of
the learned representations as well during recommendations. Essentially items whose representations
have higher uncertainty can be explored more often. Such a model can be seen as a contextual bandit
algorithm that is aware of the uncertainty for each context. Our contributions are as follows:

1. We propose REN as a new type of RNN to balance relevance and exploration during
recommendation, yielding satisfactory long-term rewards.

2. Our theoretical analysis shows that there is an upper confidence bound related to uncertainty
in learned representations. With such a bound implemented in the algorithm, REN can
achieve the same rate-optimal sublinear regret as Chu et al. (2011).

3. Experiments of joint learning and exploration on both synthetic and real-world temporal
datasets show that REN significantly improve long-term rewards over state-of-the-art RNN-
based recommenders.
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2 RELATED WORK

Deep Learning for Recommender Systems. Deep learning (DL) has been playing a key role in
modern recommender systems (Salakhutdinov et al., 2007; van den Oord et al., 2013; Wang et al.,
2015; Li & She, 2017; Chen et al., 2019; Fang et al., 2019; Tang et al., 2019). Salakhutdinov et al.
(2007) uses restricted Boltzmann machine to perform collaborative filtering in recommender systems.
Wang et al. (2015) and Li & She (2017) devise Bayesian deep learning models to significantly
improve recommendation performance. In terms of sequential (or session-based) recommender
systems (Hidasi et al., 2016; Quadrana et al., 2017; Bai et al., 2018; Li et al., 2017; Liu et al., 2018;
Wu et al., 2019; Ma et al., 2020), GRU4Rec (Hidasi et al., 2016) was first proposed to use gated
recurrent units (GRU) (Cho et al., 2014), an RNN variant with gating mechanism, for recommendation.
Since then, follow-up works such as hierarchical GRU (Quadrana et al., 2017), temporal convolutional
networks (TCN) (Bai et al., 2018), and hierarchical RNN (HRNN) (Ma et al., 2020) have tried to
achieve improvement in accuracy with the help of cross-session information (Quadrana et al., 2017),
causal convolutions (Bai et al., 2018), as well as control signals (Ma et al., 2020). We note that our
REN does not assume specific RNN architectures (e.g., GRU or TCN) and is therefore compatible
with different RNN-based (or more generally DL-based) models, as shown in later sections.

Contextual Bandits. Contextual bandit algorithms such as LinUCB (Li et al., 2010) and its vari-
ants (Yue & Guestrin, 2011; Agarwal et al., 2014; Li et al., 2016; Kveton et al., 2017; Foster et al.,
2018; Zhou et al., 2019) have been proposed to tackle the exploitation-exploration trade-off in recom-
mender systems and successfully improve upon context-free bandit algorithms (Auer, 2002). Similar
to Auer (2002), theoretical analysis shows that LinUCB variants could achieve a rate-optimal regret
bound (Chu et al., 2011). However, these methods either assume observed context (Zhou et al., 2019)
or are incompatible with neural networks (Li et al., 2016; Yue & Guestrin, 2011). In contrast, REN
as a contextual bandit algorithm runs in the latent space and assumes user models based on RNN;
therefore it is compatible with state-of-the-art RNN-based recommender systems.

Diversity-Inducing Models. Various works have focused on inducing diversity in recommender
systems (Nguyen et al., 2014; Antikacioglu & Ravi, 2017; Wilhelm et al., 2018; Bello et al., 2018).
Usually such a system consists of a submodular function, which measures the diversity among items,
and a relevance prediction model, which predicts relevance between users and items. Examples
of submodular functions include the probabilistic coverage function (Hiranandani et al., 2019) and
facility location diversity (FILD) (Tschiatschek et al., 2016), while relevance prediction models can
be Gaussian processes (Vanchinathan et al., 2014), linear regression (Yue & Guestrin, 2011), etc.
These models typically focus on improving diversity among recommended items in a slate at the cost
of accuracy. In contrast, REN’s goal is to optimize for long-term rewards through improving diversity
between previous and recommended items without sacrificing accuracy.

3 RECURRENT EXPLORATION NETWORKS

In this section we first describe the general notations and how RNN can be used for recommendation,
briefly review determinantal point processes (DPP) as a diversity-inducing model as well as their
connection to exploration in contextual bandits, and then introduce our proposed REN framework.

3.1 NOTATION AND RNN-BASED RECOMMENDER SYSTEMS

Notation. We consider the problem of sequential recommendations where the goal is to predict
the item a user interacts with (e.g., click or purchase) at time t, denoted as ekt , given her previous
interaction history Et = [ekτ ]t−1

τ=1. Here kt is the index for the item at time t, ekt ∈ {0, 1}K
is a one-hot vector indicating an item, and K is the number of total items. We denote the item
embedding (encoding) for ekt as xkt = fe(ekt), where fe(·) is the encoder as a part of the RNN.
Correspondingly we have Xt = [xkτ ]t−1

τ=1. Strictly speaking, in an online setting where the model
updates at every time step t, xk also changes over time; in Sec. 3 we use xk as a shorthand for xt,k
for simplicity. We use ‖z‖∞ = maxi |z(i)| to denote the L∞ norm, where the superscript (i) means
the i-th entry of the vector z.

RNN-Based Recommender Systems. Given the interaction history Et, the RNN generates the user
embedding at time t as θt = R([xkτ ]t−1

τ=1), where xkτ = fe(ekτ ) ∈ Rd, and R(·) is the recurrent
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Algorithm 1: Recurrent Exploration Networks (REN)
1 Input: λd, λu, initialized REN model with the encoder, i.e., R(·) and fe(·).
2 for t = 1, 2, . . . , T do
3 Obtain item embeddings from REN: µkτ ← fe(ekτ ) for all τ ∈ {1, 2, . . . , t− 1}.
4 Obtain the current user embedding from REN: θt ← R(Dt).
5 At ← Id +

∑
τ∈Ψt

µ>kτµkτ .
6 Obtain candidate items’ embeddings from REN: µk ← fe(ek), where k ∈ [K].
7 Obtain candidate items’ uncertainty estimates σk, where k ∈ [K].
8 for k ∈ [K] do
9 pk,t ← µ>k θt + λd

√
µ>k A−1

t µk + λu‖σk‖∞.
10 end
11 Recommend item kt ← argmaxk pt,k and collect user feedbacks.
12 Update the REN model R(·) and fe(·) using collected user feedbacks.
13 end

part of the RNN. Assuming tied weights, the score for each candidate item is then computed as
pk,t = x>k θt. As the last step, the recommender system will recommend the items with the highest
scores to the user. Note that the subscript k indexes the items, and is equivalent to an ‘action’, usually
denoted as a, in the context of bandit algorithms.

3.2 DETERMINANTAL POINT PROCESSES FOR DIVERSITY AND EXPLORATION

Determinantal point processes (DPP) consider an item selection problem where each item is repre-
sented by a feature vector xt. Diversity is achieved by picking a subset of items to cover the maximum
volume spanned by the items, measured by the log-determinant of the corresponding kernel matrix,
ker(Xt) = log det(IK + XtX

>
t ), where IK is included to prevent singularity. Intuitively, DPP

penalizes colinearity, which is an indicator that the topics of one item are already covered by the other
topics in the full set. The log-determinant of a kernel matrix is also a submodular function (Friedland
& Gaubert, 2013), which implies a (1− 1/e)-optimal guarantees from greedy solutions. The greedy
algorithm for DPP via the matrix determinant lemma is

argmaxk log det(Id + X>t Xt + xkx
>
k )− log det(Id + X>t Xt)

= argmaxk log(1 + x>k (Id + X>t Xt)
−1xk) = argmaxk

√
x>k (Id + X>t Xt)−1xk. (1)

Interestingly, note that
√

x>k (Id + X>t Xt)−1xk has the same form as the confidence interval in
LinUCB (Li et al., 2010), a commonly used contextual bandit algorithm to boost exploration and
achieve long-term rewards, suggesting a connection between diversity and long-term rewards (Yue &
Guestrin, 2011). Intuitively, this makes sense in recommender systems since encouraging diversity
relative to user history (not diversity in a slate of recommendations) naturally explores user interest
previously unknown to the model, leading to much higher long-term rewards, as shown in Sec. 5.

3.3 RECURRENT EXPLORATION NETWORKS

Based on the intuition above, we can modify the user-item score pk,t = x>k θt to include a diversity
(exploration) term, leading to the new score

pk,t = x>k θt + λd

√
x>k (Id + X>t Xt)−1xk, (2)

where the first term is the relevance score and the second term is the exploration score (measuring
diversity between previous and recommended items). θt = R(Xt) = R([xkτ ]t−1

τ=1) is RNN’s hidden
states at time t representing the user embedding. The hyperparameter λd aims to balance two terms.

At first blush, given the user history the system using Eqn. 2 will recommend items that are (1)
relevant to the user’s interest and (2) diverse from the user’s previous items. However, this only
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works when item embeddings xk are correctly learned. Unfortunately, the quality of learned item
embeddings, in turn, relies heavily on the effectiveness of exploration, leading to a chicken-and-egg
problem. To address this problem, one also needs to consider the uncertainty of the learned item
embeddings. Assuming the item embedding xk ∼ N (µk,Σk), where Σk = diag(σ2

k), we have the
final score for REN:

pk,t = µ>k θt + λd

√
µ>k (Id + D>t Dt)−1µk + λu‖σk‖∞, (3)

where θt = R(Dt) = R([µkτ ]t−1
τ=1) and Dt = [µkτ ]t−1

τ=1. The term σk quantifies the uncertainty for
each dimension of xk, meaning that items whose embeddings REN is uncertain about are more likely
to be recommended. Therefore with the third term, REN can naturally balance among relevance,
diversity (relative to user history), and uncertainty during exploration.

Algorithm 1 shows the overview of REN. Note that the difference between REN and traditional
RNN-based recommenders is only in the inference stage. During training (Line 12 of Algorithm 1),
one can train REN only with the relevance term using models such as GRU4Rec and HRNN. In
the experiments, we use uncertainty estimates diag(σk) = 1/

√
nk Id, where nk is item k’s total

number of impressions (i.e., the number of times item k has been recommended) for all users. The
intuition is that: the more frequently item k is recommended, the more frequently its embedding xk
gets updated, the faster σk decreases. Note that in principle, σk can be learned from data using the
reparameterization trick (Kingma & Welling, 2014), which would be interesting future work.

Linearity in REN. REN only needs a linear bandit model; REN’s output x>k θt is linear w.r.t. θ
and xk. Note that NeuralUCB (Zhou et al., 2019) is a powerful nonlinear extension of LinUCB, i.e.,
its output is nonlinear w.r.t. θ and xk. Extending REN’s output from x>k θt to a nonlinear function
f(xk,θt) as in NeuralUCB is also interesting future work.

4 THEORETICAL ANALYSIS

With REN’s connection to contextual bandits, we can prove that with proper λd and λu, Eqn. 3 is
actually the upper confidence bound that leads to long-term rewards with a rate-optimal regret bound.

Note that unlike existing works which primarily consider the randomness from the reward, we take
into consideration the uncertainty resulted from the context. More specifically, existing works assume
deterministic x and only assume randomness in the reward, i.e., they assume that r = x>θ + ε, and
therefore r’s randomness is independent of x. The problem with this formulation is that they assume
x is deterministic and therefore the model only has a point estimate of the item embedding x, but
does not have uncertainty estimation for such x. We find that such uncertainty estimation is crucial
for exploration; if the model is uncertain about x, it can then explore more on the corresponding item.

To facilitate analysis, we follow the BaseLinUCB-SupLinUCB decomposition of LinUCB (Chu
et al., 2011) and divide the procedure of REN into “BaseREN” (Algorithm 2) and “SupREN” stages
correspondingly. Essentially SupREN introduces S = lnT levels of elimination (with s as an index)
to filter out low-quality items and ensures that the assumption holds (see the Supplement for details
of SupREN).

In this section, we first provide a high probability bound for BaseREN with uncertain embeddings
(context), and derive an upper bound for the regret. As mentioned in Sec. 3.1, for the online setting
where the model updates at every time step t, xk also changes over time. Therefore in this section we
use xt,k, µt,k, Σt,k, and σt,k in place of xk, µk, Σk, and σk from Sec. 3 to be rigorous.

Assumption 4.1. Assume there exists an optimal θ∗, with ‖θ∗‖ ≤ 1, and x∗t,k such that E[rt,k] =

x∗t,k
>θ∗. Further assume that there is an effective distribution N (µt,k,Σt,k) such that x∗t,k ∼

N (µt,k,Σt,k) where Σt,k = diag(σ2
t,k). Thus, the true underlying context is unavailable, but we

are aided with the knowledge that it is generated by a multivariate normal with known parameters1.

1Here we omit the identifiability issue of x∗
t,k and assume that there is a unique x∗

t,k for clarity.
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Algorithm 2: BaseREN: Basic REN Inference at Step t
1 Input: α, Ψt ⊆ {1, 2, . . . , t− 1}.
2 Obtain item embeddings from REN: µτ,kτ ← fe(eτ,kτ ) for all τ ∈ Ψt.
3 Obtain the current user embedding from REN: θt ← R(Dt).
4 At ← Id +

∑
τ∈Ψt

µ>τ,kτµτ,kτ .
5 Obtain candidate items’ embeddings from REN: µt,k ← fe(et,k), where k ∈ [K].
6 Obtain candidate items’ uncertainty estimates σt,k, where k ∈ [K].
7 for a ∈ [K] do
8 st,k =

√
µ>t,kA

−1
t µt,k

9 wt,k ← (α+ 1)st,k + (4
√
d+ 2

√
ln TK

δ )‖σt,k‖∞.

10 r̂t,k ← θ>t µt,k.
11 end
12 Recommend item k ← argmaxk r̂t,k + wt,k.

4.1 UPPER CONFIDENCE BOUND FOR UNCERTAIN EMBEDDINGS

For simplicity we follow the notation from Chu et al. (2011) and denote the item embedding (context)
as xt,k, where t indexes the rounds (time steps) and k indexes the items. We define:

st,k =
√

µ>t,kA
−1
t µt,k ∈ R+, Dt = [µτ,kτ ]τ∈Ψt ∈ R|Ψt|×d,

yt = [rτ,kτ ]τ∈Ψt ∈ R|Ψt|×1, At = Id + D>t Dt,

bt = D>t yt, r̂t,k = µ>t,kθ̂t = µ>t,kA
−1
t bt, (4)

where yt is the collected user feedback. Lemma 4.1 below shows that with λd = 1 + α =

1 +
√

1
2 ln 2TK

δ and λu = 4
√
d + 2

√
ln TK

δ , Eqn. 3 is the upper confidence bound with high
probability, meaning that Eqn. 3 upper bounds the true reward with high probability, which makes it
a reasonable score for recommendations.
Lemma 4.1 (Confidence Bound). With probability at least 1− 2δ/T , we have for all k ∈ [K] that

|r̂t,k − x∗t,k
>θ∗| ≤ (α+ 1)st,k + (4

√
d+ 2

√
ln
TK

δ
)‖σt,k‖∞,

where ‖σt,k‖∞ = maxi |σ(i)
t,k| is the L∞ norm.

The proof is in the Supplement. This upper confidence bound above provides important insight on
why Eqn. 3 is reasonable as a final score to select items in Algorithm 1 as well as the choice of
hyperparameters λd and λu.

RNN to Estimate θt. REN uses RNN to approximate A−1
t bt (useful in the proof of Lemma 4.1)

in Eqn. 4. Note that a linear RNN with tied weights and a single time step is equivalent to linear
regression (LR); therefore RNN is a more general model to estimate θt. Compared to LR, RNN-based
recommenders can naturally incorporate new user history by incrementally updating the hidden states
(θt in REN), without the need to solve a linear equation. Interestingly, one can also see RNN’s
recurrent computation as a simulation (approximation) for solving equations via iterative updating.

4.2 REGRET BOUND

Lemma 4.1 above provides an estimate of the reward’s upper bound at time t. Based on this estimate,
one natural next step is to analyze the regret after all T rounds. Formally, we define the regret of the
algorithm after T rounds as

B(T ) =

T∑
t=1

rt,k∗t −
T∑
t=1

rt,kt , (5)
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where k∗t is the optimal item (action) k at round t that maximizes E[rt,k] = x∗t,k
>θ∗, and kt is the

action chose by the algorithm at round t. In a similar fashion as in (Chu et al., 2011), SupREN calls
BaseREN as a sub-routine. In this subsection, we derive the regret bound for SupREN with uncertain
item embeddings.
Lemma 4.2. With probability 1−2δS, for any t ∈ [T ] and any s ∈ [S], we have: (1) |r̂t,k−E[rt,k]| ≤
wt,k for any k ∈ [K], (2) k∗t ∈ Âs, and (3) E[rt,k∗t ]−E[rt,k] ≤ 2(3−s) for any k ∈ Âs.
Lemma 4.3. In BaseREN, we have: (1 + α)

∑
t∈ΨT+1

st,kt ≤ 5 · (1 + α2)
√
d|ΨT+1|.

Lemma 4.4. Assuming ‖σ1,k‖∞ = 1 and ‖σt,k‖∞ ≤ 1√
t

for any k and t, then for any k, we have

the upper bound:
∑
t∈ΨT+1

‖σt,k‖∞ ≤
√
|ΨT+1|.

Essentially Lemma 4.2 links the regret B(T ) to the width of the confidence bound wt,k (Line 9
of Algorithm 2 or the last two terms of Eqn. 3). Lemma 4.3 and Lemma 4.4 then connect wt,k to√
|ΨT+1| ≤

√
T , which is sublinear in T ; this is the key to achieve a sublinear regret bound. Note

that Âs is defined inside Algorithm 2 (SupREN) of the Supplement.

Interestingly, Lemma 4.4 states that the uncertainty only needs to decrease at the rate 1√
t
, which is

consistent with our choice of diag(σk) = 1/
√
nk Id in Sec. 3.3, where nk is item k’s total number

of impressions for all users. As the last step, Lemma 4.5 and Theorem 4.1 below build on all lemmas
above to derive the final sublinear regret bound.
Lemma 4.5. For all s ∈ [S],

|Ψ(s)
T+1| ≤ 2s · (5(1 + α2)

√
d|Ψ(s)

T+1|+ 4
√
dT + 2

√
T ln

TK

δ
).

Theorem 4.1. If SupREN is run with α =
√

1
2 ln 2TK

δ , with probability at least 1− δ, the regret of
the algorithm is

B(T ) ≤ 2
√
T + 92 · (1 + ln

2TK(2 lnT + 2)

δ
)

3
2

√
Td = O(

√
Td ln3(

KT ln(T )

δ
)),

The full proofs of all lemmas and the theorem are in the Supplement. Theorem 4.1 shows that even
with the uncertainty in the item embeddings, our proposed REN can achieve the same rate-optimal
sublinear regret bound as in Chu et al. (2011).

5 EXPERIMENTS

In this section, we evaluate our proposed REN on both synthetic and real-world datasets.

5.1 EXPERIMENT SETUP AND COMPARED METHODS

Joint Learning and Exploration Procedure in Temporal Data. To effectively verify REN’s capa-
bility to boost long-term rewards, we adopt an online experiment setting where data is divided into
different time intervals [T0, T1), [T1, T2), . . . , [TM−1, TM ]. RNN (including REN and its baselines)
is then trained and evaluated in a rolling manner: (1) RNN is trained using data in [T0, T1); (2) RNN
is evaluated using data in [T1, T2) and collects feedbacks (rewards) for its recommendations; (3)
RNN uses newly collected feedbacks from [T1, T2) to finetune the model; (4) Repeat the previous
two steps using data from the next time interval. Note that different from traditional offline and
one-step evaluation, corresponding to only Step (1) and (2), our setting performs joint learning and
exploration in temporal data, and therefore is more realistic and closer to production systems.

Long-Term Rewards. Since the goal is to evaluate long-term rewards, we are mostly interested in
the rewards during the last (few) time intervals. Conventional RNN-based recommenders do not
perform exploration and are therefore much easier to saturate at a relatively low reward. In contrast,
REN with its effective exploration can achieve nearly optimal rewards in the end.

Compared Methods. We compare REN variants with state-of-the-art RNN-based recommenders
including GRU4Rec (Hidasi et al., 2016), TCN (Bai et al., 2018), HRNN (Ma et al., 2020). Since
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Figure 1: Results for different methods in SYN-S (left with 28 items), SYN-M (middle with 280
items), and SYN-L (right with 1400 items). One time step represents one interaction step, where in
each interaction step the model recommends 3 items to the user and the user interacts with one of
them. In all cases, REN models with diversity-based exploration lead to final convergence, whereas
models without exploration get stuck at local optima.
REN can use any RNN-based recommenders as a base model, we evaluate three REN variants in
the experiments: REN-G, REN-T, and REN-H, which use GRU4Rec, TCN, and HRNN as base
models, respectively. Additionally we also evaluate REN-1,2, an REN variant without the third term
of Eqn. 3, and REN-1,3, one without the second term of Eqn. 3, as an ablation study. Both REN-1,2
and REN-1,3 use GRU4Rec as the base model. As references we also include Oracle, which always
achieves optimal rewards, and Random, which randomly recommends one item from the full set.
For REN variants we choose λd from {0.001, 0.005, 0.01, 0.05, 0.1} and set λu =

√
10λd. Other

hyperparameters in the RNN base models are kept the same for fair comparison (see the Supplement
for more details on neural network architectures, hyperparameters, and their sensitivity analysis).

Connection to Reinforcement Learning (RL) and Bandits. REN-1,2 (in Fig. 2) can be seen as a
simplified version of ‘randomized least-squares value iteration’ (an RL approach proposed in Osband
et al. (2016)) or an adapted version of contextual bandits, while REN-1,3 (in Fig. 2) is an advanced
version of ε-greedy exploration in RL. Note that REN is orthogonal to RL and bandit methods.

5.2 SIMULATED EXPERIMENTS

Datasets. Following the setting described in Sec. 5.1, we start with three synthetic datasets, namely
SYN-S, SYN-M, and SYN-L, which allow complete control on the simulated environments. We assume
8-dimensional latent vectors, which are unknown to the models, for each user and item, and use the
inner product between user and item latent vectors as the reward. Specifically, for each latent user
vector θ∗, we randomly choose 3 entries to set to 1/

√
3 and set the rest to 0, keeping ‖θ∗‖2 = 1. We

generate C8
2 = 28 unique item latent vectors. Each item latent vector x∗k has 2 entries set to 1/

√
2

and the other 6 entries set to 0 so that ‖x∗k‖2 = 1.

We assume 15 users in our datasets. SYN-S contains exactly 28 items, while SYN-M repeats each
unique item latent vector for 10 times, yielding 280 items in total. Similarly, SYN-L repeats for 50
times, therefore yielding 1400 items in total. The purpose of allowing different items to have identical
latent vectors is to investigate REN’s capability to explore in the compact latent space rather than the
large item space. All users have a history length of 60.

Simulated Environments. With the generated latent vectors, the simulated environment runs as
follows: At each time step t, the environment randomly chooses one user and feed the user’s
interaction history Xt (or Dt) into the RNN recommender. The recommender then recommends the
top 4 items to the user. The user will select the item with the highest ground-truth reward θ∗

>
x∗k,

after which the recommender will collect the selected item with the reward and finetune the model.

Results. Fig. 1 shows the rewards over time for different methods. Results are averaged over 3
runs and we plot the rolling average with a window size of 100 to prevent clutter. As expected,
conventional RNN-based recommenders saturate at around the 500-th time step, while all REN
variants successfully achieve nearly optimal rewards in the end. One interesting observation is that
REN variants obtain rewards lower than the “Random” baseline at the beginning, meaning that they
are sacrificing immediate rewards to perform exploration in exchange for long-term rewards.

Ablation Study. Fig. 2 shows the rewards over time for REN-G (i.e., REN-1,2,3), REN-1,2, and
REN-1,3 in SYN-S and SYN-L. We observe that REN-1,2, with only the relevance (first) and diversity
(second) terms of Eqn. 3, saturates prematurely in SYN-S. On the other hand, the reward of REN-1,3,
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Figure 3: Rewards over time on MovieLens-1M (left), Trivago (middle), and Netflix (right). One
time step represents 10 recommendations to a user, one hour of data, and 100 recommendations to a
user for MovieLens-1M, Trivago, and Netflix, respectively.
with only the relevance (first) and uncertainty (third) term, barely increases over time in SYN-L. In
contrast, the full REN-G works in both SYN-S and SYN-L. This is because without the uncertainty
term, REN-1,2 fails to effectively choose items with uncertain embeddings to explore. REN-1,3
ignores the diversity in the latent space and tends to explore items that have rarely been recommended;
such exploration directly in the item space only works when the item number is small, e.g., in SYN-S.

5.3 REAL-WORLD EXPERIMENTS
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Figure 2: Ablation study on different
terms of REN. ‘REN-1,2,3’ refers to
the full ‘REN-G’ model.

MovieLens-1M. We use MovieLens-1M (Harper & Konstan,
2016) containing 3,900 movies and 6,040 users with an exper-
iment setting similar to Sec. 5.2. Specifically, we randomly
select 1,000 users from MovieLens-1M, where each user has
120 interactions, and follow the joint learning and exploration
procedure described in Sec. 5.1 to evaluate all methods (more
details in the Supplement). All models recommend 10 items
at each round for a chosen user, and the precision@10 is used
as the reward. Fig. 3(left) shows the rewards over time aver-
aged over all 1,000 users. As expected, REN variants with
different base models are able to achieve higher long-term
rewards compared to their non-REN counterparts.

Trivago. We also evaluate the proposed methods on Trivago2, a hotel recommendation dataset with
around 730K users and 890K items. We use a subset with 57,778 users and 387,348 items, and
slice the data into M = 48 one-hour time intervals for the online experiment (see the Supplement
for details on data pre-processing). Different from MovieLens-1M, Triavago has impression data
available: at each time step, besides which item is clicked by the user, we also know which 25
items are being shown to the user. Such information makes the online evaluation more realistic,
as we now know the ground-truth feedback if an arbitrary subset of the 25 items are presented to
the user. At each time step of the online experiments, all methods will choose 10 items from the
25 items to recommend the current user and collect the feedback for these 10 items as data for
finetuning. We pretrain the model using all 25 items from the first 13 hours before starting the online
evaluation. Fig. 3(middle) shows the mean reciprocal rank (MRR), the official metric used in the
RecSys Challenge, for different methods. As expected, the baseline RNN (e.g., GRU4Rec) suffers
from a drastic drop in rewards because agents are allowed to recommend only 10 items, and they
choose to focus only on relevance. This will inevitably ignores valuable items and harms the accuracy.
In contrast, REN variants (e.g., REN-G) can effectively balance relevance and exploration for these
10 recommended items at each time step, achieving higher long-term rewards. Interestingly, we also
observe that REN variants have better stability in performance compared to RNN baselines.

Netflix. Finally, we also use Netflix3 to evaluate how REN performs in the slate recommendation
setting and without finetuning in each time step, i.e., skipping Step (3) in Sec. 5.1. We pretrain
REN on data from half the users and evaluate on the other half. At each time step, REN generates
100 mutually diversified items for one slate following Eqn. 3, with pk,t updated after every item
generation. Figure 3(right) shows the recall@100 as the reward for different methods, demonstrating
REN’s promising exploration ability when no finetuning is allowed (more results in the Supplement).

2More details are available at https://recsys.trivago.cloud/challenge/dataset/.
3https://www.kaggle.com/netflix-inc/netflix-prize-data
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6 CONCLUSION

We propose the REN framework to balance relevance and exploration during recommendation. Our
theoretical analysis and empirical results demonstrate the importance of considering uncertainty in
the learned representations for effective exploration and improvement on long-term rewards. We
provide an upper confidence bound on the estimated rewards along with its corresponding regret
bound and show that REN can achieve the same rate-optimal sublinear regret as Chu et al. (2011)
even in the presence of uncertain representations. Future work could investigate the possibility of
learned uncertainty in representations, nonlinearity of the reward w.r.t. θt, and applications beyond
recommender systems, e.g., robotics and conversational agents.
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Figure 4: Rewards over time on MovieLens-1M for 500 users (left), 750 users (middle), and all 6,040
users (right). One time step represents 10 recommendations to a user.

A ADDITIONAL RESULTS ON MovieLens-1M

Fig. 4 shows additional results on MovieLens-1M for 500 users (left), 750 users (middle), and all
6,040 users (right). One time step represents 10 recommendations to a user. Each user has 120
interactions. Similar to Sec. 5.3, we follow the joint learning and exploration procedure described
in Sec. 5.1 to evaluate all methods (more details in the Supplement). All models recommend 10
items at each round for a chosen user, and the precision@10 is used as the reward. Fig. 3(left) shows
the rewards over time averaged over all 1,000 users. As expected, REN variants with different base
models are able to achieve higher long-term rewards compared to their non-REN counterparts.
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