
PaSa: An LLM Agent for Comprehensive Academic Paper Search

Anonymous ACL submission

Abstract

We introduce PaSa, an advanced Paper Search001
agent powered by large language models. PaSa002
can autonomously make a series of decisions,003
including invoking search tools, reading pa-004
pers, and selecting relevant references, to ul-005
timately obtain comprehensive and accurate006
results for complex scholar queries. We opti-007
mize PaSa using reinforcement learning with008
a synthetic dataset, AutoScholarQuery, which009
includes 35k fine-grained academic queries and010
corresponding papers sourced from top-tier AI011
conference publications. Additionally, we de-012
velop RealScholarQuery, a benchmark collect-013
ing real-world academic queries to assess PaSa014
performance in more realistic scenarios. De-015
spite being trained on synthetic data, PaSa sig-016
nificantly outperforms existing baselines on017
RealScholarQuery, including Google, Google018
Scholar, Google with GPT-4 for paraphrased019
queries, ChatGPT (search-enabled GPT-4o),020
GPT-o1, and PaSa-GPT-4o (PaSa implemented021
by prompting GPT-4o). Notably, PaSa-7B sur-022
passes the best Google-based baseline, Google023
with GPT-4o, by 37.78% in recall@20 and024
39.90% in recall@50, and exceeds PaSa-GPT-025
4o by 30.36% in recall and 4.25% in precision.026

1 Introduction027

Academic paper search lies at the core of research028

yet represents a particularly challenging informa-029

tion retrieval task. It requires long-tail special-030

ized knowledge, comprehensive survey-level cover-031

age, and the ability to address fine-grained queries.032

For instance, consider the query: "Which stud-033

ies have focused on non-stationary reinforcement034

learning using value-based methods, specifically035

UCB-based algorithms?" While widely used aca-036

demic search systems like Google Scholar are effec-037

tive for general queries, they often fall short when038

addressing these complex queries (Gusenbauer and039

Haddaway, 2020). Consequently, researchers fre-040

quently spend substantial time conducting litera-041

ture surveys (Kingsley et al., 2011; Gusenbauer 042

and Haddaway, 2021). 043

The advancements in large language models 044

(LLMs) (OpenAI, 2023; Anthropic, 2024; Gemini, 045

2023; Yang et al., 2024) have inspired numerous 046

studies leveraging LLMs to enhance information 047

retrieval, particularly by refining or reformulating 048

search queries to improve retrieval quality (Alaofi 049

et al., 2023; Li et al., 2023; Ma et al., 2023; Peng 050

et al., 2024). In academic search, however, the 051

process goes beyond simple retrieval. Human re- 052

searchers not only use search tools, but also engage 053

in deeper activities, such as reading relevant papers 054

and checking citations, to perform comprehensive 055

and accurate literature surveys. 056

In this paper, we introduce PaSa, a novel paper 057

search agent designed to mimic human behavior 058

for comprehensive and accurate academic paper 059

searches. As illustrated in Figure 1, PaSa con- 060

sists of two LLM agents: the Crawler and the Se- 061

lector. For a given user query, the Crawler can 062

autonomously collect relevant papers by utilizing 063

search tools or extracting citations from the current 064

paper, which are then added to a growing paper 065

queue. The Crawler iteratively processes each pa- 066

per in the paper queue, navigating citation networks 067

to discover increasingly relevant papers. The Selec- 068

tor carefully reads each paper in the paper queue to 069

determine whether it meets the requirements of the 070

user query. We optimize PaSa within the AGILE, a 071

reinforcement learning (RL) framework for LLM 072

agents (Feng et al., 2024). 073

Effective training requires high-quality academic 074

search data. Fortunately, human scientists have al- 075

ready created a vast amount of high-quality aca- 076

demic papers, which contain extensive surveys on 077

a wide range of research topics. We build a syn- 078

thetic but high-quality academic search dataset, 079

AutoScholarQuery, which collects fine-grained 080

scholar queries and their corresponding relevant 081

papers from the related work sections of papers 082
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Figure 1: Architecture of PaSa. The system consists of two LLM agents, Crawler and Selector. The Crawler
processes the user query and can access papers from the paper queue. It can autonomously invoke the search tool,
expand citations, or stop processing of the current paper. All papers collected by the Crawler are appended to the
paper queue. The Selector reads each paper in the paper queue to determine whether it meets the criteria specified in
the user query.

published at ICLR 2023 1, ICML 2023 2, NeurIPS083

2023 3, ACL 2024 4, and CVPR 2024 5. Au-084

toScholarQuery includes 33,511 / 1,000 / 1,000085

query-paper pairs in the training / development /086

test split.087

Although AutoScholarQuery only provides088

query and paper answers, without demonstrating089

the path by which scientists collect the papers, we090

can utilize them to perform RL training to improve091

PaSa. In addition, we design a new session-level092

PPO (Proximal Policy Optimization (Schulman093

et al., 2017)) training method to address the unique094

challenges of the paper search task: 1) sparse re-095

ward: The papers in AutoScholarQuery are col-096

lected via citations, making it a smaller subset of097

the actual qualified paper set. 2) long trajectories:098

The complete trajectory of the Crawler may involve099

hundreds of papers, which is too long to directly100

input into the LLM context.101

To evaluate PaSa, besides the test set of Au-102

toScholarQuery, we also develop a benchmark, Re-103

alScholarQuery. It contains 50 real-world academic104

queries with annotated relevant papers, to assess105

PaSa in real-world scenarios. We compare PaSa106

with several baselines including Google, Google107

Scholar, Google paired with GPT-4o for para-108

phrased queries, chatGPT (search-enabled GPT-109

4o), GPT-o1 and PaSa-GPT-4o (PaSa agent real-110

ized by prompting GPT-4o). Our experiments show111

that PaSa-7b significantly outperforms all baselines.112

Specifically, for AutoScholarQuery test set, PaSa-113

1https://iclr.cc/Conferences/2023
2https://icml.cc/Conferences/2023
3https://neurips.cc/Conferences/2023
4https://2024.aclweb.org/
5https://cvpr.thecvf.com/Conferences/2024

7b achieves a 34.05% improvement in Recall@20 114

and a 39.36% improvement in Recall@50 com- 115

pared to Google with GPT-4o, the strongest Google- 116

based baseline. PaSa-7b surpasses PaSa-GPT-4o 117

by 11.12% in recall, with similar precision. For 118

RealScholarQuery, PaSa-7b outperforms Google 119

with GPT-4o by 37.78% in Recall@20 and 39.90% 120

in Recall@50. PaSa-7b surpasses PaSa-GPT-4o by 121

30.36% in recall and 4.25% in precision. 122

The main contributions of this paper are summa- 123

rized as follows: 124

• We introduce PaSa, a comprehensive and accu- 125

rate paper search agent that can autonomously 126

use online search tools, read entire papers, and 127

navigate citation networks. 128

• We develop two high-quality datasets for com- 129

plex academic search, AutoScholarQuery and 130

RealScholarQuery. 131

• Although PaSa is trained solely on synthetic 132

data, it achieves remarkable real-world perfor- 133

mance. Experiments demonstrate that PaSa, 134

built on 7B LLM, significantly outperforms 135

all baselines, including GPT-4 agent, Google- 136

based search, and chatGPT. 137

2 Related Work 138

LLMs in Scientific Discovery LLMs have been 139

applied across various stages of scientific discov- 140

ery (Van Noorden and Perkel, 2023; Lu et al., 2024; 141

Messeri and Crockett, 2024; Liao et al., 2024), such 142

as brainstorming ideas (Girotra et al., 2023; Wang 143

et al., 2024a; Baek et al., 2024), designing exper- 144

iments (M. Bran et al., 2024), writing code (Xu 145

et al., 2022), and generating research papers (Shao 146
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et al., 2024; Agarwal et al., 2024; Wang et al.,147

2024b). One of the most fundamental yet criti-148

cal stages in research is conducting academic sur-149

veys. Despite its importance, current tools like150

Google Scholar are often insufficient, leading re-151

searchers to spend considerable time on literature152

review tasks (Kingsley et al., 2011; Gusenbauer153

and Haddaway, 2021, 2020). This challenge moti-154

vates us to develop PaSa, an LLM agent designed155

to autonomously and comprehensively assist re-156

searchers in collecting relevant research papers for157

complex scholarly queries.158

LLM Agents LLM Agents combine LLMs with159

memory, tool use, and planning, enabling them to160

perform more complex tasks such as personal copi-161

lots (Stratton, 2024), travel planning (Gundawar162

et al., 2024), web operations (Deng et al., 2024),163

software development (Qian et al., 2023), and sci-164

entific experimentation (Bran et al., 2023). In ad-165

dition to realizing LLM Agents through prompt166

engineering (Park et al., 2023; Yao et al., 2023;167

Shinn et al., 2024; Chen et al., 2023), recent re-168

search has focused on optimizing and training these169

agents (Feng et al., 2024; Putta et al., 2024; Liu170

et al., 2023). Among these efforts, AGILE (Feng171

et al., 2024), a reinforcement learning framework172

for LLM agents, allows the joint optimization of all173

agent skills in an end-to-end manner. In our work,174

we adopt the AGILE framework to implement PaSa.175

Specifically, we design a novel session-level PPO176

algorithm to address the unique challenges of the177

paper search task, including sparse rewards and178

long trajectories.179

3 Datasets180

3.1 AutoScholarQuery181

AutoScholarQuery is a synthetic but high-quality182

dataset of academic queries and related papers,183

specifically curated for the AI field.184

To construct AutoScholarQuery, we began by185

collecting all papers published at ICLR 2023,186

ICML 2023, NeurIPS 2023, ACL 2024, and CVPR187

2024. For the Related Work section of each paper,188

we prompted GPT-4o (Hurst et al., 2024) to gener-189

ate scholarly queries, where the answers to these190

queries correspond to the references cited in the191

Related Work section. The prompt used is shown192

in Appendix E.1. For each query, we retained only193

the papers that could be retrieved on arXiv6, using194

6https://arxiv.org/

their arxiv_id as the unique article identifier in the 195

dataset. We adopt the publication date of the source 196

paper as the query date. During both training and 197

testing, we only considered papers published prior 198

to the query date. 199

The final AutoScholarQuery dataset comprises 200

33,551, 1,000, and 1,000 instances in the training, 201

development, and testing splits, respectively. Each 202

instance consists of a query, the associated paper 203

set, and the query date, with queries in each split 204

derived from distinct source papers. Table 10 in 205

Appendix D provides illustrative examples from 206

AutoScholarQuery, while additional dataset statis- 207

tics are summarized in Table 11. 208

To evaluate the quality of AutoScholarQuery, 209

we sampled 100 query-paper pairs and assessed 210

the rationality and relevance of each query and 211

the corresponding paper. A qualified query should 212

be meaningful and unambiguous. A qualified pa- 213

per should match the requirements of the scholarly 214

query. The author manually reviewed each pair, 215

determining that 94.0% of the queries were qual- 216

ified. Among these qualified queries, 93.7% had 217

corresponding papers that were deemed relevant 218

and appropriate. 219

3.2 RealScholarQuery 220

To evaluate PaSa in more realistic scenarios, we 221

constructed RealScholarQuery, a test dataset con- 222

sisting of 50 real-world research queries. After 223

launching the demo of PaSa, we invited several AI 224

researchers to use the system. From the queries 225

they provided, we randomly sampled a subset of 226

queries and manually filtered out overly broad top- 227

ics (e.g., "multi-modal large language models," 228

"video generation"). Ultimately, we collected 50 229

fine-grained and realistic queries. 230

For each query, we first manually gathered rele- 231

vant papers. Subsequently, we used multiple meth- 232

ods to retrieve additional papers, including PaSa, 233

Google, Google Scholar, ChatGPT (search-enabled 234

GPT-4o), and Google paired with GPT-4o for para- 235

phrased queries. The results from these methods 236

were aggregated into a pool of candidate papers. 237

Finally, professional annotators reviewed all can- 238

didate papers for each query, selecting those that 239

met the specific requirements of the query to create 240

the final set of relevant papers. The query date of 241

all instances in RealScholarQuery is 2024-10-01. 242

Table 12 in Appendix D provides examples from 243

RealScholarQuery. 244

The annotators included professors from the De- 245
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Is there any works that analyze the scaling law of the multi-module models, such as video-text, image-text models.

[Search]Analysis of scaling 
law in video-text models

[Search]Scaling laws in 
multi-modal AI models

[Search]Image-text 
model scaling laws research

[Search]Survey papers on 
scaling law of multi-module models

[Stop]

Neural Scaling 

Laws for Embodied 

AI

…
Scaling Law 

Hypothesis for 

Multimodal Model

Scaling Laws for 

Generative Mixed-Modal 

Language Models

… … …

[Expand]1 Introduction [Expand]… [Expand]3 Empirical approach 
Research paper meta analysis

[Expand]4 Results 4.1 Scaling Laws 
for Robot Foundation Models

[Stop]

Foundation models in robotics: 
Applications, challenges, and 
the future

…

… …

[Expand]II Foundation 
Models Background       
II-D Multimodal Vision-
Language Models (VLMs)
Scaling language-image 
pre-training via masking

[Expand]IV Perception 
IV-A Open-Vocabulary 
Object Detection and 3D 
Classification

[Stop]

Simple open-
vocabulary 
object detection 
with vision 
transformers

Foundation 

models in 

robotics: 

Applications, 

challenges, and 

the future

[Stop]

…

…

Crawler Selector Select Selector Drop

…

Figure 2: An example of the PaSa workflow. The Crawler runs multiple [Search] using diverse and complementary
queries. In addition, the Crawler can evaluate the long-term value of its actions. Notably, it discovers many relevant
papers as it explores deeper on the citation network, even when intermediate papers along the path do not align with
the user query.

partment of Computer Science at a top-tier univer-246

sity in China. On average, each query required the247

annotators to review 76 candidate papers. Given248

the high cost of the annotations, we completed this249

process for only 50 instances.250

4 Methodology251

4.1 Overview252

As illustrated in Figure 1, the PaSa system consists253

of two LLM agents: Crawler and Selector. The254

crawler reads the user’s query, generates multiple255

search queries, and retrieves relevant papers. The256

retrieved papers are added to a paper queue. The257

Crawler further processes each paper in the paper258

queue to identify key citations worth exploring fur-259

ther, appending any newly relevant papers to the260

paper list. The selector conducts a thorough review261

of each paper in the paper list to assess whether it262

fulfills the user’s query requirements.263

In summary, the Crawler is designed to maxi-264

mize the recall of relevant papers, whereas the Se-265

lector emphasizes precision in identifying papers266

that meet the user’s needs.267

4.2 Crawler268

In RL terminology, the Crawler performs a token-269

level Markov Decision Process (MDP). The ac-270

tion space A corresponds to the LLM’s vocabulary,271

where each token represents an action. The LLM272

functions as the policy model. The agent’s state is273

defined by the current LLM context and the paper274

queue. The Crawler operates with three registered275

Name Implementation

Generate a search query and invoke
[Search] the search tool. Append all resulting

papers to the paper queue.

Generate a subsection name, then
[Expand] add all referenced papers in the sub-

section to the paper queue.

[Stop]
Reset the context to the user query and
the next paper in the paper queue.

Table 1: Functions of the Crawler.

functions, as outlined in Table 1. When an ac- 276

tion matches a function name, the corresponding 277

function is executed, further modifying the agent’s 278

state. 279

For example, as Figure 2 shows, the agent begins 280

by receiving a user query, incorporating it into its 281

context, and initiating actions. If the token gener- 282

ated is [Search], the LLM continues to generate a 283

search query, and the agent invokes a search tool to 284

retrieve papers, which are then added to the paper 285

queue. If the token is [Expand], the LLM contin- 286

ues to extract a subsection name from the current 287

paper in its context. The agent then extracts all ref- 288

erenced papers within that subsection, adding them 289

to the paper list. If the token is [Stop], the agent 290

resets its context to the user query and information 291

of the next paper in the paper queue. This informa- 292

tion includes the title, abstract, and an outline of all 293

sections and subsections. 294

The training process for the Crawler comprises 295

two stages. In the first stage, we generate trajec- 296
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tories for a small subset of the training data and297

then perform imitation learning (see Appendix A.1298

for details). In the second stage, reinforcement299

learning is applied. The details of the RL training300

implementation are described below.301

Reward Design We conduct RL training on the302

AutoScholarQuery training set, where each in-303

stance consists of a query q and a corresponding304

paper set P . Starting with a query q, the Crawler305

generates a trajectory τ = (s1, a1, · · · , sT , aT ). At306

each time step t, we denote the current paper queue307

as Qt. Upon taking action at, the Crawler appends308

a set of new papers (p1, p2, · · · , pnt) to the paper309

queue. If at = [Stop], the set is empty.310

The reward of executing action at in state st is311

defined as312

r(st, at) = α×
nt∑
i=1

I(q, pi, t)− c(at), (1)313

where I(q, pi, t) = 1 if pi matches the query q and314

is not already in Qt, and I(q, pi, t) = 0 otherwise.315

Here, α is a reward coefficient, and c(at) is the cost316

of action at.317

The indicator function I(q, pi, t) can be deter-318

mined by checking if pi belongs to P −Qt. How-319

ever, it is important to note that the AutoScholar-320

Query may only include a subset of the ground-321

truth papers, as citations often emphasize a limited322

number of key references. If the Crawler receives323

rewards solely based on matching papers in Au-324

toScholarQuery, this could lead to sparse rewards325

during training. To mitigate this, we use the Selec-326

tor as an auxiliary reward model for the Crawler.327

The revised definition of I(q, pi, t) is:328

I(q, pi, t) =


1, if (Selector(q, pi) = 1 or pi ∈ P)

and pi /∈ Qt,

0, otherwise.
(2)329

Here Selector(q, pi) = 1 if paper pi is identified330

as correct to meet the query q by the Selector, and331

Selector(q, pi) = 0 otherwise.332

RL Training A key challenge in training the333

Crawler with RL is the significant time required334

to sample a complete trajectory for a given query.335

This is due to each [Search] or [Expand] action336

adding multiple papers to the paper list, resulting337

in hundreds or even thousands of papers in the final338

paper queue.339

To address this issue, we define a session as a340

sub-trajectory that begins with a session’s initial341

state and ends with the [Stop] action. We iden- 342

tify two types of session initial states: Sq, which 343

includes only a query, and Sq+p, which consists of 344

both a query and a paper. 345

Formally, we model the Crawler as a 346

policy πθ(at|st). We partition the entire 347

trajectory τ into a sequence of sessions: 348

(τt1:t2−1, τt2:t3−1, · · · ). Each session is 349

τti:ti+1−1 = (sti , ati , · · · , sti+1−1, ati+1−1), 350

where the initial state sti is either belonging to 351

type Sq or Sq+p, and the final action ati+1−1 is 352

[STOP]. 353

Sampling such a sub-trajectory from these ses- 354

sion initial states is computationally efficient. Dur- 355

ing the PPO training, at time step t ∈ [ti, ti+1), 356

we estimate the return in the session using Monte 357

Carlo sampling: 358

R̂t =

ti+1−1−t∑
k=0

γk
0

[
r(st+k, at+k) (3) 359

+γ1

nt+k∑
j=1

V̂ϕ(Sq+pj )− β · log πθ(at|st)
πsft(at|st)

]
360

Here, γ0 is the in-session discount factor, and 361

γ1 is the across-session discount factor. V̂ϕ(·) 362

is the value function model to approximate the 363

state value. After executing at+k, the paper queue 364

is updated to include the newly found papers 365

(p1, p2, · · · , pnt+k
). Since the Crawler will subse- 366

quently initiate new sessions to process these addi- 367

tional papers, their associated reward-to-go should 368

be incorporated into the return estimate. In addi- 369

tion, we include a per-token KL penalty term from 370

the learned policy πθ to the initial policy πsft ob- 371

tained through imitation learning at each token to 372

mitigate over-optimization. This term is scaled by 373

the coefficient β. 374

Then the advantage function can be approxi- 375

mated by 376

Â(st, at) = R̂t − V̂ϕ(st). (4) 377

Finally, the policy and value objectives can be 378

given by 379

Lpolicy(θ) =Eτ ′∼πold
θ

[
min

(
πθ(at|st)
πold
θ (at|st)

Â(st, at), (5) 380

clip
( πθ(at|st)
πold
θ (at|st)

, 1− ϵ, 1 + ϵ
)
Â(st, at)

)]
381

and 382
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Lvalue(ϕ) = Eτ ′∼πold
θ

[
max

((
R̂t − V̂ϕ(st)

)2

, (6)383

(
R̂t − V̂ clip

ϕ (st)
)2

)]
,384

respectively, where385

V̂ clip
ϕ (st) = clip

(
V̂ϕ(st), V

old
ϕ (st)− ϵ, V old

ϕ (st) + ϵ
)
. (7)386

Here, πold
θ and V old

ϕ is used for sampling and τ ′ is387

session trajectory. We then combine these into the388

unified RL loss:389

LRL(θ, ϕ) = Lpolicy(θ) + η · Lvalue(ϕ) (8)390

where η is the coefficient of the value objective.391

4.3 Selector392

The Selector is an LLM agent that takes two inputs:393

a scholar query and a research paper (including its394

title and abstract). It generates two outputs: (1) a395

single decision token d, either "True" or "False",396

indicating whether the paper satisfies the query,397

and (2) a rationale r = (r1, r2, ..., rm) containing398

m tokens that support this decision. The rationale399

serves two purposes: enhancing decision accuracy400

by jointly training the model to generate decisions401

and explanations, and improving user trust by pro-402

viding the reasoning in PaSa application.403

To optimize training efficiency for the Crawler,404

the decision token is presented before the ratio-405

nale, allowing the Selector to act as a single-token406

reward model during the Crawler training. Addi-407

tionally, the token probability of the decision token408

can be used to rank search results. At last, as shown409

in Table 4, the order of the decision and rationale410

does not affect the Selector’s performance.411

We perform imitation learning to optimize the412

Selector. See Appendix B for training data collec-413

tion and training details.414

5 Experiments415

5.1 Experimental Setting416

We sequentially trained the Selector and Crawler,417

both based on the Qwen2.5-7b (Yang et al., 2024),418

to develop the final agent, referred to as PaSa-7b.419

Selector The Selector was fine-tuned using the420

training dataset described in Appendix B. We con-421

ducted supervised fine-tuning for one epoch with422

a learning rate of 1e-5 and a batch size of 4. The423

training runs on 8 NVIDIA-H100 GPUs.424

Crawler The training process involves two 425

stages. First, we perform imitation learning for 426

1 epoch on 12,989 training data with a learning 427

rate of 1e-5 and batch size of 4 per device, us- 428

ing 8 NVIDIA H100 GPUs. In the second stage, 429

we apply PPO training. To ensure stability, we 430

first freeze the policy model and train the value 431

model, followed by co-training both the policy and 432

value models. The hyperparameters used during 433

the training process are listed in the Table 9 in 434

Appendix A.2. 435

During imitation learning, the model encoun- 436

ters 5,000 queries, while during the RL training 437

phase, the model processes a total of 16,000 queries. 438

For more details please refer to Appendix A.1 for 439

the imitation learning data construction and Ap- 440

pendix A.2 for the PPO training data sampling. 441

Implementation of [Search] The LLM predicts 442

a query based on the context. Then the agent calls 443

Google7 with the parameters site:arxiv.org and 444

before:query_date, restricting search results by 445

source and publication time. 446

Paper Management We developed a database to 447

manage and restore research papers. PaSa retrieves 448

paper information from the database. If no match- 449

ing record is found, we use ar5iv8 to obtain the full 450

paper content, including citations, and then parse 451

this data and store it in the database. 452

5.2 Baselines and Evaluation 453

We evaluate our paper search agent on both the test 454

set of AutoScholarQuery and RealScholarQuery. 455

We compare PaSa-7b against the following base- 456

lines: 457

• Google. We use Google to search the query 458

directly, with the same parameter settings in 459

Section 5.1. 460

• Google Scholar. Queries are submitted di- 461

rectly to Google Scholar7, with the same pa- 462

rameter settings in Section 5.1. 463

• Google with GPT-4o. We first employ GPT- 464

4o to paraphrase the scholar query. The para- 465

phrased query is then searched on Google. 466

• ChatGPT. We submit the scholar query to 467

ChatGPT9, powered by search-enabled GPT- 468

7Accessed via the Google Search API provided by https:
//serper.dev.

8https://ar5iv.org/
9https://chatgpt.com
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Method Crawler Recall Precision Recall Recall@100 Recall@50 Recall@20

Google - - - 0.2015 0.1891 0.1568
Google Scholar - - - 0.1130 0.0970 0.0609
Google with GPT-4o - - - 0.2683 0.2450 0.1921
ChatGPT - 0.0507 0.3046 - - -
GPT-o1 - 0.0413 0.1925 - - -
PaSa-GPT-4o 0.7565 0.1457 0.3873 - - -

PaSa-7b 0.7931 0.1448 0.4834 0.6947 0.6334 0.5301
PaSa-7b-ensemble 0.8265 0.1410 0.4985 0.7099 0.6386 0.5326

Table 2: Results on AutoScholarQuery test set.

Method Crawler Recall Precision Recall Recall@100 Recall@50 Recall@20

Google - - - 0.2535 0.2342 0.1834
Google Scholar - - - 0.2809 0.2155 0.1514
Google with GPT-4o - - - 0.2946 0.2573 0.2020
ChatGPT - 0.2280 0.2007 - - -
GPT-o1 - 0.058 0.0134 - - -
PaSa-GPT-4o 0.5494 0.4721 0.3075 - - -

PaSa-7b 0.7071 0.5146 0.6111 0.6929 0.6563 0.5798
PaSa-7b-ensemble 0.7503 0.4938 0.6488 0.7281 0.6877 0.5986

Table 3: Results on RealScholarQuery.

4o. Due to the need for manual query submis-469

sion, we evaluate only 100 randomly sampled470

instances from the AutoScholarQuery test set.471

• GPT-o1. Prompt GPT-o1 to process the472

scholar query.473

• PaSa-GPT-4o. Prompt GPT-4o within the474

PaSa framework. It can perform multiple475

searches, paper reading, and citation network476

crawling.477

We carefully designed prompts for all baselines478

and they are shown in Appendix E.1.479

As shown in Figure 2, the crawling process of480

PaSa can be visualized as a paper tree. In practice,481

considering the computational expense, we limit482

the Crawler’s exploration depth to three for both483

PaSa-7b and PaSa-GPT-4o.484

For Google-based baselines, we evaluate recall485

using Recall@20, Recall@50, and Recall@100486

metrics for the top-20, top-50, and top-100 search487

results, respectively. For other baselines, we assess488

precision and recall for the final retrieved papers.489

Additionally, we compare the crawler’s recall be-490

tween PaSa-GPT-4o and PaSa-7b.491

5.3 Main results492

As shown in Table 2, PaSa-7b outperforms all base-493

lines on AutoScholarQuery test set. Specifically,494

Method Precision Recall F1

GPT-4o 0.96 0.69 0.80
Qwen-2.5-7b 1.0 0.38 0.55
PaSa-7b-Selector 0.95 0.78 0.85
PaSa-7b-Selector (Reason First) 0.94 0.76 0.84

Table 4: Selector Evaluation.

compared to the strongest baseline, PaSa-GPT-4o, 495

PaSa-7b demonstrates a 9.64% improvement in 496

recall with comparable precision. Moreover, the re- 497

call of the Crawler in PaSa-7b is 3.66% higher than 498

that in PaSa-GPT-4o. When compared to the best 499

Google-based baseline, Google with GPT-4o, PaSa- 500

7b achieves an improvement of 33.80%, 38.83% 501

and 42.64% in Recall@20, Recall@50 and Re- 502

call@100, respectively. 503

We observe that using multiple ensembles of 504

Crawler during inference can improve performance. 505

Specifically, running Crawler twice during infer- 506

ence increased the Crawler recall by 3.34% on Au- 507

toScholarQuery, leading to the final recall improve- 508

ment by 1.51%, with precision remaining similar. 509

To evaluate PaSa in a more realistic setting, we 510

assess its effectiveness on RealScholarQuery. As 511

illustrated in Table 3, PaSa-7b exhibits a greater 512

advantage in real-world academic search scenar- 513

ios. Compared to PaSa-GPT-4o, PaSa-7b achieves 514

improvements of 30.36% in recall and 4.25% in 515

precision. Against the best Google-based baseline 516

on RealScholarQuery, Google with GPT-4o, PaSa- 517

7



Method AutoScholarQuery RealScholarQuery
Crawler Recall Precision Recall Crawler Recall Precision Recall

w/o [Expand] 0.3355 0.1445 0.2536 0.3359 0.6738 0.2890
w/o RL training 0.6556 0.1476 0.4210 0.4847 0.5155 0.4115
w/o Selector as RM 0.7041 0.1535 0.4458 0.5994 0.5489 0.5148

PaSa-7b 0.7931 0.1448 0.4834 0.7071 0.5146 0.6111

Table 5: Ablation study results on AutoScholarQuery test set and RealScholarQuery.

7b outperforms Google by 37.78%, 39.90%, and518

39.83% in recall@20, recall@50 and recall@100,519

respectively. Additionally, the PaSa-7b-ensemble520

further enhances crawler recall by 4.32%, contribut-521

ing to an overall 3.52% improvement in the recall522

of the entire agent system.523

As both the final decision-maker and auxiliary524

reward model in RL training for the Crawler, the525

performance of the Selector is crucial. To evalu-526

ate its effectiveness, we collected a dataset of 200527

query-paper pairs, annotating whether each paper528

meets the query’s requirements. This dataset serves529

as the benchmark for evaluating the Selector (see530

Appendix C for details). We then compared our531

Selector against GPT-4o (Hurst et al., 2024) and532

Qwen-2.5-7b (Yang et al., 2024), as shown in Ta-533

ble 4. The results show that our Selector achieves534

an F1 score of 85%, outperforming GPT-4o by535

5% and Qwen-2.5-7b by 30%. Additionally, when536

compared to a setting where reasoning precedes537

decision token generation, the performance is com-538

parable. Lastly, the Selector’s precision reaches539

95%, confirming its effectiveness as an auxiliary540

reward model for the Crawler RL training.541

5.4 Ablation study542

We perform ablation studies in Table 5 to evaluate543

the individual contributions of exploring citation544

networks, RL training, and using the Selector as the545

reward model. The results indicate that removing546

the [Expand] action from the Crawler leads to a547

significant drop in the recall: a decrease of 22.98%548

on AutoScholarQuery and 32.21% on RealScholar-549

Query. Furthermore, RL training enhances recall550

by 6.24% on AutoScholarQuery and 19.96% on551

RealScholarQuery. The RL training curves are552

depicted in Figure 3 in Appendix A.2, where the553

training curves show a steady increase in return554

with the training steps, eventually converging after555

200 steps. Finally, removing the Selector as an556

auxiliary reward model results in a 3.76% recall557

drop on AutoScholarQuery and a 9.63% drop on558

RealScholarQuery.559

We investigate how to control agent behavior by 560

adjusting the rewards in RL training. Experiments 561

are conducted with varying reward coefficients α in 562

Equation 1, and results are presented in Table 6. We 563

report two metrics: crawler recall and crawler ac- 564

tion. The crawler action refers to the total number 565

of [Search] and [Expand] actions throughout the 566

Crawler’s entire trajectory. As the reward increases, 567

both crawler recall and crawler action increase, sug- 568

gesting that adjusting rewards in RL training can 569

effectively influence PaSa’s behavior. 570

α Crawler Recall Crawler Actions

0.5 0.7227 175.9
1.0 0.7708 319.8
1.5 0.7931 382.4
2.0 0.8063 785.5

Table 6: Performance of the Crawler trained on different
reward coefficient α on AutoScholarQuery test set.

6 Conclusion 571

In this paper, we introduce PaSa, a novel paper 572

search agent designed to provide comprehensive 573

and accurate results for complex academic queries. 574

PaSa is implemented within the AGILE, a rein- 575

forcement learning framework for LLM agents. 576

To train PaSa, we developed AutoScholarQuery, 577

a dataset of fine-grained academic queries and cor- 578

responding papers drawn from top-tier AI confer- 579

ence publications. To evaluate PaSa in real-world 580

scenarios, we also constructed RealScholarQuery, 581

a dataset of actual academic queries paired with 582

annotated papers. Our experimental results demon- 583

strate that PaSa outperforms all baselines, including 584

Google, Google Scholar, and Google with GPT-4o, 585

ChatGPT, GPT-o1, and PaSa-GPT-4o. In partic- 586

ular, PaSa-7B surpasses Google with GPT-4o by 587

37.78% in recall@20 and 39.90% in recall@50, 588

while also exceeding PaSa-GPT-4o by 30.36% in 589

recall and 4.25% in precision. These findings un- 590

derscore PaSa significantly improves the efficiency 591

and accuracy of academic search. 592
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Limitations593

(1) Our dataset collection and experiments were594

primarily focused on the field of machine learning.595

Although our proposed method is general, we did596

not explore its performance in other scientific fields.597

We leave to investigate its applicability to other598

domains in future work.599

(2) Due to resource constraints, our experiments600

primarily use LLMs with 7b parameters. We expect601

that scaling up to larger models will lead to more602

powerful agents. Expanding PaSa to leverage larger603

LLMs is our future work.604

References605

Shubham Agarwal, Issam H Laradji, Laurent Char-606
lin, and Christopher Pal. 2024. Litllm: A toolkit607
for scientific literature review. arXiv preprint608
arXiv:2402.01788.609

Marwah Alaofi, Luke Gallagher, Mark Sanderson, Falk610
Scholer, and Paul Thomas. 2023. Can generative611
llms create query variants for test collections? an612
exploratory study. In Proceedings of the 46th in-613
ternational ACM SIGIR conference on research and614
development in information retrieval, pages 1869–615
1873.616

A Anthropic. 2024. The claude 3 model family:617
Opus, sonnet, haiku; 2024. URL https://www-618
cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7619
bbc618857627/Model_Card_Claude_3.pdf.620

Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan,621
and Sung Ju Hwang. 2024. Researchagent: Iter-622
ative research idea generation over scientific liter-623
ature with large language models. arXiv preprint624
arXiv:2404.07738.625

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldas-626
sari, Andrew D White, and Philippe Schwaller. 2023.627
Chemcrow: Augmenting large-language models with628
chemistry tools. arXiv preprint arXiv:2304.05376.629

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,630
Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin631
Shi. 2023. Autoagents: A framework for automatic632
agent generation. arXiv preprint arXiv:2309.17288.633

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam634
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.635
Mind2web: Towards a generalist agent for the web.636
Advances in Neural Information Processing Systems,637
36.638

Peiyuan Feng, Yichen He, Guanhua Huang, Yuan Lin,639
Hanchong Zhang, Yuchen Zhang, and Hang Li. 2024.640
Agile: A novel framework of llm agents. arXiv641
preprint arXiv:2405.14751.642

Team Gemini. 2023. Gemini: a family of highly 643
capable multimodal models. arXiv preprint 644
arXiv:2312.11805. 645

Karan Girotra, Lennart Meincke, Christian Terwiesch, 646
and Karl T Ulrich. 2023. Ideas are dimes a dozen: 647
Large language models for idea generation in innova- 648
tion. Available at SSRN 4526071. 649

Atharva Gundawar, Mudit Verma, Lin Guan, Karthik 650
Valmeekam, Siddhant Bhambri, and Subbarao Kamb- 651
hampati. 2024. Robust planning with llm-modulo 652
framework: Case study in travel planning. arXiv 653
preprint arXiv:2405.20625. 654

Michael Gusenbauer and Neal R Haddaway. 2020. 655
Which academic search systems are suitable for 656
systematic reviews or meta-analyses? evaluating 657
retrieval qualities of google scholar, pubmed, and 658
26 other resources. Research synthesis methods, 659
11(2):181–217. 660

Michael Gusenbauer and Neal R Haddaway. 2021. 661
What every researcher should know about searching– 662
clarified concepts, search advice, and an agenda to 663
improve finding in academia. Research synthesis 664
methods, 12(2):136–147. 665

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 666
Perelman, Aditya Ramesh, Aidan Clark, AJ Os- 667
trow, Akila Welihinda, Alan Hayes, Alec Radford, 668
et al. 2024. Gpt-4o system card. arXiv preprint 669
arXiv:2410.21276. 670

Karl Kingsley, Gillian M Galbraith, Matthew Herring, 671
Eva Stowers, Tanis Stewart, and Karla V Kingsley. 672
2011. Why not just google it? an assessment of 673
information literacy skills in a biomedical science 674
curriculum. BMC medical education, 11:1–8. 675

Minghan Li, Honglei Zhuang, Kai Hui, Zhen Qin, 676
Jimmy Lin, Rolf Jagerman, Xuanhui Wang, and 677
Michael Bendersky. 2023. Generate, filter, and 678
fuse: Query expansion via multi-step keyword gen- 679
eration for zero-shot neural rankers. arXiv preprint 680
arXiv:2311.09175. 681

Zhehui Liao, Maria Antoniak, Inyoung Cheong, Evie 682
Yu-Yen Cheng, Ai-Heng Lee, Kyle Lo, Joseph Chee 683
Chang, and Amy X Zhang. 2024. Llms as research 684
tools: A large scale survey of researchers’ usage and 685
perceptions. arXiv preprint arXiv:2411.05025. 686

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi 687
Ke, Boyi Liu, and Zhaoran Wang. 2023. Reason for 688
future, act for now: A principled framework for au- 689
tonomous llm agents with provable sample efficiency. 690
arXiv preprint arXiv:2309.17382. 691

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foer- 692
ster, Jeff Clune, and David Ha. 2024. The ai scientist: 693
Towards fully automated open-ended scientific dis- 694
covery. arXiv preprint arXiv:2408.06292. 695

9



Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Bal-696
dassari, Andrew D White, and Philippe Schwaller.697
2024. Augmenting large language models with chem-698
istry tools. Nature Machine Intelligence, pages 1–11.699

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,700
and Nan Duan. 2023. Query rewriting for retrieval-701
augmented large language models. arXiv preprint702
arXiv:2305.14283.703

Lisa Messeri and MJ Crockett. 2024. Artificial intel-704
ligence and illusions of understanding in scientific705
research. Nature, 627(8002):49–58.706

OpenAI. 2023. Gpt-4 technical report. arXiv preprint707
arXiv:2303.08774.708

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-709
ith Ringel Morris, Percy Liang, and Michael S Bern-710
stein. 2023. Generative agents: Interactive simulacra711
of human behavior. In Proceedings of the 36th An-712
nual ACM Symposium on User Interface Software713
and Technology, pages 1–22.714

Wenjun Peng, Guiyang Li, Yue Jiang, Zilong Wang, Dan715
Ou, Xiaoyi Zeng, Derong Xu, Tong Xu, and Enhong716
Chen. 2024. Large language model based long-tail717
query rewriting in taobao search. In Companion718
Proceedings of the ACM on Web Conference 2024,719
pages 20–28.720

Pranav Putta, Edmund Mills, Naman Garg, Sumeet721
Motwani, Chelsea Finn, Divyansh Garg, and Rafael722
Rafailov. 2024. Agent q: Advanced reasoning and723
learning for autonomous ai agents. arXiv preprint724
arXiv:2408.07199.725

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,726
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong727
Sun. 2023. Communicative agents for software de-728
velopment. arXiv preprint arXiv:2307.07924.729

John Schulman, Filip Wolski, Prafulla Dhariwal,730
Alec Radford, and Oleg Klimov. 2017. Proxi-731
mal policy optimization algorithms. arXiv preprint732
arXiv:1707.06347.733

Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu,734
Omar Khattab, and Monica Lam. 2024. Assisting735
in writing Wikipedia-like articles from scratch with736
large language models. In Proceedings of the 2024737
Conference of the North American Chapter of the738
Association for Computational Linguistics: Human739
Language Technologies (Volume 1: Long Papers),740
pages 6252–6278, Mexico City, Mexico. Association741
for Computational Linguistics.742

Noah Shinn, Federico Cassano, Ashwin Gopinath,743
Karthik Narasimhan, and Shunyu Yao. 2024. Re-744
flexion: Language agents with verbal reinforcement745
learning. Advances in Neural Information Process-746
ing Systems, 36.747

Jess Stratton. 2024. An introduction to microsoft copi-748
lot. In Copilot for Microsoft 365: Harness the Power749
of Generative AI in the Microsoft Apps You Use Every750
Day, pages 19–35. Springer.751

Richard Van Noorden and Jeffrey M Perkel. 2023. Ai 752
and science: what 1,600 researchers think. Nature, 753
621(7980):672–675. 754

Qingyun Wang, Doug Downey, Heng Ji, and Tom Hope. 755
2024a. SciMON: Scientific inspiration machines 756
optimized for novelty. In Proceedings of the 62nd 757
Annual Meeting of the Association for Computational 758
Linguistics (Volume 1: Long Papers), pages 279–299, 759
Bangkok, Thailand. Association for Computational 760
Linguistics. 761

Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang, 762
Xin Zhang, Zhen Wu, Meishan Zhang, Xinyu Dai, 763
Min Zhang, Qingsong Wen, et al. 2024b. Autosur- 764
vey: Large language models can automatically write 765
surveys. arXiv preprint arXiv:2406.10252. 766

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Jo- 767
sua Hellendoorn. 2022. A systematic evaluation of 768
large language models of code. In Proceedings of 769
the 6th ACM SIGPLAN International Symposium on 770
Machine Programming, pages 1–10. 771

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 772
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 773
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 774
nical report. arXiv preprint arXiv:2412.15115. 775

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 776
Shafran, Karthik Narasimhan, and Yuan Cao. 2023. 777
React: synergizing reasoning and acting in language 778
models (2022). arXiv preprint arXiv:2210.03629. 779

A Implementation Details of the Crawler 780

A.1 Imitation learning data generation 781

We generate training data for imitation learning on 782

a session-by-session basis. There are two types of 783

sessions: search session (starting from state Sq) 784

and expand session (starting from state Sq+p). 785

For search sessions starting from Sq, we sample 786

user queries from the AutoScholarQuery training 787

set and prompt GPT-4o to generate corresponding 788

search queries. The prompt template is shown in 789

Table 7. The session trajectory is constructed by 790

adding a [Search] token before each query, con- 791

catenating the queries, and appending a [Stop] 792

token at the end, as shown in Table 8. A total of 793

3,011 search session trajectories are generated. 794

For expand sessions starting from Sq+p, we con- 795

tinue by searching for the generated queries using 796

Google. We then sample papers from the search 797

results and obtain the initial state, which includes 798

both the query and a paper. To build the session tra- 799

jectory, we examine each sub-section of the paper. 800

If the sub-section references at least one paper in 801

the AutoScholarQuery training set corresponding 802
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The prompt for search query generation.

You are an elite researcher in the field of AI, please generate some mutually exclusive queries in a list to search the relevant
papers according to the User Query. Searching for a survey paper would be better.
User Query: {user_query}
The semantics between generated queries are not mutually inclusive. The format of the list is: [“query1”, “query2”, ...]
Queries:

Table 7: The prompt for GPT-4o to generate search queries from the user query.

Search Session starting from Sq Expand Session starting from Sq+p

prompt Please, generate some mutually exclusive queries
in a list to search the relevant papers according
to the User Query. Searching for survey papers
would be better.
User Query: {user_query}

You are conducting research on '{user_query}'. You need to predict
which sections to look at to get more relevant papers.
Title: {title}
Abstract: {abstract}
Sections: {sections}

response [Search] {query 1}
[Search] {query 2}
...
[Stop]

[Expand] {section 1}
[Expand] {section 2}
...
[Stop]

Table 8: The session trajectory templates of the Crawler.

to the query, the sub-section is selected. Otherwise,803

the sub-section is selected with a 10% probabil-804

ity to enhance trajectory diversity. The selected805

sections are filled into the template in Table 8, com-806

pleting the session trajectory. In total, 9,978 expand807

session trajectories are constructed.808

Name Value

α (Equation 1) 1.5
c([Search]) (Equation 1) 0.1
c([Expand]) (Equation 1) 0.1
c([Stop]) (Equation 1) 0.0
γ0 (Equation 3) 1.0
γ1 (Equation 3) 0.1
β (Equation 3) 0.1
ϵ (Equation 5, Equation 6) 0.2
η (Equation 8) 10
learning rate 1e-6
epoch per step 2
forward batch size 1
accumulate batch size 16
NVIDIA H100 GPU 16
policy freezing step 50
total step 250

Table 9: The hyperparameters used in PPO training.

A.2 PPO training809

During PPO training, each device processes 4 user810

queries in each step, generating a search session811

for each user query. Then, 6 expansion sessions812

are created by randomly sampling 6 papers from 813

the search results. This process is repeated with 814

the expand citation results, yielding 6 additional 815

expand sessions. In total, 16 session trajectories 816

are generated per step. 817

Figure 3: Return and value function loss curves during
the PPO training process. The smoothing method of
the curve in the figures is the exponential moving av-
erage(EMA) formula that aligns with the one used in
TensorBoard, and the smoothing weight is set to 0.95.

Table 9 lists the hyperparameters used during the 818

training process. Figure 3 depictes the RL training 819

curves, which show a steady increase in return with 820

the training steps, eventually converging after 200 821

steps. 822
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B Implementation Details of the Selector823

We begin by sampling user queries from the Au-824

toScholarQuery training set. For each user query825

and one of its corresponding papers in the Au-826

toScholarQuery training set, we prompt GPT-4o827

to generate a decision token and rationale (see Ta-828

ble 15 for prompt). We reject any data where the829

decision token is "False", as this contradicts the830

AutoScholarQuery label. The remaining data are831

retained as positive <user query, paper> pairs.832

Next, we simulate a partial paper search using833

PaSa-GPT-4o. In this simulation, each paper has a834

50% probability of being added to the paper queue.835

Pairs where the paper is not selected by GPT-4o836

and is not in the AutoScholarQuery training set are837

labeled as negative examples.838

The final training dataset consists of 19,812839

<user query, paper> pairs, each with a decision840

token and rationale generated by GPT-4o, drawn841

from 9,000 instances in the AutoScholarQuery842

training set.843

C Selector Test Dataset844

We select 200 queries from the AutoScholarQuery845

development set. For each query, we perform a846

Google search and randomly choose one paper847

from the union of the search results and the relevant848

paper set in AutoScholarQuery. This yields a set of849

<user query, paper> pairs. Annotators then evaluate850

whether each paper aligns with the requirements of851

the user query. The final test dataset consists of 98852

positive samples and 102 negative samples.853

D Dataset Examples854

Table 10 shows the examples of queries and cor-855

responding papers in AutoScholarQuery. Table 11856

summarizes the statistics of the AutoScholarQuery.857

Table 12 shows the examples of queries and corre-858

sponding papers in RealScholarQuery.859

E Prompt Templates860

E.1 Prompts for Baselines861

Table 13 exhibits the search query paraphrasing862

prompt for the baseline model Google with GPT-863

4o.864

Table 14 exhibits the prompt for the baseline865

model ChatGPT (search-enabled GPT-4o).866

E.2 Prompt for Paper Selection 867

Table 15 shows the prompt for PaSa selector and 868

gpt-4o to judge whether a paper matches the re- 869

quirements of the user’s query. 870

Table 16 presents the prompt template used with 871

GPT-4o to automatically generate AutoScholar- 872

Query. For each paper, we extract the Related Work 873

section, input it into GPT-4o, and use the prompt to 874

extract scholarly queries and their corresponding 875

paper answers from the Related Work section. 876

F Annotation Details 877

The annotators of RealScholarQuery include pro- 878

fessors from the Department of Computer Science 879

at a top-tier university in China. They are paid $4 880

per data entry, which consists of a user query and a 881

research paper. Their task is to determine whether 882

the paper satisfies the query. 883

F.1 Annotation Instructions 884

For each <user query, paper> pair, carefully assess 885

whether the paper address the user query. Write 886

your decision and provide a brief explanation (1-2 887

sentences). Specific guidelines are as follows: 888

• You may read the entire paper to determine 889

whether it satisfies the user query. 890

• Exclude survey papers unless the user query 891

specifically requests them. 892

• All conditions in the user query must be met 893

for the paper to be considered qualified. 894
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Query: Could you provide me some studies that proposed hierarchical neural models to capture spatiotemporal features in sign
videos?
Query Date: 2023-05-02
Answer Papers:
[1] TSPNet: Hierarchical Feature Learning via Temporal Semantic Pyramid for Sign Language Translation (2010.05468)
[2] Sign Language Translation with Hierarchical Spatio-Temporal Graph Neural Network (2111.07258)
Source: SLTUnet: A Simple Unified Model for Sign Language Translation, ICLR 2023
Query: Which studies have focused on nonstationary RL using value-based methods, specifically Upper Confidence Bound (UCB)
based algorithms?
Query Date: 2023-08-10
Answer Papers:
[1] Reinforcement Learning for Non-Stationary Markov Decision Processes: The Blessing of (More) Optimism (2006.14389)
[2] Efficient Learning in Non-Stationary Linear Markov Decision Processes (2010.12870)
[3] Nonstationary Reinforcement Learning with Linear Function Approximation (2010.04244)
Source: Provably Efficient Algorithm for Nonstationary Low-Rank MDPs, NeurIPS 2023
Query: Which studies have been conducted in long-form text generation, specifically in story generation?
Query Date: 2024-01-26
Answer Papers:
[1] Strategies for Structuring Story Generation (1902.01109)
[2] MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models
(2010.00840)
Source: ProxyQA: An Alternative Framework for Evaluating Long-Form Text Generation with Large Language Models, ACL 2024

Table 10: Examples of queries and corresponding papers in AutoScholarQuery.

Conference |P | |Q| Ans(/Q) Ans-50 Ans-90

ICLR 2023 888 5204 2.46 2.0 5.0
ICML 2023 981 5743 2.37 2.0 5.0
NeurIPS 2023 1948 11761 2.59 2.0 5.0
CVPR 2024 1336 9528 2.94 2.0 6.0
ACL 2024 485 3315 2.16 2.0 4.0

Table 11: Statistics of AutoScholarQuery. |P | and |Q| represent the total number of papers and queries collected for
each conference. Ans(/Q) denotes the average number of answer papers per query. Ans-50 and Ans-90 refers to
the 50th and 90th percentiles of answer paper counts per query.
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Query: Give me papers about how to rank search results by the use of LLM
Query Date: 2024-10-01
Answer Papers:
[0] Instruction Distillation Makes Large Language Models Efficient Zero-shot Rankers (2311.01555)
[1] Beyond Yes and No: Improving Zero-Shot LLM Rankers via Scoring Fine-Grained Relevance Labels (2310.14122)
[2] Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting (2306.17563)
[3] A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with Large Language Models (2310.09497)
[4] RankVicuna: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models (2309.15088)
[5] PaRaDe: Passage Ranking using Demonstrations with Large Language Models (2310.14408)
[6] Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agents (2304.09542)
[7] Large Language Models are Zero-Shot Rankers for Recommender Systems (2305.08845)
[8] TourRank: Utilizing Large Language Models for Documents Ranking with a Tournament-Inspired Strategy (2406.11678)
[9] ExaRanker: Explanation-Augmented Neural Ranker (2301.10521)
[10] RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs (2407.02485)
[11] Make Large Language Model a Better Ranker (2403.19181)
[12] LLM-RankFusion: Mitigating Intrinsic Inconsistency in LLM-based Ranking (2406.00231)
[13] Improving Zero-shot LLM Re-Ranker with Risk Minimization (2406.13331)
[14] Zero-Shot Listwise Document Reranking with a Large Language Model (2305.02156)
[15] Consolidating Ranking and Relevance Predictions of Large Language Models through Post-Processing (2404.11791)
[16] Re-Ranking Step by Step: Investigating Pre-Filtering for Re-Ranking with Large Language Models (2406.18740)
[17] Large Language Models for Relevance Judgment in Product Search (2406.00247)
[18] PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document
Retrieval (2404.18424)
[19] Passage-specific Prompt Tuning for Passage Reranking in Question Answering with Large Language Models (2405.20654)
[20] When Search Engine Services meet Large Language Models: Visions and Challenges (2407.00128)
[21] RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a Breeze! (2312.02724)
[22] Rank-without-GPT: Building GPT-Independent Listwise Rerankers on Open-Source Large Language Models (2312.02969)
[23] MuGI: Enhancing Information Retrieval through Multi-Text Generation Integration with Large Language Models (2401.06311)
[24] Discrete Prompt Optimization via Constrained Generation for Zero-shot Re-ranker (2305.13729)
[25] REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering (2402.17497)
[26] Agent4Ranking: Semantic Robust Ranking via Personalized Query Rewriting Using Multi-agent LLM (2312.15450)
[27] FIRST: Faster Improved Listwise Reranking with Single Token Decoding (2406.15657)
[28] Leveraging LLMs for Unsupervised Dense Retriever Ranking (2402.04853)
[29] Unsupervised Contrast-Consistent Ranking with Language Models (2309.06991)
[30] Enhancing Legal Document Retrieval: A Multi-Phase Approach with Large Language Models (2403.18093)
[31] Found in the Middle: Permutation Self-Consistency Improves Listwise Ranking in Large Language Models (2310.07712)
[32] Fine-Tuning LLaMA for Multi-Stage Text Retrieval (2310.08319)
[33] Zero-shot Audio Topic Reranking using Large Language Models (2309.07606)
[34] Uncovering ChatGPT’s Capabilities in Recommender Systems (2305.02182)
[35] Cognitive Personalized Search Integrating Large Language Models with an Efficient Memory Mechanism (2402.10548)
[36] Towards More Relevant Product Search Ranking Via Large Language Models: An Empirical Study (2409.17460)
[37] Pretrained Language Model based Web Search Ranking: From Relevance to Satisfaction (2306.01599)
[38] Open-source large language models are strong zero-shot query likelihood models for document ranking (2310.13243)

Table 12: Examples of queries and corresponding papers in RealScholarQuery.

The prompt for search query paraphrase.

Generate a search query suitable for Google based on the given academic paper-related query. Here’s the structure and
requirements for generating the search query:
Understand the Query: Read and understand the given specific academic query.
Identify Key Elements: Extract the main research field and the specific approaches or topics mentioned in the query.
Formulate the Search Query: Combine these elements into a concise query that includes terms indicating academic sources.
Do not add any site limitations to your query.
[User’s Query]: {user_query}
[Generated Search Query]:

Table 13: The prompt for search query paraphrase.
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The prompt for ChatGPT (search-enabled GPT-4o).

[User’s Query]
You should return the Arxiv papers. You should provide more than 10 papers you searched in JSON format:
{"paper_1": {"title": , ’authors’: , ’link’: }, "paper_2": {"title": , ’authors’: , ’link’: }}

Table 14: The prompt for Chatgpt (search-enabled GPT-4o).

The prompt for paper selection.

You are an elite researcher in the field of AI, conducting research on {user_query}. Evaluate whether the following paper
fully satisfies the detailed requirements of the user query and provide your reasoning. Ensure that your decision and reasoning
are consistent.
Searched Paper:
Title: {title}
Abstract: {abstract}
User Query: {user_query}
Output format: Decision: True/False
Reason:...
Decision:

Table 15: The prompt used with pasa selector or GPT-4o to judge the selection of the paper.

The prompt for AutoScholarQuery generation.

You are provided a ‘Related Work’ section of a research paper. The researcher reviewed the relevant work, conducted a
literature survey, and cited corresponding references in this text (enclosed by ‘\cite’ tags with IDs). Can you guess what
research questions the researcher might have posed when preparing this text? The answers to these questions should be the
references cited in this passage. Please list questions and provide the corresponding answers.
[Requirements:]
1. Craft questions similar to those a researcher would pose when reviewing related works, such as “Which paper studied ...?”,
“Any works about...?”, “Could you provide me some works...?”
2. Construct the question-answer pairs based on [Section from A Research Paper]. The answer should be the cited papers in
[Section from A Research Paper].
3. Do not ask questions including "or" or "and" that may involve more than one condition.
4. Clarity: Formulate questions clearly and unambiguously to prevent confusion.
5. Contextual Definitions: Include explanations or definitions for specialized terms and concepts used in the questions.
6. Format the output as a JSON array containing five objects corresponding to the three question-answer pairs.
Here are some examples:
[Begin of examples]
{Section from A Research Paper-1}
{OUTPUT-1}
{Section from A Research Paper-2}
{OUTPUT-2}
{Section from A Research Paper-3}
{OUTPUT-3}
[End of examples]
{Section from A Research Paper}
[OUTPUT]:

Table 16: The prompt used with GPT-4o to automatically generate AutoScholarQuery.
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