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ABSTRACT

Diffusion models, which employ stochastic differential equations to sample im-
ages through integrals, have emerged as a dominant class of generative models.
However, the rationality of the diffusion process itself receives limited attention,
leaving the question of whether the problem is well-posed and well-conditioned.
In this paper, we explore a perplexing tendency of diffusion models: they often
display the infinite Lipschitz property of the network with respect to time vari-
able near the zero point. We provide theoretical proofs to illustrate the presence
of infinite Lipschitz constants and empirical results to confirm it. The Lipschitz
singularities pose a threat to the stability and accuracy during both the training
and inference processes of diffusion models. Therefore, the mitigation of Lips-
chitz singularities holds great potential for enhancing the performance of diffu-
sion models. To address this challenge, we propose a novel approach, dubbed
E-TSDM, which alleviates the Lipschitz singularities of the diffusion model near
the zero point of timesteps. Remarkably, our technique yields a substantial im-
provement in performance. Moreover, as a byproduct of our method, we achieve
a dramatic reduction in the Fréchet Inception Distance of acceleration methods
relying on network Lipschitz, including DDIM and DPM-Solver, by over 33%.
Extensive experiments on diverse datasets validate our theory and method. Our
work may advance the understanding of the general diffusion process, and also
provide insights for the design of diffusion models.

1 INTRODUCTION

The rapid development of diffusion models has been witnessed in image synthesis (Ho et al.,
2020; Song et al., 2020; Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022; Zhang
& Agrawala, 2023; Hoogeboom et al., 2023) in the past few years. Concretely, diffusion models
construct a multi-step process to destroy a signal by gradually adding noises to it. That way, re-
versing the diffusion process (i.e., denoising) at each step naturally admits a sampling capability. In
essence, the sampling process involves solving a reverse-time stochastic differential equation (SDE)
through integrals (Song et al., 2021b).

Although diffusion models have achieved great success in image synthesis, the rationality of the
diffusion process itself has received limited attention, leaving the open question of whether the
problem is well-posed and well-conditioned. In this paper, we surprisingly observe that the noise-
prediction (Ho et al., 2020) and v-prediction (Salimans & Ho, 2022) diffusion models often exhibit
a perplexing tendency to possess infinite Lipschitz of network with respect to time variable near the
zero point. We provide theoretical proofs to illustrate the presence of infinite Lipschitz constants
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Figure 1: (a) Conceptual comparison between DDPM (Ho et al., 2020) (I) and our proposed early
timestep-shared diffusion model (E-TSDM) (II). DDPM trains the network ϵθ(·, t) with varying
timestep conditions t at each denoising step, whereas E-TSDM uniformly divides the near-zero
timestep interval t ∈ [0, t̃) with high Lipschitz constants into n sub-intervals and shares the condi-
tion t within each sub-interval. Here, t̃ denotes the length of the interval for sharing conditions.
When t ≥ t̃, E-TSDM follows the same procedure as DDPM. However, when t < t̃, E-TSDM shares
timestep conditions. (b) Quantitative comparison of the Lipschitz constants between DDPM and
our proposed early timestep-shared diffusion model (E-TSDM). The Lipschitz constants tend to
be extremely large near zero point for DDPM. However, our sharing approach allows E-TSDM to
force the Lipschitz constants in each sub-interval to be zero, thereby reducing the overall Lipschitz
constants in the timestep interval t ∈ [0, t̃), where t̃ is set as a default value 100.

and empirical results to confirm it. Given that noise prediction and v-prediction are widely adopted
by popular diffusion models (Dhariwal & Nichol, 2021; Rombach et al., 2022; Ramesh et al., 2022;
Saharia et al., 2022; Podell et al., 2023), the presence of large Lipschitz constants is a significant
problem for the diffusion model community.

Since we uniformly sample timesteps for both training and inference processes, large Lipschitz con-
stants w.r.t. time variable pose a significant threat to both training and inference processes of diffu-
sion models. When training, large Lipschitz constants near the zero point affect the training of other
parts due to the smooth nature of the network, resulting in instability and inaccuracy. Moreover,
since inference requires a smooth network for integration, the large Lipschitz constants probably
have a substantial impact on accuracy, particularly for faster samplers. Therefore, the mitigation of
Lipschitz singularities holds great potential for enhancing the performance of diffusion models.

Fortunately, there is a simple yet effective alternative solution: by sharing the timestep conditions in
the interval with large Lipschitz constants, the Lipschitz constants can be set to zero. Based on this
idea, we propose a practical approach, which uniformly divides the target interval near the zero point
into n sub-intervals, and uses the same condition values in each sub-interval, as shown in Figure 1
(II). By doing so, this approach can effectively reduce the Lipschitz constants near t = 0 to zero. To
validate this idea, we conduct extensive experiments, including unconditional generation on various
datasets, acceleration of sampling, and super-resolution task. Both qualitative and quantitative re-
sults confirm that our approach substantially alleviates the large Lipschitz constants near zero point
and improves the synthesis performance compared to the DDPM baseline (Ho et al., 2020). We also
compare this simple approach with other potential methods to address the challenge of large Lip-
schitz constants, and find our method outperforms all of these alternative methods. In conclusion,
in this work, we theoretically prove and empirically observe the presence of Lipschitz singularities
issue near the zero point, advancing the understanding of the diffusion process. Besides, we propose
a simple yet effective approach to address this challenge and achieve impressive improvements.

2 RELATED WORK

The significant advancements of diffusion models have been witnessed in recent years in the domain
of image generation. (Karras et al., 2022; Lu et al., 2022b; Dockhorn et al., 2021; Bao et al., 2022b;
Lu et al., 2022a; Bao et al., 2022a; Zhang et al., 2023). It (Sohl-Dickstein et al., 2015; Ho et al.,

2



Published as a conference paper at ICLR 2024

2020; Song et al., 2021b) defines a Markovian forward process {xt}t∈[0,T ] that gradually destroys
the data x0 with Gaussian noise. For any t ∈ [0, T ], the conditional distribution q0t(xt|x0) satisfies

q0t (xt|x0) = N
(
xt|αtx0, σ

2
t I
)
, (1)

where αt and σt are referred to as the noise schedule, satisfying α2
t+σ2

t = 1. Generally, αt decreases
from 1 to 0 as t increases, to ensure that the marginal distribution of xt gradually changes from the
data distribution q0(x0) to Gaussian. Kingma et al. (2021) further prove that the following stochastic
differential equation (SDE) has the same transition distribution q0t(xt|x0) as in Equation (1) for any
t ∈ [0, T ]:

dxt = f (t)xtdt+ g (t) dwt, x0 ∼ q0 (x0) , (2)

where wt is the standard Wiener process, f(t) = d logαt

dt and g(t) = 2σ2
t
d log(σt/αt)

dt .

Song et al. (2021b) point out that the following reverse-time SDE has the same marginal distribution
qt(xt) for any t ∈ [0, T ]:

dxt = [f (t)xt − g (t)
2 ∇xt log qt (xt)]dt+ g (t) dw̄t, xT ∼ qT (xT ) , (3)

where w̄t is a standard Wiener process in the reverse time. Once the score function ∇xt
log qt(xt) is

known, we can simulate Equation (3) for sampling. However, directly learning the score function is
problematic, as it involves an explosion of training loss when having a small σt(Song et al., 2021b).
In practice, the noise prediction model ϵθ(xt, t) is often adopted to estimate −σt∇xt

log qt(xt).
The network ϵθ(xt, t) can be trained by minimizing the objective:

L (θ) := Et∼U(0,T ),x0∼q0(x0),ϵ∼N (0,I)

[
∥ϵθ (αtx0 + σtϵ, t)− ϵ∥22

]
. (4)

In this work, our observation of Lipschitz singularities on noise-prediction and v-prediction diffusion
models reveals the inherent price of such an approach.

Numerical stability near zero point. Achieving numerical stability is essential for high-quality
samples in diffusion models, where the sampling process involves solving a reverse-time SDE.
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Figure 2: Quantitative comparison of the er-
rors caused by a perturbation on the input be-
tween E-TSDM and DDPM (Ho et al., 2020).
Results show that E-TSDM is more stable, as
its prediction is less affected, e.g., the pertur-
bation error of DDPM is 42.0% larger than E-
TSDM when the perturbation scale is 0.2.

Nevertheless, numerical instability is frequently
observed near t = 0 in practice (Song et al.,
2021a; Vahdat et al., 2021). To address this sin-
gularity, one possible approach is to set a small
non-zero starting time τ > 0 in both training and
inference (Song et al., 2021a; Vahdat et al., 2021).
Kim et al. (2022) resolve the trade-off between
density estimation and sample generation perfor-
mance by introducing randomization to the fixed
τ . In contrast, we enhance numerical stability
by reducing the Lipschitz constants to zero near
t = 0, which leads to improved sample quality in
diffusion models. It is worth noting that the nu-
merical issues observed by aforementioned works
are mainly caused by the singularity of transition
kernel q0t(xt|x0). This transition kernel will de-
grade to a Dirac kernel δ(xt − αtx0) as σt → 0.
However, our observation is the infinite Lipschitz
constants of the noise prediction model ϵθ (x, t)
w.r.t time variable t, and this is caused by the ex-
plosion of dσt

dt as t → 0. To the best of our knowl-
edge, this has not been observed before.

3 LIPSCHITZ SINGULARITIES IN DIFFUSION MODELS

Lipschitz singularities issue. In this section, we elucidate the vexing propensity of diffusion models
to exhibit infinite Lipschitz near the zero point. We achieve this by analyzing the partial derivative
∂ϵθ(x, t)/∂t of the network ϵθ(x, t). In essence, the emergence of Lipschitz singularities, char-
acterized by lim supt→0+

∥∥∥∂ϵθ(x,t)
∂t

∥∥∥ → ∞, can be attributed to the fact that the prevailing noise
schedules conform to the behavior of dσt/dt → ∞ as the parameter t tends towards zero.
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Theoretical analysis. Now we theoretically prove that the infinite Lipschitz happens near the zero
point in diffusion models, where the distribution of data is an arbitrary complex distribution. We
focus particularly on the scenario where the network ϵθ(x, t) is trained to predict the noises added
to images (v-prediction model (Salimans & Ho, 2022) has a similar singularity problem, and is
analyzed in Appendix C.2). The network ϵθ(x, t) exhibits a relationship with the score function
∇x log qt(x) that ϵθ(x, t) = −σt∇x log qt(x) (Song et al., 2021b), where σt is the standard devi-
ation of the forward transition distribution q0t(x|x0) = N (x;αtx0, σ

2
t I). Specifically, αt and σt

satisfy α2
t + σ2

t = 1.

Theorem 3.1 Given a noise schedule, since σt =
√

1− α2
t , we have dσt

dt = − αt√
1−α2

t

dαt

dt . As t gets

close to 0, the noise schedule requires αt → 1, leading to dσt/dt → ∞ as long as dαt

dt |t=0 ̸= 0.
The partial derivative of the network can be written as

∂ϵθ (x, t)

∂t
=

αt√
1− α2

t

dαt

dt
∇x log qt (x)−

∂∇x log qt (x)

∂t
σt. (5)

Note that αt → 1 as t → 0, thus if dαt

dt |t=0 ̸= 0, and ∇x log qt(x)|t=0 ̸= 0, then one of the
following two must stand

lim sup
t→0+

∥∥∥∥∂ϵθ (x, t)∂t

∥∥∥∥→ ∞; lim sup
t→0+

∥∥∥∥∂∇x log qt (x)

∂t
σt

∥∥∥∥→ ∞. (6)

Note that dαt

dt |t=0 ̸= 0 stands for a wide range of noise schedules, including linear, cosine, and
quadratic schedules (see details in Appendix C.1). Besides, we can safely assume that qt(x) is
a smooth process. Therefore, we may often have lim supt→0+

∥∥∂ϵθ(x,t)
∂t

∥∥ → ∞, indicating the
infinite Lipschitz constants around t = 0.

Simple case illustration. Take a simple case that the distribution of data p(x0) ∼ N (0, I) for
instance, the score function for any t ∈ [0, T ] can be written as

∇x log qt (x) = ∇x log

(
1√
2π

exp

(
−∥x∥22

2

))
= −x. (7)

Due to the relationship ϵθ(x, t) = −σt∇x log qt(x) and the fact that the deviation dσt

dt tends toward
∞ as t → 0, we have

∥∥∂ϵθ(x,t)
∂t

∥∥→ ∞.

Case in reality. After theoretically proving that diffusion models suffer infinite Lipschitz near the
zero point, we show it empirically. We estimate the Lipschitz constants of a network by

K(t, t′) =
Ext [∥ϵθ (xt, t)− ϵθ (xt, t

′)]∥2]
∆t

, (8)

where ∆t = |t− t′|. For a network ϵθ(xt, t
′) of DDPM baseline (Ho et al., 2020) trained on FFHQ

256 × 256 (Karras et al., 2019) (see training details in Section 5.1 and more results of the Lips-
chitz constants K(t, t′) on other datasets in Appendix D.1), the variation of the Lipschitz constants
K(t, t′) as the noise level t varies is seen in Figure 1b, showing that the Lipschitz constants K(t, t′)
get extremely large in the interval with low noise levels. Such large Lipschitz constants support the
above theoretical analysis and pose a threat to the stability and accuracy of the diffusion process,
which relies on integral operations.

4 MITIGATING LIPSCHITZ SINGULARITIES BY SHARING CONDITIONS

Proposed method. In this section, we propose the Early Timestep-shared Diffusion Model (E-
TSDM), which aims to alleviate the Lipschitz singularities by sharing the timestep conditions in the
interval with large Lipschitz constants. To avoid impairing the network’s ability, E-TSDM performs
a stepwise operation of sharing timestep condition values. Specifically, we consider the interval near
the zero point suffering from large Lipschitz constants, denoted as [0, t̃), where t̃ indicates the length
of the target interval. E-TSDM uniformly divides this interval into n sub-intervals represented as
a sequence T = {t0, t1, · · · , tn}, where 0 = t0 < t1 < · · · < tn = t̃ and t1 − t0 = ti −
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Figure 3: Quantitative analysis of alternative methods evaluated with FID-10k ↓. (a) Regulariza-
tion: Experimental results on FFHQ 256×256 and CelebAHQ 256×256 show that regularization
techniques can slightly improve the FID of DDPM (Ho et al., 2020) baseline but performs worse
than E-TSDM (b) Modification of noise schedules (Modified-NS): We implement Modified-NS
on linear, quadratic, and cosine schedules. Experimental results on FFHQ 256×256 dataset indicate
that the performance of Modified-NS is unstable while E-TSDM achieves better synthesis per-
formance. (c) Remap: Quantitative comparison of remap method between uniformly sampling
t and uniformly sampling λ, during training and inference, on FFHQ 256× 256. Specifically, Ut is
U [0, 1], and Uλ is U [0,K] for 1/t but U [−K,K] for Inverse-Sigmoid, where K is a large number to
avoid infinity. (T) represents the sampling strategy during the training process while (I) represents
that during the inference process. Results show that remap is not helpful.

ti−1,∀i = 1, 2, · · · , n. For each sub-interval, E-TSDM employs a single timestep value (the left
endpoint of the sub-interval) as the condition, both during training and inference. Utilizing this
strategy, E-TSDM effectively enforces zero Lipschitz constants within each sub-interval, with only
the timesteps located near the boundaries of the sub-intervals having a Lipschitz constant greater
than zero. As a result, the overall Lipschitz constants of the target interval t ∈ [0, t̃) are significantly
reduced. The corresponding training loss can be written as

L (ϵθ) := Et∼U(0,T ),x0∼q(x0),ϵ∼N (0,I)

[
∥ϵθ (αtx0 + σtϵ, fT (t))− ϵ∥22

]
, (9)

where fT(t) = max1≤i≤n{ti−1 ∈ T : ti−1 ≤ t} for t < t̃, while fT(t) = t for t ≥ t̃. The
corresponding reverse process can be represented as

pθ (xt−1|xt) = N
(
xt−1;

αt−1

αt

(
xt −

βt

σt
ϵθ (xt, fT (t))

)
, η2t I

)
, (10)

where βt = 1 − αt

αt−1
, and η2t = βt. E-TSDM is easy to implement, and the algorithm details are

provided in Appendix B.2.

Analysis of estimation error. Then we show that the estimation error of E-TSDM can be bounded
by an infinitesimal, and thus the impact of E-TSDM on the estimation accuracy is insignificant. The
detailed proof is shown in Appendix C.3.

Theorem 4.1 Given the chosen fT(t), when t ∈ [0, t̃), the difference between the optimal
ϵθ(x, fT(t)) denoted as ϵ∗(x, fT(t)), and ϵ(x, t) = −σt∇x log qt(x), can be bounded by

∥ϵ∗ (x, fT (t))− ϵ (x, t)∥ ≤ σt̃K (x)∆t+B (x)∆σmax, (11)

where

K (x) = sup
t̸=τ

∥∇x log qt (x)−∇x log qτ (x) ∥
|t− τ |

, B (x) = sup
t

∥∇x log qt (x) ∥, (12)

and ∆σmax = max1≤i≤n |σti −σti−1
|. Note that K(x) and B(x) are finite and lim∆t→0 ∆σmax =

0 for any continuous σt where ∆t:=t̃/n, thus the difference converges to 0 as ∆t → 0. Furthermore,
the rate of convergence is at least 1

2 -order with respect to ∆t.

The 1
2 -order convergence rate is relatively fast in optimization. Given this bound, we think the

introduced errors of E-TSDM are controllable.
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Figure 4: Quantitative comparison on var-
ious datasets with 256 × 256 resolution. All
experiments are evaluated with FID-10k ↓.

Table 1: Quantitative comparison on FFHQ
(Karras et al., 2019). ∗ denotes our reproduced
result with the same network as E-TSDM-large.

Model FID-50k ↓
StyleGAN2+ADA+bCR 3.62(Karras et al., 2020)

Soft-Truncation (Kim et al., 2021) 5.54
P2-DM (Choi et al., 2022) 6.92
LDM (Rombach et al., 2022) 4.98
DDPM (Ho et al., 2020) 6.88∗

E-TSDM (ours) 5.21
E-TSDM-large (ours) 4.22

Reduction in Lipschitz constants. In Figure 1b, we present the curve of K(t, t′) of E-TSDM on
FFHQ 256× 256 (Karras et al., 2019) (we provide results for continuous-time diffusion models and
more results on other datasets in Appendix D.1), showing that the Lipschitz constants K(t, t′) are
significantly reduced by applying E-TSDM.

Improvement in stability. To further verify the stability of E-TSDM, we evaluate the impact of a
small perturbation added to the input. Specifically, we add a small noise with a growing scale to the
xt̃, where t̃ is set to a default value of 100, and observe the resulting difference in the predicted value
of x0, for both E-TSDM and baseline. Our results, as shown in Figure 2, illustrate that E-TSDM
exhibits better stability than the baseline, as its predictions are less affected by perturbations.

Comparison with some alternative methods. Although achieving impressive performance as de-
tailed in Section 5, E-TSDM introduces no modifications to the network architecture or loss function,
thereby not incurring any additional computational cost. 1) Regularization: In contrast, an alter-
native potential approach is imposing restrictions on the Lipschitz constants via regularization tech-
niques. It necessitates the computation of ∂ϵθ(x,t)

∂t , consequently diminishing training efficiency. 2)
Modification of noise schedules: Furthermore, E-TSDM preserves the forward process unaltered.
Conversely, another potential method involves the modification of noise schedules. Recall that the
issue of Lipschitz singularities only arises when the noise schedule satisfies dαt

dt |t=0 ̸= 0. There-
fore, it becomes feasible to adjust the noise schedule to meet the requirement dαt

dt |t=0 = 0, thus
mitigating the problem of Lipschitz singularities. The detailed methods for modifying noise sched-
ules are provided in Appendix D.3.2. Although this modification seems feasible, it results in tiny
amounts of noise at the beginning stages of the diffusion process, leading to inaccurate predictions.
3) Remap: In addition, remap is another possible method, which designs a remap function λ = f(t)
as the conditional input of the network, namely, ϵθ(x, f(t)). By carefully designing λ = f(t),
it can significantly stretch the interval with large Lipschitz constants. For example, f(t) = 1/t
and f−1(λ) = sigmoid(λ) are two simple choices. In this way, Remap can efficiently reduce the
Lipschitz constants regarding the conditional inputs of the network, ∂ϵθ(x,t)

∂λ . However, since we
uniformly sample t both in training and inference, what should be focused on is the Lipschitz con-
stants regarding t, ∂ϵθ(x,t)

∂t , which can not be influenced by remap. We also consider the situation
of uniformly sampling λ, which can significantly hurt the quality of generated images. We show
the quantitative evaluation in Figure 3 and put the detailed analysis in Appendix D.3.3. Empirically,
E-TSDM surpasses not only the baseline but also all of these alternative methods, where the results
are demonstrated in Figure 3. For a more in-depth discussions, please refer to Section D.3.

5 EXPERIMENTS

In this section, we present compelling evidence that our E-TSDM outperforms existing approaches
on a variety of datasets. To achieve this, we first detail the experimental setup used in our studies
in Section 5.1. Subsequently, in Section 5.2, we compare the synthesis performance of E-TSDM
against that of the baseline on various datasets. In Section 5.3, we conduct multiple ablation studies
and quantitative analysis from two perspectives. Firstly, we demonstrate the generalizability of
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Table 2: Quantitative comparison between DDPM baseline (Ho et al., 2020) and our proposed
E-TSDM on both discrete-time and continuous-time scenarios with different noise schedules, on
FFHQ 256 × 256 (Karras et al., 2019) using FID-10k ↓ as the evaluation metric. Experimental
results illustrate that E-TSDM can be generalized to other noise schedules and is still effective
in the context of continuous-time diffusion models.

Settings Method
Noise schedule

Linear Quadratic Cosine Cosine-shift Zero-terminal-SNR

Discrete Baseline 9.50 13.79 27.17 14.51 11.66
E-TSDM 6.62 9.69 26.08 11.20 8.58

Continuous Baseline 9.53 14.26 25.65 12.80 10.89
E-TSDM 6.95 9.66 16.80 9.94 8.96

E-TSDM by implementing it on continuous-time diffusion models and varying the noise schedules.
Secondly, we investigate the impact of varying the number of conditions n in t ∈ [0, t̃) and the length
of the interval t̃, which are important hyperparameters. Moreover, we demonstrate in Section 5.4 that
our method can be effectively combined with popular fast sampling techniques. Finally, we show
that E-TSDM can be applied to conditional generation tasks, such as super-resolution, in Section 5.5.

5.1 EXPERIMENTAL SETUP

Implementation details. All of our experiments utilize the settings of DDPM (Ho et al., 2020) (see
more details in Appendix B.1). Besides, we utilize a more developed structure of unet (Dhariwal
& Nichol, 2021) than that of DDPM (Ho et al., 2020) for all experiments containing reproduced
baseline. Given that the model size is kept constant, the speed and memory requirements for training
and inference for both the baseline and E-TSDM are the same. Except for the ablation studies in
Section 5.3, all other experiments fix t̃ = 100 for E-TSDM and use five conditions (n = 5) in the
interval t ∈ [0, t̃), which we have found to be a relatively good choice in practice. Furthermore,
all experiments are trained on NVIDIA A100 GPUs. Datasets. We implement E-TSDM on several
widely evaluated datasets containing FFHQ 256 × 256 (Karras et al., 2019), CelebAHQ 256 ×
256 (Karras et al., 2017), AFHQ-Cat 256× 256, AFHQ-Wild 256× 256 (Choi et al., 2020), Lsun-
Church 256 × 256 and Lsun-Cat 256 × 256 (Yu et al., 2015). Evaluation metrics. To assess
the sampling quality of E-TSDM, we utilize the widely-adopted Frechet inception distance (FID)
metric (Heusel et al., 2017). Additionally, we use the peak signal-to-noise ratio (PSNR) to evaluate
the performance of the super-resolution task.

5.2 SYNTHESIS PERFORMANCE

We have demonstrated that E-TSDM can effectively mitigate the large Lipschitz constants near t = 0
in Figure 1 b, as detailed in Section 4. In this section, we conduct a comprehensive comparison
between E-TSDM and DDPM baseline (Ho et al., 2020) on various datasets to show that E-TSDM
can improve the synthesis performance. The quantitative comparison is presented in Figure 4, which
clearly illustrates that E-TSDM outperforms the baseline on all evaluated datasets. Furthermore, as
depicted in Appendix D.5, the samples generated by E-TSDM on various datasets demonstrate its
ability to generate high-fidelity images. Remarkably, to the best of our knowledge, as shown in
Table 1, we set a new state-of-the-art benchmark for diffusion models on FFHQ 256× 256 (Karras
et al., 2019) using a large version of our approach (see details in Appendix B.1).

5.3 QUANTITATIVE ANALYSIS

In this section, we demonstrate the generalizability of E-TSDM by implementing it on continuous-
time diffusion models and varying the noise schedules. In addition, to gain a deeper understanding
of the properties of E-TSDM, we investigate the critical hyperparameters of E-TSDM by varying
the length of the interval t̃ to share the timestep conditions, and the number of sub-intervals n.

5.3.1 QUANTITATIVE ANALYSIS ON THE GENERALIZABILITY OF E-TSDM

To ensure the generalizability of E-TSDM beyond specific settings of DDPM (Ho et al., 2020), we
conduct a thorough investigation of E-TSDM on other popular noise schedules, as well as implement
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(a) Interval Length t̃ (b) Timestep Number n
Figure 5: Ablation study on the length of the interval t ∈ [0, t̃) to share the timestep conditions,
t̃, and the number of sub-intervals in this interval, n, using FID-10k ↓ as the evaluation metric. We
repeat each experiment three times and provide the error bars.

Table 3: Quantitative comparison on FFHQ 256 × 256 (Karras et al., 2019) between DDPM (Ho
et al., 2020) and our proposed E-TSDM utilizing different fast samplers, DDIM (Song et al., 2020)
and DPM-Solver (Lu et al., 2022b), varying the number of function evalutaions (NFE). FID-10k↓
is used as the evaluation metric, and DPM-Solver-k represents the k-th-order DPM-Solver. Results
indicate that our approach well supports the popular fast samplers.

Fast Samplers DPM-Solver-3 DPM-Solver-2 DDIM
NFE 20 50 20 50 50 200

Method DDPM 21.91 24.48 22.21 24.80 21.80 23.16
E-TSDM 16.97 13.52 17.28 14.14 19.34 13.71

a continuous-time version of E-TSDM. Specifically, we explore the three popular ones including
linear, quadratic and cosine schedules (Nichol & Dhariwal, 2021), and two newly proposed ones,
which are cosine-shift (Hoogeboom et al., 2023) and zero-terminal-SNR (Lin et al., 2023) schedules.

As shown in Table 2, our E-TSDM achieves excellent performance across different noise schedules.
Besides, the comparison of Lipschitz constants between E-TSDM and baseline on different noise
schedules, as illustrated in Appendix D.1, show that E-TSDM can mitigate the Lipschitz singularities
issue besides the scenario of the linear schedule, highlighting that its effects are independent of the
specific noise schedule. Additionally, the continuous-time version of E-TSDM outperforms the
corresponding baseline, indicating that E-TSDM is effective for both continuous-time and discrete-
time diffusion models. We provide the curves of the Lipschitz constants K(t, t′) in Figure A1 to
compare continuous-time E-TSDM with its baseline on the linear schedule, showing that E-TSDM
can mitigate Lipschitz singularities in the continuous-time scenario.

5.3.2 QUANTITATIVE ANALYSIS ON n AND t̃

E-TSDM involves dividing the target interval t ∈ [0, t̃) with large Lipschitz constants into n sub-
intervals and sharing timestep conditions within each sub-interval. Accordingly, the choices of t̃ and
n have significant impacts on the performance of E-TSDM. Intuitively, t̃ should be a relatively small
value, therefore representing an interval near zero point. As for n, it should not be too large or too
small. If n is too small, it forces the network to adapt to too many noise levels with a single timestep
condition, thus leading to inaccuracy. Conversely, if the value of n is set too large, the reduction of
Lipschitz constants is insufficient, where the extreme situation is baseline.

In this section, we meticulously assess the impacts of t̃ and n on various datasets. We present the
outcomes on FFHQ 256×256 (Karras et al., 2019) and CelebAHQ 256×256 (Karras et al., 2017) for
each hyperparameter in Figure 5, while leaving the remaining results in Appendix D.2. Specifically,
in the experiments of t̃, we maintain the length of each sub-interval, namely, t̃/n, unchanged, while
in the experiments of n, we maintain the t̃ unchanged. The results for t̃ in Figure 5 a demonstrate
that E-TSDM performs well when t̃ is relatively small. However, as t̃ increases, the performance
of E-TSDM deteriorates gradually. Furthermore, the results for n are shown in Figure 5 b, from
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which we observe a rise in FID when n was too small, for instance, when n = 2. Conversely, when
n is too large, such as n = 100, the performance deteriorates significantly. Although E-TSDM
performs well for most n and t̃ values, considering the results on all of the evaluated datasets (see
remaining results in Appendix D.2), n = 5 and t̃ = 100 are recommended to be good choices to
avoid cumbersome searches or a good starting point for further exploration when applying E-TSDM.

5.4 FAST SAMPLING

With the development of fast sampling algorithms, it is crucial that E-TSDM can be effectively
combined with classic fast samplers, such as DDIM (Song et al., 2020) and DPM-Solver (Lu et al.,
2022b). To this end, we incorporate both DDIM (Song et al., 2020) and DPM-Solver (Lu et al.,
2022b) into E-TSDM for fast sampling in this section. It is worth noting that the presence of large
Lipschitz constants can have a more detrimental impact on the efficiency of fast sampling compared
to full-timestep sampling, as numerical solvers typically depend on the similarity between function
values and their derivatives on adjacent steps. When using fast sampling algorithms with larger
discretization steps, it becomes necessary for the functions to exhibit better smoothness, which in
turn corresponds to smaller Lipschitz constants. Hence, it is anticipated that the utilization of E-
TSDM will lead to an improvement in the generation performance of fast sampling methods.

As presented in Table 3, we observe that E-TSDM significantly outperforms the baseline when using
the same number of function evaluations (NFE) for fast sampling, which is under expectation. Be-
sides, the advantage of E-TSDM becomes more pronounced when using higher order sampler (from
DDIM to DPM-Solver), indicating better smoothness when compared to the baseline. Notably, for
both DDIM and DPM-Solver, we observe an abnormal phenomenon for baseline, whereby the per-
formance deteriorates as NFE increases. This phenomenon has been previously noted by several
works (Lu et al., 2022b;c; Li et al., 2023), but remains unexplained. Given that this phenomenon is
not observed in E-TSDM, we hypothesize that it may be related to the improvement of smoothness
of the learned network. We leave further verification of this hypothesis for future work.

5.5 CONDITIONAL GENERATION

In order to explore the potential for extending E-TSDM to conditional generation tasks, we further
investigate its performance in the super-resolution task, which is one of the most popular conditional
generation tasks. Specifically, we test E-TSDM on the FFHQ 256×256 dataset, using the 64×64 →
256 × 256 pixel resolution as our experimental settings. For the baseline in the super-resolution
task, we utilize the same network structure and hyper-parameters as those employed in the baseline
presented in Section 5.1, but incorporate a low-resolution image as an additional input. Besides, for
E-TSDM, we adopt a general setting with n = 5 and t̃ = 100. As illustrated in Figure A12, we
observe that the baseline tends to exhibit a color bias compared to real images, which is mitigated
by E-TSDM. Quantitatively, our results indicate that E-TSDM outperforms the baseline on the test
set, achieving an improvement in PSNR from 24.64 to 25.61. These findings suggest that E-TSDM
holds considerable promise for application in conditional generation tasks.

6 CONCLUSION

In this paper, we elaborate on the infinite Lipschitz of the diffusion model near the zero point from
both theoretical and empirical perspectives, which hurts the stability and accuracy of the diffu-
sion process. A novel E-TSDM is further proposed to mitigate the corresponding singularities in a
timestep-sharing manner. Experimental results demonstrate the superiority of our method in both
performance and adaptability to the baselines, including unconditional generation, conditional gen-
eration, and fast sampling. This paper may not only improve the performance of diffusion models,
but also help to make up the critical research gap in the understanding of the rationality underlying
the diffusion process.

Limitations. Although E-TSDM has demonstrated significant improvements in various applica-
tions, it has yet to be verified on large-scale text-to-image generative models. As E-TSDM reduces
the large Lipschitz constants by sharing conditions, it is possible to lead to a decrease in the effec-
tiveness of large-scale generative models. Additionally, the reduction of Lipschitz constants to zero
within each sub-interval in E-TSDM may introduce unknown and potentially harmful effects.
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APPENDIX

A OVERVIEW

This supplementary material is organized as follows. First, to facilitate the reproducibility of our
experiments, we present implementation details, including hyper-parameters in Appendix B.1 and
algorithmic details in Appendix B.2. Next, in Appendix C, we provide all details of deduction
involved in the main paper. Finally, we present additional experimental results in support of the
effectiveness of E-TSDM.

B IMPLEMENTATION DETAILS

B.1 HYPER-PARAMETERS

The hyper-parameters used in our experiments are shown in Table A1, and we use identical hyper-
parameters for all evaluated datasets for both E-TSDM and their corresponding baselines. Specifi-
cally, we follow the hyper-parameters of DDPM (Ho et al., 2020) but adopt a more advanced struc-
ture of U-Net (Dhariwal & Nichol, 2021) with residual blocks from BigGAN (Brock et al., 2018).
The network employs a block consisting of fully connected layers to encode the timestep, where
the dimensionality of hidden layers for this block is determined by the timestep channels shown
in Table A1. Moreover, we scale up the network to achieve the state-of-the-art results of diffusion

Table A1: Hyper-parameters of E-TSDM and our reproduced baseline.

Normal version Large version

T 1,000 1,000
βt linear linear
Model size 131M 692M
Base channels 128 128
Channels multiple (1,1,2,2,4,4) (1,1,2,4,6,8)
Heads channels 64 64
Self attention 32,16,8 32,64,8
Timestep channels 512 2048
BigGAN block ✓ ✓
Dropout 0.0 0.0
Learning rate 1e−4 1e−4

Batch size 96 64
Res blocks 2 4
EMA 0.9999 0.9999
Warmup steps 0 0
Gradient clip ✗ ✗

models on FFHQ 256× 256 (Karras et al., 2019), and therefore we provide the hyper-parameters of
the large version of E-TSDM in Table A1.

B.2 ALGORITHM DETAILS

In this section, we provide a detailed description of the E-TSDM algorithm, including the training
and inference procedures as shown in Algorithm A1 and Algorithm A2, respectively. Our method is
simple to implement and requires only a few steps. Firstly, a suitable length of the interval t̃ should
be selected for sharing conditions, along with the corresponding number of timestep conditions n in
the target interval t ∈ [0, t̃). While performing a thorough search for different datasets can achieve
better performance, the default settings t̃ = 100 and n = 5 are recommended when E-TSDM is
applied without a thorough search.

Next, the target interval t ∈ [0, t̃) should be divided into n sub-intervals, and the boundaries for each
sub-interval should be calculated to generate the partition schedule T = {t0, t1, . . . , tn}. Finally,
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Algorithm A1 Training of E-TSDM

Require: The length of the target interval t̃.
Require: The number of conditions n.
Require: Model ϵθ to be trained.
Require: Data set D.

1: Uniformly divide the target interval t ∈ [0, t̃) into n sub-intervals to get the corresponding
timestep partition schedule T = {t0, t1, . . . , tn}.

2: repeat
3: x0 ∼ D
4: t ∼ Uniform({1, . . . , T})
5: if t < t̃ then
6: t̂ = max1≤i≤n{ti−1 ∈ T : ti−1 ≤ t}
7: else
8: t̂ = t
9: end if

10: ϵ ∼ N (0, I)
11: Take gradient descent step on
12: ∇θ∥ϵ− ϵθ(αtx0 + σtϵ, t̂)∥2
13: until converged

Algorithm A2 Sampling of E-TSDM

Require: The length of the target interval t̃.
Require: The number of conditions n.
Require: A trained model ϵθ.

1: Uniformly divide the target interval t ∈ [0, t̃) into n sub-intervals to get the corresponding
timestep partition schedule T = {t0, t1, . . . , tn}.

2: xT ∼ N (0, I)
3: for t = T, . . . , 1 do
4: if t < t̃ then
5: t̂ = max1≤i≤n{ti−1 ∈ T : ti−1 ≤ t}
6: else
7: t̂ = t
8: end if
9: if t > 1 then

10: z ∼ N (0, I)
11: else
12: z = 0
13: end if
14: xt−1 = αt−1

αt

(
xt − βt

σt
ϵθ(xt, t̂)

)
+ ηtz

15: end for
16: return x0

during both training and sampling, the corresponding left boundary t̂ for each timestep in the target
interval t ∈ [0, t̃) should be determined according to T, and used as the conditional input of the
network instead of t.

C DERIVATION OF FORMULAS

In this section, we provide detailed derivations as a supplement to the main paper. The derivations
are divided into three parts, firstly we prove that the key assumption of the occurrence of Lipschitz
singularities, dαt

dt

∣∣
t=0

̸= 0, holds for mainstream noise schedules including linear, quadratic, and
cosine schedules. Therefore, all of the diffusion models utilizing these noise schedules suffer from
the issue of Lipschitz singularities. Then we show that Lipschitz singularities also plague the v-
prediction (Salimans & Ho, 2022) models. Considering that most of the diffusion models are noise-
prediction or v-prediction models, the Lipschitz singularities problem is an important issue for the
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Figure A1: Quantitative comparison of the Lipschitz constants between continuous-time E-
TSDM and continuous-time DDPM (Ho et al., 2020). Results show that E-TSDM can efficiently
reduce the Lipschitz constants in continuous-time scenarios.

community of diffusion models. Finally, we demonstrate the detailed derivation of Theorem 4.1,
showing that the errors introduced by E-TSDM can be bounded by an infinitesimal and thus are
insignificant.

C.1 dαt/dt FOR WIDELY USED NOISE SCHEDULES AT ZERO POINT

We have already shown that for an arbitrary complex distribution, given a noise schedule, if
dαt

dt

∣∣
t=0

̸= 0, then we often have lim supt→0+

∥∥∂ϵθ(x,t)
∂t

∥∥ → ∞, indicating the infinite Lipschitz
constants around t = 0. In this section, we prove that dαt

dt

∣∣
t=0

̸= 0 stands for three mainstream
noise schedules including linear schedule, quadratic schedule and cosine schedule.

C.1.1 dαt/dt FOR LINEAR AND QUADRATIC SCHEDULES AT ZERO POINT

Linear and quadratic schedules are first proposed by Ho et al. (2020). Both of them determine
{αt}Tt=1 by a pre-designed positive sequence {βt}Tt=1 and the relationship αt :=

∏t
i=1

√
1− βi.

Note that t ∈ {1, 2, · · · , T} is a discrete index, and {αt}Tt=1, {βt}Tt=1 are discrete parameter se-
quences in DDPM. However, αt in dαt/dt refers to the continuous-time parameter determined by
the following score SDE (Song et al., 2021b)

dx(τ) = −1

2
β(τ)x(τ)dτ +

√
β(τ)dw, τ ∈ [0, 1], (A1)

where w is the standard Wiener process, β(τ) is the continuous version of {βt}Tt=1 with a continuous
time variable τ ∈ [0, 1] for indexing, and the continuous-time αt = exp (− 1

2

∫ t

0
β(s)ds). To avoid

ambiguity, let α(τ), τ ∈ [0, 1] denote the continuous version of {αt}Tt=1. Thus,

dα(τ)

dτ

∣∣∣∣
τ=0

= −1

2
β(τ) exp (−1

2

∫ τ

0

β(s)ds)

∣∣∣∣
τ=0

= −1

2
β(0). (A2)

Once the continuous function β(τ) is determined for a specific noise schedule, we can obtain
dα(τ)
dτ

∣∣∣
τ=0

immediately by Equation (A2).

To obtain β(τ), we first give the expression of {βt}Tt=1 in linear and quadratic schedules (Ho et al.,
2020)

Linear: βt =
β̄min

T
+

(
β̄max

T
− β̄min

T

)
· t− 1

T − 1
, (A3)

Quadratic: βt =

(√
β̄min

T
+

(√
β̄max

T
−
√

β̄min

T

)
· t− 1

T − 1

)2

, (A4)
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(a) AFHQ-Cat 256× 256 (b) AFHQ-Wild 256× 256

(c) Lsun-Cat 256× 256 (d) Lsun-Church 256× 256

(e) CelebAHQ 256× 256 (f) FFHQ 256× 256 using
quadratic schedule

Figure A2: Quantitative comparison of Lipschitz constants between E-TSDM and DDPM base-
line (Ho et al., 2020) on various datasets, including (a) AFHQ-Cat (Choi et al., 2020), (b)
AFHQ-Wild (Choi et al., 2020), (c) Lsun-Cat 256 × 256 (Karras et al., 2019), (d) Lsun-Church
256 × 256 (Karras et al., 2019), and (e) CelebAHQ 256 × 256 (Karras et al., 2017) using the lin-
ear schedule. (f) Quantitative comparison of Lipschitz constants between E-TSDM and DDPM
baseline (Ho et al., 2020) on FFHQ 256× 256 (Karras et al., 2019) using the quadratic schedule.

where β̄min and β̄max are user-defined hyperparameters. Then, we define an auxiliary sequence
{β̄t = Tβt}Tt=1. In the limit of T → ∞, {β̄t}Tt=1 becomes the function β(τ) indexed by τ ∈ [0, 1]

Linear: β(τ) = β̄min +
(
β̄max − β̄min

)
· τ, (A5)

Quadratic: β(τ) =
(√

β̄min +

(√
β̄max −

√
β̄min

)
· τ
)2

, (A6)

Thus, β(0) = β̄min for both linear and quadratic schedules, which leads to dα(τ)
dτ

∣∣∣
τ=0

= − 1
2 β̄min.

As a common setting, β̄min is a positive real number, thus dα(τ)
dτ

∣∣∣
τ=0

< 0.
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Figure A3: Ablation study on the length of the interval t ∈ [0, t̃) to share the timestep conditions,
t̃, using FID-10k ↓ as the evaluation metric.
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Figure A4: Ablation study on the number of sub-intervals in this interval, n, using FID-10k ↓ as
the evaluation metric.

C.1.2 dαt/dt FOR THE COSINE SCHEDULE AT ZERO POINT

The cosine schedule is designed to prevent abrupt changes in noise level near t = 0 and t =
T (Nichol & Dhariwal, 2021). Different from linear and quadratic schedules that define {αt}Tt=1 by
a pre-designed sequence {βt}Tt=1, the cosine schedule directly defines {αt}Tt=1 as

αt =
f(t)

f(0)
, f(t) = cos

(
t/T + s

1 + s
· π
2

)
, t = 1, 2, · · · , T, (A7)

where s is a small positive offset. The continuous version of {αt}Tt=1 can be obtained in the limit of
T → ∞ as

α(τ) = cos

(
τ + s

1 + s
· π
2

)
/ cos

(
s

1 + s
· π
2

)
, τ ∈ [0, 1]. (A8)

With Equation (A8), we can easily get dα(τ)
dτ

∣∣∣
τ=0

dα(τ)

dτ

∣∣∣∣
τ=0

= − π

2(1 + s)
tan

(
s

1 + s
· π
2

)
, (A9)

which leads to dα(τ)
dτ

∣∣∣
τ=0

< 0 since s > 0.

C.2 LIPSCHITZ SINGULARIES FOR V-PREDICTION DIFFUSION MODELS

In Section 3 of the main paper, we prove that noise-prediction diffusion models suffer from Lipschitz
singularities issue. In this section, we show that the Lipschitz singularities issue is also an important
problem for v-prediction diffusion models from both theoretical and empirical perspectives.
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Figure A5: Quantitative comparison of the Lipschitz constants between E-TSDM and DDPM (Ho
et al., 2020) using v-prediction (Salimans & Ho, 2022) on Lsun-Cat 256×256 (Karras et al., 2019)
and FFHQ 256×256 dataset (Karras et al., 2019). Results show that E-TSDM can efficiently reduce
the Lipschitz constants in v-prediction scenarios.

Theoretically, the optimal solution of v-prediction models is

v(x, t) = argmin
vθ

E[∥vθ(xt, t)− (αtϵ− σtx0)∥22|xt = x]

= E[αtϵ− σtx0|xt = x]

= E
[
αtϵ− σt

xt − σtϵ

αt

∣∣∣∣xt = x

]

= −σt

αt
x+ (αt +

σ2
t

αt
)E[ϵ|xt = x]

= −σt

αt
x− α2

t + σ2
t

αt
σt∇x log qt(x)

= −σt

αt
(x+∇x log qt(x)),

(A10)

where x+∇x log qt(x) is smooth under the assumption of Theorem 3.1, and d
dt

(
σt

αt

)
→ dσt

dt as t →

0. Thus, with the same derivation of Theorem 3.1, we can conclude that lim supt→0+

∥∥∥∂v(x,t)
∂t

∥∥∥ →
∞. The detailed derivation goes as follows:

Firstly, we can obtain the partial derivative of the v-prediction model over t as
∂v(x, t)

∂t
= − d

dt
(
σt

αt
)(x+∇x log qt(x))−

σt

αt

d

dt
(x+∇x log qt(x)). (A11)

Note that d
dt

(
σt

αt

)
= 1

α2
t

(
αt

dσt

dt − σt
dαt

dt

)
→ dσt

dt = − αt√
1−α2

t

dαt

dt as t → 0 under common settings

that σ0 = 0, α0 = 1, and dαt

dt

∣∣
t=0

is finite, thus if dαt

dt

∣∣
t=0

̸= 0, and x + ∇x log qt(x) ̸= 0, then
one of the following two must stand

lim sup
t→0+

∥∥∥∥∂v(x, t)∂t

∥∥∥∥→ ∞; lim sup
t→0+

∥∥∥∥σt

αt

d

dt
(x+∇x log qt(x))

∥∥∥∥→ ∞. (A12)

Under the assumption that qt(x) is a smooth process, we can conclude that
lim supt→0+

∥∥∥∂v(x,t)
∂t

∥∥∥→ ∞.
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Table A2: Quantitative comparison be-
tween E-TSDM and DDPM (Ho et al.,
2020) using v-prediction on Lsun-Cat
256×256 (Karras et al., 2019) and FFHQ
256 × 256 dataset (Karras et al., 2019)
evaluated with FID-10k ↓. Experimental
results indicate that E-TSDM can achieve
better synthesis performance.

Baseline E-TSDM

FFHQ 10.85 9.00
Lsun-Cat 18.40 13.86

Table A3: Quantitative comparison among E-
TSDM, DDPM (Ho et al., 2020), and DDPM
using regularization techniques (DDPM-r) on
FFHQ 256× 256 (Karras et al., 2019) and Cele-
bAHQ 256× 256 (Karras et al., 2017) evaluated
with FID-10k ↓. Experimental results show that
DDPM-r can slightly improve the FID but per-
forms worse than E-TSDM.

Method Baseline E-TSDM DDPM-r

FFHQ 9.50 6.62 9.18
CelebAHQ 8.05 6.99 7.97

Since most of the diffusion models are noise-prediction and v-prediction models, the Lipschitz sin-
gularities issue is an important problem for the community of diffusion models.

Empirically, we can also observe the phenomenon of Lipschitz singularities for v-prediction diffu-
sion models, where the experimental results of Lipschitz constants on FFHQ 256×256 dataset (Kar-
ras et al., 2019) and Lsun-Cat 256×256 (Karras et al., 2019) are shown in Figure A5, from which we
can tell E-TSDM can effectively mitigate Lipschitz singularities in v-prediction scenario. Besides,
we also provide corresponding quantitative evaluations evaluated by FID-10k in Table A2, showing
that E-TSDM can also improve the synthesis performance in the v-prediction scenario.

C.3 PROOF OF THEOREM 4.1

Here we will first give the derivation of the upper-bound on ∥ϵ∗(x, fT(t))−ϵ(x, t)∥ when t ∈ [0, t̃),
where ϵ∗(x, fT(t)) denotes the optimal ϵθ(x, fT(t)), and ϵ(x, t) = −σt∇x log qt(x). Then, we will
discuss the convergence rate of the error bound.

For any t ∈ [0, t̃), there exists an i ∈ {1, 2, · · · , n} such that t ∈ [ti−1, ti). For simplicity, we
use h(x, t) to denote the score function ∇x log qt(x), and use Eτ [·] to denote the expectation over
τ ∼ U(ti−1, ti). Thus, we can obtain

∥ϵ∗(x, f(t))− ϵ(x, t)∥ = ∥Eτ [ϵ(x, τ)]− ϵ(x, t)∥
= ∥Eτ [στh(x, τ)]− σth(x, t)∥
= ∥Eτ [στh(x, τ)− στh(x, t) + στh(x, t)− σth(x, t)]∥
≤ ∥Eτ [στ (h(x, τ)− h(x, t))]∥+ ∥Eτ [(στ − σt)h(x, t)]∥
≤ Eτ [στ∥h(x, τ)− h(x, t)∥] + Eτ [|στ − σt|]∥h(x, t)∥
≤ σtiEτ [∥h(x, τ)− h(x, t)∥] + (σti − σti−1)∥h(x, t)∥
≤ σtiKi(x)(ti − ti−1) +Bi(x)(σti − σti−1

)

≤ σt̃K(x)∆t+B(x)∆σmax,

(A13)

where Ki(x) = supt,τ∈[ti−1,ti),t̸=τ
∥h(x,t)−h(x,τ)∥

|t−τ | , Bi(x) = supt∈[ti−1,ti) ∥h(x, t)∥, K(x) =

supt,τ∈[0,t̃),t̸=τ
∥h(x,t)−h(x,τ)∥

|t−τ | , B(x) = supt∈[0,t̃) ∥h(x, t)∥, and ∆σmax = max1≤i≤n |σti −
σti−1 |. The first equality holds because

ϵ(x, t) = argmin
ϵθ

E[∥ϵθ(xτ , τ)− ϵ∥22|τ = t,xτ = x]

= E[ϵ|τ = t,xτ = x],
(A14)
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Table A4: Quantitative comparison among
E-TSDM, DDPM (Ho et al., 2020), and
modification of noise schedules (Modified-
NS) on FFHQ 256 × 256 dataset (Kar-
ras et al., 2019) evaluated with FID-10k ↓.
Specifically, we implement Modified-NS on
linear, quadratic, and cosine schedules. Ex-
perimental results indicate that the perfor-
mance of Modified-NS is unstable while
E-TSDM achieves better synthesis perfor-
mance.

Linear Quadratic Cosine

Baseline 9.50 13.79 27.17
E-TSDM 6.62 9.69 26.08
Modified-NS 8.67 17.48 26.84

Table A5: Quantitative comparison of remap
method between uniformly sampling t and uni-
formly sampling λ, during training and inference,
on FFHQ 256×256 (Karras et al., 2019) evaluated
with FID-10k ↓. Specifically, Ut is U [0, 1], and
Uλ is U [0,K] for 1/t but U [−K,K] for Inverse-
Sigmoid, where K is a large number to avoid in-
finity. Results show that remap is not helpful.

Training Inference Remap Function

Strategy Strategy 1/t Inverse-Sigmoid

t ∼ Ut t ∼ Ut 9.43 9.33
t ∼ Ut λ ∼ Uλ 83.71 468.90
λ ∼ Uλ t ∼ Ut 83.44 468.19
λ ∼ Uλ λ ∼ Uλ 171.06 351.89

and our optimal ϵ∗(x, f(t)) can be expressed as

ϵ∗(x, f(t)) = ϵ∗(x, ti−1)

= argmin
ϵθ

Eτ∼U(ti−1,ti),ϵ[∥ϵθ(xτ , ti−1)− ϵ∥22|xτ = x]

= Eτ∼U(ti−1,ti),ϵ[ϵ|xτ = x]

= Eτ∼U(ti−1,ti)Eϵ[ϵ|τ,xτ = x]

= Eτ∼U(ti−1,ti)[ϵ(x, τ)].

(A15)

As for the rate of convergence, it is obvious from Equation (A13) that we only need to determine the
convergence rate of ∆σmax. Under common settings, σt is monotonically decreasing and concave
for t ∈ [0, T ], thus

∆σmax = max
1≤i≤n

|σti − σti−1
| = σt1 − σt0 = σ∆t, (A16)

where the last equality holds because σt0 = σ0 = 0, and t1 = t̃/n = ∆t as we uniformly divides
[0, t̃) into n sub-intervals. Then, we can verify the convergence rate of ∆σmax as

lim
∆t→0

∆σmax√
∆t

= lim
∆t→0

√
σ2
∆t

∆t

=

√
dσ2

t

dt

∣∣∣∣∣
t=0

=

√
d(1− α2

t )

dt

∣∣∣∣∣
t=0

=

√
−2αt

dαt

dt

∣∣∣∣∣
t=0

=

√
−2

dαt

dt

∣∣∣∣∣
t=0

,

(A17)

where dαt

dt

∣∣
t=0

is finite and dαt

dt

∣∣
t=0

≤ 0. Thus, we can conclude that ∆σmax is at least 1
2 -order

convergence with respect to ∆t, and the error bound σt̃K(x)∆t + B(x)∆σmax is also at least 1
2 -

order convergence. This is a relatively fast convergence speed in optimization, and demonstrates
that the introduced errors of E-TSDM are controllable.
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Figure A6: Quantitative comparison of
Lipschitz constants between E-TSDM and
DDPM baseline (Ho et al., 2020) on FFHQ
256 × 256 (Karras et al., 2019) using the co-
sine shift schedule.
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Figure A7: Quantitative comparison of Lip-
schitz constants among E-TSDM, DDPM (Ho
et al., 2020), and DDPM (Ho et al., 2020) us-
ing regularization techniques (DDPM-r) on
FFHQ 256× 256 (Karras et al., 2019).

D ADDITIONAL RESULTS

D.1 LIPSCHITZ CONSTANTS

In our main paper, we demonstrate the effectiveness of E-TSDM in reducing the Lipschitz constants
near t = 0 by comparing its Lipschitz constants with that of DDPM baseline (Ho et al., 2020) on the
FFHQ 256× 256 dataset (Karras et al., 2019). As a supplement, we provide additional comparisons
of Lipschitz constants on other datasets, including AFHQ-Cat (Choi et al., 2020) (see Figure A2a),
AFHQ-Wild (Choi et al., 2020) (see Figure A2b), Lsun-Cat 256 × 256 (Karras et al., 2019) (see
Figure A2c), Lsun-Church 256× 256 (Karras et al., 2019) (see Figure A2d), and CelebAHQ 256×
256 (Karras et al., 2017) (see Figure A2e). These experimental results demonstrate that E-TSDM is
highly effective in mitigating Lipschitz singularities in diffusion models across various datasets.

Furthermore, we provide a comparison of Lipschitz constants between E-TSDM and the DDPM
baseline (Ho et al., 2020) when using the quadratic schedule and the cosine-shift schedule (Hooge-
boom et al., 2023). As shown in Figure A2f, we observe that large Lipschitz constants still exist in
diffusion models when using the quadratic schedule, and E-TSDM effectively alleviates this prob-
lem. Similar improvement can also be observed when using the cosine-shift schedule as illustrated
in Figure A6, highlighting the superiority of our approach over the DDPM baseline.

D.2 QUANTITATIVE ANALYSIS OF t̃ AND n

In our main paper, we investigated the impact of two important settings for E-TSDM, the length of
the interval to share conditions t̃, and the number of sub-intervals n in this interval. As a supplement,
we provide additional results on various datasets to further investigate the optimal settings for these
parameters.

As seen in Figure A3 and Figure A4, we observe divergence in the best choices of n and t̃ across
different datasets. However, we find that the default settings where t̃ = 100 and n = 5 consistently
yield good performance across a range of datasets. Based on these findings, we recommend the
default settings as an ideal choice for implementing E-TSDM without the need for a thorough search.
However, if performance is the main concern, researchers may conduct a grid search to explore the
optimal values of t̃ and n for specific datasets.

D.3 ALTERNATIVE METHODS

In this section, we discuss three different alternative methods that possibly alleviate Lipschitz sin-
gularities. including regularization, modification of noise schedules, and remap. Although seem
feasible, they have different problems, resulting in worse performance than E-TSDM.
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Figure A8: Quantitative evaluation of the
ratio of SNR of Modified-NS to the SNR
of the corresponding original noise schedule.
Results show that Modified-NS significantly
increases the SNR near zero point, and thus
reduces the amounts of added noise near zero
point. Specifically, for the quadratic schedule,
Modified-NS seriously increases the SNR al-
most during the whole process.
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Figure A9: Quantitative comparison of
SNR for remap method between uniformly
sampling t and uniformly sampling the
remapped conditional input λ. Results show
that when using remap method, uniformly
sampling λ significantly increases the SNR
across all of the timesteps, and thus forces the
network to focus too much on the beginning
stage of the diffusion process.

D.3.1 REGULARIZATION

As mentioned in the main paper, one alternative method is to impose restrictions on the Lipschitz
constants through regularization techniques. In this section, we apply regularization on the baseline
and estimate the gradient of ϵθ(x, t) by calculating the difference K(t, t′). We represent this method
as DDPM-r in this paper. As shown in Figure A7, although DDPM-r can also reduce the Lipschitz
constants, its capacity to do so is substantially inferior to that of E-TSDM. Additionally, DDPM-
r necessitates twice the calculation compared to E-TSDM. Regarding synthesis performance, as
shown in Table A3, DDPM-r performs slightly better than baseline, but much worse than E-TSDM,
indicating that E-TSDM is a better choice than regularization.

D.3.2 MODIFYING NOISE SCHEDULES

As proved in Appendix C, the mainstream noise schedules satisfy dαt

dt

∣∣
t=0

̸= 0, leading to Lipschitz
singularities as proved in Theorem 3.1. However, it is possible to modify those schedules to force
them to have dαt

dt

∣∣
t=0

= 0, and thus alleviate Lipschitz singularities. We represent this method as
Modified-NS in this paper. However, as said in Nichol & Dhariwal (2021), dαt

dt

∣∣
t=0

= 0 means tiny
amounts of noise at the beginning of the diffusion process, making it hard for the network to predict
accurately enough.

To explore the performance, we conduct experiments of Modified-NS on FFHQ 256 × 256 (Kar-
ras et al., 2019) for all of the three discussed noise schedules in Appendix C.1. Specifically,
for linear and quadratic schedules, since dα(τ)

dτ

∣∣∣
τ=0

= − 1
2β(0) (as detailed in Equation (A2)),

we implement Modified-NS by setting β(0) = 0. Note that for the quadratic schedule, such a
modification will significantly magnify the Signal to Noise Ratio (SNR), α2

t

σ2
t

, across the whole
diffusion process, so we slightly increase βT to make its SNR at t = T similar to that of the
original quadratic schedule. Meanwhile, β1, . . . , βT−1 are also correspondingly increased due to
βt = (

√
β0 +(

√
βT −

√
β0)

t
T−1 )

2. As for the cosine schedule, we set the offset s in Equation (A7)
to zero. Experimental results are shown in Table A4, from which we find that the performance of
Modified-NS is unstable. More specifically, Modified-NS improves performance for linear and co-
sine schedules but significantly drags down the performance for the quadratic schedule. We further
provide the comparison of SNR between Modified-NS and their corresponding original noise sched-
ules in Figure A8 by calculating the ratio of Modified-NS’s SNR to the original noise schedule’s
SNR. From this figure we can tell that for linear and cosine schedule, Modified-NS significantly
increase the SNR near zero point while maintaining the SNR of other timesteps similar. In other
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Figure A10: Quantitative comparison of Lipschitz
constants between E-TSDM and LDM (Rombach
et al., 2022) on FFHQ 256 × 256(Karras et al.,
2019). E-TSDM reduces the overall Lipschitz con-
stants near t = 0, and mitigates the Lipschitz singu-
larities occurring in LDM (Rombach et al., 2022).

Figure A11: Qualitative results pro-
duced by E-TSDM implemented on
LDM (Rombach et al., 2022) on FFHQ
256× 256(Karras et al., 2019).

words, on the one hand, Modified-NS seriously reduces the amount of noise added near zero point,
which can be detrimental to the accurate prediction. On the other hand, Modified-NS alleviates the
Lipschitz singularities, which is beneficial to the synthesis performance. As a result, for linear and
cosine schedules, Modified-NS performs better than baseline but worse than E-TSDM. However,
for the quadratic schedule, although we force the SNR of Modified-NS at t = T similar to the SNR
of the original schedule, the SNR at other timesteps is significantly increased, leading to a worse
performance of Modified-NS compared to that of baseline.

D.3.3 REMAP

Except for regularization and Modified-NS, remap is another possible method to fix the Lipschitz
singularities issue. Recall that the inputs of network ϵθ(x, t) is noisy image x and timestep con-
dition t. Remap is trying to design a remap function λ = f(t) on t as the conditional input of
network instead of t, namely, ϵθ(x, f(t)). The core idea of remap is to reduce ∂ϵθ(x,t)

∂t by signifi-
cantly stretching the interval with large Lipschitz constants. Note that although fT of E-TSDM can
also be seen as a kind of remap function, there are big differences between E-TSDM and remap.
Specifically, E-TSDM tries to set the numerator to zero while remap aims to significantly increase
the denominator. Besides, fT has no inverse while f(t) of remap is usually a reversible function.
We provide two simple choices of f(t) in this section as examples, which are f(t) = 1/t and
f−1(λ) = sigmoid(λ).

Remap can efficiently reduce the Lipschitz constants regarding the conditional inputs of the net-
work, ∂ϵθ(x,t)

∂λ . However, since we uniformly sample t both in training and inference, what should
be focused on is the Lipschitz constants regarding t, ∂ϵθ(x,t)

∂t , which can not be influenced by remap.
In other words, although remap seems to be a feasible method, it is not helpful to mitigate the Lip-
schitz constants we care about, unless we uniformly sample λ in training and inference. However,
uniformly sampling λ may force the network to focus on a certain part of the diffusion process. We
use f(t) = 1/t as an example to illustrate this point and show the comparison of SNR between
uniformly sampling t and uniformly sampling λ when using remap in Figure A9. Results show that
uniformly sampling λ maintains a high SNR across all of the timesteps, leading to excessive atten-
tion to the beginning stage of the diffusion process. As a result, when we uniformly sample λ during
training or inference, the synthesis performance gets significantly worse as shown in Table A5. Be-
sides, when we uniformly sample t both in training and inference, remap makes no difference and
thus leads to a similar performance to the baseline.
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PSNR↑: 24.64
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PSNR↑: 25.61

Figure A12: Qualitative and quantitative results by applying E-TSDM to super-resolution task
(i.e., from 64× 64 to 256× 256), using PSNR as the evaluation metric. Results show that E-TSDM
mitigates the color bias occurring in baseline and improves the PSNR from 24.64 to 25.61, which
suggests that our approach well supports conditional generation.

D.4 MORE DIFFUSION MODELS

Latent diffusion models (LDM) (Rombach et al., 2022) is one of the most renowned variants of
diffusion models. In this section, we will investigate the Lipschitz singularities in LDM (Rombach
et al., 2022), and apply E-TSDM to address this problem. LDM (Rombach et al., 2022) shares
a resemblance with DDPM (Rombach et al., 2022) but has an additional auto-encoder to encode
images into the latent space. As LDM typically employs the quadratic schedule, it is also susceptible
to Lipschitz singularities, as confirmed in Figure A10.

As seen in Figure A10, by utilizing E-TSDM, the Lipschitz constants within each timestep-shared
sub-interval are reduced to zero, while the timesteps located near the boundaries of the sub-intervals
exhibit a Lipschitz constant comparable to that of baseline, leading to a decrease in overall Lipschitz
constants in the target interval t ∈ [0, t̃), where t̃ is set as the default, namely t̃ = 100. Consequently,
E-TSDM achieves an improvement in FID-50k from 4.98 to 4.61 with the adoption of E-TSDM,
when n = 20. We provide some samples generated by the E-TSDM implemented on LDM in
Figure A11.

Besides, we also implement our E-TSDM to Elucidated diffusion models (EDM) (Karras et al.,
2022), which proposed several changes to both the sampling and training processes and achieves
impressive performance. Specifically, we reproduce EDM and repeat it three times on CIFAR10
32 × 32 (Krizhevsky et al., 2009) to get a FID-50k of 1.904 ± 0.015, which is slightly worse than
the official released one. Then we apply E-TSDM to EDM and repeat it three times to get a FID-50k
of 1.797 ± 0.016, indicating that E-TSDM is also helpful to EDM.

D.5 GENERATED SAMPLES

As a supplement, we provide massive generated samples of E-TSDM trained on Lsun-Church 256×
256 (Karras et al., 2019) (see Figure A13), Lsun-Cat 256×256 (Karras et al., 2019) (see Figure A14),
AFHQ-Cat 256×256 (Choi et al., 2020), AFHQ-Wild 256×256 (Choi et al., 2020) (see Figure A15),
FFHQ 256 × 256 (Karras et al., 2019) (see Figure A16), and CelebAHQ 256 × 256 (Karras et al.,
2017) (see Figure A17).
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Figure A13: Qualitative results produced by E-TSDM on Lsun-Church 256×256 (Yu et al., 2015).

Figure A14: Qualitative results produced by E-TSDM on Lsun-Cat 256× 256 (Yu et al., 2015).
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Figure A15: Qualitative results produced by E-TSDM on AFHQ-Cat 256×256 (Choi et al., 2020)
and AFHQ-Wild 256× 256 (Choi et al., 2020).

Figure A16: Qualitative results produced by E-TSDM on FFHQ 256× 256(Karras et al., 2019).
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Figure A17: Qualitative results produced by E-TSDM on CelebAHQ 256 × 256 (Karras et al.,
2017).
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