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Y-Graph: A Max-Ascent-Angle Graph
for Detecting Clusters

Junyi Guan , Member, IEEE, Sheng Li , Senior Member, IEEE, Xiongxiong He ,
Jiajia Chen , Yangyang Zhao , and Yuxuan Zhang

Abstract—Graph clustering technique is highly effective in de-
tecting complex-shaped clusters, in which graph building is a cru-
cial step. Nevertheless, building a reasonable graph that can exhibit
high connectivity within clusters and low connectivity across clus-
ters is challenging. Herein, we design a max-ascent-angle graph
called the “Y-graph”, a high-sparse graph that automatically allo-
cates dense edges within clusters and sparse edges across clusters,
regardless of their shapes or dimensionality. In the graph, every
point x is allowed to connect its nearest higher-density neighbor
δ, and another higher-density neighbor γ, satisfying that the an-
gle ∠δxγ is the largest, called “max-ascent-angle”. By seeking
the max-ascent-angle, points are automatically connected as the
Y-graph, which is a reasonable graph that can effectively balance
inter-cluster connectivity and intra-cluster non-connectivity. Be-
sides, an edge weight function is designed to capture the similarity
of the neighbor probability distribution, which effectively repre-
sents the density connectivity between points. By employing the
Normalized-Cut (Ncut) technique, a Ncut-Y algorithm is proposed.
Benefiting from the excellent performance of Y-graph, Ncut-Y can
fast seek and cut the edges located in the low-density boundaries
between clusters, thereby, capturing clusters effectively. Experi-
mental results on both synthetic and real datasets demonstrate the
effectiveness of Y-graph and Ncut-Y.

Index Terms—Complex-shaped clusters, normalized-cut, graph
clustering.

I. INTRODUCTION

THE intrinsic heterogeneity of nonuniform data implies the
existence of latent structure [1], and uncovering the latent

structure is what clustering aims at. Clustering methods group
data points into clusters for data analysis based on similarity [2].
So researchers can delve into the intrinsic properties of the
data and discover new knowledge in fields like computer sci-
ence, biology, and social science. Different clustering algorithms
have been proposed based on specific assumptions regarding
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the nature of “cluster” [3], such as partitional, hierarchical,
density-based, and graph-based. Density-based methods are ef-
fective in reconstructing arbitrary shapes, owing to the cluster
definition as high-density areas with low-density gaps separating
themselves from other clusters [4].

DBSCAN [5], a typical density-based method, captures max-
imum density-connected point sets according to a specific
density-connectivity criterion to achieve arbitrary-shaped clus-
ter reconstruction. However, obtaining an effective density-
connectivity criterion often requires tedious parameter tuning.
Subsequent works, e.g., [6], [7], developed adaptive parameter
tuning techniques, still, these methods would possibly merge
high-overlapping clusters [8].

Mean-Shift [9] also sees a cluster as a dense area and can well
overcome the abovementioned limitations. It detects clusters
differently: it first constructs a density surface of the data, and
then lets each point perform a “mean-shift” procedure (i.e.,
a gradient ascent) on the local density surface until conver-
gence. So the shifted data points are grouped into clusters and
the local density peaks (i.e., local density maximum area) are
identified as cluster centers. Note that the “mean-shift” pro-
cedure can easily locate boundaries between clusters that are
always in valley structures (i.e., local density minimum area)
and detect all local density peaks as cluster centers [10]. How-
ever, this can also cause Mean-Shift to over-divide multi-peak
clusters [11].

Density Peak Clustering (DPC) [12] can address the over-
division issue by selecting high-representativeness density peaks
as cluster centers based on its center assumption—-cluster cen-
ters are density peaks that have high densities and are far away
from points with higher densities. Besides, in terms of alloca-
tion strategy, DPC applies a bottom-up hierarchical clustering
technique according to a specific linkage metric (i.e., “minimum
center-boosting distance” named by [13]). However, this link-
age metric does not take into account the density connectivity
between clusters, which makes the reconstruction performance
of DPC on arbitrary shape unrobust [14]. Later works, e.g., [15],
[16], improved DPC’s allocation strategy, but still followed the
main assumption of DPC, i.e., finding high-representativeness
density peaks as final centers. Besides, since whether a density
area is merged with others is depended on its density peak’s
representativeness rather than its density connectivity to other
areas, false mergings of low density-connected density areas
may possibly occur, resulting in a loss of information about the
underlying structure of the data.
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Graph-based methods obtain clusters by cutting the graph of
data into high-connected regions [18]. Classically, the spectral
clustering technique describes clustering as a minimum-cost
graph-cutting problem and provides an effective standard linear
algebra solution [19]. More like a graph-cutting tool for data
clustering, the construction of a graph is crucial for spectral
clustering. Intuitively, a reasonable graph should have high data
connectivity within clusters while low across clusters.

Spectral clustering often builds a dataset into a kNN (or a
ε-neighborhood) graph with a Gaussian kernel weight function
to capture the data connectivity information. Nevertheless, pick-
ing a reasonable k (or ε) for constructing a reasonable graph—
a graph with dense edges within clusters and sparse across
clusters—is challenging. Because a trade-off exists between
inter-cluster connectivity and intra-cluster non-connectivity. Be-
sides, to ensure good data connectivity, the edges of the graph
may be much more than the points within the dataset when
building a kNN-graph. Thus, when processing large data, a huge
number of edges may make for a more difficult time-consuming
clustering task. On the other hand, storing such a graph requires
a lot of memory. Therefore, a graph with a few edges that can
effectively reflect the differences in data connections within and
across clusters is of great significance.

Inspired by the character that a cluster has a unique property
on the data density surface, i.e., a high-density connected region,
we designed a max-ascent-angle graph (Y-graph1) that can effi-
ciently reflect the underlying structure of data with a few edges,
where the edge weight is to reflect the density connectivity of
points. The proposed clustering problem—-cutting the graph
into high-density connected clusters with the minimum weight
cost (density-connected cost) can be solved by using traditional
spectral clustering tools, i.e., Ncut solver [20]. The main contri-
butions of this paper are as follows:

1) By maximizing the ascent angles of all points, the Y-graph
achieves high pairwise connectivity within clusters and
strong disconnectivity between clusters.

2) The edge weight is designed as the similarity of neighbor
probability distribution that can reasonably represent the
density connectivity between points. Then, by applying
the Ncut technique on the Y-graph, the proposed Ncut-
Y algorithm can robustly cut the edges of low-density
connectivity areas between clusters. This enables it to
effectively capture complex-shaped clusters.

3) The construction of Y-graph with high sparsity only re-
quires kNN distances of data as input and is suitable for
large-scale data clustering.

The rest paper is composed: Section II introduces the re-
lated works; Section III mainly focuses on the proposed algo-
rithm; Section IV demonstrates the experiments and discussions;
Section V gives the final conclusion.

II. RELATED WORKS

By integrating the geometric characteristic of a cluster’s den-
sity surface, we propose a sparse graph for the efficient capturing
of underlying data structure.

1The code is available at https://github.com/Guanjunyi/Y-graph

A. Graphs for Clustering

Graph-theoretical methods are often used for clustering prob-
lems in the form of graph-cutting [21], where a crucial step is
graph building [22].

For example, the single-linkage method [23], a classic hi-
erarchical clustering algorithm, initially constructs the dataset
into a Minimum Spanning Tree (MST) based on a linkage
metric known as the minimum member distance. Subsequently,
it divides the MST into a specified number of clusters with the
minimum weight, essentially solving a graph-cutting problem
of MST. In recent research, Yan Ma et al. [25] calculated
inter-cluster distances using the centroids of MST and incor-
porated the cut edge length as a merging criterion, reducing
complexity while maintaining clustering performance. Gaurav
Mishra et al. [27] constructed MST based on subcluster centroids
to identify adjacent pairs, ensuring the accuracy of the merging
process. Moreover, in [24], a merging technique based on the
circumference proximity of the graph is devised to guide the
merging process of subclusters, facilitating the efficient and
accurate amalgamation of adjacent subclusters into the final
result within hybrid clustering algorithms. To better capture the
topological structure of data, Rashmi Maheshwari et al. [26]
integrated entropy with local neighborhood information of the
graph for a more precise computation of data point density
distribution.

Notably, DPC also deals with a graph-cutting problem. Be-
cause its allocation strategy applies a linkage metric, the mini-
mum center-boosting distance that first named in [13], to build
the dataset into a Density-Boosting Minimum Spanning Tree
(DBMST) to solve the DBMST cutting problem [11]. How-
ever, these MST structures cannot fully cover the structural
information of clusters. Because a tree structure only focuses
on describing the parent-child relationship and will lose the
relationship between nodes at the same level, thereby, missing
out on some important structural information. Consequently, the
algorithm may fail to interpret the cluster structure completely
or cut the edges (between clusters) that should be cut, thereby,
leading to a poor clustering result.

Therefore, a graph that can reasonably reflect the data struc-
ture, i.e., a graph with high data connectivity within clusters
while low data connectivity between clusters, is necessary.
Compared to a tree structure, a well-built graph structure can
provide higher information connectivity for data, such as Fully
Connected Graph (FCG), kNN-graph, ε-neighborhood graph
(hereinafter, ε-graph), and so on [30]. FCG provides the highest
information connectivity for data since each point is directly
connected to all other points. But as the densest graph, FCG
does not well reflect the local structure of the data. In contrast,
kNN-graph and ε-graph can do better, which is credited to their
popularity in practical graph-cutting tasks.

In a kNN-graph, each point is only directly connected to its
k nearest neighbors, while ε-graph only connects points within
its ε-neighborhood, in other words, the distance between the
two connected points is less than ε value. However, the kNN-
graph and ε-graph do not deliberately reflect the differences
between intra-cluster data connectivity and inter-cluster data
connectivity.
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In this work, we designed a highly sparse graph that can
efficiently reflect the difference between intra-cluster connectiv-
ity and inter-cluster non-connectivity. To be noted, for solving
general graph-cutting problems, we can use spectral clustering
that is simple to implement and can be efficiently solved by
standard linear algebra methods [19], [31].

B. Spectral Clustering

Let X = {x1, x2, . . . , xn | xi ∈ Rd} be a n× d data matrix
with n data points and d features, where xi represents the ith
point. With given X , one can obtain its symmetric similarity
matrix S ∈ Rn×n according to a specific similarity measure cri-
terion. The (i, j)th elementSij represents the similarity between
xi and xj .

In general, an adjacency graph A (typically an ε-graph) and a
Gaussian kernel-based edge weight functionw are used to define
S, as:

Sij = wij ×Aij , wij = exp

(
−||xi − xj ||22

φ

)
(1)

where φ is a kernel parameter, and Aij represents the adjacency
between xi and xj , as:

Aij =

{
1 if ||xi − xj ||2 < ε
0 otherwise

(2)

Spectral clustering views similarity matrix S as a graph and
aims to divide the graph into subgraphs (clusters) by cutting
edges between clusters with the minimum weight cost. In other
words, spectral clustering treats the clustering problem as a
minimum graph-cutting problem which can be described as the
following optimization problem:

min
H

Ψ = Tr(HTLH), s.t. HTH = I (3)

where H ∈ Rn×c is a label feature matrix, where c means the
number of label features [31].L = I − Ŝ is a normalized Lapla-
cian matrix, where Ŝ = D−1/2SD−1/2 (orD−1S) is the normal-
ized similarity matrix. D = diag(d1, d2, . . . , dn) ∈ Rn×n is a
degree matrix that is a diagonal matrix whose entries are row
sums of S, as:

di =

n∑
j=1

Sij (4)

Fortunately, by expressing the spectral clustering problem as
the standard trace minimization problem (3), we can solve it
by using the matrix H with the first c eigenvectors of L as
its rows. Since the eigenvectors in H can take on continuous
values, we need to choose a classical clustering algorithm (e.g.,
K-means [33]) to partition them into clusters after matrix H is
obtained.

Different Ŝ describes different clustering goals. The Ratio-cut
clustering [32] uses Ŝ = D−1S, which tends to partition the
graph into clusters of similar size, while the Ncut clustering
uses Ŝ = D−1/2SD−1/2, which tends to partition the graph into
clusters that are of similar size and relatively sparse compared
to each other.

Spectral clustering demonstrates excellent clustering perfor-
mance; however, scalability remains a challenge. In [28], a

Fig. 1. An explanation for the naming of the Y-graph.

sparse similarity graph of size O(n) was constructed by lever-
aging the intrinsic structural information of data points, signif-
icantly speeding up the subsequent spectral clustering process.
Geping Yang et al. [29] analyzed the four stages of large-scale
spectral clustering and proposed corresponding acceleration
methods, effectively enhancing the computational efficiency of
spectral clustering. In this work, we constructed a highly sparse
Y-graph and utilized Ncut for clustering, demonstrating good
scalability and computational efficiency.

III. THE NCUT-Y ALGORITHM

According to the geometric characteristics of clusters on the
data density surface, we designed a graph structure that is well-
suited for capturing data associations within the dataset, called
the “Y-graph”. Fig. 1 illustrates the reason we call our graph the
“Y-graph”. As shown, in the Y-graph, each point x is allowed
to find two associated neighbors: 1) the closest higher-density
neighbor (δ) and 2) the second higher-density neighbor (γ),
to determine its max-ascent-angle ∠δxγ. This density-boosting
two-outdegree association structure resembles the shape of the
letter “Y”.

Fig. 2 illustrates the main idea of our Y-graph building and its
role in the clustering process. First, kNN-based density estima-
tion is employed to estimate the density distribution of the data
points, which helps to capture the local density information.
Next, connections between each point and two high-density
points within its local neighborhood are established, forming
“the maximum ascent angle” (as described in Section III-A),
which helps to construct our Y-graph structure. Subsequently,
we apply our Cross KL-based weight function (as discussed in
Section III-B) to assign weights to the edges in the graph struc-
ture. This weighting step enhances the importance of informative
edges in the graph. Finally, based on our cluster assumption
(see Section III-C), the Ncut solver is utilized to find and cut
the low-density boundaries among strong-associated clusters to
obtain the clustering result.

A. Graph Building

Given a dataset X = {x1, x2, . . . , xn | xi ∈ Rd}, for
each point xi, we define its neighbors as Nk(xi) =

{x(1)
i , x

(2)
i , . . . , x

(k)
i }, where x

(k)
i means xi’s kth nearest

neighbor. Then, we estimate the kNN-based density of points
as in (5), where kρ = 2k for obtaining a relatively smooth
density distribution of data, and dij = dist(xi, xj) represents
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Fig. 2. The clustering framework of the proposed Ncut-Y algorithm.

the euclidean distance between xi and xj .

ρi =
1

1
kρ

∑
xj∈Nkρ (xi)

dij
(5)

Each point xi with density value is assumed to fall on the
density surface of data X , and then, let point xi find and connect
its two higher-density neighbors δxi

and γxi
, i.e., δxi

, γxi
∈

Nk(xi), ,min(ρδxi
, ργxi

) > ρxi
. In what follows, we provide

the corresponding neighbor-finding strategy:
First, δxi

is defined as xi’s closest higher-density neighbor,
which may along the steepest path of xi to the higher density
area, as:

δxi
= argmin

xz

(diz)

s.t. ρxz
> ρxi

, xz ∈ Nk(xi), diz < dnei (6)

where a small-value radius paramter dnei is added to ensure that
δxi

is indeed a neighbor nearby xi, set as:

dnei =
2

n

∑
xi∈X

dist(xi, x
(kb)
i ) (7)

kb = �ln(n2)� is a small value to ensure the proximity within
radius dnei. Then, for δxi

= ∅, we reset δxi
= xi.

On this basis, we introduce a concept of “ascent angle”-the
angle formed between point xi and its two higher-density neigh-
bors (one is δxi

), with point xi as the vertex, denoted as θxi
, as:

θxi
=

(
cos−1

( −−−→
xiδxi

· −−→xixz

||−−−→xiδxi
||2 · ||−−→xixz||2

))

s.t. ρxz
> ρxi

, xz ∈ Nk(xi), xi ∈ Nk(xz), diz < dnei (8)

The ascent angle θ reflects the size of the association field
of a point. To obtain the maximum ascent association field for
each point xi, we connect an edge point xi to γxi

(the second
higher-density neighbor) to maximize the ascent angle θxi

. So,
the neighbor γxi

should meet the condition:

γxi
= argmax

xz

(θxi
)

s.t. ρxz
> ρxi

, xz ∈ Nk(xi), xi ∈ Nk(xz), diz < dnei (9)

For point xi with γxi
= ∅, we reset γxi

= xi.
After obtaining δ and γ neighbors, we connect points to their

neighbors to build a graphG(X,E), whereX is the node set, and
the edge set E = {eij |xj = δxi

∨ xj = γxi
∨ xi = δxj

∨ xi =
γxj
}. Herein, G(X,E) is called “the max-ascent-angle graph”,

and is denoted as “Y-graph”.
Fig. 3 presents the feasibility of our Y-graph structure in

a continuous two-peak density surface (without a stationary
point). In this method, we divide the points into four catalogies,
including the non-peak point within a single-peak density area
(A-type), the saddle point on the valley (B-type), the peak point
(C-type), and the non-saddle valley point (D-type). As shown,
B-type and D-type points at the valley position connect two
single-peak density areas, which ensures that the association
between the two single-peak density areas is recorded; while
the edges of A-type points enhance the data connectivity in the
single-peak density areas.

To assume that an approximate continuous density surface is
composed of n data points: na A-type points, nb B-type points,
nc C-type points, and nd D-type points, generally, na � (nb +
nd)� nc, n = na + nb + nc + nd. Every point x (except peak
point) connects two edges to its δx and γx points, so, our Y-graph
has 2(na + nb + nd) edges.
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Fig. 3. The maximum ascent angles of four types of data points on a continuous density surface.

In the graph, A-type points will always connect points within
its single-peak density area, which means that A-type points
have 2na edges within single-peak density areas. While B-
type and D-type points will connect single-peak density areas,
which means there are 2(nb + nd) edges that describe valley
areas.

Because 2na � 2(nb + nd), our Y-graph can use most edges
(2na edges) to effectively describe the high data connectivity
within local high-density areas, and few edges (2(nb + nd)
edges) to well describe the low data connectivity of valley areas.
In other words, our Y-graph can automatically and reasonably
allocate edges: dense edges in local high-density areas, and
sparse edges in local low-density areas. Such graph structure
is well-suited for data clustering tasks because it can describe
data associations with a fixed number of edges (i.e., about 2n
edges but no more than 2n).

Additionally, there are some interesting features of the maxi-
mum ascent angle ofA ∼ D type points on a continuous density
surface, as in Discussion 1.

Discussion 1: The B-type point owns largest ascent view-
angle θB = 180◦; A-type point owns θA → 90◦

−
; C-type point

C has no ascent view-angle θC → 0◦; and D-type point D has
its ascent view-angle θD → 90◦.

For a non-peak point x, its direction to nearest higher-density
point δx is perpendicular to its density contour line, so: 1) if
x is a B-type point, its direction to γx point (within another
single-peak density area) will also perpendicular to its density
contour line, so θB = 180◦; 2) if x is a A-type point on a convex
density surface, its γx point (within the same single-peak density
area) will infinitely close to the density contour line but higher
than the density contour line (since ργx

> ρx), so θA → 90◦
−
;

3) ifx is aD-type point on a concave density surface, its direction
to γx point can be perpendicular to its direction to δx, so θD =
90◦.

In practice, clusters often consist of multiple single-peak
density areas [34], also known as multi-peak clusters. There-
fore, a multi-peak cluster contains some valley areas, called
inter-cluster valleys. Different from valley areas across clusters
(called across-cluster valleys), inter-cluster valleys usually have
a stronger association. To better reflect the difference between
inter-cluster valleys and across-cluster valleys, in what follows,
an edge weight function is designed.

B. Edge Weight Function Design

Fig. 4 shows a probability density distribution of two clusters.
As shown, clear differences exist between inter-cluster valleys
and across-cluster valleys. Given two edges edge1 and edge2
fall in the across-cluster valley and the inter-cluster valley,
respectively. By observing the neighbor probability distribution
of points a, b, c, and d, we find that points a and b (of edge1) have
a high similar distribution, while points c and d (of edge2) have
a low similar distribution. Inspired by this, we designed an edge
weight function w(·) based on the cross KL divergence [35],
which reflects edge eij’s weightwij as the similarity of neighbor
probability distribution (hereinafter, the distribution similarity)
between points xi and xj connected by eij .

For a point xx ∈ X , its neighboring area is set as
N(xi) = {xi, Nk(xi)} = {x(0)

i , x
(1)
i , . . . , x

(k)
i } (where x

(0)
i =

xi). Think of the neighboring area N(xi) as a sample space
{x(0)

i , x
(1)
i , . . . , x

(k)
i }, and let all point within the space have

the probability 1∑
x∈N(xi)

ρx
{ρ

x
(0)
i
, ρ

x
(1)
i
, . . . , ρ

x
(k)
i
}. Then, we

have xi’s discrete neighboring probability distribution asPxi
=

{Pxi
(x

(0)
i ),Pxi

(x
(1)
i ), . . . ,Pxi

(x
(z)
i )}, defined as:

Pxi
(x

(z)
i ) =

ρ
x
(z)
i∑

x∈N(xi)
ρx

(10)

For each pair of adjacent points xi and xj in graph G(X,E)
(i.e., ∃eij or eji ∈ E), we have the cross KL divergence between
discrete neighboring probability distribution Pxi

and Pxj
as:

D(Pxi
||Pxj

) =
1

2

(
DKL(Pxi

||Pxj
) +DKL(Pxj

||Pxi
)
)
(11)

where D(Pxi
||Pxj

) is the KL divergence between points xi and
xj as:

DKL(Pxi
||Pxj

) =

k∑
z=0

Pxi
(x

(z)
i ) log

(
Pxi

(x
(z)
i )

Pxj
(x

(z)
j )

)
(12)

Then, we view the cross KL divergence D(Pxi
||Pxj

) ∈
[0,+∞) between Pxi

and Pxj
as the dissimilarity between

points xi and xj . On this basis, we define weight function w
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Fig. 4. The motivation of the design of our cross KL edge weight function.

of edges in graph G(X,E) as:

wij =

{
e−λ·(D(Pxi

||Pxj
)) eij ∈ E

0 otherwise
(13)

where parameter λ > 0 is user-preset (default is 1). Since
D(Pxi

||Pxj
) ∈ [0,+∞), we have wij ∈ [0, 1] that indicates the

distribution similarity between points xi and xj .
Based on G(X,E,w), for dataset X , we can easily obtain its

adjacency matrix A ∈ Rn×n as:

Aij =

{
1 ∃eij ∈ E
0 otherwise

(14)

and then, define its similarity matrix S ∈ Rn×n as:

Sij = wij ×Aij (15)

Discussion 2 is a detailed analysis of the relationship between
Cross KL edge weight and data density distribution.

Discussion 2: Given a point xi ∈ X , we denote P(min)
N(xi)

=

minxz∈N(xi)(Pxi
(xz)) and P(max)

N(xi)
= maxxz∈N(xi)(Pxi

(xz)).
If point xj is xi’s adjacent point in G (i.e., eij ∈ E),

DKL(Pxi
||Pxj

) � (k + 1)(P(max)
N(xi)

log
P(max)

N(xi)

P(min)

N(xj)

). Let
P(max)

N(xi)

P(min)

N(xj)

=

1 +ΔP1. Then, DKL(Pxi
||Pxj

) � (k + 1)(P(max)
N(xi)

log(1 +

ΔP1)). Clearly, when ΔP1 → 0, DKL(Pxi
||Pxj

)→ 0. Sim-
ilarly, ΔP2 → 0, DKL(Pxj

||Pxi
)→ 0, where 1 + ΔP2 =

P(max)

N(xj)

P(min)

N(xi)

. Therefore,ΔP1 andΔP2 (i.e., the maximum probability

difference between the neighboring areas of points xi and xj)
determines the upper limit of D(Pxi

||Pxj
).

Let average density ρ
(ave)
N(xi)

= 1
1+k ·

∑
xz∈N(xi)

(ρxz
), max

density ρ
(max)
N(xi)

= maxxz∈N(xi)(ρxz
), and corresponding den-

sity differenceΔρ1 = ρ
(max)
N(xi)

− ρ
(ave)
N(xi)

. Then according to (10),

P(max)
N(xi)

= 1
1+k · (1 + Δρ1

ρ
(ave)

N(xi)

). Similarly, we can haveP(min)
N(xj)

=

1
1+k · (1− Δρ2

ρ
(ave)

N(xj)

), where Δρ2 = ρ
(ave)
N(xj)

− ρ
(min)
N(xj)

.

So, ΔP1 = 1
k+1 (

Δρ1

ρ
(ave)

N(xi)

+ Δρ2

ρ
(ave)

N(xi)

). In the same way, we have

ΔP2 = 1
k+1 (

Δρ3

ρ
(ave)

N(xi)

+ Δρ4

ρ
(ave)

N(xi)

), where Δρ3 = ρ
(ave)
N(xi)

− ρ
(min)
N(xi)

,

and Δρ4 = ρ
(max)
N(xj)

− ρ
(ave)
N(xj)

. Therefore, once ΔP1 +ΔP2 →
0, D(Pxi

||Pxj
)→ 0, i.e., their distribution similarity wij → 1.

Let ΔP∗ = ΔP1 +ΔP2 = 1
k+1 (

Δρ1+Δρ3

ρ
(ave)

N(xi)

+ Δρ2+Δρ4

ρ
(ave)

N(xj)

) =

1
k+1 (

ρ
(max)

N(xi)
−ρ(min)

N(xi)

ρ
(ave)

N(xi)

+
ρ
(max)

N(xj)
−ρ(min)

N(xj)

ρ
(ave)

N(xj)

). By introducing the con-

cept of density fluctuation range of xi’s neighboring area as

RρN(xi)
= ρ

(max)
N(xi)

− ρ
(min)
N(xi)

, we have ΔP∗ = 1
k+1 (

RρN(xi)

ρ
(ave)

N(xi)

+

RρN(xj)

ρ
(ave)

N(xj)

). Obviously, a local density fluctuation range

is no larger than the global density fluctuation range,
i.e., RρN(xi)

� RρX
= [minxz∈X(ρxz

),maxxz∈X(ρxz
)]. Thus,

ΔP∗ � 1
k+1 (

RρX

ρ
(ave)

N(xi)

+
RρX

ρ
(ave)

N(xj)

). For a datasetX , itsRρX
is fixed,

so if ρ
(ave)
N(xi)

and ρ
(ave)
N(xj)

are large values, ΔP∗ tends to have
a small value, thereby, obtaining a high distribution similarity
wij value. In other words, if point xi and its adjacent point xj

(connected by eij) in a relatively high-density area, they tend to
have a high distribution similarity wij value.

Therefore, points xi and xj within a high-density area tend to
have a high distribution similarity wij .

Fig. 5 shows the proposed graph and the visualization of edge
weights on the Agg dataset [36] (a synthetic dataset). As shown,
our Y-graph efficiently captures the structure of the whole dataset
(left panel), and edges in high-density areas generally have
higher weights (darker green) than those in low-density areas
(right panel).

In the following part, a density-based cluster assumption is
introduced to guide the clustering (i.e., graph cutting) task on
the proposed Y-graph.

C. Our Cluster Assumption

To group density-connected points of similar density into
clusters, we propose our own cluster assumption:

Assumption 1: A cluster is composed of a maximum set of
adjacent points with similar density distributions.

According to Assumption 1, the Y-graph is to cut graph
G(X,E,w) into clusters of maximum distribution similarity
(i.e., maximum weight value) with the minimum cutting weight
cost, which is exactly what can be achieved by Ncut cluster-
ing [20]. According to Discussion 2, our Y-graph-cutting-based
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Fig. 5. The edge weight visualization of our Y-graph on the Agg dataset, where the size of the black point reflects its density size, i.e., a big point will have a
large density.

clustering idea can well capture arbitrary-shaped clusters within
high-density areas by cutting edges within across-cluster valley
areas [38].

By applying Ncut solver with the input of our Y-graph-based
similarity matrix S and cluster number C, i.e., Ncut(S,C), the
clustering result Cl = {Cl1, Cl2, . . . , ClC} can be obtained.

D. Pseudocode and Complexity

Algorithm 1 shows the pseudocode of the proposed clustering
algorithm with three steps: 1) graph building; 2) weight evalua-
tion; 3) Ncut solver.

The Y-graph building (step 1) needs a computational complex-
ity of O(n log(n) + nk). To construct a graph, the first step is
to perform a fast tree-based (e.g. kd-tree [48], cover trees [49])
kNN search with a complexity of O(n log(n)). Then, within
the neighborhood of each point, we identify two higher-density
points that satisfy certain conditions and establish connections
with them, with a complexity of O(nk). The weight evaluation
for each edge (step 2) requires a complexity of O(nk), where k
represents the number of neighbors for a given point. The Ncut
solver (step3) requires O(C|E|+ CTn), where the Lanczos
algorithm [39] with O(C|E|) is used to solve the eigenvectors
of Y-graph, and K-means with O(CTn) is applied to partition
these eigenvectors into clusters. Parameter C represents the
given number of clusters, |E| represents the number of edges
in the Y-graph, and T means the iterations of K-means. Since
n < |E| < 2n as discussed in Section III-A, the overall com-
plexity of our Ncut solver step is O(Cn+ CTn) = O(CTn).

Therefore, the overall time complexity of Ncut-Y clustering
is O(n log(n) + nk + CTn),where k, T and C are far less than
n.

IV. EXPREIMENTS

A. Experimental Set up

Datasets: The proposed algorithm is evaluated by a set
of eighteen synthetic datasets and ten widely-used real-world
datasets, as listed in Table I.

Comparison algorithms and settings: a state-of-the-art spec-
tral clustering technique RESKM [29], four classic clustering
algorithms (K-means [33], DBSCAN [5], Self-tuning Spec-
tral Clustering (SSC) [41], and DPC [12]), three traditional
Ncut [20] versions based on kNN-graph, ε-graph, and fully
connected graph, respectively (denoted as Ncut-k, Ncut-ε, and
Ncut-f , respectively), and the proposed Ncut-Y are presented for
comparison.

Parameters are usually determined by evaluating the perfor-
mance of algorithms across a wide range of configurations.
Herein, K-means, SSC, and four versions of Ncut are evaluated
ten times in different parameter settings, and the configuration
that yields the best is chosen.

Data preprocessing: To preprocess datasets and mitigate the
impact of dimensional metrics differences, the min-max normal-
ization technique is employed [42], which rescales the values of
each feature within a specific range (typically 0 to 1).

Machine configuration: The specified machine configuration
consists of a Mac-Book Pro with a 2.9 GHz Intel Core i5
processor and 8 GB of RAM. The operating environment is
Matlab (r2017b).

Evaluation metric: The popular Adjusted Rand Index
(ARI) [51], Adjusted Mutual Information (AMI) [51], Normal-
ized Mutual Infromation (NMI) [52], and Silhouette Coefficient
(SC) [53] are used for the performance evaluation.

B. Experiments on Synthetic Datasets

1) Comparisons With kNN-Graph and ε-Graph: The Y-
graph is compared with the kNN-graph and the ε-graph in
terms of their capability and efficiency in capturing structural
patterns in the Eyes [41] and Impossible (without noise) [2]
datasets, both of which exhibit complex-shaped and imbalanced
clusters. Eyes consists of three imbalanced clusters: two dense
square-shaped clusters surrounded by one sparse ring-shaped
cluster (see Fig. 6). Meanwhile, Impossible contains seven
imbalanced clusters with various shapes, including spherical,
ellipsoidal, nested spirals, and nested rings (see Fig. 7). These
characteristics indicate that clustering these datasets is extremely
challenging [2].
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Fig. 6. The capability of the Y-graph, kNN-graph, and ε-graph to capture the structure of the Eyes dataset using Ncut.

Fig. 7. The capability of the Y-graph, kNN-graph, and ε-graph to capture the
structure of the Impossible dataset using Ncut.

For the Eyes dataset, we make two comparisons regarding the
Y-graph, kNN-graph, and ε-graph: first, evaluating structural
representation performance under similar numbers of edges;
second, assessing performance when each graph has a sufficient
number of edges to connect points within each cluster well.

Fig. 6(a) shows the structural representation performance
comparison of different graphs with similar numbers of edges:
the Y-graph (439 edges), kNN-graph (440 edges), and ε-graph
(441 edges). As shown in Fig. 6(a) (upper panel), the ε-graph
allocated all 441 edges to the dense square-shaped clusters,
neglecting the ring-shaped cluster. This occurred because a
small ε value was required to limit the edges to 441, result-
ing in the failure to capture the sparse ring shape. Despite
this, it did not effectively capture the high interconnectivity of
the square-shaped clusters. Unlike the ε-graph, the kNN-graph
allocated an appropriate number of edges to the ring-shaped
cluster but couldn’t fully link it (see “area i”). Moreover, it
failed to connect the two dense clusters because we set k = 3
to limit the edges to 441, resulting in insufficient connectivity
(such as “area ii”). Compared to the kNN-graph and ε-graph,
the Y-graph effectively represented the structure of the Eyes

dataset with 439 edges. It fully connected the sparse ring-shaped
cluster with a modest number of edges, while ensuring high
interconnectivity within the dense square-shaped clusters with
a larger number of edges. Additionally, edges between clusters
were sparse. This is because the Y-graph, like the kNN-graph,
can adjust the connectivity range by tuning the value of k.
However, unlike the kNN-graph, the Y-graph limits each point
to at most two high-density connections, maintaining sparsity
consistently.

Then, by using the Ncut solver to the above Y-graph, kNN-
graph, and ε-graph, yielding clustering results on the Eyes
dataset. As shown in Fig. 6(a) (bottom panel) Ncut-Y effectively
segmented the dataset, whereas Ncut-k and Ncut-ε faltered due
to their inherent graph limitations.

Fig. 6(b) compares the structural representation performance
of different graphs with sufficient edges. The kNN-graph re-
quires 1,145 edges to effectively connect the ring-shaped cluster,
while the ε-graph needs 7,536 edges. However, neither graph is
well-suited for Eyes, as they lack dense edges within clusters
and have sparse connections across clusters. This deficiency
stems from the severe imbalance in cluster distribution. Specif-
ically, the maximum gap within the sparse ring-shaped clus-
ter exceeds the minimum gap between the ring-shaped clus-
ter and the square-shaped clusters. Consequently, in ensuring
effective connectivity among data points in the ring-shaped
cluster, both the kNN-graph and ε-graph connect denser edges
between clusters (see “area iii and iv”), leading directly to Ncut’s
failure in effectively partitioning Eyes based on these graphs.
Similar issues also occur in the clustering on the Impossible
dataset.

Fig. 7 displays graphs generated from the Impossible dataset
comprising 3,795 points. The kNN-graph utilizes 40,540 edges,
the ε-graph uses 142,372 edges, while our Y-graph employs
only 7,070 edges. Due to imbalance cluster distribution and
shape inconsistencies, both the kNN-graph and the ε-graph
require larger parameters to effectively connect points within
clusters, leading to many cross-cluster connections between two
spiral-shaped clusters (the two clusters in the upper left corner
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Algorithm 1: Ncut-Y Clustering.

Input: dataset X = {x1, x2, . . . , xn} parameter k, and
cluster number C.

Output: the clustering result Cl = {Cl1, Cl2, . . . , ClC}
1: obtain kNN distances, by using fast kNN technique [40].
2: estimate density ρ = {ρ1, ρ2, . . . , ρn}, according to (5).
3: // Y-graph building
4: for each point xi ∈ X do
5: for each neighbor x(K)

i ∈ Nk(xi), by K from 1 to k
do

6: if ρ
x
(K)
i

> ρxi
then

7: δxi
← x

(K)
i // obtain first outdegree point.

8: break
9: end if

10: end for
11: if δxi

= ∅ then
12: δxi

= xi

13: end if
14: end for
15: for each point xi ∈ X do
16: for each neighbor x(K)

i ∈ Nk(xi), by K from 1 to k
do

17: find the second point γxi
, according to (9)

18: end for
19: if γxi

= ∅ then
20: γxi

= xi

21: end if
22: end for
23: obtain edges E between associated points (i.e., xi

between its δxi
and γxi

.)
24: building a Y-graph G(X,E)
25: // cross KL edge weight evaluation
26: for each edge eij ∈ E do
27: obtain wij , according (13).
28: end for
29: obtain a weight Y-graph G(X,E,w)
30: obtain similarity matrix S based on graph G(X,E,w),

according (15)
31: // Ncut solver
32: execute Cl = Ncut(S,C)
33: returnClustering result Cl = {Cl1, Cl2, . . . , ClC}.

of Impossible), resulting in the failure of Ncut-k and Ncut-ε
to separate clusters accurately. In contrast, the Y-graph aptly
captures cluster structures with fewer edges, distributing them
based on data density (each point corresponds to two edges
pointing to high-density regions), ensuring high connectivity
within clusters and low connectivity between clusters. Conse-
quently, Ncut-Y successfully partitions the seven clusters of the
Impossible dataset.

The above experiments effectively demonstrate the efficacy
and capability of the Y-graph in structural capturing.

TABLE I
DATASETS

2) Comparisons Among the State-of-the-Art Algorithms:
The performance of the proposed Ncut-Y algorithm in recon-
structing complex-shaped clusters was evaluated on different
synthetic datasets with varied shapes. Fig. 8 shows the clustering
results, where each color represents a different cluster. As shown,
the Ncut-Y algorithm achieves near-perfect reconstruction of the
complex-shaped clusters across all tested datasets.

Table II provides the AMI, ARI, NMI, and SSC scores of
all algorithms with the best results being highlighted, where
metric SSC represents the Silhouette Coefficient (SC) similarity
between the clustering result and true label, as:

SSC = 1− |SC(true label)− SC(clustering result)|
2

(16)

Since SC ∈ [−1, 1], so we have SSC ∈ [0, 1]. The higher the
similarity between the clustering result and the true label, the
greater the SSC value. It’s crucial to emphasize that SSC offers
a broad approximation of the silhouette coefficient and doesn’t
entirely substitute the evaluation of clustering accuracy. Instead,
it complements the assessment process as a supplementary
scoring metric.

From Table II we can see that Ncut-Y outperforms other
algorithms on most of the synthetic datasets, showcasing its high
performance in cluster reconstruction. As verified, the proposed
Ncut-Y algorithm exhibits excellent capabilities in effectively
reconstructing complex-shaped clusters.
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Fig. 8. The clustering results of the proposed Ncut-Y on 15 tested synthetic datasets (in Table I) of different shapes.

TABLE II
THE COMPARISON OF AMI, ARI, FMI, AND SSC ON SYNTHETIC DATASETS
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TABLE III
THE COMPARISON OF AMI, ARI, FMI, AND SSC ON REAL-WORLD DATASETS. NOTE: THE FOUR METRIC SCORES IS RECORDED AS (AMI ARI

FMI SSC
)

Fig. 9. The t-SNE-based visualization comparison between the true labels and clustering labels of different clustering algorithms on MNIST.

C. Experiments on Real-World Datasets

To assess the clustering performance of the Ncut-Y algorithm
on high-dimensional and large-sized datasets, experiments were
conducted on ten real-world datasets, including six UCI [43]
datasets (Iris, Wine, Movementlibras, Waveform, Drivedata, and
Breastcancer), three widely used machine learning datasets
of large size (YTF [44], USPS [45], and MNIST [46] prepro-
cessed by [10]), and the well-known OlivettiFaces preprocessed
by [15]. Detailed information can be found in Table I.

Table III lists the clustering results of the experiments, with
the best results being highlighted. As shown, Ncut-Y delivers
outstanding performance overall, surpassing other algorithms
in most tested datasets.

Fig. 9 illustrates t-SNE [47] data visualizations of the MNIST
dataset, where the data points are labeled with the clustering
labels obtained from three versions of Ncut (Ncut-ε, Ncut-k,
and Ncut-Y), as well as the true labels. Regions, where main
division errors occur, are outlined with black dashed lines. As
shown, Ncut-Y achieves a highly accurate partitioning result that
is close to the true labels, while Ncut-k and Ncut-εversions yield
unsatisfactory results with noticeable division errors. In other
words, Ncut-Ncut-Y can almost accurately partition the MNIST

dataset, while Ncut-k and Ncut-ε versions exhibit limitations
and produce suboptimal clustering outcomes.

Therefore, the proposed Ncut-Y algorithm is a promising
alternative method for data clustering.

D. The Efficiency of Ncut-Y

1) The Effectiveness of Y-Graph: The effectiveness of cap-
turing cluster structures is crucial for the success of graph-based
clustering algorithms, particularly in the context of large-scale
data sets. By accurately reflecting the internal and inter-cluster
relationships based on data density distribution, the Y-graph can
ensure a robust representation of clusters, making it an essential
tool for Ncut to achieve high-quality clustering results.

To show the effectiveness and robustness of both the Y-graph
and our edge weight function, we introduced a series of ablation
experiments (about Ncut-Y, Ncut-k, the Gaussian kernel-based
edge weight function fw1, and our Cross KL edge weight
function fw2) on several two-dimensional synthetic datasets and
high-dimensional real-world datasets, and the corresponding
results are displayed in Table IV.

As shown in Table IV, Ncut-Y exhibits superior performance
compared to Ncut-k, with function fw2 showing better results
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TABLE IV
THE ABLATION EXPERIMENTS FOR NCUT-Y AND NCUT-k WITH DIFFERENT EDGE WEIGHT FUNCTIONS

TABLE V
THE Y-GRAPH BUILDING SPEED ON TEN DIFFERENT SIZE SAMPLING DATASETS OF THE BIRCHRG1 DATASET

TABLE VI
THE GRAPH ATTRIBUTE COMPARISON OF THE KNN-GRAPH AND OUR Y-GRAPH WITH DIFFERENT k VALUES ON THE YTF DATASET

than function fw1. This suggests that the Y-graph structure out-
performs the kNN graph structure in representing cluster struc-
tures, and function fw2 demonstrates enhanced edge-related
performance over function fw1. Notably, when handling high-
dimensional datasets: Drivedata and MNIST, our function fw2

demonstrates more clear advantages.
2) The Speed of Ncut-Y: Execution speed and memory con-

sumption are two important criteria for algorithms in large-scale
data clustering tasks, while the efficiency of the Ncut clustering
framework mainly depends on the adjacency graph (i.e., the
adjacency matrix).

The Y-graph construction process involves two primary
stages: fast kNN distance computation and graph construction.
Fast kNN distance computation takes O(n log(n)), while graph
construction takes O(nk). Table V displays the building time
of the Y-graph on ten different size sampling datasets of the
Birchrg1 dataset containing 100,000 points. As shown, when
building a Y-graph with 10,000 data points, takes approximately
0.416 seconds. While, with 100,000 data points, the construction
time increases to around 46.833 seconds. Despite this increase
in time for larger datasets, the efficiency of Y-graph construction
remains within an acceptable range.

Unlike the traditional kNN-graph, where the number of edges
is directly related to the k value, our Y-graph is approximately a
2-outdegree graph, indicating its number of edges will never ex-
ceed 2n. Therefore, our Y-graph structure can maintain a sparse
structure while enlarging the correlation radius of points (i.e.
increasing the k-value). More importantly, the sparse Y-graph
not only consumes less memory but also enables the Ncut solver
to have higher execution efficiency.

Table VI shows the graph attribute comparison of the kNN-
graph and Y-graph with different k values on the YTF dataset (a
dataset that contains 10,000 samples of 41 persons’ faces) [44].
As shown, when the k value changes from 100 to 5000, the
number of edges increases significantly, which directly leads to

TABLE VII
THE RUNTIME COMPARISON OF ALGORITHMS ON DIFFERENT TESTED

DATASETS (UNIT: SECOND)

an increase in its byte size and solving time by the Ncut solver.
In contrast, the number of edges in Y-graphs is much smaller
and is stable at about 17,500 (less than 2n, n = 10, 000), which
makes its byte size much smaller than the kNN-graph and its
solving time less than kNN-graph’s (when k become larger).

It is worth noting that our Y-graph structure consumes ex-
tremely low memory (for example, about 0.60MB for the YTF
dataset with 10,000 points). So, Ncut-Y algorithm can better
handle large-scale datasets. Additionally, smaller memory con-
sumption can reduce the hardware cost and resource consump-
tion required to run the algorithm. Therefore, Ncut-Y with a
lower space complexity is generally considered a more efficient
and feasible choice for large-scale datasets.

Table VII presents the runtime of different algorithms on the
tested datasets, where FastDPeak [17] is a speed-up version
of DPC, and has a time complexity of O(n log n). It can be
observed that Ncut-Y, the fourth-fastest algorithm, completes
execution on the USPS dataset in under two seconds. This effi-
ciency is partly due to Ncut-Y’s use of kNN distances as input,
which can be fast computed using fast kNN techniques [40]
such as the kd-tree [48] and the cover trees [49]. Additionally,
the Y-graph can be efficiently solved using the Ncut solver.
While Ncut-Y is slightly slower than FastDPeak, despite both
algorithms using kNN as input. This is because Ncut-Y involves
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Fig. 10. The k-AMI plot of our algorithm on different datasets with k ∈
[0, � 3

√
n

2 �].

additional time for constructing the Y-graph and performing the
final Ncut partitioning.

As verified, the proposed Ncut-Y algorithm with fast speed
and low memory consumption is promising for large-scale data
clustering.

E. Parameter Insensitivity

The main parameter that requires adjustment in Ncut-Y is k,
representing the number of neighbors. By default, k is set within
[�
√
n
2 �, �

√
n �]. Since k is crucial in our kNN-based density

estimation and graph construction, examining the insensitivity
of Ncut-Y to k is necessary.

Fig. 10 illustrates the k-AMI plot of several tested datasets,
where k varies within [0, � 3

√
n

2 �]. As depicted in Fig. 10,
Ncut-Y consistently achieves optimal performance within a
wide range of k values, particularly around the default setting of
k ∈ [�

√
n
2 �, �

√
n �]. This validates the effectiveness of the cho-

sen range k ∈ [�
√
n
2 �, �

√
n �] and demonstrates the insensitivity

of Ncut-Y to k.

V. CONCLUSION

In this work, a max-ascent-angle graph (Y-graph) is proposed
for detecting clusters. Besides, by applying the Ncut solver on
the Y-graph, the Ncut-Y algorithm is proposed.

According to the density-based idea that clusters are high-
density areas on the data density surface, the proposed “max-
ascent-angle” concept effectively helps to distinguish intra-
cluster and across-cluster points. By maximizing the ascent
angles of all data points, the Y-graph achieves the automatic and
reasonable allocation of dense edges in cluster areas, and sparse
edges in valley areas. By using the cross KL divergence-based
weight function to record the similarity of neighbor probability
distribution, the edge weight effectively represents the density
connectivity between points. On this basis, the Ncut-Y algorithm
effectively seeks and cuts the edges in the valley areas between
clusters on the Y-graph, thereby, achieving accurate complex
shapes clustering. The Y-graph and the Ncut-Y algorithm excel
in domains where data density can be effectively measured,
especially in scenarios with low density between clusters. As
analyzed, the Y-graph is fast built for only requiring kNN
distances, and due to its high sparsity, Ncut-Y is suitable for
large data clustering. The efficiency and robustness of Ncut-Y

are well verified in the conducted comparison experiments on
synthetic datasets and real-world datasets.

Notably, the performance of Y-graph heavily relies on the
accuracy of density estimation. Herein, to achieve a fast speed,
a relatively simple kNN-based density estimation method is
utilized. In terms of the improvement of density estimation
performance, it will be addressed as part of our future work.
Besides, noise points may also be connected in the Y-graph,
potentially impacting the clustering performance of the Ncut
algorithm. In future work, we aim to improve the Y-graph and
explore robust clustering algorithms to address the potential
impacts of noise points on Ncut performance, enhancing its
applicability to noisy data. Additionally, similar to the K-means
algorithm, Ncut-Y requires the number of clusters as input.
Nonetheless, in many real-world applications, automatic cluster
detection is necessary. Therefore, we will continue our work in
designing an automatic cluster detection technology to further
improve the overall performance and applicability of the clus-
tering algorithm.
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