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Abstract
Graph clustering is an important unsupervised learning technique for partitioning graphs with
attributes and detecting communities. However, current methods struggle to accurately capture true
community structures and intra-cluster relations, be computationally efficient, and identify smaller
communities. We address these challenges by integrating coarsening and modularity maximization,
effectively leveraging both adjacency and node features to enhance clustering accuracy. We propose
a loss function incorporating log-determinant, smoothness, and modularity components using a
block majorization-minimization technique, resulting in superior clustering outcomes. The method
is theoretically consistent under the Degree-Corrected Stochastic Block Model (DC-SBM), ensuring
asymptotic error-free performance and complete label recovery. Our provably convergent and
time-efficient algorithm seamlessly integrates with Graph Neural Networks (GNNs) and Variational
Graph AutoEncoders (VGAEs) to learn enhanced node features and deliver exceptional clustering
performance. Extensive experiments on benchmark datasets demonstrate its superiority over existing
state-of-the-art methods for both attributed and non-attributed graphs.

1. Introduction

Clustering is an unsupervised learning method that groups nodes based on their attributes or graph
structure, with applications in social network analysis, genetics, bio-medicine, knowledge graphs, and
computer vision. Existing graph clustering algorithms predominantly fall into cut-based, similarity-
driven, or modularity-based categories.

Cut-based methods [2, 38, 41], aiming to minimize the number of edges (or similar metric)
in a cut, may fall short in capturing the true community structure if the cut’s edge count doesn’t
significantly deviate from random graph expectations. Similarity-based techniques, reliant on
pairwise node similarities, group nodes with shared characteristics. Most deep learning based
approaches fall under this category. These can be computationally intensive and susceptible to noise,
yielding suboptimal results, especially in sparse or noisy data scenarios. Modularity-based methods
rely on a statistical approach, measuring the disparity in edge density between a graph and a random
graph with the same degree sequence. These may exhibit a resolution limit [10], neglecting smaller
communities. Each clustering approach, whether cut-based, similarity-based, or modularity-based,
bears its own set of limitations that necessitates careful consideration based on the characteristics of
the underlying graph data. Refer to Appendix A for a survey on existing methods.

Some graph reduction techniques like coarsening [9, 20, 26, 27] can also facilitate clustering. In
the context of graph coarsening, the objective is to learn a reduced graph by merging similar nodes
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into supernodes. This can be extended to clustering by reducing the original graph such that each
class corresponds to a supernode. However, relying solely on coarsening may lead to suboptimal
performance, particularly when the order of the reduction from the original graph size to the number
of classes is large and results in a significant loss of information.

In this study, we introduce an optimization-based framework that enhances clustering by lever-
aging both graph adjacency and node features. Our approach strategically combines coarsening
and modularity maximization to refine partitioning outcomes. The algorithm minimizes a nuanced
loss function, the Q-MAGC objective, which includes a log det term, smoothness, and modularity
components. This multi-block non-convex optimization problem is solved using a block majorization-
minimization technique, demonstrating convergence and efficiency.

We also present the Q-GCN algorithms, which embeds our Q-MAGC objective into Graph
Convolutional Networks (GCNs), improving clustering outcomes through better learned node rep-
resentations. Additionally, we introduce Q-VGAE and Q-GMM-VGAE algorithms, incorporating
Variational Graph Auto-Encoders (VGAEs) to further enhance clustering accuracy. Our comprehen-
sive experiments on synthetic and real-world datasets showcase notable improvements in clustering
performance, highlighting the robustness and superiority of our proposed methods.

Key Contributions.

• We present the first optimization-based framework for attributed graph clustering through coarsen-
ing via modularity maximization, demonstrating efficiency, theoretical convergence, and addressing
limitations of existing methods. The paper offers comprehensive analysis and provides theoretical
guarantees including KKT optimality, and convergence (Theorem 1), which are often absent in
prior research.

• Our method is theoretically consistent under a Degree-Corrected SBM, showing asymptotically
no errors (weakly consistent) and complete recovery of the original labels (strongly consistent).
(Theorem 3)

• We show the seamless integration of our clustering objective with GNN-based architectures,
leveraging message-passing to enhance our method (section 4). This is backed up by thorough
experimental validation on diverse real-world and synthetic datasets, demonstrating superior
performance compared to state-of-the-art approaches. (section 5)

• We conduct ablation studies to evaluate the behavior of the loss terms, compare runtime and
complexities, and perform a comprehensive evaluation of modularity. (subsection 5.1)

Notations. Let G = {V,E,A,X} be a graph with node set V = {v1, v2, ..., vp} (|V | = p),
edge set E ⊂ V × V }(|E| = e), weight (adjacency) matrix A and node feature matrix X ∈ Rp×n.
Also, let d = A · 1p ∈ Zp

+ be the degree vector, where 1p is the vector of size p having all entries 1.
Then, the graph Laplacian is Θ = diag(d)−A and the set of all valid Laplacian matrices is defined
as: SΘ = {Θ ∈ Rp×p|Θij = Θji ≤ 0 for i ̸= j,Θii =

∑p
j=1Θij}.

2. Background

2.1. Graph Coarsening

Graph coarsening is a graph dimensionality reduction technique to construct a smaller graph Gc

from the original graph G = {V,E,A,X} while preserving it’s properties. Graph coarsening aims
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to learn a mapping matrix C ∈ Rp×k
+ , where k is the number of nodes in the coarsened graph. Each

non-zero entry of the mapping matrix Cij indicates that the i-th node of G is mapped to the j-th
supernode. Moreover, for a balanced mapping, the mapping matrix C belongs to the set [20, 26, 27]:
C =

{
C ∈ Rp×k

+ | ⟨Ci, Cj⟩ = 0 ∀ i ̸= j, ⟨Ci, Ci⟩ = di, ∥Ci∥0 ≥ 1 and
∥∥[C⊤]i

∥∥
0
= 1
}

For C ∈ C, the relationship between the original graph Laplacian Θ, the coarsened graph
Laplacian Θc, and the mapping matrix C is given by Θc = CTΘC.

2.2. Spectral Modularity Maximization

Spectral Clustering is the most direct approach to graph clustering, where we minimize the volume of
inter-cluster edges. Modularity, introduced in Newman [32], is the difference between the number of
edges within a cluster Ci and the expected number of such edges in a random graph with an identical
degree sequence. It is mathematically defined as:

Q =
1

2e

k∑
i,j=1

[
Aij −

didj
2e

]
δ(ci, cj) δ(ci, cj) = 1 if i = j otherwise 0 (1)

Maximizing this form of modularity is NP-hard [5]. However, we can approximate it using a
spectral relaxation, which involves a modularity matrix B. The modularity matrix B and spectral
modularity are defined as:

B = A− ddT

2e
, d = A · 1, Q =

1

2e
Tr(CTBC) (2)

Modularity is closely associated with community detection. It’s special spectral properties
(Section B) make B an ideal choice for clustering. While modularity maximization has been studied,
heuristic algorithms for it are computationally intensive, such as the Newman-Girvan algorithm with
O(p3) time complexity. The Louvain/Leiden algorithms [4, 31] improve on this.

3. Proposed Method: MAGC

Current graph clustering methods often struggle to accurately capture both intra-cluster and inter-
cluster relationships, achieve computational efficiency, and identify smaller communities, thereby
limiting their effectiveness. These methods face significant challenges including instability and the
lack of convergence guarantees, especially when employing coarsening techniques. Modularity
maximization, despite extensive study, relies on computationally intensive heuristics and lacks
theoretical convergence guarantees. We propose an optimization-driven framework that strategically
integrates coarsening and modularity. By incorporating both adjacency and node features, our
approach aims to robustly capture intra-cluster and inter-cluster dynamics. This framework ensures
stability, guarantees convergence, and consistently delivers superior clustering results with enhanced
computational efficiency compared to existing methods.

Given a graph G = {V,E,A,X}, to obtain the clustering matrix C we formulate the following
optimization problem :

min
XC ,C

LMAGC = tr(XT
CC

TΘCXC)−
β

2e
tr(CTBC)− γ log det(CTΘC + J)

subject to C ∈ SC = {C ∈ Rp×l
∣∣ ∥∥CT

i

∥∥2
2
≤ 1} ∀i,X = CXC where, J =

1

k
1k×k (3)
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The term tr(XT
CC

TΘCXC) represents the smoothness (Dirichlet energy) of the coarsened
graph as CTΘC is the Laplacian of the coarsened graph. Minimizing smoothness ensures that the
clusters or supernodes with similar features are linked with stronger weights. The term tr(CTBC)
corresponds to the graph’s modularity, enhancing the quality of the clusters formed. The term
− log det(CTΘC + J) is crucial for maintaining inter-cluster edges in the coarsened graph. For a
connected graph matrix with k super-nodes or clusters, the rank of CTΘC is k − 1. Adding We add
J to CTΘC to make a full-rank matrix without altering it’s row and column space. [21].

Problem (3) is a multi-block non-convex optimization problem. All terms except modularity are
convex in nature, which we prove in Appendix C. We iteratively update C and XC alternately while
keeping the other constant. This process continues until convergence or the stopping criteria are
met. Since the constraint X = CXC is hard and difficult to enforce, we relax it by adding the term
α
2 ∥X − CXC∥2F to the objective. This term ensures that each node is assigned to a cluster, leaving
no node unassigned.

Update rule of C. Treating XC as constant and C as a variable the sub-problem for C is:

min
C

f(C) = tr(XT
CC

TΘCXC)−
β

2e
tr(CTBC)− γ log det(CTΘC + J) +

α

2
∥X − CXC∥2F

subject to C ∈ SC = {C ∈ Rp×l|C ≥ 0,
∥∥CT

i

∥∥2
2
≤ 1} ∀i, where, J =

1

k
1k×k (4)

By using the first-order Taylor series approximation, a majorised function for f(C) at Ct (C after t
iterations) can be obtained as: g(C|Ct) = f(Ct) + (C − Ct)∇f(Ct) + L

2

∥∥C − Ct
∥∥2 where f(C)

is L−Lipschitz continuous gradient function L = max(L1, L2, L3, L4) with L1, L2, L3, L4 being
the Lipschitz constants of the four terms. We prove this in Appendix D. After ignoring the constant
term, the majorised problem of (4) is min

C∈SC

1
2C

TC − CT
(
Ct − 1

L∇f(C
t)
)

The optimal solution to this, found by using Karush–Kuhn–Tucker (KKT) optimality conditions
is (Proof is deferred to the Appendix D):

Ct+1 =
(
Ct − 1

L
∇f
(
Ct
))+

(5)

where,∇f
(
Ct
)
= −2γΘCt(CtTΘCt + J)−1 + α(CtXC −X)XT

C + 2ΘCtXCX
T
C −

β
eBCt

Algorithm 1: Q-MAGC Algorithm
Input: G(X,Θ), α, β, γ, λ
t← 0;
while Stopping Criteria not met do

Update Ct+1 as in Eqn. 5;
Update Xt+1

C as in Eqn. 7;
t← t+ 1;

end
return Ct, Xt

C

Update rule of XC . Treating C fixed and Xc as
variable. The subproblem for updating Xc is

min
X̃

f(X̃) = tr(XT
CC

TΘCXC) +
α
2 ∥X − CXC∥2F

(6)

The closed form solution of problem (6) can be ob-
tained by putting the gradient of f(X̃) to zero.

Xt+1
C =

( 2
α
CTΘC + CTC

)−1
CTX (7)

Convergence Analysis.

Theorem 1 The sequence {Ct+1, Xt+1
C } generated by Algorithm 1 converges to the set of Karush–Kuhn–Tucker

(KKT) optimality points for Problem 3
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Proof The detailed proof can be found in the Appendix Section E.

Complexity Analysis. The worst-case time complexity of one epoch in Algorithm 1 is O(p2k +
pkn), and k ≪ p, n. We discuss this more in Appendix Section G.

3.1. Consistency Analysis on Degree Corrected Stochastic Block Models (DC-SBM).

Let ŷi denote the predicted cluster for node vi. The assignment matrix C is the one-hot encoding of
y, such that Ci = one-hot(yi).

Definition 2 (Strong and Weak Consistency) The clustering objective is defined to be strongly

consistent if lim
p→∞

Pr[ŷ = y]→ 1. A weaker notion of consistency is defined by lim
p→∞

Pr

[
1
p

p∑
i=1

1{ŷ ̸=

y} < ϵ

]
→ 1 ∀ ϵ > 0.

Theorem 3 Under the DC-SBM, LMAGC is strongly consistent when λp/ log p→∞ and weakly
consistent when λp →∞.
Proof We use the framework of Theorem 4.1 of [45] for the proof, which is deferred to Appendix F

4. Integrating with GNNs

Our optimization framework integrates seamlessly with Graph Neural Networks (GNNs) by incor-
porating the objective (3) into the loss function. This integration can be minimized using gradient

Figure 1: a) Architecture of Q-GCN. We want to train the encoder to learn the soft cluster
assignment matrix C. The coarsened features XC are obtained using the relation Xt+1

C = Ct+1†X .
Finally, our proposed MAGC loss is then computed using C and XC .
b) Architecture of Q-VGAE/Q-GMM-VGAE. The three-layer GCN encoder takes X and A as
inputs to learn the latent representation Z of the graph. Z is then passed through an inner-product
decoder to reconstruct the adjacency matrix Â. The reconstruction loss is calculated between Â
and A, and the KL-divergence is applied to Z. In Q-VGAE (or Q-GMM-VGAE), Z is also passed
through a GCN layer (or GMM) to output the soft cluster assignments C. The MAGC loss is then
computed as in Q-GCN.
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descent. We demonstrate the effectiveness of this approach on several popular GNN architectures,
including Graph Convolutional Networks (GCNs) [19], Variational Graph Auto-Encoders (VGAEs)
[18], and a variant known as Gaussian Mixture Model VGAE (GMM-VGAE) [15]. We briefly
describe this integration in Figure 1, with more details in Appendix H.

5. Experiments

To assess the performance of our method, we compare it against three types of state-of-the-art
methods: graph coarsening methods, GCN-based architectures, VGAE-based architectures and
contrastive methods, and heavily modified VGAE architectures. This comprehensive evaluation
allows us to demonstrate the robustness and versatility of our approach across various data and
model configurations. We present our key results on the real datasets Cora, CiteSeer, and PubMed in
Table 1. Our proposed method outperforms all existing methods in terms of NMI and demonstrates
competitive performance in Accuracy and ARI. The best models were selected based on NMI scores.
A detailed summary of all the datasets and metrics used is provided in Appendix I.

Cora CiteSeer PubMed

Method ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑

GIC [PAKDD’21] [28] 72.5 53.7 50.8 69.6 45.3 46.5 67.3 31.9 29.1
GALA [ICCV’19] [35] 74.5 57.6 53.1 69.3 44.1 44.6 69.3 32.1 32.1
DCRN [AAAI’22] [23] 61.9 45.1 33.1 70.8 45.8 47.6 69.8 32.2 31.4
FGC [JMLR’23] [20] 53.8 23.2 20.5 54.2 31.1 28.2 67.1 26.6 27.8
Q-MAGC (Ours) 65.8 51.8 42.0 65.9 40.8 40.1 66.7 32.8 27.9
Q-GCN (Ours) 71.6 58.3 53.6 71.5 47.0 49.1 64.1 32.1 26.5

SCGC [IEEE TNNLS’23] [24] 73.8 56.1 51.7 71.0 45.2 46.2 - - -
MVGRL [ICML’20] [14] 73.2 56.2 51.9 68.1 43.2 43.4 69.3 34.4 32.3
VGAE [NeurIPS’16] [18] 64.7 43.4 37.5 51.9 24.9 23.8 69.6 28.6 31.7
ARGA [IJCAI’18] [34] 64.0 35.2 61.9 57.3 34.1 54.6 59.1 23.2 29.1
Q-VGAE (Ours) 72.7 58.6 49.6 66.1 47.4 50.2 64.3 32.6 28.0

Mod-Aware VGAE [NN’22] [37] 67.1 52.4 44.8 51.8 25.1 15.5 - 30.0 29.1
GMM-VGAE [AAAI’20] [15] 71.9 53.3 48.2 67.5 40.7 42.4 71.1 29.9 33.0
R-GMM-VGAE [IEEE TKDE’22] [30] 76.7 57.3 57.9 68.9 42.0 43.9 74.0 33.4 37.9
Q-GMM-VGAE (Ours) 76.2 58.7 56.3 72.7 47.4 48.8 69.0 34.8 34.0

Table 1: Comparison of all methods on attributed datasets.

5.1. Ablation Studies

We conduct ablation studies on running times, modularity comparison, parameter sensitivity, visual-
ization of the latent space and the relative importance/evolution of the different loss terms. Figure 2
acts as a small showcase of these. They are given in detail in Appendix K.
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(a) Comparison of running times of meth-
ods. The scale for PubMed is in min-
utes (right axis), whereas for Cora and
CiteSeer is in seconds.

Cora CiteSeer PubMed

C ↓ Q ↑ NMI ↑ C ↓ Q ↑ NMI ↑ C ↓ Q ↑ NMI ↑

DMoN 12.2 76.5 48.8 5.1 79.3 33.7 17.7 65.4 29.8
FGC 58.4 25 23.1 41.6 41.1 31 21.6 44.1 20.5
Q-MAGC 13.3 72.5 51.7 16.8 64.9 40.16 26 40.3 28.1
Q-GCN 13.6 73.3 58.3 5.8 74.5 46.7 8.27 55 31.5
VGAE 17.6 60.8 38.1 12.8 55.8 21 13.5 45.8 26.9
Q-VGAE 9.5 71.5 58.4 4.6 72.4 47.3 9.4 52.12 31.8

(b) Comparison of modularity and conductance at the best
NMI with DMoN. Note that DMoN is optimizing only
modularity, whereas we are optimizing other important
terms as well, as mentioned in Eqn 3, and thus gain a
lot on NMI by giving up a small amount of modularity,
making us closer to the ground truth.

Figure 2References

[1] Aritra Bhowmick, Mert Kosan, Zexi Huang, Ambuj Singh, and Sourav Medya. Dgcluster: A
neural framework for attributed graph clustering via modularity maximization, 2023.

[2] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph
neural networks for graph pooling. In Proceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org, 2020.

[3] Peter J. Bickel and Aiyou Chen. A nonparametric view of network models and newman–girvan
and other modularities. Proceedings of the National Academy of Sciences, 106(50):21068–
21073, 2009. doi: 10.1073/pnas.0907096106. URL https://www.pnas.org/doi/
abs/10.1073/pnas.0907096106.

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, oct 2008. ISSN 1742-5468. doi: 10.1088/1742-5468/2008/10/
P10008. URL https://dx.doi.org/10.1088/1742-5468/2008/10/P10008.

[5] Ulrik Brandes, Daniel Delling, Marco Gaertler, R. Gorke, Martin Hoefer, Zoran Nikoloski,
and Dorothea Wagner. On modularity clustering. Knowledge and Data Engineering, IEEE
Transactions on, 20:172 – 188, 03 2008. doi: 10.1109/TKDE.2007.190689.

[6] Jun Jin Choong, Xin Liu, and Tsuyoshi Murata. Optimizing variational graph autoencoder for
community detection with dual optimization. Entropy, 22(2), 2020. ISSN 1099-4300. URL
https://www.mdpi.com/1099-4300/22/2/197.

[7] Ganqu Cui, Jie Zhou, Cheng Yang, and Zhiyuan Liu. Adaptive graph encoder for attributed
graph embedding. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’20, page 976–985, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3403140.
URL https://doi.org/10.1145/3394486.3403140.

[8] Fnu Devvrit, Aditya Sinha, Inderjit S Dhillon, and Prateek Jain. S3GC: Scalable self-
supervised graph clustering. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and

7

https://www.pnas.org/doi/abs/10.1073/pnas.0907096106
https://www.pnas.org/doi/abs/10.1073/pnas.0907096106
https://dx.doi.org/10.1088/1742-5468/2008/10/P10008
https://www.mdpi.com/1099-4300/22/2/197
https://doi.org/10.1145/3394486.3403140


MODULARITY AIDED CONSISTENT ATTRIBUTED GRAPH CLUSTERING VIA COARSENING

Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=ldl2V3vLZ5.

[9] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors
a multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29
(11):1944–1957, 2007. doi: 10.1109/TPAMI.2007.1115.

[10] Santo Fortunato and Marc Barthélemy. Resolution limit in community detection. Proceedings
of the National Academy of Sciences, 104(1):36–41, 2007. doi: 10.1073/pnas.0605965104.
URL https://www.pnas.org/doi/abs/10.1073/pnas.0605965104.

[11] Hongyang Gao and Shuiwang Ji. Graph u-nets. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages 2083–2092. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/gao19a.html.

[12] Roger Guimerà and Luís A Nunes Amaral. Functional cartography of complex metabolic
networks. Nature, 433(7028):895–900, February 2005. ISSN 0028-0836. doi: 10.1038/
nature03288.

[13] Roger Guimerà and Luís Amaral. Cartography of complex networks: Modules and universal
roles. Journal of statistical mechanics (Online), 2005:nihpa35573, 03 2005. doi: 10.1088/
1742-5468/2005/02/P02001.

[14] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning
on graphs. In Proceedings of International Conference on Machine Learning, pages 3451–3461.
2020.

[15] Binyuan Hui, Pengfei Zhu, and Qinghua Hu. Collaborative graph convolutional networks:
Unsupervised learning meets semi-supervised learning. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(04):4215–4222, Apr. 2020. doi: 10.1609/aaai.v34i04.5843. URL
https://ojs.aaai.org/index.php/AAAI/article/view/5843.

[16] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in
networks. Phys. Rev. E, 83:016107, Jan 2011. doi: 10.1103/PhysRevE.83.016107. URL
https://link.aps.org/doi/10.1103/PhysRevE.83.016107.

[17] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

[18] Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016.

[19] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv, 2016. doi: 10.48550/ARXIV.1609.02907. URL https://arxiv.org/
abs/1609.02907.

[20] Manoj Kumar, Anurag Sharma, and Sandeep Kumar. A unified framework for optimization-
based graph coarsening. Journal of Machine Learning Research, 24(118):1–50, 2023. URL
http://jmlr.org/papers/v24/22-1085.html.

8

https://openreview.net/forum?id=ldl2V3vLZ5
https://www.pnas.org/doi/abs/10.1073/pnas.0605965104
https://proceedings.mlr.press/v97/gao19a.html
https://ojs.aaai.org/index.php/AAAI/article/view/5843
https://link.aps.org/doi/10.1103/PhysRevE.83.016107
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
http://jmlr.org/papers/v24/22-1085.html


MODULARITY AIDED CONSISTENT ATTRIBUTED GRAPH CLUSTERING VIA COARSENING

[21] Sandeep Kumar, Jiaxi Ying, José Vinícius de M Cardoso, and Daniel P Palomar. A unified
framework for structured graph learning via spectral constraints. Journal of Machine Learning
Research, 21(22):1–60, 2020.

[22] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In Proceedings of
the 36th International Conference on Machine Learning, 09–15 Jun 2019.

[23] Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang, and En Zhu.
Deep graph clustering via dual correlation reduction. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 7603–7611, 2022.

[24] Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Siwei Wang, Ke Liang, Wenxuan Tu, and
Liang Li. Simple contrastive graph clustering. IEEE Transactions on Neural Networks and
Learning Systems, pages 1–12, 2023. doi: 10.1109/TNNLS.2023.3271871.

[25] Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Zhen Wang, Ke Liang, Wenxuan Tu, Liang
Li, Jingcan Duan, and Cancan Chen. Hard sample aware network for contrastive deep graph
clustering. In Proc. of AAAI, 2023.

[26] Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learn-
ing Research, 20(116):1–42, 2019. URL http://jmlr.org/papers/v20/18-680.
html.

[27] Andreas Loukas and Pierre Vandergheynst. Spectrally Approximating Large Graphs with
Smaller Graphs. In Proceedings of the 35th International Conference on Machine Learning,
pages 3243–3252. PMLR, 2018.

[28] Costas Mavromatis and G. Karypis. Graph infoclust: Maximizing coarse-grain mutual informa-
tion in graphs. In PAKDD, 2021.

[29] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. Umap: Uniform manifold
approximation and projection. Journal of Open Source Software, 3(29):861, 2018. doi:
10.21105/joss.00861. URL https://doi.org/10.21105/joss.00861.

[30] Nairouz Mrabah, Mohamed Bouguessa, Mohamed Fawzi Touati, and Riadh Ksantini. Re-
thinking graph auto-encoder models for attributed graph clustering. IEEE Transactions on
Knowledge and Data Engineering, pages 1–15, 2022. doi: 10.1109/TKDE.2022.3220948.

[31] M. E. J. Newman. Fast algorithm for detecting community structure in networks. Phys. Rev.
E, 69:066133, Jun 2004. doi: 10.1103/PhysRevE.69.066133. URL https://link.aps.
org/doi/10.1103/PhysRevE.69.066133.

[32] Mark E. J. Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences of the United States of America, 103 23:8577–82, 2006.

[33] Krzysztof Nowicki and Tom A. B Snijders. Estimation and prediction for stochastic blockstruc-
tures. Journal of the American Statistical Association, 96(455):1077–1087, 2001. doi: 10.1198/
016214501753208735. URL https://doi.org/10.1198/016214501753208735.

9

http://jmlr.org/papers/v20/18-680.html
http://jmlr.org/papers/v20/18-680.html
https://doi.org/10.21105/joss.00861
https://link.aps.org/doi/10.1103/PhysRevE.69.066133
https://link.aps.org/doi/10.1103/PhysRevE.69.066133
https://doi.org/10.1198/016214501753208735


MODULARITY AIDED CONSISTENT ATTRIBUTED GRAPH CLUSTERING VIA COARSENING

[34] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI-18, pages 2609–2615. International
Joint Conferences on Artificial Intelligence Organization, 7 2018. doi: 10.24963/ijcai.2018/362.
URL https://doi.org/10.24963/ijcai.2018/362.

[35] J. Park, M. Lee, H. Chang, K. Lee, and J. Choi. Symmetric graph convolutional autoen-
coder for unsupervised graph representation learning. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 6518–6527, Los Alamitos, CA, USA, nov
2019. IEEE Computer Society. doi: 10.1109/ICCV.2019.00662. URL https://doi.
ieeecomputersociety.org/10.1109/ICCV.2019.00662.

[36] Ketan Rajawat and Sandeep Kumar. Stochastic multidimensional scaling. IEEE Transactions
on Signal and Information Processing over Networks, 3(2):360–375, 2017. doi: 10.1109/
TSIPN.2017.2668145.

[37] Guillaume Salha-Galvan, Johannes F Lutzeyer, George Dasoulas, Romain Hennequin, and
Michalis Vazirgiannis. Modularity-aware graph autoencoders for joint community detection
and link prediction. Neural Networks, 153:474–495, 2022.

[38] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000. doi: 10.1109/34.868688.

[39] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel MÃ¼ller. Graph clustering
with graph neural networks. Journal of Machine Learning Research, 24(127):1–21, 2023. URL
http://jmlr.org/papers/v24/20-998.html.

[40] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi Zhang. Attributed
graph clustering: A deep attentional embedding approach. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages 3670–3676.
International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/
ijcai.2019/509. URL https://doi.org/10.24963/ijcai.2019/509.

[41] Yen-Chuen Wei and Chung-Kuan Cheng. Towards efficient hierarchical designs by ratio cut
partitioning. In 1989 IEEE International Conference on Computer-Aided Design. Digest of
Technical Papers, pages 298–301, 1989. doi: 10.1109/ICCAD.1989.76957.

[42] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.
URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf.

[43] Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. Attributed graph clustering via
adaptive graph convolution. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, IJCAI’19, page 4327–4333. AAAI Press, 2019. ISBN 9780999241141.

10

https://doi.org/10.24963/ijcai.2018/362
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00662
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00662
http://jmlr.org/papers/v24/20-998.html
https://doi.org/10.24963/ijcai.2019/509
https://proceedings.neurips.cc/paper_files/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf


MODULARITY AIDED CONSISTENT ATTRIBUTED GRAPH CLUSTERING VIA COARSENING

[44] Han Zhao, Xu Yang, Zhenru Wang, Erkun Yang, and Cheng Deng. Graph debiased contrastive
learning with joint representation clustering. In Zhi-Hua Zhou, editor, Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 3434–3440.
International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/
ijcai.2021/473. URL https://doi.org/10.24963/ijcai.2021/473. Main Track.

[45] Yunpeng Zhao, Elizaveta Levina, and Ji Zhu. Consistency of community detection in networks
under degree-corrected stochastic block models. The Annals of Statistics, 40(4):2266 – 2292,
2012. doi: 10.1214/12-AOS1036. URL https://doi.org/10.1214/12-AOS1036.

11

https://doi.org/10.24963/ijcai.2021/473
https://doi.org/10.1214/12-AOS1036


MODULARITY AIDED CONSISTENT ATTRIBUTED GRAPH CLUSTERING VIA COARSENING

Appendix A. Related Works

In this section, we review relevant existing works and highlight their limitations, thereby motivating
the need for an improved clustering formulation.

Graph Clustering via Coarsening. Graph coarsening can be extended to graph clustering by
reducing the size of the coarsened graph to the number of classes (k). However, in most graphs, the
number of classes is very small, and reducing the graph to this extent may lead to poor clustering
quality. DiffPool [42] learns soft cluster assignments at each layer of the GNN and optimizes two
additional losses, an entropy to penalize the soft assignments and a link prediction based loss. Next,
SAGPool [22] calculates attention scores and node embeddings to determine the nodes that need to
be preserved or removed. Top-k [11] also works by sparsifying the graph with the learned weights.
MinCutPool [2] formulates a differentiable relaxation of spectral clustering via pooling. However,
Tsitsulin et al. [39] show that MinCutPool’s orthogonal regularization dominates over the clustering
objective and the objective is not optimized. Some disadvantages of these methods are instability
and computational complexity in the case of SAGPool and DiffPool and convergence in MinCutPool.
To address these challenges, we need a better loss function to perform the clustering task effectively.

Deep Graph Clustering. Previous literature can be classified based on contrastive and non-
contrastive methods. On the non-contrastive side, Pan et al. [34] proposed ARGA and ARVGA,
enforcing the latent representations to align to a prior using adversarial learning. By utilizing an
attention-based graph encoder and a clustering alignment loss, Wang et al. [40] propose DAEGC. Liu
et al. [23] design the DCRN model to alleviate representation collapse by a propagation regularization
term minimizing the Jensen Shannon Divergence (JSD) between the latent and its product with
normalized A. Contrastive methods include AGE [7] which builds a training set by adaptively
selecting node pairs that are highly similar or dissimilar after filtering out high-frequency noises
using Laplacian smoothing. Zhao et al. [44] propose GDCL to correct the sampling bias by choosing
negative samples based on the clustering label.

VGAEs [18] are an increasingly popular class of GNNs that leverage variational inference [17] for
learning latent graph representations in unsupervised settings. They reconstruct the adjacency matrix
after passing the graph through an encoder-decoder architecture. Many attempts have been made
to use VGAEs with k-means on latent embeddings, but it has been unsuitable for clustering. This
is primarily because embedded manifolds obtained from VGAEs are curved and must be flattened
before any clustering algorithms using Euclidean distance are applied. Refer to Appendix Section ??
for a detailed explanation. VGAEs only use a single Gaussian prior for the latent space, whereas
clustering requires the integration of meta-priors. Additionally, the inner-product decoder fails to
capture locality and cluster information in the formed edges. Several clustering-oriented variants of
VGAEs [15, 30] have been developed that overcome most of these challenges. GMM-VGAE [15]
partitions the latent space using a Gaussian Mixture Model and assigns a separate prior for each
cluster to better model complex data distributions. Despite the improvement in performance, it’s
inner-product decoder cannot capture locality information.

Modularity Maximization. Various heuristic algorithms have been established that solve the
NP-hard problem of modularity maximization including sampling, simulated annealing [12, 13], and
greedy algorithms (Louvain/Leiden) [4, 31]. These algorithms require intensive compute and don’t
use node features. Modularity maximization using GNNs has also garnered attention recently. DMoN
[39] optimizes only for modularity with a collapse regularization to prevent the trivial solution, but
offers no theoretical guarantees about convergence. Modularity-Aware GAEs and VGAEs [37] use a
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prior membership matrix using Louvain algorithm and optimize for modularity using an RBF kernel
as a proxy for same-community assignment. DGCLUSTER [1] is a semi-supervised method that
makes use of either a subset of labels or pairwise memberships as Auxiliary Information coupled
with modularity.

Appendix B. Spectral Properties of the Modularity Matrix

B is symmetric and is defined such that its row-sums and column-sums are zero, thereby making
1 one of its eigenvectors and 0 the corresponding eigenvalue. These spectral properties of the
modularity matrix are also observed in the Laplacian, as noted in Newman [32], which is a crucial
element in spectral clustering. Modularity is maximized when uT1 s is maximized, where u are
the eigenvectors of B and s is the community assignment vector, i.e., placing the majority of the
summation in Q on the first (and largest) eigenvalue of B.

Appendix C. Convexity of terms in the optimization objective (3)

When XC is kept constant, LMAGC gets reduced to:

min
C

f(C) = tr(XT
CC

TΘCXC)+
α

2
∥CXC −X∥2F −

β

2e
tr(CTBC) (8)

− γ log det(CTΘC + J) +
λ

2

∥∥CT
∥∥2
1,2

subject to C ∈ Sc(2.1) where, J =
1

k
1k×k

(9)

The term tr(XT
CC

TΘCXC) is convex function in C. This result can be derived easily using Cholesky
Decomposition on the positive semi-definite matrix Θ (i.e. Θ = LTL):

tr(XT
CC

TΘCXC) = tr(XT
CC

TLTLCXC) = tr((LCXC)
TLCXC) = ∥LCXC∥2F (10)

Frobenius norm is a convex function, and the simplified expression is linear in C. Hence we can
deduce that the tr(.) term is convex in C. The terms ∥CXC −X∥2F and

∥∥CT
∥∥2
1,2

are convex because
Frobenius norm and l1,2 norm are convex in C.

For proving the convexity of − log det(CTΘC + J) we restrict function to a line. We define a
function g:

g(t) = f(z + tu)where, t ∈ dom(g), z ∈ dom(f), u ∈ Rn. (11)

A function f : Rn → R is convex if g : R→ R is convex.
The graph Laplacian matrix of the coarsened graph (Θc) is symmetric and positive semi-definite

having a rank of k-1. To convert Θc to positive definite matrix, we add a rank 1 matrix J = 1
k1k×k.

(Θc + J = LTL)

f(L) = − log det(CTΘC + J) = − log det(LTL) (12)

13
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Now substituting L = Z + tU in the above equation.

g(t) = − log det((Z + tU)T (Z + tU)) (13)

= − log det(ZTZ + t(ZTU + UTZ)t2UTU) (14)

= − log det(ZT (I + t(UZ−1 + (UZ−1)
T
) + t2(Z−1)

T
UTUZ−1)Z)

(15)

substituting P = V Z−1 (16)

= −(log det(ZTZ) + log det(I + t(P + P T ) + t2P TP )) (17)

Eigenvalue decomposition ofP = QΛQT andQQT = I (18)

= −(log det(ZTZ) + log det(QQT + 2tQΛQT + t2QΛ2QT ))
(19)

= −(log det(ZTZ) + log det(Q(I + 2tΛ + t2Λ2)QT )) (20)

= − log det(ZTZ)−
n∑

i=1

log(1 + 2tλi + t2λ2) (21)

Finding double derivative of g(t):

g”(t) =
n∑

i=1

2λ2
i (1 + tλi)

2

(1 + 2tλi + t2λ2
i )

2
(22)

Since g”(t) ≥ 0∀ t ∈ R, g(t) is a convex function in t. This implies f(L) is convex in L. We know
that, CTΘC + J = LTL so,

L = Θ
1
2C +

1√
kp

1p×k (23)

Since L is linear in C and f(L) is convex in L, − log det(CTΘC + J) is convex in C.

Appendix D. Optimal Solution of Optimization Objective in Equation (4)

We first show that the function f(C) is L − Lipschitz continuous gradient function with L =
max(L1, L2, L3, L4, L5), where L1, L2, L3, L4, andL5 are the Lipschitz constants of tr(XT

CC
TΘCXC),

α
2 ∥CXC −X∥2F , − β

2e tr(CTBC), −γ log det(CTΘC + J), and λ
2

∥∥CT
∥∥2
1,2

.
For the tr(XT

CC
TΘCXC) term, we apply triangle inequality and employ the property of the

norm of the trace operator: ||tr|| = sup
M ̸=0

|tr(M)|
||M ||F .

14
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|tr(XT
CC

T
1 ΘC1XC)− tr(XT

CC
T
2 ΘC2XC)| (24)

= |tr(XT
CC

T
1 ΘC1XC)− tr(XT

CC
T
2 ΘC1XC) + tr(XT

CC
T
2 ΘC1XC)− tr(XT

CC
T
2 ΘC2XC)|

(25)

≤ |tr(XT
CC

T
1 ΘC1XC)− tr(XT

CC
T
2 ΘC1XC)|+ |tr(XT

CC
T
2 ΘC1XC)− tr(XT

CC
T
2 ΘC2XC)|

(26)

≤ ||tr||||XT
C (C1 − C2)

TΘC1XC ||F + ||tr||||XT
CC

T
2 Θ(C1 − C2)XC ||F (27)

≤ ||tr||||XC ||F ||Θ||||C1 − C2||F (||C1||F + ||C2||F ) (Frobenius Norm Property) (28)

≤ 2
√
p||tr||||XC ||F ||Θ||||C1 − C2||F (||C1||F = ||C2||F =

√
p) (29)

≤ L1||C1 − C2||F (30)

The second term is α
2 ∥CXC −X∥2F can be written as:

α

2
tr((CXC −X)T (CXC −X)) (31)

=
α

2
tr(XT

CC
TCXC −XTCXC +XTX −XT

CC
TX) (32)

=
α

2
(tr(XT

CC
TCXC)− tr(XTCXC) + tr(XTX)− tr(XT

CC
TX)) (33)

All the terms except tr(XTX) (constant with respect to C) in obtained in the expression will follow
similar proofs to tr(XT

CC
TΘCXC).

Next we consider the modularity term:

|tr(CT
1 BC1)− tr(CT

2 BC2)| (34)

= |tr(CT
1 BC1)− tr(CT

2 BC1) + tr(CT
2 BC1)− tr(CT

2 BC2)| (35)

≤ |tr(CT
1 BC1)− tr(CT

2 BC1)|+ |tr(CT
2 BC1)− tr(CT

2 BC2)| (36)

≤ ||tr||||(C1 − C2)
TBC1||F + ||tr||||(C1 − C2)

TBC2||F (37)

≤ ||tr||||B||||C1 − C2||F (||C1||F + ||C2||F ) (Frobenius Norm Property) (38)

≤ L3||C1 − C2||F (39)

The Lipschitz constant for −γ log det(CTΘC + J) is linked to the smallest non-zero eigenvalue
of the coarsened Laplacian matrix (Θc) and is bounded by δ

(k−1)2
[36], where δ is the minimum

non-zero weight of Gc.
tr(1TCTC1) can be proved to be L5 − Lipschitz like the modularity and Dirichlet energy

(smoothness) terms. This concludes the proof.
The majorized problem for L-Lipschitz and differentiable functions can now be applied. The

Lagrangian of the majorized problem, (3) is:

L(C,XC , µ) =
1

2
CTC − CTA− µT

1 C + µT
2

[ ∥∥CT
1

∥∥2
2
− 1, · · · ,

∥∥CT
i

∥∥2
2
− 1, · · · ,

∥∥CT
p

∥∥2
2
− 1
]T
(40)
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where µ = µ1||µ2 are the dual variables and A =
(
C − 1

L∇f(C)
)+

The corresponding KKT conditions (w.r.t C) are:

C −A− µ1 + 2[µ2oC
T
0 , · · · , µ2iC

T
i , · · · , µ2pC

T
p ] = 0 (41)

µT
2

[ ∥∥CT
1

∥∥2
2
− 1, · · · ,

∥∥CT
i

∥∥2
2
− 1, · · · ,

∥∥CT
p

∥∥2
2
− 1,

]T
= 0 (42)

µT
1 C = 0 (43)

µ1 ≥ 0 (44)

µ2 ≥ 0C ≥ 0 (45)∥∥[CT ]i
∥∥2
2
≤ 1 ∀i (46)

The optimal solution to these KKT conditions is:

C =
(A)+∑
i ∥[AT ]i∥2

(47)

Appendix E. Proof of Theorem 1 (Convergence)

In this section, we prove that the sequence {Ct+1, Xt+1
C } generated by Algorithm 1 converges to the

set of Karush–Kuhn–Tucker (KKT) optimality points for Problem (3).
The Lagrangian of Problem (3) comes out to be:

L(C,XC , µ) = tr(XT
CC

TΘCXC) +
α

2
∥CXC −X∥2F −

β

2e
tr(CTBC) (48)

− γ log det(CTΘC + J) +
λ

2

∥∥CT
∥∥2
1,2
− µT

1 C +
∑
i

µ2i

[ ∥∥CT
i

∥∥2
2
− 1
]

(49)

where µ = µ1||µ2 are the dual variables.
w.r.t. C, the KKT conditions are

2ΘCXCX
T
C + α(CXC −X)XT

C −
β

e
BC − 2γΘC(CTΘC + J)−1 (50)

+λC1k×k − µ1 + 2[µ2oC
T
0 , · · · , µ2iC

T
i , · · · , µ2pC

T
p ] = 0

µT
2

[ ∥∥CT
1

∥∥2
2
− 1, · · · ,

∥∥CT
i

∥∥2
2
− 1, · · · ,

∥∥CT
p

∥∥2
2
− 1
]T

= 0 (51)

µT
1 C = 0 (52)

µ1 ≥ 0 (53)

µ2 ≥ 0 (54)

C ≥ 0 (55)∥∥[CT ]i
∥∥2
2
≤ 1 ∀i (56)

Now, C∞ ≡ lim
t→∞

Ct is found from (5) as:
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C∞ = C∞ +
1

L

(
2ΘC∞X∞

C X∞
C + α(C∞XC −X)X∞

C −
β

e
BC∞ (57)

− 2γΘC∞(C∞TΘC∞ + J)−1 + λC∞1k×k

)

0 = 2ΘC∞X∞
C X∞

C + α(C∞XC −X)X∞
C −

β

e
BC∞ (58)

− 2γΘC∞(C∞TΘC∞ + J)−1 + λC∞1k×k

So, for µ = 0, C∞ satisfies the KKT conditions.
w.r.t. XC , the KKT conditions are:

2CTΘCXC + αCT (CXC −X) = 0 (59)

So, X∞ ≡ lim
t→∞

Xt found from (7) will satisfy this as that equation is just a rearrangement of the
KKT condition.

Appendix F. Proof (continued) of Theorem 3 (conditions for consistency)

As previously defined in Theorem 3 O = CTAC and

1

µp
E[O|C, t] = H(S)

We need to find "population version" of the loss function in terms of H(S).

E[O|C, t] = E[CTAC|C, t] = µpH(S) (60)

E[CTDC|C, t] = E[CT diag(
k∑

j=1

Aij)C|C, t] = E[diag(
k∑

j=1

Oij)|C, t] (61)

= µpdiag(
k∑

j=1

Hij) (62)

So, for tr(XT
CC

TΘCXC)

E[tr(XT
CC

TΘCXC)|C, t] = tr(E[XT
CC

TΘCXC |C, t])
= tr(XT

CE[CTΘC|C, t]XC) = tr(XT
CE[CTDC − CTAC|C, t]XC)

= tr(XT
C [µpdiag(

k∑
j=1

Hij) − µpH(S)]XC)

= µptr(XT
C [diag(

k∑
j=1

Hij) −H(S)]XC) (63)
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Next, we have 1
2e tr(CTBC), which has already been solved in the paper [45] in their Appendix

(Page 25 of the full document).

1

2e
E[tr(CTBC)] =

∑
k

(
Hkk

P̃0

−
(
Hk

P̃0

)2)
For log det(CTΘC + J), where J = 1

k⊮k×k,
We can write log(det(CTΘC + J)) = tr(log(CTΘC + J)) since, det(A) = etr(log(A)).

Z = CTΘC + J = V ΛV −1 (64)

So, (65)

tr(log(V ΛV −1)) = tr(V log(Λ)V −1) (66)

log Λ = log(bI) + log

(
I +

Λ

b
− I

)
(67)

Using the first-order Taylor expansion of log(I +X) = X , we need to choose b such that

l =

∥∥∥∥Λb − I

∥∥∥∥
F

< 1 (68)

And for the expansion to be a good approximation, we need l→ 0. We will enforce this later in (78).

tr(V
(
log(bI) + log

(
I +

Λ

b
− I

))
V −1) (69)

= tr(V
(
log(bI) +

(
I +

Λ

b
− I

))
V −1) (70)

= tr(V log(bI)V −1) +
1

b
tr(V ΛV −1)− tr(I) (71)

= tr(log(bI)) +
1

b
tr(Z)− tr(I) (72)

= k log(b) +
1

b
tr(Z)− k (73)

Finding the expectation of from (67),

= k log(b) + E
[
1

b
tr(Z)

∣∣∣∣ c, t]− k (74)

= k log(b) +
1

b
tr(E[Z| c, t])− k (75)

= k log(b) +
1

b
tr(E[CTΘC + J | c, t])− k (76)

Using Θ = D −A, (60) and (62),

= k log(b) +
1

b
tr
(
µpdiag(

k∑
j=1

Hij)− µpH(S)

)
− k (77)
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which is a linear function in H(S).
For the approximation to be good, we can now simplify l as defined in (68):

l =

∥∥∥∥Λb − I

∥∥∥∥
F

(78)

l =

∥∥∥∥∥∥∥∥∥
1
bΛ11 − 1 1

bΛ12 · · · 1
bΛ1k

1
bΛ21

1
bΛ22 − 1 · · · 1

bΛ2k
...

...
. . .

...
1
bΛk1

1
bΛk2 · · · 1

bΛkk − 1

∥∥∥∥∥∥∥∥∥
F

(79)

Writing out this norm, we get a quadratic expression in 1
b :

l = (
k∑

i=1

k∑
j=1

λ2
ij)

1

b2
− 2(

k∑
u=1

λii)
1

b
+ k (80)

or concisely, l = ∥Λ∥2F
1

b2
− 2tr(Λ)

1

b
+ k (81)

Since, Λ is a diagonal matrix, (82)

tr(Λ) =
∑
i

λi = tr(Z) (83)

Also, since Λ2 is the eigenvalue matrix for Z2, (84)

∥Λ∥2F =
∑
i

λ2
i = tr(Z2) (85)

l = tr(Z2)
1

b2
− 2tr(Z)

1

b
+ k (86)

Since, l < 1 =⇒ l − 1 < 0 =⇒ l − 1 = 0 has 2 real roots. Using simple quadratic analysis
(in 1

b ), the discriminant ∆ should be positive.

∆ = 4tr(Z)2 − 4(k − 1)tr(Z2) > 0 (87)

tr(Z)2

tr(Z2)
> k − 1 (88)

The minimum value of l := lmin occurs at (89)

b =
tr(Z2)

tr(Z)
= tr(Z) · tr(Z2)

tr(Z)2
(90)

lmin < 1 will exist when
tr(Z)2

tr(Z2)
> k − 1 (91)

which holds for b <
tr(Z)

k − 1
(92)

So we can always choose b <
2k − 1

k − 1
(93)

since min tr(Z) = 2k − 1[proved in 95] (94)
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min tr(CTΘC + J) = min tr(CTΘC) + tr(J) (95)

= min tr(CTDC)− tr(CTAC) + 1 (96)

= 2e− 2(e− (k − 1)) + 1 (97)

= 2k − 1 (98)

Additionally, define π̃a =
∑

u xuΠau with
∑

a π̃a = 1, since E[ti] = 1.

F.1. Required Condition a): Lipschitz Continuity

Condition 1: We need to show that |F (S1)− F (S2)| ≤ α∥S1 − S2∥ (Lipschitz)

|F (S1)− F (S2)| ≤ |f1(S1)− f1(S2)|+ |f2(S1)− f2(S2)|+ |f3(S1)− f3(S2)| (99)

Let’s first find ∥H(S1)−H(S2)∥F

H(S) = (Sx)P (Sx)T (100)

∥H(S1)−H(S2)∥F = ∥(S1x)P (S1x)
T − (S2x)P (S2x)

T ∥F (101)

= ∥(S1x)P ((S1 − S2)x)
T + ((S1 − S2)x)P (S2x)

T ∥F (102)

Next, we see ∥diag(
∑k

j=1H(S1)ij) − diag(
∑k

j=1H(S2)ij)∥F = ∥diag(
∑k

j=1(H(S1)ij −
H(S2)ij))∥F

For the first term, |f1(H(S1))− f1(H(S2))|, define H(S)i =
∑k

j=1H(S)ij

= |µptr(XT
C [H(S1)− diag(

k∑
j=1

H(S1)ij)]XC)− µptr(XT
C [H(S2)− diag(

k∑
j=1

H(S2)ij)]XC)|

(103)

= |µp

(
tr(XT

C [H(S1)−H(S2)]XC)− tr(XT
Cdiag([H(S1)i −H(S2)i])XC)

)
| (104)

≤ |µp|
(∣∣∣∣tr(XT

C [H(S1)−H(S2)]XC)

∣∣∣∣− ∣∣∣∣tr(XT
Cdiag([H(S1)i −H(S2)i])XC)

∣∣∣∣) (105)

≤ |µp|
(
∥tr∥

∥∥∥∥XT
C [H(S1)−H(S2)]XC

∥∥∥∥
F

− ∥tr∥
∥∥∥∥XT

Cdiag([H(S1)i −H(S2)i])XC

∥∥∥∥
F

)
(106)

≤ |µp|
(
∥tr∥∥XC∥2

∥∥∥∥H(S1)−H(S2)

∥∥∥∥
F

− ∥tr∥∥XC∥2
∥∥∥∥diag([H(S1)i −H(S2)i])

∥∥∥∥
F

)
(107)

Taking the first sub-term,
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|µp| ∥tr∥ ∥XC∥2
∥∥∥∥H(S1)−H(S2)

∥∥∥∥
F

(108)

= ∥tr∥ ∥XC∥2
∥∥∥∥(S1x)P ((S1 − S2)x)

T + ((S1 − S2)x)P (S2x)
T

∥∥∥∥
F

(109)

≤ ∥tr∥ ∥XC∥2 ∥P∥F (∥S1x∥F + ∥S2x∥F ) ∥(S1 − S2)x∥F (110)

≤ ∥tr∥ ∥XC∥2 ∥P∥F (∥S1x∥F + ∥S2x∥F ) ∥t∥F ∥(S1 − S2)∥F (111)

= α1∥(S1 − S2)∥F (112)

For the second sub-term, define S̃ka =
∑

u xuSkau = (Sx)ka

H(S)i =
k∑

j=1

H(S)ij =
∑
as

π̃sPasS̃ia =
∑
asu

π̃sPasxuSiau (113)

|H(S1)i −H(S2)i| = |
∑
asu

π̃sPasxuS1iau −
∑
asu

π̃sPasxuS2iau| (114)

= |
∑
asu

π̃sPasxu(S1 − S2)iau| (115)

≤
∑
asu

|π̃sPasxu(S1 − S2)iau| (116)

≤
∑
asu

|π̃sPasxu| · |(S1 − S2)iau| (117)

≤
∑
asu

|π̃sPasxu| ·
∑
au

|(S1 − S2)iau| (118)

= α′
1

∑
au

|(S1 − S2)iau| (119)

So, ∥diag([H(S1)i −H(S2)i])∥F =

√√√√ k∑
i=1

( k∑
j=1

H(S1)ij −H(S2)ij

)2

(120)

≤

√√√√ k∑
i=1

(
α′
1

∑
au

|(S1 − S2)iau|
)2

(121)

= α′
1∥S1 − S2∥1,1,2 (122)

For the second term, |f2(H(S1))− f2(H(S2))|
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=
µp

b

∣∣∣∣tr(H(S1)− diag([H(S1)i]))− tr(H(S2)− diag([H(S2)i]))

∣∣∣∣ (123)

=
µp

b

∣∣∣∣tr(H(S1)−H(S2)) − tr
(

diag([H(S1)i −H(S2)i])

)∣∣∣∣ (124)

≤ µp

b

(∣∣∣∣tr(H(S1)−H(S2))

∣∣∣∣ +

∣∣∣∣tr(diag([H(S1)i −H(S2)i])

)∣∣∣∣) (125)

≤ µp

b

(
∥tr∥

∥∥∥∥H(S1)−H(S2)

∥∥∥∥
F

+ ∥tr∥
∥∥∥∥diag([H(S1)i −H(S2)i])

∥∥∥∥
F

∣∣∣∣) (126)

As shown above, (127)

≤ α2∥(S1 − S2)∥F + α′
2∥(S1 − S2)∥1,1,2 (128)

For the third term, it has already been proven in [45], but we also prove it here:
|f3(H(S1))− f3(H(S2))|

=

∣∣∣∣ tr(H(S1))

P̃0

−
∑k

i=1(
∑k

j=1H(S1)ij)
2

P̃0
2 − tr(H(S2))

P̃0

+

∑k
i=1(

∑k
j=1H(S2)ij)

2

P̃0
2

∣∣∣∣ (129)

=

∣∣∣∣ tr(H(S1)−H(S2))

P̃0

−
∑k

i=1

[
H(S1)

2
i −H(S2)

2
i

]
P̃0

2

∣∣∣∣ (130)

≤ 1

P̃0

∣∣∣∣tr(H(S1)−H(S2))

∣∣∣∣+ 1

P̃0
2

∣∣∣∣ k∑
i=1

[
H(S1)

2
i −H(S2)

2
i

]∣∣∣∣ (131)

As shown above, (132)

≤ α3∥(S1 − S2)∥F +
1

P̃0
2

∣∣∣∣ k∑
i=1

[
H(S1)i −H(S2)i

]
·
[
H(S1)i +H(S2)i

]∣∣∣∣ (133)

≤ α3∥(S1 − S2)∥F +
1

P̃0
2

k∑
i=1

∣∣H(S1)i +H(S2)i
∣∣ · k∑

i=1

∣∣H(S1)i −H(S2)i
∣∣ (134)

= α3∥(S1 − S2)∥F + α′
3

∑
iau

∣∣S1 − S2

∣∣
iau

(135)

= α3∥(S1 − S2)∥F + α′
3∥S1 − S2∥1,1,1 (136)

F.2. Required Condition b): Continuity of directional second derivative

Condition 2: W = H(D)

∂2

∂ε2
F (M0 + ε(M1 −M0), t0 + ε(t1 − t0))

∣∣∣∣
ε=0+

(137)

=
∂2

∂ε2
f1(M0 + ε(M1 −M0)) +

∂2

∂ε2
f2(M0 + ε(M1 −M0)) +

∂2

∂ε2
f3(M0 + ε(M1 −M0))

∣∣∣∣
ε=0+

(138)
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Finding the directional derivative for f1,

f1(M0 + ε(M1 −M0)) = µptr(XT
C [M0 + ε(M1 −M0)− diag(

k∑
j=1

(
M0 + ε(M1 −M0)

)
ij
)]XC)

(139)

= µp

(
tr(XT

CM0XC) + ε tr(XT
C (M1 −M0)XC) (140)

− tr(XT
Cdiag([

k∑
j=1

(M0)ij ])XC)− ε tr(XT
Cdiag([

k∑
j=1

(M1 −M0)ij ])XC)

)
(141)

∂2

∂ε
f1(M0 + ε(M1 −M0)) = µp

(
tr(XT

C (M1 −M0)XC)− tr(XT
Cdiag([

k∑
j=1

(M1 −M0)ij ])XC)

)
(142)

∂2

∂ϵ2
f1(M0 + ε(M1 −M0) = 0 (143)

Finding the directional derivative for f2,

f2(M0 + ε(M1 −M0)) (144)

=
µp

b
tr
(
M0 + ε(M1 −M0)− diag(

k∑
j=1

(
M0 + ε(M1 −M0)

)
ij
)

)
− 1

b
+ k − k log b (145)

∂

∂ε
f2(M0 + ε(M1 −M0)) =

µp

b
tr(M1 −M0)−

µp

b
tr
(

diag(
k∑

j=1

(M1 −M0)ij)

)
(146)

∂2

∂ε2
f2(M0 + ε(M1 −M0)) = 0 (147)

Finding the directional derivative for f3,

f3(M0 + ε(M1 −M0)) =
tr(M0 + ε(M1 −M0))

P̃0

−
∑k

i=1(
∑k

j=1(M0 + ε(M1 −M0))ij)
2

P̃0
2

(148)

=
tr(M0 + ε(M1 −M0))

P̃0

−
∑k

i=1(
∑

asu π̃sPasxu(M0 + ε(M1 −M0))iau)
2

P̃0
2

(149)
∂

∂ε
f3(M0 + ε(M1 −M0)) =

tr(M1 −M0)

P̃0

+
k∑

i=1

2(
∑
asu

π̃sPasxu(M1 −M0)iau)×
∑k

i=1(
∑

asu π̃sPasxu(M0 + ε(M1 −M0))iau)
2

P̃0
2

(150)

∂2

∂ε2
f3(M0 + ε(M1 −M0)) =

∑k
i=1 2(

∑
asu π̃sPasxu(M1 −M0)iau)

2

P̃0
2 (151)
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Adding up these three,

∂2

∂ε2
F (M0 + ε(M1 −M0), t0 + ε(t1 − t0)) =

∑k
i=1 2(

∑
asu π̃sPasxu(M1 −M0)iau)

2

P̃0
2

which is continuous in (M1, t1) for all (M0, t0) in a neighborhood of (W,π).

F.3. Required Condition c): Upper bound of first derivative

With G(S) = F (H(S), h(S)), ∂G((1−ε)D+εS)
∂ε |ε=0+ < −C < 0 ∀ π, P

G(S) = f1(H(S)) + f2(H(S)) + f3(H(S))
Let S̄ = ((S − D)t)P (Dt)T + (Dt)P (S − Dt)T
For f1

f1(H((1− ε)D+ εS)) = µptr(XT
C [H((1− ε)D+ εS)− diag(

k∑
j=1

H((1− ε)D+ εS)ij)]XC)

(152)

H(S) = (Sx)P (Sx)T (153)

H((1− ε)D+ εS) = ((1− ε)Dx+ εSt)P ((1− ε)Dx+ εSt)T (154)

= (Dx+ ε(S − D)x)P (Dx+ ε(S − D)x)T (155)

= (Dx)P (Dx)T + ε(Dx)P ((S − D)x)T (156)

+ ε((S − D)x)P (Dx)T + ε2((S − D)x)P ((S − D)x)T (157)

Finally, f1((1− ε)D+ εS) = tr
(
XT

C (Dx)P (Dx)TXC

)
+ ε tr

(
XT

C (Dx)P ((S − D)x)TXC

)
(158)

+ ε tr
(
XT

C ((S − D)x)P (Dx)TXC

)
+ ε2 tr

(
XT

C ((S − D)x)P ((S − D)x)TXC

)
(159)

+ tr
(
XT

Cdiag([H(D)i])XC

)
+ ε2 tr

(
XT

Cdiag([H(S − D)i])XC

)
(160)

+ ε tr
(
XT

Cdiag([
(
((S − D)x)P (Dx)T + (Dx)P (S − Dx)T

)
i
])XC

)
(161)

Now,
∂f1
∂ε

∣∣∣∣
ε=0+

= tr
(
XT

C (S̄ − diag([S̄i]))XC

)
(162)

For f2,

f2(H((1− ε)D+ εS)) =
µp

b
tr
(
H((1− ε)D+ εS)− diag([H((1− ε)D+ εS)i])

)
− 1

b
+ k − k log b

(163)

∂f2
∂ε

∣∣∣∣
ε=0+

=
µp

b
tr
(
S̄ − diag([S̄i])

)
(164)
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For f3,

f3(H((1− ε)D+ εS)) =
1

P̃0

tr
(
(Dx)P (Dx)T + ε(Dx)P ((S − D)x)T (165)

+ ε((S − D)x)P (Dx)T + ε2((S − D)x)P ((S − D)x)T
)
(166)

− 1

P̃ 2
0

k∑
i=1

k∑
j=1

([
(Dx)P (Dx)T + ε(Dx)P ((S − D)x)T (167)

+ ε((S − D)x)P (Dx)T + ε2((S − D)x)P ((S − D)x)
]
ij

)2

(168)

∂f3
∂ε

∣∣∣∣
ε=0+

=
1

P̃0

tr
(
S̄

)
− 2

P̃0

k∑
i=1

( k∑
j=1

[
(Dx)P (Dx)T

]
ij

×
k∑

j=1

[S̄]ij

)2

(169)

From here, the proof is followed as in Appendix of Zhao et al. [45] (in Proof of Theorem 3.1) which
also borrows from Bickel and Chen [3].

Appendix G. Complexities of some graph clustering methods

The worst-case time complexity of a loop (i.e. one epoch) in Algorithm 1 is O(p2k + pkn) because
of the matrix multiplication in the update rule of C (5). Here, k is the number of clusters and n is the
feature dimension. Note that k is much smaller than both p and n. This makes our method much
faster than previous optimization based methods and faster than GCN-based clustering methods
which have complexities around O(p2n+ pn2).

Some GCN-based clustering methods:

• AGC[43] - O(p2nt+ ent2)
where t is the number of iterations (within an epoch)

• R-VGAE[30] - O(pk2n+ (p(n+ k) + e(p+ k))
• S3GC[8] - O(pn2s)

where s is the average degree
• HSAN[25] - O(pBn)

they state it as O(B2d) but that is only for 1 batch of size B and not the whole epoch
• VGAECD-OPT[6] - O(p2nDL)

where D is the size of graph filter, l is the number of linear layers

Appendix H. Integration with GNNs: extended

We iteratively learn the matrix C using gradient descent. From (2.1), we update XC using the relation
XC = C†X . It is important to note that the loss term CXC −X will not necessarily be zero. This
arises because we use a "soft" version of C (Ci,j is the probability ∈ [0, 1]) in the loss function to
enable gradient flow, while a "hard" version of C (Ci,j is the binary assignment ∈ {0, 1}) is used
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in the update step. This method ensures that C naturally becomes harder and exhibits a higher
prediction probability.

Q-GCN. We integrate our loss function (LMAGC , as defined in (3)) into a simple three-layer
Graph Convolutional Network (GCN) model. The soft cluster assignments C are learned as the
output of the final GCN layer. The detailed architecture and loss function are illustrated in Figure 1.

Q-VGAE.
In a VGAE, the encoder learns mean (µ) and variance (σ): µ = GCNµ(X,A)and log σ =

GCNσ(X,A) By using the reparameterization trick, we get the distribution of the latent space
as: q(Z|X,A) =

∏N
i=1 q(zi|X,A) =

∏N
i=1N (zi|µi, diag(σ2

i )) A common choice for decoder
is inner-product of the latent space with itself which giving us the reconstructed Â. p(Â|Z) =∏p

i=1

∏p
j=1 p(Âij |zi, zj), with p(Âij = 1|zi, zj) = sigmoid(zTi zj) The VGAE loss can be written

as LV GAE = λrecon Eq(Z|X,A)[log p(Â|Z)]︸ ︷︷ ︸
Reconstruction Error

−λkl KL[q(Z|X,A) || p(Z)]︸ ︷︷ ︸
Kullback-Leibler divergence

where, Z represents the latent space of the VGAE, Â is the reconstructed adjacency matrix, and
λrecon and λkl are hyperparameters. We add a GCN layer on top of this architecture, which takes Z
as input and predicts C.

For the VGAE, we minimize the sum of three losses: the reconstruction loss, the KL-divergence
loss, and our loss. This combined loss function is expressed as: LQ−V GAE = LMAGC + LV GAE

Q-GMM-VGAE. This variant of VGAE incorporates a Gaussian Mixture Model (GMM) in the
latent space to better capture data distributions. This approach is effective because it minimizes the
evidence lower bound (ELBO) or variational lower bound [15, 17, 18] using multiple priors, rather
than a single Gaussian prior as in standard VGAE. Hui et al. [15] use a number of priors equal to the
number of clusters.

Appendix I. Dataset Summaries and Metrics

Name p (|V|) n (|Xi|) e (|E|) k (y)

Cora 2708 1433 5278 7
CiteSeer 3327 3703 4614 6
PubMed 19717 500 44325 3

Coauthor CS 18333 6805 163788 15
Coauthor Physics 34493 8415 495924 5

Amazon Photo 7650 745 238162 8
Amazon PC 13752 767 491722 10
ogbn-arxiv 169343 128 1166243 40

Brazil 131 0 1074 4
Europe 399 0 5995 4
USA 1190 0 13599 4

Table 2: Datasets summary.

Refer to Table 2 for the dataset summary.

I.1. Metrics.

A pair of nodes are said to be in agree-
ment if they belong to the same class and
are assigned to the same cluster, or they be-
long to different classes and have been as-
signed different clusters. For a particular
partitioning, ARI is the fraction of agree-
able nodes in the graph. Accuracy is ob-
tained by performing a maximum weight bi-
partite matching between clusters and labels.
NMI measures the normalized similarity be-
tween the clusters and the labels, and is ro-
bust to class imbalances. Mutual Informa-
tion between two labellings X and Y of
the same data is defined as MI(X,Y ) =∑|X|

i=1

∑|Y |
j=1

|Xi∩Yi|
N log N |Xi∩Yi|

|Xi||Yi| and it is scaled between 0 to 1.
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I.2. Training Details

All experiments were run on an NVIDIA A100 GPU and Intel Xeon 2680 CPUs. We are usually
running 4-16 experiments together to utilize resources (for example, in 40GB GPU memory, we can
run 8 experiments on PubMed simultaneously). Again, the memory costs are more than dominated by
the dataset. All experiments used the same environment running CentOS 7, Python 3.9.12, PyTorch
2.0, PyTorch Geometric 2.2.0.

Appendix J. Results on non-attributed graphs and very large graphs

The results for non-attributed graphs are presented in Table 3 for large datasets are presented in
Table 4.

Brazil Europe USA

Method ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑

GAE [NeurIPS’16] 62.6 37.8 30.8 47.6 19.9 12.7 43.9 13.6 11.8
DGI [ICLR’19] 64.9 31.0 30.4 48.6 16.1 12.3 52.2 22.9 21.7
GIC [PAKDD’21] 40.5 23.5 14.1 40.4 9.4 6.2 49.7 22.1 19.9
DAEGC [AAAI’19] 71.0 47.4 41.2 53.6 30.9 23.3 46.4 27.2 18.4
Q-GCN (Ours) 51.1 31.9 23.7 45.5 30.8 25.1 43.8 19.1 14.8

VGAE [NeurIPS’16] 64.1 38.0 30.7 49.9 23.5 16.7 45.8 23.1 15.7
Q-VGAE (Ours) 50.1 35.0 19.8 46.6 19.5 17.5 46.2 19.5 16.9

GMM-VGAE [AAAI’20] 70.2 46.0 41.9 53.1 31.1 24.4 48.1 21.9 13.2
R-GMM-VGAE [IEEE TKDE’22] 73.3 45.6 42.5 57.4 31.4 25.8 50.8 23.1 15.3
Q-GMM-VGAE (Ours) 68.4 46.0 42.4 47.9 32.2 23.5 46.6 23.1 13.1

Table 3: Comparison of all methods on non-attributed datasets using degree.

CoauthorCS CoauthorPhysics AmazonPhoto AmazonPC ogbn-arxiv

Method ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑

FGC 69.6 70.4 61.5 69.9 60.9 49.5 44.9 38.3 22.5 46.8 36.2 23.3 24.1 8.5 9.1
Q-MAGC (Ours) 70.2 76.4 60.2 75.3 67.2 66.1 70.4 66.6 58.6 62.4 51 31.1 35.8 24.4 15.6
Q-GCN (Ours) 85.4 79.6 79.7 85.2 72 81.6 66.3 57.6 48.3 56.7 42.4 28.8 34.4 27.1 19.7
Q-VGAE (Ours) 85.6 79.9 81.6 86.7 69 77.7 69.0 59.4 49.0 62.3 45.7 47.2 39.5 30.4 24.7
Q-GMM-VGAE (Ours) 70.1 72.5 61.6 83.1 71.5 76.9 76.8 67.1 58.3 55.5 56.4 40 OOM OOM OOM
DMoN 68.8 69.1 57.5 45.4 56.7 50.3 61.0 63.3 55.4 45.4 49.3 47.0 25.0 35.6 12.7

Table 4: Comparison of methods on large attributed datasets.

Appendix K. Ablation Studies

Comparison of running times In Figure 2(a)subfigure, we compare the running times of our method
with other baselines. Our method consistently takes less than half the time across all datasets.
Notably, on PubMed (large dataset), state-of-the-art methods GMM-VGAE and R-GMM-VGAE
(unmodified) require approximately 60 minutes for clustering, whereas our Q-GMM-VGAE delivers
superior performance in under 15 minutes, representing a 75% reduction. Additionally, Q-MAGC
runs even faster, completing in just 6 minutes on PubMed, and achieves approximately 90% of the
performance.
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Modularity Metric Comparison We treat modularity as a metric and measure the gains observed
in modularity over other baselines on the Cora, CiteSeer, and PubMed datasets. We report two
types of graph-based metrics: modularity Q and conductance C, which do not require GT labels.
Conductance measures the fraction of total edge volume pointing outside the cluster, with C being
the average conductance across all clusters, where a lower value is preferred.

From Table 2(b)subfigure, we observe that although DMoN [39] achieves the highest modularity,
our method attains significantly higher NMI. For CiteSeer, we achieve a 40% improvement in NMI
with only an 8% decrease in modularity, positioning us closer to the ground truth. Additionally,
our methods outperform their foundational counterparts, with Q-MAGC outperforming FGC, and
Q-VGAE outperforming VGAE.

Importance of and Evolution of different loss terms
We analyze the evolution of the different loss terms during training, and also try to measure the

impact of each term separately by removing terms from the loss one by one.
Also, we found that ||CXC −X||2F is the most sensitive to change in its weight α, followed by

the terms related to γ, β and then λ. This makes sense because if that constraint(relaxation) is not
being met, then C would have errors.

Even though some of the terms do the heavy lifting, the other regularization terms do contribute
to performance and more importantly, change the nature of C : The smoothness term corresponds to
smoothness of signals in the graph being transferred to the coarsened graph which encourages local
"patches"/groups of C to belong to the same cluster. The term γ ensures that the coarsened graph is
connected - i.e. preserving inter-cluster relations, which simple contrastive methods destroy; this
affects C by making it so that ΘC has minimal multiplicity of 0-eigenvalues.

Each separate series has been normalized by its absolute minimum value to see convergence
behavior on the same graph easily. Every series is decreasing/converging (except gamma, which
represents sparsity regularization and remains almost constant). Thus, we can be assured that no
terms are counteracting and hurting the performance. The legend is provided in the graph itself. This
plot is on the Cora dataset. 3(b)subfigure

Visualization of the latent space
In Figure 4 and Figure 5, we visualize how the latent space of the Q-VGAE and Q-GMM-VGAE

changes over time for various datasets. We use UMAP (Uniform Manifold Approximation and
Projection) [29] for dimensionality reduction.

0

10

20

30

40

50

60 variable
Cora
CiteSeer

Cumulative Impact of different parameters

Active Parameters

N
M
I

(a) Impact of active parameters on clustering perfor-
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Figure 3
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(a) Cora

(b) CiteSeer

(c) PubMed

Figure 4: Plots of evolution of latent space for Q-VGAE and Q-GMM-VGAE methods for Cora,
CiteSeer and PubMed datasets. Colors represent clusters.

Appendix L. Attributed SBM theory and results

We validate the robustness and sensitivity of proposed methods to variance in the node features and
graph structure. We are also generating features using a multivariate mixture generative model such
that the node features of each block are sampled from normal distributions where the centers of
clusters are vertices of a hypercube.

SBM. The Stochastic Block Model (SBM)[33] is a generative model for graphs that incorporates
probabilistic relationships between nodes based on their community assignments. In the basic
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(a) Brazil (Air Traffic)

(b) Europe (Air Traffic)

Figure 5: Plots of evolution of latent space for Q-VGAE and Q-GMM-VGAE methods for Brazil
(Air Traffic) and Europe (Air Traffic) datasets.

SBM, a network with p nodes is divided into k communities or blocks denoted by Ci, where
i = 1, 2, · · · , k. The SBM defines a symmetric block probability matrix B with size (k × k), where
each entry Bij represents the probability of an edge between a node in community Ci and a node
in community Cj . Diagonal entries of this matrix represents the probabilities of intra-cluster edges.
This matrix B captures the intra- and inter-community connections and is assumed to be constant.
P (i↔ j|Ci = a,Cj = b) = Bab denotes the probability of an edge existing between nodes i and j
when node i belongs to community a and node j belongs to community b. Using these probabilities,
the SBM generates a network by independently sampling the presence or absence of an edge for each
pair of nodes based on their community assignments and the block probability matrix B.

Degree Corrected SBM. DC-SBM[16] takes an extra set of parameters θi controlling the
expected degree of vertex i. Now, the probability of an edge between two nodes (using the same
notation as above) becomes θiθjBab. This was introduced to handle the heterogeneity of real-world
graphs.

ADC-SBM Generation. We make use of the graph_tool library to generate the DC-SBM
adjacency matrix, with p = 1000, k = 4. To generate the B matrix, we follow the procedure in [39],
by taking expected degree for each node d = 20 and expected sub-degree dout = 2. This gives us B
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(c) Feature Covariance Ma-
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Figure 6: Visualization of the generated adjacency and feature covariance matrices for the ADC-SBM

as: 
18 2 2 2
2 18 2 2
2 2 18 2
2 2 2 18


Also, θ is generated by sampling a power-law distribution with exponent α = 2. We constrain the
generated vector to dmin = 2 and dmax = 4.

To generate features, we use the make_classification function in the sklearn library.
We generate a 128-dimensional feature vector for each node, with no redundant channels. These
belong to kf groups, where kf might not be equal to k. We test three scenarios: a) matched clusters
(kf = k) b) nested features (kf > k) c) grouped features (kf < k) as visualized in Figure 6. Note
that for better visualization, class_sep was increased to 5 (however, the results are given with a
value of 1, which is a harder problem).

Additionally, we also consider both cases, with and without the coarsening constraint term.
Results. Our objective is able to completely recover the ground truth labels (NMI/ARI/ACC = 1)

under all the specified conditions.
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