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Abstract. Three-dimensional (3D) image segmentation plays a pivotal
role in clinical diagnosis, therapy planning, and drug discovery by en-
abling the precise delineation of anatomical structures, pathological le-
sions, and cellular features in medical imaging modalities such as CT and
MRI, as well as in biomedical microscopy. Despite its central importance,
3D segmentation remains a formidable technical challenge due to high
computational requirements, the vast diversity of segmentation tasks
across clinical and research domains, and the lack of interoperability
among existing models, which are typically developed for specific modal-
ities and tasks. To address these limitations, we introduce BiomedParse-
V , a scalable and generalizable multimodal foundation model that lever-
ages pretrained 2D foundation models to enable accurate, text-prompted
3D image segmentation. Our method features a novel Fractal Volumet-
ric Encoding (FVE) scheme, which hierarchically compresses volumetric
data by capturing self-similarity across slices into a compact fractal-
based 2.5D representation. This design allows the effective use of pow-
erful 2D foundation models while preserving essential 3D spatial con-
text. We further propose the Independent Segmentation Discrimina-
tor (ISD) module to promote robust and consistent object localization
throughout the segmented volume, addressing the challenges of main-
taining spatial coherence in text-guided segmentation. Extensive exper-
iments conducted across diverse biomedical imaging modalities demon-
strate that BiomedParse-V consistently achieves state-of-the-art perfor-
mance, significantly surpassing leading supervised 3D segmentation mod-
els. Our approach delivers a prompt-driven, computationally efficient,
and broadly applicable solution for 3D biomedical image segmentation,
advancing the accessibility and impact of segmentation technologies in
real-world clinical and research environments.
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Fig. 1. Overview of BiomedParse-V . Volumetric medical data is encoded using Fractal
Volumetric Encoding, compressing rich 3D context into an RGB format. Text-prompted
segmentation is performed on the encoded slices, and the presence of the prompted
object within each slice is predicted by the Independent Segmentation Discriminator.

1 Introduction

Biomedical image segmentation is the cornerstone of both clinical medicine and
biomedical research, allowing accurate diagnosis, therapy planning, and disease
monitoring. In radiology, three-dimensional (3D) segmentation of modalities such
as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) pro-
vides detailed anatomical and pathological insights, while in microscopy, 3D
segmentation is critical for cellular and subcellular analysis. However, the di-
versity of imaging modalities and segmentation targets introduces substantial
technical challenges. Existing models are typically developed for specific modali-
ties, resulting in limited generalization and poor interoperability across domains,
a significant barrier in multidisciplinary settings where seamless integration of
radiology and microscopy data is essential.

Recent advances in foundation models have shown promise for unified, prompt-
driven segmentation frameworks that use natural language guidance to address
multiple tasks. Methods such as MedSAM [15] leverage large-scale pre-trained
models to generalize across a variety of segmentation scenariosthrough interac-
tive prompting. However, adapting these models to 3D volumetric data is ham-
pered by increasing interaction demands from the users. Furthermore, prompt-
able 3D segmentation approaches such as SegVol [3] often underperform when
using textual prompts alone, due to difficulties in contextually aligning language
with volumetric image data. Addressing these challenges is crucial for devel-
oping scalable and interoperable segmentation solutions applicable across the
full spectrum of biomedical imaging modalities. To address these challenges,
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we argue that traditional volumetric processing at a fixed spatial scale is in-
efficient, necessitating carefully designed network architectures that implicitly
learn transformations equivalent to data encodings. We challenge the assump-
tion that volumetric information cannot be utilized by 2D model architectures.
We drew inspiration from the mathematical concept of fractal, where infinity
can be encoded in a finite space, such as the Sierpiński carpet [22] and the
Koch curve [23], defying the traditional notion of dimensionality. Inspired by
this insight, we introduce Fractal Volumetric Encoding (FVE), a novel encoding
strategy that recursively compresses 3D volumes into patterns of reducing scale
on the 2D plane and enables leveraging pretrained 2D foundation models.

Another major challenge in text-prompted 3D segmentation is accurately
determining whether the prompted anatomical structures are present in each in-
dividual slice, as errors can result in numerous false-positive predictions. To ad-
dress this, we propose an Independent Segmentation Discriminator (ISD) mod-
ule, which independently verifies the presence of the prompted structures per
slice basis. By effectively filtering irrelevant slices, the ISD significantly reduces
false positives and enhances the overall reliability of text-prompted segmenta-
tion. Our key contributions are summarized as follows:

– We propose Fractal Volumetric Encoding (FVE), a novel method that
efficiently encodes the 3D volumetric context into a compact 2.5D represen-
tation, allowing the use of powerful and efficient 2D foundation models for
volumetric segmentation while preserving rich spatial information.

– We introduce the Independent Segmentation Discriminator (ISD) module to
robustly determine slice-level segmentation relevance, enhancing the accu-
racy of text-promptable segmentation in 3D volumes.

– We present BiomedParse-V , a single multimodal segmentation foundation
model that brings the power of BiomedParse to volumetric segmentation
using FVE and ISD, and show through extensive validation of various 3D
modalities that BiomedParse-V achieves superior segmentation accuracy com-
pared to current state-of-the-art 3D segmentation methods.

2 Related work

Medical image segmentation has continually advanced to improve accuracy across
diverse imaging modalities and clinical challenges. Early advances, such as the
introduction of U-Net and its 3D variants [21,1], established a robust founda-
tion for supervised dense segmentation. These led to specialized architectures,
including UNet++ [29], H-DenseUNet [12], and SegResNet [19], optimized for
specific anatomical and modality-driven contexts. More recently, frameworks
such as nnU-Net [7] introduced comprehensive hierarchical designs to improve
coarse-to-fine learning.

Alongside these developments, transformer-based architectures have gained
prominence driven by their capacity for modeling long-range dependencies. Mod-
els such as UNETR [5] leverage vision transformers (ViTs) to capture broad spa-
tial relationships across medical images, at the cost of significant computational
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overhead. To mitigate this, hierarchical transformer designs such as the Swin
Transformer, used in SwinUNETR [4], employ efficient sliding-window strate-
gies for localized attention. Depthwise convolution-based architectures, such as
3D UX-Net [11], offer an alternative path to computational efficiency, neverthe-
less their performance remains limited when addressing anatomical structures
that vary across multiple spatial scales. Foundation models have recently trans-
formed medical image segmentation, enabling flexible, task-agnostic segmenta-
tion guided by diverse prompts, including natural language. Notable examples
include MedSAM [15] and BiomedParse [26], which build upon large-scale pre-
trained general-domain models to achieve remarkable segmentation performance.
However, extending these prompt-driven models to 3D volumetric imaging re-
mains challenging due to significantly increased computational and memory de-
mands.

Prompt-based segmentation frameworks specifically targeting 3D modalities,
such as SegVol [3], have employed spatial prompts such as bounding boxes and
points to guide the model and improve segmentation accuracy. However, their
effectiveness decreases when relying solely on textual prompts. This limitation
arises due to inherent challenges in aligning linguistic semantics with complex 3D
volumetric structures, revealing a critical gap for text-based prompting methods
in volumetric contexts. Effective data encoding strategies are crucial to improve
segmentation efficiency and accuracy. Recent advances in representation learn-
ing, particularly transformer-based architectures and self-supervised methods,
have greatly enriched feature expressiveness and quality. Despite these advances,
explicit and efficient encoding of volumetric medical data within prompt-driven
segmentation frameworks remains largely unexplored, representing an important
research frontier.

In general, current segmentation methods exhibit critical limitations: spe-
cialized modality-specific models lack interoperability, computational complex-
ity restricts practical deployment, and existing prompt-based methods struggle
to contextually align textual prompts in 3D data. Addressing these gaps requires
novel approaches capable of efficiently compressing volumetric information, en-
hancing contextual semantic alignment, and promoting interoperability across
imaging modalities. In contrast, BiomedParse-V directly addresses these chal-
lenges by introducing fractal-informed representations, efficiently compressing
volumetric data, and allowing robust text-based prompt segmentation in a uni-
fied framework.

3 Method

Our proposed BiomedParse-V framework addresses the computational and scala-
bility challenges inherent in volumetric biomedical image segmentation by lever-
aging efficient fractal-informed encoding and robust prompt-driven segmenta-
tion. The general architecture is illustrated in Fig. 1. Specifically, using FVE, a
focal slice is encoded along with its corresponding 3D context into a compact
RGB representation, enabling effective segmentation guided by text prompts
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Fig. 2. The model architecture of BiomedParse-V . For each slice in the 3D volume, we
encode spatial context around the slice into an RGB image (bottom left) and feed it
into the model. The model then performs segmentation on the slice based on the given
text prompt (bottom right). A transformer mask decoder processes the image features
and text embeddings along with learnable segmentation queries and a classification
query to produce the mask prediction and verify the existence of the prompted object.
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without additional computational overhead. To further improve segmentation
reliability, we predict the presence of the prompted object within encoded slices
using the dedicated ISD classification module.

3.1 Promptable Segmentation Framework

Given a 3D image volume V ∈ RH×W×D and text prompt P describing the
desired object, the promptable segmentation problem is to output a binary mask

M = f(V,P) ∈ {0, 1}H×W×D,

where the set of 1’s corresponds to the voxels occupied by the described object.
We leverage 2D foundation model architectures to perform slice-by-slice seg-

mentation, while encoding volumetric context into a single image. Following
recent advances in segmentation foundation models [10,30,15,26], we adopt a
transformer-based decoder architecture. As depicted in Fig. 2, we utilize a vi-
sion backbone to extract multi-scale visual features further refined by a Feature
Pyramid Network (FPN) [13]. Text prompts are transformed into text embed-
dings and combined with learnable segmentation queries, which are processed
iteratively through multiple transformer blocks. In each transformer layer, seg-
mentation queries cross-attend to visual features at different scales. Specifically,
we adopt the Boltzmann attention sampling strategy from BoltzFormer [27] to
maintain segmentation quality even when the object appears small in the slice.

Additionally, a dedicated classification query in parallel to the transformer
decoder independently assesses object existence, reducing false positives in text
prompt-driven segmentation tasks, which is discussed in detail in Section 3.4.

In our experiments, we used FocalNet [25] as the image backbone which
outputs four scales of features with strides 4, 8, 16 and 32. The FPN takes the
multiscale backbone features to output multiscale visual features of strides 4,
8, 16 and 32. The multiscale visual features convolute to mask feature of stride
4. The segmentation transformer block attends to multiscale visual features of
strides 16, 8, and 4 in 3 loops, totaling up to nine layers. We interpolated to
original resolution of the image shape.

3.2 Fractal Volumetric Encoding

To efficiently embed volumetric medical data into a compact representation suit-
able for 2D foundation models, we propose fractal volumetric encoding. Formally,
this fractal encoding process is expressed as

E(V, i) : RH×W×D ⊗ N → RH×W×C ,

where E transforms the 3D voxel data V into a multi-channel 2D image, centered
around the i-th slice. Although this encoding scheme is general and supports ar-
bitrary channel dimensions, we specifically focus on encoding into RGB channels
(C = 3) so to leverage and be compatible with common 2D vision architectures.
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Fig. 3. Illustration of the fractal volumetric encoding process. A focal slice is combined
with its surrounding 3D context. The focal slice maintains full resolution, while the
context is adaptively downsampled and encoded recursively into compact channels,
ensuring efficient spatial representation.
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Specifically, the focal slice Vi (target segmentation plane) is stored in one
RGB channel at full resolution, while adjacent upper and lower context slices are
compressed into the other two channels via fractal-based hierarchical compres-
sion. This recursive encoding partitions slices into hierarchical groups, applying
adaptive downsampling proportional to their distance from the focal slice. The
process, depicted in Fig. 3, efficiently preserves critical spatial coherence with
a limited channel bandwidth. The pseudo code to encode one side of the 3D
context into a single channel is described in Algorithm 1. The fractal encoding
order k determines the number of slices used.

Algorithm 1 Fractal Volumetric Encoding
1: Input: A list of image slices imgs = [s1, s2, · · · ], ordered by their distance to the

focal slice. Fractal encoding order k.
2: Output: A single image of the same resolution as the slices.
3: def fractal_encode(imgs, k):
4: if k > 1:
5: imgs_low = Downsample imgs by half
6: µ1, µ2, µ3 = imgs_low[:3]
7: µ4 = fractal_encode(imgs_low[3:], k − 1)
8: return pixel_mix(µ1, µ2, µ3, µ4)
9: else:

10: return imgs[0]

To construct a fractal-encoded image, we define the pixel_mix function that
combines 4 images into a single image with twice the resolution:

µ′ = pixel_mix(µ1, µ2, µ3, µ4),

where µ1, µ2, µ3, µ4 ∈ Rh×w and µ′ ∈ R2h×2w. The pixel-level mapping is as
follows:

µ′(2x, 2y) = µ1(x, y)

µ′(2x, 2y + 1) = µ2(x, y)

µ′(2x+ 1, 2y) = µ3(x, y)

µ′(2x+ 1, 2y + 1) = µ4(x, y),

for x = 0, · · · , h− 1 and y = 0, · · · , w − 1.

For an encoding of order k, the total number of slices encoded per side is
N(k) = 3k − 2. Including the focal slice, the RGB-encoded image represents a
total of Nrgb(k) = 6k−3 slices. Padding is applied by repeating the last available
slice if needed.
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3.3 Mathematical Equivalence to 3D Convolution

To theoretically justify the proposed fractal encoding, we establish its mathemat-
ical equivalence to traditional 3D convolution operations commonly employed in
volumetric segmentation methods.

Patch-based vision models, such as ViT [2] and FocalNet[25], typically pro-
cess an input image by dividing it into disjoint patches (resolution p× p). Each
patch Pij ∈ Rp×p×C is embedded with a linear projection as follows:

eij = Linear (Flatten(Pij)) ,

where (i, j) denotes the spatial indices of the patch. The network then processes
the patch embeddings eij in units.

Within our fractal encoding, each 2D patch aggregates voxels aligned along
the depth dimension (z-axis), forming compact neighborhoods we refer to as
“super pixels”. Mathematically, each patch P captures a voxel neighborhood V ,
as illustrated in Fig. 4.

We formally establish the mathematical equivalence between applying linear
transformations (patch embeddings) on fractal-encoded patches and performing
an adaptive-resolution 3D convolution operation.

Theorem 1 (Equivalence to 3D Convolution). Given a fractal encoding
function E, defined as

E(V, i) : RH×W×D ⊗ N → RH×W×C , (1)

applying a linear embedding operator on patches of the encoded image corre-
sponds mathematically to performing an adaptive-resolution 3D convolution on
the original volume.

Proof. We leave the formal proof to the appendix.

To ensure equivalence, each “super pixel” must be fully contained within a
single model patch. Consequently, the minimum patch size is determined by the
encoding order k and is given by 2k−1.

This analysis demonstrates that fractal encoding inherently represents an
adaptive, multi-scale 3D convolution operation, efficiently rearranged into a
patch-compatible multi-channel (e.g., RGB) format suitable for standard 2D
vision architectures.

3.4 Independent Segmentation Discriminator (ISD)

A major challenge for purely text-prompted segmentation in 3D is to reliably
determine the presence of prompted objects within each slice. To overcome this,
we propose the Independent Segmentation Discriminator (ISD), which uses a
dedicated classification query vector q in parallel to the segmentation transformer
decoder, as shown on the right side in Fig. 2. q cross-attends to the hidden state
of the segmentation queries and text embeddings at the end of each transformer
block and then updates itself through a feed-forward network (FFN).
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Fig. 4. The 2D patching process on fractal-encoded channels is mathematically equiva-
lent to adaptive-resolution 3D convolution. Each colored square represents a pixel/voxel
within a 2D patch or corresponding 3D voxel neighborhood. Pixel colors indicate dis-
tance from the focal slice. This visualization depicts the encoding of one side of the 3D
context.

After the last transformer block, the q produces a binary classification proba-
bility ω ∈ [0, 1] through a linear layer, representing the existence of the prompted
object. At inference time, the final segmentation mask prediction M̂ for a given
slice is computed as:

M̂ = M̂raw · (ω > 0.5). (2)

The ISD is trained jointly with the segmentation module to classify the ex-
istence of the prompted object based on the transformer’s hidden states during
segmentation. ω is supervised jointly with the segmentation prediction M̂raw

through the following loss function:

L(M̂raw, ω;M) =

{
S(M̂raw,M)− log(ω), M ̸= 0
− log(1− ω), M = 0.

(3)

Since segmentation masks are supervised only on positive slices using seg-
mentation loss S, training with additional negative slices introduces gradients
unrelated to accurate mask boundary detection, negatively impacting segmen-
tation performance. To mitigate this issue, we implemented the gradient cut-off
design (see Fig.2), preventing irrelevant negative gradients from propagating
back into the segmentation module, thus ensuring segmentation quality remains
consistent despite the presence of numerous negative slices. The classification
query vector q is updated in each layer as

ql+1 = FFN(LN(ql + CrossAttn(ql, sg([Sl, Tl])))), (4)

where LN is layer normalization, Sl and Tl are segmentation queries and text
embeddings after the l-th layer, and sg is the stop-gradient operator. We show
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in Sec. 4.3 that the gradient cut-off strategy significantly improved segmentation
performance.

3.5 Inference on 3D Volumes

During training, all 3D volumes were processed into 2D images with FVE. Images
from different volumes were mixed together in batches, and we randomly sampled
a fixed number of prompts for each image per training iteration. During inference
time, we leveraged the information shared in a 3D volume to achieve efficient
inference. Given a 3D image and a list of prompts, we first computed the text
embeddings for the prompts. The same embeddings were expanded for all 2D
FVE-encoded images in the volume. We also repeat-interleaved the multiscale
visual features and the mask features from each slice in the batch dimension to
match the number of prompts. The image features and text embeddings for all
slice-prompt pairs are then fed into the segmentation and classification module
(upper right box in Fig. 2).

After the model outputs the segmentation masks and existence probabilities
for each slice, we simply stacked the 2D masks together into the 3D volume.
When multiple prompts for disjoint objects were presented, we first applied slice-
level non-maximum suppression to remove overlapping objects and assigned each
voxel to the class with the highest probability. We did not perform any further
smoothing or processing in this work.

In order to provide options for better instance splitting, BiomedParse-V was
able to output the edge of the prompted object in addition to the full segmen-
tation mask. We used part of the segmentation queries to predict the edge while
keeping the others for the original segmentation task. The same set of losses was
used for the two targets during training. During instance segmentation inference,
the user could optionally remove the edge from the predicted masks so that ad-
jacent instances were separable. The masks expanded to their original area after
being split into single-connected components. All operations were performed in
stacked 3D volume. Due to the trade-off in removing small objects, we did not
incorporate edge removal in our main experiments.

4 Preliminary Studies

To investigate the 3D text-guided segmentation capability of BiomedParse-V before
training at scale, we conducted preliminary experiments on abdominal CT and
MRI data with multiple anatomies. We focused our training and evaluation for
cross-modality experiments on AMOS22 [8] and compared to supervised models
and universal medical image segmentation models. We also performed ablation
studies to understand the effectiveness of each component in BiomedParse-V .

4.1 Setup

We processed all 3D volumes into RGB images with the proposed fractal encod-
ing technique. Each RGB image corresponds to one encoded slice in the volume,
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Fig. 5. Violin plots of Dice score evaluation for anatomies in CT, with BiomedParse-
V compared with baseline models.

and we perform segmentation on the image. In this experiment we used default
resolution of 1024×1024 to cover the highest resolution in AMOS22. We pair en-
coded images with text prompts following BiomedParse [26], and used the same
data splits. Example prompts include “esophagus in abdominal computed to-
mography” and “stomach in abdominal magnetic resonance imaging”. An empty
mask prediction is expected where the prompted object is absent.

4.2 Baseline comparisons

We compared BiomedParse-V with two types of baseline 3D segmentation mod-
els: (1) pretrained 3D segmentation foundation models, including SegVol[3] and
TotalSegmentator [24]; and (2) supervised task-specific models, including nnU-
Net [7], 3D UX-Net [11], SwinUNETR [4], and UNETR[5]. Table 1 presents the
Dice scores for 14 anatomical structures in the CT dataset, as well as the average
Dice scores for BiomedParse-V and all baseline models. Fig. 5 shows the violin
plots of the Dice score distribution for the models on all anatomies. We present
Dice scores on the MRI dataset in Table 2.

Pretrained 3D segmentation foundation models. We evaluated the
performance of large-scale pretrained models SegVol and TotalSegmentator. SegVol
originally trained exclusively on CT data and utilized here in text-prompt mode,
achieved an average Dice score of 83.91. TotalSegmentator, benefiting from
multi-class pretraining on the AMOS22 dataset, achieved an average Dice score
of 85.84 on the CT dataset and 76.43 on the MRI dataset. Although both models
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Table 1. Quantitative results of CT segmentation performance in Dice score (%) across
BiomedParse-V and state-of-the-art models.

Target BiomedParse-V SegVol nnU-Net 3DUX-Net SwinUNETR UNETR TotalSeg.

Aorta 95.27 92.07 95.20 94.00 92.85 92.84 92.53
Bladder 90.17 88.03 87.52 84.85 82.39 81.74 82.82
Duodenum 83.27 72.49 80.72 76.46 68.13 67.85 74.10
Esophagus 87.11 64.47 87.31 81.58 76.27 72.07 82.68
Gallbladder 85.96 79.05 83.06 81.59 81.28 76.98 83.85
Left A.G. 79.48 76.31 78.06 75.26 68.21 58.64 74.03
Left Kid. 96.39 94.58 95.39 96.30 95.20 94.64 94.88
Liver 97.71 96.24 96.09 95.83 96.89 96.50 96.70
Pancreas 88.42 80.97 86.57 82.53 79.42 79.60 84.29
IVC 92.02 83.65 90.38 89.56 87.30 85.99 85.79
Right A.G. 79.39 71.07 78.24 75.06 69.33 65.86 71.70
Right Kid. 96.88 92.92 93.19 96.38 93.46 95.30 93.22
Spleen 96.91 94.03 96.91 95.83 95.73 95.02 95.54
Stomach 91.49 88.82 89.79 86.96 84.32 82.34 89.68

Average 90.03 83.91 88.35 86.59 83.63 81.81 85.84

leverage the advantages of extensive pretraining to generate robust generic repre-
sentations, the inference performance demonstrates the gap between pretraining
tasks and task-specific segmentation. This comparison underscores that while
large-scale pretraining provides a strong starting point, tailoring the network ar-
chitecture and task-specific training regimen is crucial to achieve state-of-the-art
performance.

Supervised task-specific models. In addition to foundation models, we
benchmarked BiomedParse-V against state-of-the-art supervised architectures,
including nnU-Net, 3D UX-Net, SwinUNETR, and UNETR. For CT data, nnU-
Net and 3D UX-Net achieved average Dice scores of 88.35 and 86.59, respectively,
with SwinUNETR and UNETR slightly behind. BiomedParse-V surpassed the
performance of all supervised approaches by achieving the highest average Dice
score of 90.03 in all anatomical structures. In the MRI dataset, BiomedParse-
V maintained its leading performance with an average Dice score of 84.94, out-
performing its supervised counterparts by a significant margin.

Quantitative Evaluation across Anatomies. A detailed examination of
the segmentation performance across varied anatomical structures reveals dis-
tinct performance gradients among the seven methods. The violin plots in Fig. 5
indicate that BiomedParse-V and nnU-Net exhibit higher median Dice scores
with tighter distributions, suggesting a more refined and consistent segmenta-
tion performance across different organs. In contrast, the foundation models,
TotalSegmentator and SegVol, show lower median values and higher variability,
reflecting less robust segmentation performance. 3D UX-Net and SwinUNETR,
demonstrate a gradual improvement in their performance distributions. This
quantitative evaluation confirms that BiomedParse-V not only achieves the high-
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Table 2. Quantitative results of MRI segmentation performance in Dice score (%)
across BiomedParse-V and state-of-the-arts.

Target BiomedParse-V nnU-Net 3DUX-Net SwinUNETR UNETR TotalSeg.

Aorta 95.73 95.64 96.23 96.13 94.66 85.71
Duodenum 76.03 66.78 69.58 66.40 62.44 55.50
Esophagus 81.38 73.62 82.76 81.40 74.12 79.26
Gallbladder 66.58 66.32 60.29 64.87 55.23 60.62
Left A.G. 63.35 57.15 68.88 64.90 62.11 57.79
Left Kid. 96.92 95.82 96.58 96.11 93.04 91.11
Liver 97.66 97.25 97.84 97.79 96.71 91.89
Pancreas 88.70 79.29 83.68 85.35 81.47 76.02
IVC 87.26 90.66 87.76 86.19 82.88 67.42
Right A.G. 68.14 53.29 69.61 65.94 56.44 56.85
Right Kid. 96.69 85.48 96.48 96.09 95.57 92.97
Spleen 96.88 96.66 97.13 97.16 94.20 89.91
Stomach 88.93 88.80 86.87 88.91 83.63 88.48

Average 84.94 80.52 84.13 83.63 79.42 76.43

est overall Dice scores, but also delivers consistent performance across diverse
anatomical regions.

4.3 Ablation studies

We conducted ablation studies on the components of BiomedParse-V to assess
their impact on segmentation performance. Unless otherwise specified, we used
the default setting with a fractal encoding order of k = 1 and all modules enabled.
For ablation experiments requiring additional training, we downsampled images
to 512×512 to generate lower-resolution masks, which were then interpolated to
match the ground truth size. This resulted in a slight overall performance drop
compared to the main results.

Fractal encoding order To explore the effect of different orders of fractal
encoding and validate the need for spatial context, we trained the model in
settings that range from no encoding (single slice) to encoding order of up to
3. We report the averaged Dice score reported in Table 3. We can see that the
segmentation performance dropped when there was no extra encoded spatial
context. The performance change is small when the order of encoding is changed
from 1 to 3. This could be explained by the trade-off of more context on the
z axis versus less resolution on the x-y plane. We also note that the advantage
of the fractal encoding was greater on MRI than on CT, possibly due to the
spacing between adjacent slices from the two different imaging techniques.

Independent segmentation discriminator To demonstrate the necessity of
the ISD module, we configured BiomedParse-V to produce raw 2D segmentation
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Table 3. Segmentation performance in Dice score (%), without and with FVE of
different orders k.

Modality No FVE k = 1 k = 2 k = 3

CT 88.24 88.94 88.65 88.61
MRI 82.49 83.80 83.92 83.22

masks without applying the slice filtering process in Eq. (2). As shown in Table 4,
removing the ISD module led to a substantial drop in segmentation performance,
particularly for CT. The performance decrease for MRI was notably smaller,
likely because MRI volumes generally contain fewer empty slices. In contrast,
CT scans typically cover a larger anatomical region, making slice filtering more
impactful.

Table 4. Volumetric segmentation performance in Dice score (%), with raw 2D mask
prediction and with the ISD slice filtering.

Modality Raw mask ISD (ours)

CT 73.87 90.03
MRI 82.31 84.94

Gradient cut-off To validate the effectiveness of the gradient cut-off design in
the ISD module, we trained and evaluated the model with free back-propagation,
and compared it with our proposed approach in Table 5. The volumetric seg-
mentation performance decreased significantly when there was no stop-gradient
operation from the segmentation module to the classification module, indicating
the necessity of the design.

Table 5. Volumetric segmentation performance in Dice score (%), with and without
gradient cut-off in the ISD module.

Modality No cut-off With cut-off (ours)

CT 86.40 88.94
MRI 80.68 83.80

5 Experiments

In our main training experiment, we trained BiomedParse-V at scale on five dif-
ferent 3D modalities, and compared with other text-guided segmentation models.
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5.1 Dataset and evaluation metrics

The development set is an extension of the CVPR 2024 MedSAM on Laptop
Challenge [17], including more 3D cases from public datasets4 and covering
commonly used 3D modalities, such as Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), Ultrasound,
and Microscopy images. The hidden testing set is created by a community effort
in which all the cases are unpublished. The annotations are provided by the
data contributors or annotated by the challenge organizer with 3D Slicer [9] and
MedSAM2 [18]. In addition to using all training cases, the challenge contains a
coreset track, where participants can select 10% of the total training cases for
model development.

The text-guided segmentation task contains both semantic segmentation and
instance segmentation. For the semantic segmentation task, the evaluation met-
rics include the Dice Similarity Coefficient (DSC) and Normalized Surface Dis-
tance (NSD) to evaluate the segmentation region overlap and boundary distance,
respectively. For the instance segmentation task, we computed the F1 score at
an overlapping threshold of 0.5 and DSC scores for true positives. In addition,
the algorithm runtime will be limited to 60 seconds per class. Exceeding this
limit will cause all DSC and NSD metrics to be set to 0 for that test case.

5.2 Implementation details

Preprocessing Following the practice in MedSAM [16], all images were pro-
cessed to npz format with an intensity range of [0, 255]. Specifically, for CT
images, we normalized Hounsfield units using typical window width and level
values: soft tissues (W:400, L:40), lung (W:1500, L:-160), brain (W:80, L:40),
and bone (W:1800, L:400). Subsequently, the intensity values were rescaled to
the range of [0, 255]. For other images, we clipped the intensity values in the range
between the 0.5th and 99.5th percentiles before rescaling them to the range of
[0, 255]. If the original intensity range is already in [0, 255], no preprocessing was
applied.

For the training data, we followed Sect. 3.2 to process all 3D volumes into 2D
RGB images. Based on ablation study, Sect. 4.3, we chose the fractal order k = 1
to balance the encoding depth and neighboring details. The smaller fractal order
also allows more aggressive data augmentation while satisfying the conditions
for Theorem A, as the size of the encoded “super pixels” are smaller.

We adaptively chose the optimal views for slicing. For 3D image of shape
H ×W ×D on x − y − z coordinate, we select the axial view (x − y plane) by
default if the ratio 2|H−W |

H+W < 0.5, otherwise we select the view with the lowest
ratio. We incorporate additional views during training if the ratio is less than 0.5
for all views and if the voxel spacing differs less than 10% across the dimensions.
We converted all sliced images and masks to 512× 512 resolution in 8-bit RGB
format for efficient data processing, storage, and loading.
4 A complete list is available at https://medsam-datasetlist.github.io/

https://medsam-datasetlist.github.io/
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Environment settings The development environments and requirements are
presented in Table 6.

Table 6. Development environments and requirements.

System Ubuntu 22.04
CPU AMD EPYC 7V12
RAM 900 GiB
GPU 40 NVIDIA A100 40G
CUDA version 11.8
Programming language Python 3.10
Deep learning framework torch 2.3.1, torchvision 0.18.1

Training protocols We trained BiomedParse-V on 40 NVIDIA A100 GPUs
with 40 GB memory per GPU. The effective batch size counts to 320. For each
2D image example, we sample 4 classes from the feasible list of the source dataset,
and randomly select one prompt for each class. The masks corresponding to the
sampled classes were used as the ground truth for prediction, with absent classes
resulting in empty masks (all-zero). We duplicated the image features across the
4 prompts for efficient computation.

We used AdamW [14] as the optimizer with the same segmentation loss and
slice level classification loss. The segmentation loss was equally weighted Dice loss
and pixel-wise binary cross-entropy loss. The classification loss was a slice-level
binary cross-entropy loss with a positive class weight equal to 3. We used learning
rate 1 × 10−5 and weight decay 10−2. We applied an additional segmentation
loss with the same setting on the edge of the masks for instance edge prediction.

Table 7. Training protocols.

Pre-trained Model SEEM
Batch size 320
Patch size 4×4×3
Total epochs 80
Optimizer AdamW
Initial learning rate (lr) 1× 10−5

Lr decay schedule Cosine
Training time 240 hours
Loss function Dice, Pixel BCE, Slice BCE
Number of model parameters 371M
Number of flops 8612G per slice
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6 Results and discussion

We evaluated BiomedParse-V and compared with baseline text-guided 3D biomed-
ical image segmentation models CAT [6] and SAT [28]. We compared with the
baseline model trained on all data as well as the core set.

Table 8. Quantitative evaluation results of the validation set on the all-data track.

Modality Method Sematic Segmentation Instance Segmentation
DSC NSD F1 DSC TP

CT
CAT 0.7211 0.7227 0.2993 0.3717
SAT 0.6780 0.6726 0.2517 0.3954
BiomedParse-V 0.8512 0.8965 0.5119 0.6749

MRI
CAT 0.5415 0.6193 0.1375 0.2813
SAT 0.5610 0.6669 0.1228 0.2728
BiomedParse-V 0.7396 0.8664 0.5317 0.7053

Microscopy
CAT - - 0.0313 0.3628
SAT - - 0.2006 0.4243
BiomedParse-V - - 0.1939 0.6552

PET
CAT - - 0.1098 0.2779
SAT - - 0.4200 0.7863
BiomedParse-V - - 0.3132 0.7185

Ultrasound
CAT 0.8594 0.8360 - -
SAT 0.8558 0.7924 - -
BiomedParse-V 0.9050 0.9135 - -

6.1 Quantitative results on validation set

As shown in Fig. 6, 7, 8, 9, and Table 8, BiomedParse-V outperformed baseline
models in most modalities and metrics. The advantage is dominating for CT,
MRI and ultrasound, where the margin ranges from 5-43%. For microscopy,
BiomedParse-V outperforms all baseline models by 23-29% in terms of DSC on
true positive instances, and on par with the best competing method with less
than 1% difference in F1 score. BiomedParse-V outperforms CAT significantly,
but lags behind SAT on PET with a 7-11% difference across metrics.

6.2 Qualitative results on validation set

Representative visualizations are shown in Figs. 14, 11, 12, and 13, including two
successful and two suboptimal cases. In the first two, BiomedParse-V correctly
segments all prompted objects despite cluttered scenes or low image quality.

In Fig. 12, BiomedParse-V recovers most annotated nuclei but tends to under-
segment low-intensity nuclei. Touching or overlapping nuclei are sometimes merged,



BiomedParse-V 19
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Fig. 6. Bar plot of semantic segmentation Dice Similarity Coefficients for BiomedParse-
V and baseline models on different modalities.
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Fig. 7. Bar plot of semantic segmentation Normalized Surface Distances for
BiomedParse-V and baseline models on different modalities.
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Fig. 8. Bar plot of instance segmentation F1 scores for BiomedParse-V and baseline
models on different modalities.
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Fig. 9. Bar plot of instance segmentation Dice Similarity Coefficients on true positives
for BiomedParse-V and baseline models on different modalities.
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which complicates downstream instance separation. In our experiments, edge-
removal post-processing alleviated some merges but occasionally removed small
true positives as a trade-off.

In Fig. 13, BiomedParse-V was prompted to segment the right humerus, yet
the ISD module predicted absence in the slice. A likely failure mode is anatomical
symmetry, which makes laterality ambiguous. Because BiomedParse-V operates
on locally encoded 2D slices with limited 3D context, and training includes
image-level augmentations (e.g., left–right flips), laterality cues can be weakened,
leading to such false negatives.

Original Image Slice Ground Truth Masks Predicted Masks

CT imaging of the spleen within the abdomen
CT scan of the right kidney in the abdominal region
CT imaging of the left kidney in the abdomen
Liver detected in abdominal CT scans
Presence of the stomach detected in abdominal CT images
Visualization of the aorta in abdominal CT imaging
Abdominal CT revealing inferior vena cava anatomy
CT scan of the pancreas in the abdominal region
Right adrenal gland observed in abdominal CT scans
Left adrenal gland observed in abdominal CT scans
Presence of the duodenum detected in abdominal CT images

Fig. 10. Visualization of organ segmentation in abdominal CT.

Original Image Slice Ground Truth Masks Predicted Masks

Lesion delineation in whole body PET imaging

Fig. 11. Visualization of lesion segmentation in PET.



22 Theodore Zhao et al.

Original Image Slice Ground Truth Masks Predicted Masks

Fig. 12. Visualization of nuclei segmentation in microscopy.

Original Image Slice Ground Truth Masks Predicted Masks

Whole body MR showing right humeral structures

Fig. 13. Visualization of humerus segmentation in MRI.

6.3 Results on final testing set

In the hidden testing set, BiomedParse-V consistently outperformed all base-
line methods across all metrics. As shown in Table 9, BiomedParse-V exhibits
a 10-46% advantage. As an overall observation, instance segmentation is still a
challenging task compared to semantic segmentation, as it involves more tumor
and lesion segmentation cases, which are typically small in size and exhibit high
variance in location.

Table 9. Quantitative evaluation results of the testing set on the all-data track.

Method Sematic Segmentation Instance Segmentation
DSC NSD F1 DSC TP

CAT 0.3304 0.3153 0.0194 0.0466
SAT 0.5413 0.5297 0.1419 0.2959
BiomedParse-V 0.7497 0.7747 0.2380 0.4476
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6.4 Limitation and future work

While BiomedParse-V tackles the 3D segmentation problem by encoding 3D con-
text into 2D images with FVE, the total amount of spatial information is upper
bounded by a native 3D architecture. As a result, it still lags behind the best
competing model when the full volumetric context is essential. We envision future
models to be able to efficiently encode richer 3D context, or take the BoltzFormer
segmentation framework to the native 3D domain.

On the other hand, since BiomedParse-V only outputs binary segmentation
masks, the heuristic instance splitting approach limits its performance, as shown
in the instance segmentation results. We envision the model architecture to be
expanded to produce more direct and precise instance predictions, or to combine
with existing instance segmentation tools to achieve best performance.

6.5 Discussions

In order to tackle the problem of 3D medical image segmentation driven by text
prompting, we presented generic applicable approaches to utilize 2D foundation
models for 3D images. With a rich spatial context encoded in a single image, vi-
sion models with downstream applications such as classification, text generation,
and question answering could be directly applied to solve 3D problems.

In addition, our fractal-based encoding approach is not limited to 3D medical
images but can extend to other vision domains that involve sequential or vol-
umetric data, such as video-based analysis. Thus, Fractal Volumetric Encoding
(FVE) provides a versatile and efficient solution, unleashing the power of vision
foundation models across various application domains.

The Independent Segmentation Discriminator (ISD) module with gradient
cut-off was proven to be effective in determining object existence while main-
taining coherence segmentation performance. The same idea could be applied to
applications such as video segmentation, where object existence is also a chal-
lenge [20].

7 Conclusion

We presented BiomedParse-V , a novel and efficient multimodal model for 3D
medical image segmentation that leverages the strengths of pretrained 2D foun-
dation models. By employing Fractal Volumetric Encoding (FVE), our method
compresses 3D volumes into compact 2.5D representations that preserve essential
spatial context and readily fit common vision foundation models. Complemented
by an Independent Segmentation Discriminator (ISD) with gradient cut-off,
BiomedParse-V achieves enhanced volumetric segmentation accuracy. Extensive
experiments on CT and MRI datasets demonstrate that our approach outper-
forms current state-of-the-art pretrained models and supervised expert models.
We envision our work opening a promising direction for practically deploying ro-
bust foundation models in clinical medical imaging, addressing critical scalability
and resource-constraint challenges inherent to volumetric segmentation.
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A Proof of theorem

Theorem 1 (Equivalence to 3D Convolution). Given a fractal encoding
function E, defined as

E(V, i) : RH×W×D ⊗ N → RH×W×C , (5)

applying a linear embedding operator on patches of the encoded image corre-
sponds mathematically to performing an adaptive-resolution 3D convolution on
the original volume.

Proof of Theorem A

Proof. We will show that for any spatial patch of the fractal-encoded image, the
linear projection on that patch reproduces exactly an adaptive-resolution 3D
convolution on the original volume.

1. Notation.

– Volume V ∈H×W×D, focal index i.
– Encoding order k induces patch size p = 2k−1 and depth-extent ∆k = 3k−2.
– Encoded image I = E(V, i) ∈H×W×C , C = 3.
– Fix a 2D patch

P =
{
I i0+u, j0+v, c

∣∣ 0 ≤ u, v < p, 0 ≤ c < C
}
.

– Flattening vec(P ) ∈p2C ; linear weights W ∈M×(p2C); embedding e = W vec(P ) ∈M .

2. One-to-one mapping to voxels. By the fractal-encode/pixel_mix construction,
each element of vec(P ) is exactly one voxel

Vx,y,z with (x, y) ∈ {i0, . . . , i0+p−1}×{j0, . . . , j0+p−1}, z ∈ {i−∆k, . . . , i+∆k}.

Thus
vec(P ) =

[
Vxℓ, yℓ, zℓ

]p2C

ℓ=1
for a bijection ℓ 7→(xℓ, yℓ, zℓ).

3. Standard 3D convolution. An adaptive-resolution 3D convolution at spatial
location (i0, j0, i) with kernel K ∈p×p×(2∆k+1) computes

(K ∗ V)i0,j0,i =
p−1∑
u=0

p−1∑
v=0

∆k∑
d=−∆k

Ku,v,d+∆k
V i0+u, j0+v, i+d.

4. Linear embedding matches convolution. The patch embedding is

e = W vec(P ) =

p2C∑
ℓ=1

W: ,ℓ V xℓ,yℓ,zℓ =
∑
u,v,d

W(u,v,d) V i0+u, j0+v, i+d.

By choosing
Ku,v,d+∆k

= W(u,v,d), ∀u, v, d,
the two sums coincide, hence e = (K ∗ V)i0,j0,i.
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5. Adaptive-resolution property. In fractal encoding, slices farther from i are
downsampled by factors of two per level—exactly mirroring a convolution whose
spatial footprint shrinks for distant depth channels.

Therefore, every linear patch embedding on E(V, i) reproduces an adaptive-
resolution 3D convolution on V.

B Fractal encoding examples

We visualize the encoded RGB images from FVE in Fig. 14 and 15. An encoding-
decoding example is shown in Fig. 16. We show the voxel allocation with different
orders of fractal encoding in Fig. 17. The majority portion of the voxels is from
the slices close to the center slice. As the order increases, the size of a “super
pixel” also increases. The ratio of the voxels from the close layers keeps the same
when increasing the encoding order.
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Order 1 Order 2 Order 3 Order 4

Fig. 14. Fractal encoded RGB image for CT with different encoding order. Each row
corresponds to encoding around the same focal slice.
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Order 1 Order 2 Order 3 Order 4

Fig. 15. Fractal encoded RGB image for MRI with different encoding order. Each row
corresponds to encoding around the same focal slice.
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Fig. 16. Example encoding-decoding around a focal slice. The FVE encoded image on
the left contains a full resolution focal slice along with adaptively downsampled context
slices. The encoded slice can decode back to the slices on the right losslessly.
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Fig. 17. The voxel allocation pattern for FVE of order 1 through 6. We show the min-
imal unit of neighborhood encoding (super pixel) for each order. The color represents
the distance from the voxel to the focal slice in the original volume. The right side of
each column shows the overall ratio distribution of the encoded voxels in terms of their
distances to the focal slice.


