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ABSTRACT

While neural networks have emerged as powerful tools for solving optimization
problems, demonstrating performance comparable to or surpassing traditional
solvers, their application to fundamental numerical optimization problems re-
mains underexplored. Specifically, limited progress has been made in developing
neural network-Based approaches for matrix inversion – a cornerstone problem
in unconstrained numerical optimization. This work presents SchulzNN, the first
neural network-Based solver for matrix inversion inspired by the Schulz iterative
method. Our architecture innovatively simulates traditional iteration processes
through parametric learning, preserving theoretical convergence guarantees while
enhancing computational flexibility. We rigorously evaluate both single-layer
SchulzNN and deep variants on (1) diverse matrix families with practical sig-
nificance, and (2) matrices beyond the convergence conditions of classical Schulz
iteration. Notably, we establish a systematic framework for analyzing model adap-
tation through fine-tuning strategies. The accuracy and efficiency of the proposed
SchulzNN are demonstrated by numerical examples for matrix inversion.

1 INTRODUCTION

In recent years, ”Learn to Optimize” (L2O) Tang & Yao (2024), as an emerging optimization
method, has made significant progress in both research and practical applications. One branch of
L2O emphasizes the integration of machine learning with traditional optimization techniques Xin
et al. (2021), proposing a data-driven framework for the design of optimization algorithms. This
approach enables the automation of algorithm design, reducing the need for labor-intensive iter-
ations, and is particularly suitable for scenarios where similar optimization problems need to be
solved repeatedly on specific data distributions. Another branch focuses on an end-to-end learning
approach Sun & Yang (2023) , where neural networks directly predict the solution to optimization
problems, achieving success in many combinatorial optimization problems. However, when it comes
to the most fundamental unconstrained optimization problem — computing the matrix inverse —
neural network-based methods have seen limited success due to the inherent difficulty of solving
this problem.

Finding the inverse of a matrix is a popular and interesting topic with a wide range of applications in
real life, such as the calculation of the current of a wireless power transfer system Alberto & Brox
(2020), problems of elastostatics and of vibration theory Wittenburg (1998), electric net design Guo
et al. (2012), etc. The Moore-Penrose generalized inverse is a conceptual extension of the inverse
of a matrix, and solving it is another important topic. For instance, optimizing the generalized
inverse matrix could achieve hyperspectral image super-resolution Lin et al. (2024). The technics of
generalized matrix can be applied to robot control system as well Zhang & Uhlmann (2018).Another
notable application scenario lies in the extraction of the diagonal of a matrix inverse, particularly
in domains such as electronic structure theory and electrostatic modeling, where researchers have
devoted significant efforts to investigating efficient methods for computing the diagonal elements of
a matrix inverse Tu et al. (2022; 2025).

In this paper, we propose the Schulz Neural Network (SchulzNN), a deep learning architecture de-
signed to compute matrix inverses. By integrating Schulz iteration with neural networks, SchulzNN
provides an innovative framework to address the longstanding challenge of matrix inversion. The
contributions of this work are summarized as follows:
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• Designed within the framework of Schulz iteration, SchulzNN autonomously approximates ma-
trix inverses through a specialized training process. Its architecture naturally embeds both single-
layer and multi-layer structures, leveraging the inherently iterative nature of the Schulz method.
SchulzNN computes inverses for diverse matrix classes, including cases where traditional Schulz
iteration exhibits significant limitations.

• We employ interpolation decomposition and butterfly factorization Liu & Yang (2020) to reduce
the computational complexity of matrix-vector multiplication. By integrating these factorizations
into the network architecture and leveraging the fact that matrix A remains fixed in the neural
network, we achieve an overall training complexity of O(N2 logN) per epoch, representing a
significant improvement over the conventional O(N3) complexity for matrix inversion.

• Given a matrix, its inverse can be computed after training the SchulzNN. For perturbed matrix de-
rived from the original matrix, the network can be initialized with its pre-trained weights, enabling
SchulzNN to achieve high-accuracy approximations of the inverse of perturbed matrix within few
epochs—significantly reducing computational costs.

2 RELATED WORKS

Learning to Optimize with Neural Networks The great success achieved by machine learning
(ML) is backed up by the development and application of optimization techniques Tang & Yao
(2024). In the field of Learning to Optimize (L2O), two major directions have emerged. The first
direction integrates traditional optimization methods with neural networks. This approach combines
the strengths of classical optimization techniques with the flexibility of machine learning models,
allowing for more efficient optimization processes. By leveraging the power of neural networks, this
hybrid method can automatically learn optimal strategies for solving specific types of optimization
problems, thereby reducing the need for manual intervention and iterative processes. It has proven
especially effective in domains where traditional optimization algorithms might struggle due to the
complexity or size of the problem space. The second direction focuses on an end-to-end learning
approach, where a neural network directly learns to predict the solution to an optimization prob-
lem from input data. In this fashion, the entire optimization process is treated as a learning task,
bypassing traditional algorithmic steps entirely. The network is trained to output the solution in a
manner similar to supervised learning. This approach has been particularly successful in combi-
natorial optimization problems, where the optimization task involves finding the best configuration
from a large set of possibilities. By directly learning the solution mapping, this end-to-end approach
has demonstrated impressive results in solving problems such as the traveling salesman problem and
graph partitioning.

Traditional Numerical Methods for Matrix Inverse. The general numerical method for find-
ing the inverse of a matrix is Gauss-Jordan Elimination, which has a computational complexity of
O(N3) with the matrix size N . Besides this method, there are also the LU decomposition method
and the QR decomposition method, both of which have the same computational complexity as the
Gauss-Jordan elimination method. When N is large, the computational cost will be extremely high.
The iterative methods are typified by Schulz iteration. The Schulz iteration algorithm first seeks a
suitable initial matrix A0, and then, through iterative calculations based on the second-order for-
mula, it can rapidly approach the matrix An that represents A−1 Ben-Israel (1965). Based on the
second-order form of Schulz iteration formula, formulas of the third-order form Li et al. (2011),
the sixth-order form Krishnamurthy & Sen (1986), and the seventh-order form Soleymani (2012)
have been proposed, which are able to have higher-order convergence as the order of the formula
increases. This series of iterative algorithms is suitable for parallel computation and converges
quickly, but finding the right A0 is very difficult. Other methods focus on solving the inverse of spe-
cific matrices, such as symmetric positive definite matrices Finta (2020), integer matrices Haramoto
& Matsumoto (2009), tridiagonal matrices and pentagonal matrices Hadj & Elouafi (2008). How-
ever, these methods are not universal.

Neural Network Methods for Matrix Inverse. Most of the neural network methods focus on
solving the inverse of time-varying matrices, which are represented by the zeroed neural networks
and Zhang neural networks. As a special type of recurrent neural network, the zeroed neural network
can be used to solve the Sylvester equation when the matrix is time-varying. And the task of solving
the inverse of a time-varying matrix is a subtopic of solving the Sylvester equation Zhang et al.
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(2002). With more and more people conducting research on the zeroed neural network and its
related engineering applications, many variants of it have been successively proposed Xiao et al.
(2019); Gao et al. (2024); Xiao et al. (2024). In 2012, another major representative neural network
method, the Zhang neural network, was proposed. It is specialized in on-line inverse solving of
time-varying matrices and can be applied to the motion control of robots Guo & Zhang (2012).
Improved Zhang neural networks, such as NTZNN, have better noise resistance Xiang et al. (2018),
and FTZNN can accelerate the convergence Xiao (2016), etc. Other methods focus on solving
the Moore-Penrose inverse (M-P inverse) of complex matrices, etc. Song & Yam (1998); Xia et al.
(2016). All these methods have great difficulty in solving the inverse of large-scale matrices.

3 METHODOLOGY

3.1 SCHULZ ITERATION

In 1933, Günther Schulz introduced the concept of iterative matrix inversion Schulz (1933). In
1965, Adi Ben-Israel refined Schulz’s algorithm and established its convergence properties Ben-
Israel (1965). While Schulz iteration extends to computing generalized inverses, this work focuses
exclusively on computing inverses of full-rank matrices over the real field.

Theorem 1 (Schulz Iteration) Let A,A0 ∈ RN×N , and A be invertible. A0 satisfies the following
conditions:

A0 = ATB0 = C0A
T and ∥AA0 − I∥ < 1, ∥A0A− I∥ < 1, (1)

where B0, C0 ∈ RN×N and B0, C0 be invertible. ∥ · ∥ denotes the L2-norm of the matrix. The
Schulz iterative formula is:

An+1 = (2I −AnA)An. (2)

Then a conclusion holds:

lim
n→∞

∥AnA− I∥ = lim
n→∞

∥AAn − I∥ = 0. (3)

Eq. (2) gives the formula of Schulz iteration, i.e., finding the A0 that satisfies the conditions (1)
and then iterate for a sufficient number of times based on Eq. (2), and an approximation of A−1

with extremely high precision can finally be obtained. However, finding an A0 that can successfully
converge to A−1 is a very challenging task, which significantly restricts the application scope of
Schulz iteration.

3.2 SCHULZ NEURAL NETWORK

A
+b

... ...

Figure 1: The structure of SchulzNN

In order to expand the applicability
of Schulz iteration, we propose the
SchulzNN by imitating the structure
of Schulz iteration. The structure of
the SchulzNN is illustrated in Fig. 1.

Suppose that our task is to approxi-
mate the inverse matrix A−1 of the
matrix A ∈ RN×N . First, we need
to randomly generate a certain num-
ber of N -dimensional vectors b as the
training set, and then feed them into
the SchulzNN. The goal is to make
the output vector x̂ as close as possi-
ble to A−1b. The SchulzNN consists
of three layers. Each layer contains
N neurons. The weight matrix of the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

i-th layer is denoted as Wi(i = 1, 2, 3), and the corresponding output is oi. Notably, there are no
activation functions in the SchulzNN.

The weight matrices of the first and third layers are initialized to the same matrix A0, while the
second layer’s weight matrix is initialized as A. During training, W2 remains fixed and does not
undergo updates via gradient backpropagation. We refer to the this layer parameterized by W2 as
the ”A-layer”. Accordingly, W2 is denoted directly as A.

A key design feature of SchulzNN is its efficient handling of sparse or low-rank matrices A. By
constructing the IDBF Tu et al. (2022) of A and leveraging its structure for matrix-vector operations,
the computational complexity of multiplying A with a vector v is reduced to O(N logN) instead of
O(N2). This is achieved through the factorization:

A ≈ L1L2 · · ·Lk/2DUk/2 · · ·U2U1. (4)

The decomposition depth is k = O(logN), and all factors Li, Ui (i = 1, 2 · · · k/2) are sparse matri-
ces containing O(N) nonzero entries. Consequently, the original single layer of the neural network
is expanded into distinct layers, each corresponding to one factor in the decomposition. Throughout
the remainder of this paper, any reference to the matrix A within the network architecture implies
its IDBF representation.

The final output of SchulzNN is x̂ = 2o1 − o3. The loss function L of the SchulzNN is defined as
the relative error between Ax̂ and b, i.e.,

L =
1

m

m∑
i=1

∥Ax̂i − bi∥
∥bi∥

, (5)

where m denotes the batch size and ∥ · ∥ represents the L2-norm of the vector.

During the process of training, we first input the vector b. After it passes through the three fully
connected layers, we obtain o1 = W1b, o2 = AW1b, o3 = W3AW1b respectively. The final output
is

x̂ = 2o1 − o3 = 2W1b−W3AW1b. (6)

We take the initialization values W1 = W3 = A0 into the above equation and obtain:

x̂ = 2A0b−A0AA0b = (2I −A0A)A0b. (7)

The right-hand side of Eq. (7) is very close to the form of Eq. (2), and it can be regarded as the NN
form of a single Schulz iteration. The A0 here corresponds to the A0 used in the Schulz iteration. Our
task is to make (2I −W3A)W1 approach to A−1 as closely as possible. Clearly, when W1,W3 →
A−1, we have (2I −W3A)W1 → A−1. In this way, a single Schulz iteration can be successfully
simulated in the SchulzNN. Most importantly, after sufficient and effective training, we can get the
approximation of A−1:

Â−1 = (2I −W3A)W1. (8)

One of the significant advantages of the SchulzNN is its inherently self-contained residual connec-
tion structure. It outputs a linear combination of the output o1 of the first layer and the output o3 of
the third layer, and this output form is determined by Eq. (2). The residual connection structure of
the SchulzNN is beneficial for the training of the deep NN.

Another notable advantage of the SchulzNN is the simplicity of constructing the dataset: we only
need to randomly generate a certain number of vectors b, where b ∈ RN . In practical applications,
we just have information about A and lack information about A−1. This situation makes it impos-
sible for us to generate a dataset containing (b, x) data pairs due to the reason that according to
the fitting objective of the SchulzNN, the output x̂ should be close to x = A−1b, which directly
involves A−1. Through a clever design, we transform the supervised task into an unsupervised task.
Instead of making x̂ approach x as closely as possible, we make Ax̂ approach b, which is directly
shown in Eq. (5). In terms of the results, these two tasks are almost equivalent. This is because when
x̂ → A−1b, Ax̂ → AA−1b = b, and for the latter case, we only need to use b as the training set.
This design scheme significantly reduces the difficulty of dataset generation and the amount of data,
which makes the training of the SchulzNN more straightforward.
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3.3 DEEP SCHULZ NEURAL NETWORK

The SchulzNN introduced in Subsection 3.2 is the fundamental SchulzNN structure, which corre-
sponds to a single Schulz iteration. To enhance the fitting performance, we introduce the concept of
a deep SchulzNN: SchulzNNk. Here, k represents the number of Schulz iterations corresponding to
the SchulzNN model.

b
A

+

A
+

Layer

Figure 2: The structure of SchulzNN2. SNN1 denotes SchulzNN1 for the sake of simplification.

Taking SchulzNN2 as an example, it consists of two SchulzNN1 layers and one A-layer in the
middle, which is illustrated in Fig. 2. The structure of each SchulzNN1 layer is exactly the same as
that described in Subsection 3.2. The output of SchulzNN2 is a linear combination of the outputs of
the two SchulzNN1 layers.

Let the weight of each Convolution Layer in the first SchulzNN1 layer be denoted as W
(1)
i and

its output be o
(1)
i,1 (i = 1, 2, 3), and for the second SchulzNN1 layer, let the weight be W

(2)
i and

the corresponding output be o
(2)
i,1 . During the training process, we input the vector b. After passing

through the first SchulzNN1 layer, we obtain o1,2 = 2o
(1)
1,1−o

(1)
3,1. Then, it passes through the A-layer

and becomes o2,2, and after going through the second SchulzNN1 layer, we get o3,2 = 2o
(2)
1,1 − o

(2)
3,1.

Finally, the output is x̂ = 2o1,2 − o3,2. Assume that the first SchulzNN1 layer is equivalent to A
(1)
1

and the second SchulzNN1 layer is equivalent to A
(2)
1 . When we expand the output, we have:

x̂ = 2o1,2 − o3,2

= 2(2o
(1)
1,1 − o

(1)
3,1)− (2o

(2)
1,1 − o

(2)
3,1)

= 2
(
2I −W

(1)
3 A

)
W

(1)
1 b−

(
2I −W

(2)
3 A

)
W

(2)
1 A

(
2I −W

(1)
3 A

)
W

(1)
1 b

= (2I −A
(2)
1 A)A

(1)
1 b.

(9)

When W
(1)
1 ,W

(1)
3 ,W

(2)
1 ,W

(2)
3 → A−1, we have A

(1)
1 , A

(2)
1 → A−1, which concludes (2I −

A
(2)
1 A)A

(1)
1 → A−1, so that two Schulz iterations can be successfully simulated in the SchulzNN2.

And we finally get the approximation of A−1:

Â−1 = (2I −A
(2)
1 A)A

(1)
1 . (10)

With the structure of SchulzNN2 obtained, we can recursively deduce the structure of SchulzNNk

where k ≥ 2, which is illustrated in Fig. 3.

The SchulzNNk model contains two SchulzNNk−1 layers and one A-layer in the middle. In fact,
SchulzNNk has 2k−1 SchulzNN1 layers, and each NN1 layer consists of three fully-connected
layers. According to the order of the network structure, let the weights of the first and the last
Convolution layers of the i-th SchulzNN1 layer be W (i)

1 and W
(i)
3 respectively. For a specific p (p =

1, 2, · · · , k − 1), SchulzNNk contains 2k−p SchulzNNp layers. For the q-th SchulzNNp layer in
the network order, with q = 1, 2, · · · , 2k−p, there is an A-layer in the middle. We initialize all
W

(i)
1 ,W

(i)
3 to A0.
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When p < k − 1, we define mq = 3 − 2 × (q mod 2) and nq = [ q+1
2 ]. The output of the

q-th SchulzNNp layer is o
(nq)
mq,p+1 = 2o

(q)
1,p − o

(q)
3,p. When p = k − 1, the output of the first

SchulzNNk−1 layer is o1,k = 2o
(1)
1,k−1 − o

(1)
3,k−1, and that of the second SchulzNNk−1 layer is

o3,k = 2o
(2)
1,k−1 − o

(2)
3,k−1. Finally, SchulzNNk outputs x̂ = 2o1,k − o3,k.

4 NUMERICAL EXPERIMENTS

4.1 SETTINGS FOR EXPERIMENTS

Our experimental task is as follows: Given a known matrix AN×N , use the SchulzNN model to
approximate A−1 by training. In this Section, N = 1024. We will randomly generate S vectors of
dimension N as the training set. For different tasks, the size of the training set S varies, and the
batch size is set to be 0.0125S. Different tasks also involve different choices of A0, learning rate (lr)
and learning rate decay. Common choices of A0 are 0, [diag(A)]−1 and diag(A−1), where diag(X)
denotes a diagonal matrix whose diagonal elements are equal to the corresponding diagonal elements
of X . The first two components are straightforward to compute, while the third can be efficiently
computed using the method in Tu et al. (2022), which achieves O(N) complexity for extracting the
diagonal of the matrix inverse.

In order to accelerate the convergence efficiency, we employ the ADAM optimizer, which is widely
utilized in deep learning, throughout the training process. The training is carried out on an NVIDIA
RTX 4090 GPU.

After training, we need to assess the fitting performance of the SchulzNN on matrix inversion. In the
inference phase, we assume that A−1 is known (whereas A−1 is unknown throughout the training).
Suppose that our trained model is SchulzNNk. Obviously, we can use the form like Eq. (8) and
Eq. (10) to calculate the fitted Â−1, but for different k, the formula is changing. Instead, we use a
special test set to calculate the Â−1 that can be simulated by SchulzNNk : {ei}Ni=1, where

ei = {
i−1︷ ︸︸ ︷

0, 0, 0, · · · , 0, 1, 0, · · · , 0}T . (11)

By inputting ei into the model SchulzNNk, it returns the output xi. The final expected output of
SchulzNNk is A−1ei, which precisely corresponds to the i-th column of A−1. Then, we perform
the following operation to obtain Â−1:

Â−1 = concat (x1, x2, · · · , xN ) , (12)

where concat(· · · ) means column-wise concatenation.

The metric for the fitting effect is the relative error between Â−1 and A−1, i.e.,

ϵinv =
∥Â−1 −A−1∥
∥A−1∥

. (13)

In practice, A−1 is unknown during the whole experiment, so we use another metric:

ϵsub =
∥AÂ−1 − I∥
∥I∥

. (14)

The training objective is to make ϵinv reach an order of magnitude of approximately 10−2 or 10−3,
and make ϵsub reach an order of magnitude of 10−3.

4.2 NUMERICAL INSTANCES

In this section, we will apply SchulzNN to 4 different matrices to fit their inversion.

6
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4.2.1 PERFORMANCE TEST

We start with a performance test for SchulzNN. The matrix for the performance test is a strict
diagonal-dominance matrix, which has a very low condition number. That means the task is rela-
tively simple. The goal of the task is to demonstrate the effectiveness of SchulzNN and the model
utilized is the simplest SchulzNN1 model. The information of the matrix is shown in Table 7.

It is worth noticing that the condition number is presented in the Table. In fact, after conducting
extensive experiments, we found that the difficulty of the fitting task exhibits a relatively positive
correlation with the matrix’s condition number. Specifically, a larger condition number implies a
more ill-conditioned matrix, making its inverse more challenging to fit. In this experiment, the
condition number is 1.359, indicating that the task is relatively simple.

The size of the training set is S = 1280. In order to enable the model to converge more effectively,
we have implemented a learning rate decay mechanism: the learning rate is reduced to half of its
original value every q epochs, which can be briefly denoted as q/0.5. The experiment consists of
two parts: No.1 uses 0 as the initialization matrix and No.2 uses diag(A)−1. For initial lr, No.1 is
8e-6 and No.2 is 1e-6. For learning rate decay, No.1 is 50/0.5 and No.2 is 20/0.5. For the number of
training epochs, No.1 is 400 and No.2 is 100.

The Learning curves are presented in Fig. 4 and Fig. 5. Here, the horizontal axis denotes the number
of training epochs, and the vertical axis represents the logarithm to base 10 (lg) of the training loss.

From Fig. 5, we can observe that the initial training loss in Experiment No.2 is already low. Starting
with a better choice of A0, the SchulzNN model can converge more quickly and effectively. In fact,
when diag(A)−1 is taken as A0, the Schulz iteration can converge to an extremely high precision
within just a few epochs. Therefore, this experiment serves merely to demonstrate the effectiveness
of the SchulzNN, and the advantages of the SchulzNN will be presented in the subsequent sections.
From another perspective, when matrix 0 is used as A0, the Schulz iteration fails to operate, whereas
the SchulzNN can achieve convergence, which partially illustrates the superiority of the SchulzNN.

No. Training loss ϵinv ϵsub
1 4.45e-3 4.74e-3 4.8e-3
2 4.59e-3 4.52e-3 4.66e-3

Table 1: The results of the experiment

According to the results of Table 1, it can be concluded that the SchulzNN model is effective.
Through sufficient training, the inverse of the strictly diagonally dominant matrix A can be approx-
imated with a high precision of 10−3.

4.2.2 PERMUTATION MATRIX

From this subsection, we will focus on tasks that the Schulz iteration fails to solve (i.e., the iteration
doesn’t converge to A−1 when taking the common A0 as initialization), yet can be completed by the
SchulzNN through training. The information of the matrices is presented in Table 7.

First, we will focus on a simple yet special matrix : the permutation matrix. As we can see in Table
7, it features a controllable parameter k.

The experiments consist of k = 512 and k = 1024, respectively. The initialization matrix is
diag(A−1) and the model SchulzNN1 is used. The size of training set is 1280 and the number of
training epochs is 500. The initial lr is 1e-3 and the lr decay is 50/0.5.

The learning curves are presented in Fig. 6 and Fig. 7. According to the results of Table 2, it can be
observed that the SchulzNN model can converge to a high precision rapidly when dealing with the
task of fitting the inverse of the permutation matrix, and it shows good adaptability to the value of
k. Despite the simplicity of the task, it fully illustrates the advantages of the SchulzNN.

4.2.3 DISCRETE HELMHOLTZ MATRIX

In this subsection, we focus on another matrix, the Discrete Helmholtz matrix, and we attempt to fit
it by using both the single-layer SchulzNN and the deep SchulzNNs.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

k Training loss ϵinv ϵsub
512 5.05e-4 5.11e-4 5.11e-4

1024 5.14e-4 1.18e-3 1.18e-3

Table 2: The results of the experiment

According to Table 7, the condition number of the matrix is relatively high, which means the task is
difficult to solve. This matrix represents the discrete Helmholtz matrix with wave number k = 1 and
holds significant practical relevance in disciplines such as acoustic simulation, electromagnetism,
and quantum mechanics, among others.

The initialization matrix is diag(A−1) and the models used are SchulzNNk with k = 1, 2, 3. The
size of training set is 5120 and the number of training epochs is 1500.

The learning curves are presented in Fig. 8 on the left. According to the results of Table 3, it can
be observed that the single-layer SchulzNN and the SchulzNN2 fail to adequately fit A−1. With
extremely low accuracy, it proves unsuitable for practical applications. Conversely, the SchulzNN3,
after training, demonstrates excellent fitting performance for A−1, achieving an accuracy of 10−4.
These findings highlight the superior fitting capabilities of some deep SchulzNNs.

Model Initial lr lr decay Training loss ϵinv ϵsub
SchulzNN1 1.5 90/0.5 3.19e-2 0.111 3.78e-2
SchulzNN2 1e-3 25/0.93 1.67e-2 0.296 3.13e-2
SchulzNN3 1e-3 100/0.5 6.24e-5 1.16e-4 7.91e-5

Table 3: The settings and results of the experiment

4.2.4 PERTURBED IDENTITY MATRIX

In this subsection, the matrix that we focus on is the perturbed identity matrix, and its specific form
is as follows:

I + uvT . (15)

Here, u, v ∈ RN×k, and k ≪ N . We set k = 5. It is quite evident that uvT ∈ RN×N has a rank of
k, and it plays the role of ”perturbing” the identity matrix.

We can see in Table 7 that the condition number of this matrix is higher than that in Subsection
4.2.3.

The initialization matrix is [diag(A)]−1 and the models used are SchulzNNk with k = 1, 2, 3. The
size of training set is 5120 and the number of training epochs is 1800.

The learning curves are presented in Fig. 9 on the right. According to the results of Table 4, it can
be observed that SchulzNNk with k = 1, 2, 3 can all effectively fit the perturbed identity matrix
I + uvT , achieving an accuracy approaching 10−3. Moreover, the deep SchulzNNs outperform the
single-layer SchulzNN. This further validates the effectiveness of the SchulzNN model with deep
architectures.

Model Initial lr lr decay Training loss ϵinv ϵsub
SchulzNN1 6e-4 100/0.55 8.54e-3 6.04e-3 1.13e-2
SchulzNN2 2e-4 100/0.55 2.57e-3 2.68e-3 3.88e-3
SchulzNN3 4e-5 120/0.55 3.18e-3 3.61e-3 4.26e-3

Table 4: The settings and results of the experiment

4.3 PERTURBATION EXPERIMENT

Matrices are always perturbed due to various reasons. Under such circumstances, we expect to make
use of the pre-trained SchulzNN models for fitting the inverse of matrices, i.e., through appropriate

8
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fine-tuning, the models can converge to the inverse of the new matrices while maintaining a consid-
erable level of accuracy. In this way, there is no need to initiate the training process from the very
beginning, thus reducing a substantial amount of computational costs.

In this experiment, we will take the perturbation of the permutation matrix in Subsubsection 4.2.2,
where k = 512, as an example to investigate the fitting effect after fine-tuning SchulzNN. The basic
model is the SchulzNN1 with the same settings in Subsubsection 4.2.2. Before the training process,
we will input the new matrix A into the A-layer of the base model and fix it.

There are 2 types of perturbation scenarios:

• Scenario 1: A+ εI;

• Scenario 2: A+R, rij ∈ U(−ε, ε).

Before conducting the experiment, it’s necessary to measure the magnitude of the perturbation. We
denote the relative error between the inverse of matrix A and the inverse of the perturbed matrix
Ã as eA−1 . Below, we record the values of eA−1 for Scenario 1 and Scenario 2 under different
values of ε, along with the condition numbers of the corresponding new matrices. Table 5 shows the
measurement.

Scenario 1
ε 0.6 0.9 0.95

eA−1 0.593 1.5 2.196
Condition number 4 19 39

Scenario 2
ε 0.02 0.04 0.05

eA−1 0.398 1.097 2.428
Condition number 2.961 14 76.17

Table 5: The measurement of perturbation

Scenario No. ε Initial lr lr decay Epochs Training loss ϵinv ϵsub

1
1 0.6 1e-3 10/0.5 80 1.5e-3 1.01e-3 1.55e-3
2 0.9 1e-3 10/0.5 100 9.54e-4 3.69e-3 1.1e-3
3 0.95 2e-3 20/0.5 100 2.89e-2 0.109 3.14e-2

2
4 0.02 4e-4 10/0.5 50 3.83e-3 2.73e-3 3.92e-3
5 0.04 1e-3 10/0.5 80 1.44e-3 6.06e-4 1.5e-3
6 0.05 2e-3 20/0.5 100 2.76e-2 0.184 3.1e-2

Table 6: The settings and results of the experiment

According to the results of Table 6, it can be observed that under the experimental conditions, within
a certain perturbation range (Experiments No. 1, 2, 4, 5), the fine-tuned SchulzNN1 model can
converge effectively to the inverse of the perturbed matrix, achieving an accuracy of 10−3 or higher.
A plausible explanation is that the pre-trained weights serve as a suitable initial approximation A0 for
the new problem, which facilitates quick convergence. Conversely, beyond this range (Experiments
No.3, 6), fine-tuning fails to yield effective convergence. This is likely because the pre-trained
weights deviate significantly from the true inverse.

5 CONCLUSIONS

In this paper, a neural network architecture SchulzNN is proposed, which is inspired by the Schulz
iteration framework. Through specialized training tasks, the network learns to approximate matrix
inverses, effectively modeling the mapping between matrices and their inverses. Leveraging the in-
herently recursive structure of the Schulz iteration, SchulzNN supports both single-layer and multi-
layer architectures, offering flexible solutions to the matrix inversion problem. Experimental results
demonstrate that SchulzNN outperforms traditional Schulz iteration across diverse matrix classes,
surpassing its performance limitations. In scenarios involving matrix perturbations, the pre-trained
weights of SchulzNN can be adapted to initialize a new network, enabling efficient and accurate
approximation of the perturbed matrix inverse with minimal retraining.

9
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A APPENDIX

A.1 DETAILS ABOUT SCHULZNNk

Details about SchulzNNk include its structure illustrated in Fig. 3 and algorithms 1 and 2. It is worth
noticing that the symbols in Algorithm 2 are not completely the same as the symbols in Subsection
3.3 for the sake of simplicity.
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b
A

+

A
+

Layer

Figure 3: The structure of SchulzNNk

Algorithm 1: The SchulzNN1 Algorithm
Input: Vector b, Learning rate η
Initialize W1 = W3 = A0

while not Converge do
o1 = W1b
o2 = Ao1
o3 = W3o2
x̂ = 2o1 − o3
Update weights: W1 ←W1 − η · ∂L/∂W1, W3 ←W3 − η · ∂L/∂W3

end while
Output: Vector x̂

Algorithm 2: The SchulzNNk Algorithm
Function: Schulz Recurrent cal(oinput, p)
If p = 1 then

ooutput = SNN1(oinput)
return ooutput

else
o1 = Schulz Recurrent cal(oinput, p− 1)
o2 = Ao1
o3 = Schulz Recurrent cal(o2, p− 1)
ooutput = 2o1 − o3
return ooutput

end if Main Procedure:
Input: Vector b, Learning rate η, num of Layers k
Initialize W

(q)
1 = W

(q)
3 = A0; q = 1, 2, · · · , 2k−1

while not Converge do
x̂ = Schulz Recurrent cal(b, k)
Update weights: W (q)

1 ←W
(q)
1 − η · ∂L/∂W (q)

1 , W
(q)
3 ←W

(q)
3 − η · ∂L/∂W (q)

3
end while
Output: Vector x̂
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A.2 DETAILS ABOUT EXPERIMENTS

Details about Experiments include the information of matrices in Section 4.2 shown in Table 7 and
figures of learning curves in Section Section 4.2.

Matrix Generation method Condition number

Strict A = L1 · · ·L5DU5 · · ·U1, where Ui = LT
i ; L1, · · · , L5, D are

1.359lower triangular matrices and diagonal matrix of matrices:

Diagonal-dominance Matrix When i ̸= j, aij ∼ U(−0.005, 0.005);
When i = j, aij =

∑N
k=1 |aik|+ ϵ, where ϵ ∼ U(0, 0.01)

Permutation matrix
Randomly select k rows of the identity matrix I

1and swap their order, make it completely
different from the original order

aij =

{ −1 if i = j
1 if |i− j| = 1
0 otherwise

1694Discrete Helmholtz matrix

Perturbed identity matrix I + uvT , where u, v ∈MN×k, 4883
uij , vij ∼ U(−0.5, 0.5)

Table 7: The settings of the experimental matrices in Section 4.2

Figure 4: No.1 in Experiment 4.2.1 Figure 5: No.2 in Experiment 4.2.1

Figure 6: k = 512 in Experiment 4.2.2 Figure 7: k = 1024 in Experiment 4.2.2

Figure 8: Experiment 4.2.3 Figure 9: Experiment 4.2.4
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