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Abstract

We analyze the importance of training dataset diversity when training machine-
learned force fields (MLFFs) with the goal of accelerating their development for
AI-driven materials design frameworks. We specifically focus on ceramic systems
(3C-SiC) relevant to thermal protection applications in hypersonic flight. We use
the MACE model to represent our MLFFs. Each MACE model is trained on
datasets sampled from ab initio molecular dynamics (AIMD) trajectories simu-
lated at multiple temperatures. By diversity-driven sampling of different training
datasets, we investigate the role of training set diversity in constructing an accurate
force field with reduced data requirements. The material’s structural environment
is encoded using the many-body tensor representation (MBTR), and similarity be-
tween configurations is quantified via a radial basis function (RBF) kernel and
the Vendi score. Our results reveal that greater diversity in the sampled datasets
yields more accurate force predictions even with smaller dataset size. These find-
ings underscore the importance of systematically quantifying dataset diversity for
efficient MLFF training and highlight a pathway for scalable force field develop-
ment for automated materials design workflows.

1 Introduction

One major challenge in the design of complex advanced materials is the lack of discovery tools that
can efficiently navigate the vast composition space. A traditional Edisonian experimental search
for optimal composition relies on expert knowledge. On the other hand, molecular simulation ap-
proaches such as density functional theory (DFT) and AIMD can offer insights into microscopic
behaviors, but are also prohibitively expensive for an exhaustive search of the large combinatorial
search spaces. For many materials applications such as catalysis, solar energy conversion, thermo-
electrics, thermal protection systems etc., it is also important to study the dynamical behavior of can-
didate materials in their operating conditions which requires long-time molecular dynamics (MD)
simulations. As such, there remains a need to design methods and workflows that can accelerate ma-
terials design by efficient exploration of vast compositional spaces and efficient simulations of the
material’s dynamical behavior. Here, we explore the application of diversity-driven training dataset
curation for efficient training of generalizable MLFFs.
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As a test case, we choose to train a force field for Silicon Carbide (3C-SiC), a well known ultra-high
temperature ceramic (UHTC) used in hypersonic vehicles for thermal protection systems. UHTCs
are becoming increasingly popular choices for reusable thermal protection system (TPS) materials
due to their ability to form protective oxide layers that significantly reduce oxidation rates under
extreme thermal loads (Wyatt et al. (2024); Konnik et al. (2025)). However, a major challenge in
designing ceramics for TPS applications is studying their degradation in the extreme hypersonic
environment. This includes studying the formation and growth of surface oxide scales which form
protective layers to prevent further oxidation and degradation of the material. An important compu-
tational tool to study these processes on the atomistic scale is molecular dynamics which requires
construction of force fields.

Recently, MLFFs have been shown to achieve high accuracy for a number of molecular and solid-
state systems (Chmiela et al. (2017); Smith et al. (2019); Zhang et al. (2018b,a); Batatia et al.
(2023)). These force fields are revolutionizing the path towards running longer times in MD at an
accuracy comparable to first principles calculations such as DFT. However, force field development
typically requires a time-consuming fitting process, often involving manual or random selection of
thousands of reference configurations from first-principles datasets. In this paper, we aim to develop
a methodology to intelligently sample reference configurations for training highly accurate force
fields. We achieve this by maximizing a chosen diversity metric in the training dataset.

Several metrics have been proposed to quantify and enforce diversity during data selection for ef-
ficient training. For example, kernel-based similarity measures such as SOAP kernel distances
(Bartók et al. (2013)) or RBF kernels can capture structural similarity between atomic environ-
ments, while descriptors such as MBTR enable comparison of complex configurations in an invari-
ant feature space. Entropy-based approaches, such as the Vendi score (Friedman & Dieng (2023)),
provide information-theoretic estimates of the “effective number” of distinct configurations in a
dataset. Vendi scores have been applied previously to accelerate molecular simulations (Pasarkar
et al. (2023)), polymer design (Jiang et al. (2024)) and MOF design (Liu et al. (2024)). In this
work, we develop a diversity-driven data curation methodology to accelerate MLFF development
with smaller yet more informative datasets using the Vendi score (Friedman & Dieng (2023)).

2 Methods

2.1 Dataset Generation

The AIMD data was generated with Quantum ESPRESSO (QE) 7.4 using the PBE exchange-
correlation functional (Giannozzi et al. (2017)). The kinetic energy and charge density cutoffs were
set to 50 and 200 Ry, as recommended by the pseudopotential files used, which were sourced from
the Standard Solid State Pseudopotentials (SSSP) library, and confirmed by separate convergence
tests. Convergence tests on k-point sampling revealed that 8 irreducible k-points in the primitive cell
and 10 in the supercell were sufficient to describe energy to within 10 meV (Prandini et al. (2023)).
Each AIMD trajectory consisted of a 3× 3× 2 supercell constructed from a fully relaxed primitive
cell downloaded from Materials Project. Here, “full relaxation” refers to the vc-relax routine within
QE, which allows the lattice parameters and the atomic positions to relax and is distinct from the
relax routine, which holds lattice parameters constant. Once assembled, the 36-atom supercell was
allowed to fully relax once again before dynamics began. We simulated AIMD trajectories at three
temperatures - 500, 1 500 and 2 500 K. For each temperature, 5 picoseconds of AIMD data was
generated within the NVT ensemble using 1 femtosecond time steps.

Associated with each AIMD frame is the overall system energy, stress on the cell, and a set of
atomic positions and forces. This information is embedded in Atomic Simulation Environment
(ASE) Atoms objects, which serve as individual data points for model training. However, because
Cartesian coordinate data is not invariant to basic symmetry operations, we employ the MBTR
descriptor to transform local atomic environments using kernel density estimation over a geometry
function’s distribution to represent structure (Laakso et al. (2023); Barnard et al. (2023)). The MBTR
descriptors for configurations serve as inputs to our sampling methods discussed in the following
section.
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2.2 Diversity-based Sampling

From the generated dataset, our goal is to sample diverse configurations that can be used to train
the MLFF. We use the Vendi score as the metric to quantify the training dataset diversity. The
Vendi score is defined as the exponential of the Shannon entropy of the eigenvalues of a similarity
matrix (see Equation 1), and it can be used to quantify the “effective number of data points” in a set
(Friedman & Dieng (2023)). Here, the entries to the similarity matrix represent pairwise similarity
in the training dataset configurations.

V Sk(x1, . . . , xn) = exp

(
−

n∑
i=1

λi log λi

)
. (1)

We used the RBF kernel to generate the pairwise similarity matrix whose eigenvalues are λi in
Equation 1. The RBF kernel is defined in Equation 2.

K(x,x′) = exp

(
−|x− x′|2

2σ2

)
. (2)

In the RBF kernel, x and x′ represent two configurations and σ represents the kernel width, or the
smoothness of the similarity relation. It is related to another parameter γ = 1

2σ2 ; the latter is used
as the input to the Python package used for computation. σ was set to 0.0001 because it allowed
for adequate resolution of the difference between AIMD frames 1 femtosecond apart, where we
typically expect atomic environment changes to be small.

A sensitivity analysis for γ was conducted for trajectories generated at 2 500 K since they have
the most variation in energy values. These results are shown in Appendix A. For lower γ values,
the distribution of similarity values is concentrated toward 1.0, meaning that a large portion of
the frames in the trajectory are deemed “similar.” At large γ, the distribution shifts toward 0.0,
indicating the frames are deemed more different from one another. To reflect a balance of similarity
and difference, we selected an intermediate value of γ = 1×106, or σ = 0.0001. This same value was
used to calculate the similarity matrices for the other trajectories. This analysis yielded Vendi scores
of 2.6, 12.7, and 53.9 for the 500 K, 1 500 K, and 2 500 K trajectories, respectively. This is made
more intuitive by the velocity autocorrelation (VAC) plots shown in Appendix B. The VAC plots
show that the variations in the 2 500 K trajectory are the largest, and therefore we expect trajectories
from 2 500 K to have the largest number of “effective” samples when compared to the trajectories
from the other two temperatures.

2.3 MLFF Training

The MLFF studied in this work is MACE (Batatia et al. (2023)). This model is one of the models
available in the mlip Python package published by Instadeep AI (Brunken et al. (2025)). The material
of interest is (cubic) 3C-SiC (mp-8062), the SiC polymorph with the smallest bandgap, which has
been alloyed with other ceramics to achieve ultra-high heat resistance (Jain et al. (2013); Sarikov
et al. (2019); Zimmermann et al. (2008)).

The objective of a MLFF is to learn the relationship between an atom’s local environment and
the forces on that atom, as well as the atom’s contribution to the overall system energy. Thus, the
training data was comprised of bulk SiC AIMD at three different temperatures: 500, 1 500, and 2 500
K. A wider range of temperatures exposes the model to a greater variety of atomic configurations
which improves its ability to accurately predict forces and energies across different thermodynamic
states. Due to atomic vibrations, AIMD trajectories are highly correlated, and there is a characteristic
vibrational period that each atom in the system experiences. Plots of the velocity autocorrelation
function for each AIMD trajectory are shown in Appendix B. The VAC plots show that there is
enough sampling of the trajectories to account for the different portions of each autocorrelation
period.

For each 5000-frame trajectory, whose atomic environments vary with time, we calculated a RBF-
based similarity matrix with σ = 0.0001 on all possible pairs, ranked the values, and identified the
indices associated with the lowest similarity scores. The unique entries in this ranked assortment
corresponded to the order in which frames were added to the training set. The present work refers to
this as “RBF-based similarity sampling,” and it is contrasted with purely random sampling of frames
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from each trajectory. We explored 3 separate training sets, where 300, 400, and 500 frames were
sampled from each AIMD trajectory, corresponding to MACE models trained on 900, 1200, and
1500 AIMD frames. For each model, a random set of 1200 frames was used for validation, and the
remainder were all added to the test set. The training points sampled using the two methodologies
mentioned above are shown on the Energy versus time plots in Appendix C. These training points
are used to train the MACE model, where each model is trained with a graph cutoff of 5 Å, 128
channels, and a maximum correlation order of 2. The plots in Appendix C show that the RBF-based
sampling is heavily biased towards sampling configurations from the initial part of the trajectory
when the system is not yet equilibrated. This has consequences on the accuracy of the MACE model
trained using the RBF-based training samples as discussed in the following results section.

3 Results and Discussion

Figure 1: (A) Heatmap of the similarity matrix calculated using the 1200 MBTR representations of
atomic configurations used to train the MACE model. The similarity is computed using the RBF
kernel with a kernel width of σ = 0.0001. (B) Histogram of similarity scores shown in (A). There is
a large concentration at 0.0 due to the dissimilarity between the three AIMD trajectories.

Figure 1 shows the heatmap and histogram of similarity values for the training set composed of 1200
total frames (400 from each AIMD trajectory). The regularity of the heatmap in (A) is expected
given our prior physical knowledge about the system. In the lowest temperature trajectory, the
frames are more similar to one another than in the highest temperature. Moreover, the frames in the
initial equilibration period of each AIMD trajectory (∼1000 frames) are less similar to one another
than the equilibrated frames are to one another. The histogram in (B) is heavily concentrated at
0.0, but this is an effect of combining the three training distributions into one training set. There is
inherently minimal similarity between points in different data sets.

Figure 2: (A) Comparison of Energy RMSE for MACE models trained on 900, 1200, and 1500
AIMD frames using two different training data selection methods: RBF and Random. (B) Vendi
scores of the training sets used in MACE model training.

4



Figure 2A shows the energy RMSE for the MACE models trained and the number of frames used
in training according to two different training data sampling methods: random sampling with high
dataset Vendi score and RBF-based similarity sampling. The datasets with higher diversity are
observed to have outperformed training datasets with lower diversity scores for two of the three
cases studied. The models show a trend of “minimizing” RMSE with increasing training set size as
expected. However, RMSE values plateau and this may be indicative of the maximum amount of
information that can be gleaned from bulk AIMD. We note that for two of the models, the dataset
with greater diversity (a higher Vendi score) has a lower RMSE. To better understand this correlation,
we evaluated each training set’s Vendi score according to Equation 1 and plotted the results in Figure
2B. The lower RMSE values in the models trained with random sampling are likely due to the
greater diversity in their training data, as demonstrated in their Vendi scores. Moreover, the RMSE
accuracy of the models approaches a constant value as the overlap between the frames sampled by
each method increases. This is a consequence of a finite training set.

The energy parity plot for the model with the lowest energy RMSE is shown in Figure 3. Its training
losses by epoch are shown in Appendix D. It exhibits an energy recovery of 12 meV/atom and a R2

value greater than 0.98 on both training and test sets. This energy recovery is adequate for describing
simple bulk dynamics.

Figure 3: Energy parity plot of the MACE model trained on 1200 random frames (400 per training
trajectory) and evaluated on the remainder from each trajectory.

4 Conclusion

This work demonstrates that diversity-aware data selection can accelerate the construction of
machine-learned force fields in materials design frameworks. By leveraging the Vendi score to
quantify configuration space diversity, we identified cases where sampling strategies that increase
dataset diversity improve the force field accuracy. These insights have direct implications for the
development of force fields for complex systems such as ultra-high temperature ceramics or multi-
principal element alloys, where the combinatorial design space is vast and generating high-fidelity
reference data is costly. Although the computational bottleneck for MLFFs is primarily in the ac-
quisition of ab initio training data, knowledge of training set diversity can help intelligently acquire
further training data. Moreover, training a MLFF on a maximally-informative, diverse dataset en-
hances the efficiency of transfer learning processes by identifying a maximally-potent training set
for model performance in certain conditions. A model would then have more “room” in its training
set capacity (before it became too large to be feasible) to transfer learn the behavior of different
atomic environments. Future work will extend this framework to integrate active-learning strategies
with uncertainty quantification, and explore connections between data diversity, underlying lattice
dynamics, and transferability across thermodynamic conditions. Ultimately, we show that diversity-
driven training offers a promising route toward building efficient and generalizable MLFFs that can
accelerate the discovery and design of advanced materials for extreme environments.
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Leveraging genetic algorithms to maximise the predictive capabilities of the SOAP descriptor.
Molecular Systems Design & Engineering, 8(3):300–315, 2023. doi: 10.1039/D2ME00149G.
URL https://pubs.rsc.org/en/content/articlelanding/2023/me/d2me00149g. Pub-
lisher: Royal Society of Chemistry.

Albert P Bartók, Risi Kondor, and Gábor Csányi. On representing chemical environments. Physical
Review B—Condensed Matter and Materials Physics, 87(18):184115, 2013.
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A Sensitivity Analysis: γ in RBF kernel

Figure 4: Sensitivity analysis of different values of γ in the RBF kernel on the 2 500 K trajectory.

At low values of γ, the kernel width is larger such that more frames are identified as “similar” to one
another. At high values of gamma, the kernel width shrinks such that more frames are recognized as
different from one another, shifting the similarity distribution toward 0.

B Velocity Autocorrelation: bulk SiC AIMD trajectories

The velocity autocorrelation functions of the three training trajectories exhibit some periodicity after
an equilibration period. This periodicity is longer for the higher-energy trajectory (2 500 K) because
of the amount of energy present in the system. This greater variation in atomic configurations and
longer periodicity is related to the higher Vendi score for 2 500 K trajectory when compared to the
other two trajectories at lower temperatures.
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Figure 5: Velocity correlation timeseries for each AIMD trajectory, as analyzed by TRAVIS (Brehm
& Kirchner (2011)).

C Energy Distributions of AIMD Trajectories

Figure 6: Energy timeseries of each 5-picosecond AIMD trajectory (A: 500K, B: 1500K, C: 2500K).
Red dots indicate frames chosen randomly for model training.
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Figure 7: Energy timeseries of each 5-picosecond AIMD trajectory (A: 500K, B: 1500K, C: 2500K).
Red dots indicate frames chosen with RBF-based sampling for model training.

The AIMD trajectories experience an equilibration period that lasts roughly 1 picosecond, during
which the system energy fluctuates more than it will at equilibrium. The red dots indicate frames
that were used in model training based on their method of selection.

D Training Loss by Epoch Curve

Figure 8: MSE Training loss by epoch for the MACE model trained on 1200 random AIMD frames
(400 per trajectory).

The MACE models were trained for 100 epochs and did not exhibit the classical signs of overfitting.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the contributions and scope
of the paper. For this work, we analyzed the performance of MACE, a MLFF model, when
trained on datasets with different diversity values and found that greater diversity in training
data can yield a model with better prediction capability.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: This work discusses briefly that the computational bottleneck associated with
MLFF training is the acquisition of ab initio training data. Thus, curating a maximally-
diverse training data set is not immediately beneficial to the model development workflow,
particularly for learning equilibrium bulk dynamics. Although efficient model training has
implications for more complex transfer learning frameworks, that was outside the scope of
this work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This work did not include any proofs or theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The Methods section described the acquisition of the training data via Quan-
tum ESPRESSO, the MLFF model architecture used (MACE), and its implementation in
the mlip Python package.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The work provides access to the data and code used for it at
https://github.com/cganley2/ai4mat2025.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This work varied the size of three subsets of AIMD data when training MACE
models with certain hyperparameters. This work also demonstrated a sensitivity analysis
of the RBF kernel on the kernel width parameter in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
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Answer: [No]

Justification: This work could have included an analysis of different random seeds used for
dataset selection and reported on the statistical significance of the MACE models trained
thereon.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We conducted some computational scaling studies as part of this work. The
results are shown in the table below.

N frames Epochs Cores per node Memory (GB) Walltime
1000 100 16 21.33 11:12:04
2000 100 16 21.25 21:07:21
3000 100 16 21.12 39:10:02

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work conforms in every respect with the NeurIPS Code of Ethics.
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Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The scope of this work was in the training of machine learned force fields
which are of interest for a small subset of researchers and not the general population.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper did not develop data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This work cited Quantum ESPRESSO, ASE, MACE, TRAVIS, and the mlip
Python package.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: This work did not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This work did not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work did not require IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs were used in the development of any part of this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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