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ABSTRACT

Denoising Diffusion Probabilistic Models (DDPMs), while powerful, require ex-
tensive sampling due to a high number of function evaluations (NFEs) for accurate
predictions, hindering their use in long-term spatio-temporal physics predictions.
We address this limitation by introducing two novel sampling strategies: 1) Trun-
cated Sampling Models, which achieve high-fidelity single/few-step sampling by
truncating the diffusion process, bridging the gap with deterministic methods; and
2) Iterative Refinement, a reformulation of DDPM sampling as a few-step refine-
ment process. We demonstrate that both methods significantly improve accuracy
over DDPMs, DDIMs, and EDMs with NFEs ≤ 10 for compressible transonic
flows over a cylinder and provide stable long-term predictions.

Turbulent flow is prevalent in everyday phenomena ranging from natural occurrences (Sullivan &
McWilliams, 2024; Pyakurel et al., 2017) to engineering applications (Tulapurkara, 1997; Cheah
et al., 2007; Volpe et al., 2014). Computational Fluid Dynamics (CFD) is essential for understanding
these flows, with direct numerical simulations being the gold standard. However, it requires high-
resolution grids to resolve the full spectrum of turbulent spatial and temporal scales, resulting
in computationally intensive simulations (Pope, 2012). This limitation has propelled the recent
surge in data-driven approaches. Leveraging the abundance of high- and low-fidelity data, machine
learning algorithms offer various opportunities to enhance the accuracy and efficiency of turbulence
simulations (Vinuesa & Brunton, 2022), particularly for phenomena like turbulent flows, which are
challenging for traditional CFD methods.

Diffusion models (DMs) as surrogates. DMs (Hyvärinen, 2005; Sohl-Dickstein et al., 2015) have
demonstrated great potential in various domains (Dhariwal & Nichol, 2021; Wang et al.; Lugmayr
et al.; Ho et al.; Li et al., 2023); however, their application to fluid-based problems remains an
underexplored area of research. To date, applications involved inverse problems (Holzschuh et al.,
2023), high-fidelity reconstruction (Shu et al., 2023), autoregressive sampling in two-dimensional
(Yang & Sommer, 2023; Lippe et al., 2023; Kohl et al., 2024) and three-dimensional (Lienen et al.,
2024) settings, and an uncertainty-aware surrogate for airfoil simulations (Liu & Thuerey, 2024).

Motivation for using DMs. DMs have been shown to autoregressively generate videos or simulation
trajectories, which are unconditionally stable over very long time horizons (Kohl et al., 2024).
Temporal stability is difficult to accomplish using supervised loss terms, requiring memory-consuming
techniques like multi-step unrolling (Um et al., 2020). Additionally, the probabilistic nature of DMs
can deal very well with measurement noise or missing data (Huang et al., 2024), making them highly
robust and versatile. Since a prediction from the DM samples from the posterior, this allows small
variations due to uncertainty in the input to naturally evolve and amplify over time, creating diverse
predictions over many steps, while individual trajectories always remain physically accurate.

Need for faster and more accurate sampling. The main drawback of DMs, especially evident in
fluid problems, is the long inference time due to the large number of function evaluations (NFEs)
required, and the limited accuracy compared to deterministic baselines (Cachay et al., 2023). There-
fore, our objective in this study is to reduce the inference time disparity between DMs and single-step
deterministic baselines while concurrently enhancing the accuracy of their predictions. This is
achieved through our proposed straightforward training and sampling procedures.
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The main contributions of this work can be summarized as follows:

1. We introduce Truncated Sampling Models (TSMs) to enable single-step and few-step sam-
pling while preserving or even augmenting sampling fidelity. We describe how truncation of
the diffusion process, typically employed to reduce NFEs, can improve inference accuracy.
Additionally, we distinguish our proposed TSMs from related approaches and highlight their
efficiency and ease of implementation.

2. We introduce an inherently stochastic Iterative Refinement (IR) approach to enable flexible
sampling of conditional diffusion models, allowing reduced NFEs with improved accuracy
compared to ancestral sampling. We explain the intuition behind the approach and provide a
comparative analysis against existing methods in our experiment.

3. We empirically demonstrate the efficacy of the proposed methods in reducing inference
steps and improving the accuracy of diffusion models for compressible transonic flows over
a cylinder.

1 BACKGROUND

1.1 DENSOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (Ho et al., 2020, DDPMs), a class of generative DMs,
convert a data distribution q(x0) to a prior distribution q(xT ) ∼ N (0, I) over T steps through a
Markovian forward diffusion process q(xt | xt−1) by gradually adding Gaussian noise with noise
schedule βt. We can sample the state xt directly from x0 through the parameterized closed form:

q(xt | x0) =
√
ᾱtx0 +

√
1− ᾱtϵ , (1)

where ᾱt =
∏t

i=1 αi and αt = 1 − βt. The forward process posterior q(xt−1 | xt) is approx-
imated using a neural network through a parameterized Gaussian distribution pθ (xt−1 | xt) =
N (xt−1;µθ (xt, t) ,Σθ (xt, t)), where µθ and Σθ are the network predicted mean and variance,
respectively. However, in this study, the variance is kept constant according to the noise schedule βt

and is chosen to be Σθ(xt, t) = σ2
t I, with σ2

t = βt.

During inference, the reverse process (i.e., ancestral sampling) begins from xT ∼ N (0, I) and
iteratively samples xt−1 ∼ pθ(xt−1 | xt) for T steps until reaching a fully denoised state x0. The
network is trained to estimate the forward process posterior by minimizing the Kullback-Leibler (KL)
divergence KL(q(xt−1 | xt)||pθ (xt−1 | xt)), which reduces to the loss function (Ho et al., 2020):

Lt−1 := Ex0,ϵ

∣∣∣∣∣∣ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∣∣∣∣∣∣2 , (2)

where the network only learns to predict the noise at each noise step to perform partial denoising.
The denoising step is related to Tweedie’s formula (Efron, 2011), which can be used to estimate the
posterior mean E[x̂0|xt; θ] from a noisy sample xt via

E[x̂0|xt; θ] = (xt −
√
1− ᾱtϵθ(xt, t))/

√
ᾱt. (3)

1.2 PROBLEM DEFINITION

The Navier-Stokes (NS) Partial Differential Equations (PDEs) represent a class of problems that
epitomize the complex physics encountered in engineering and scientific disciplines. For an arbitrary
domain Ω, fluid motion is governed in space and time τ by the NS PDE, defined as:

∂u

∂τ
+ (u · ∇)u = −∇p+ 1

Re
∆u+ f,

∂ρ

∂τ
+ ρ(∇ · u) = 0, (4)

where f is external forcing, and u, p, and ρ are the velocity, pressure, and density, respectively. Re is
the non-dimensional Reynolds number, controlling the severity of diffusive to convective transport.

Reformulated autoregressive sampling. For time-dependent problems, to reach the target state
x(τf ), where x = {u, p, ρ}, and with the initial condition x0, our reformulation of autoregressive
sampling is defined as (notice that the notations x(. . .) and x... are used interchangeably):

x(τf ) = pTθ (xT , p
T
θ (. . . p

T
θ (xT ,x0, j) . . .), j), (5)
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where the prediction stride j denotes how far we sample in the future based on the physical timestep
δτ . The shortened notation pTθ denotes the DDPM iterative sampling, pTθ (xT ,x0, j) = x(j · δτ) =
pθ(pθ(. . . pθ(xT ,x0, j) . . .),x0, j). In essence, pTθ maps any fluid state x(τ) to x(τ+j ·δτ), without
the need to estimate the intermediate states x(τ + i · δτ) ∀i < j, as typically required by classical
numerical solvers to satisfy the Courant–Friedrichs–Lewy (CFL) convergence conditions (de Moura
& Kubrusly, 2013). Although conditioning on j has been previously explored in the context of
multi-parameter conditioning (Gupta & Brandstetter, 2023), our contribution emphasizes the use of
j to facilitate flexible, parallelizable, and potentially more accurate diffusion sampling instead of
next-step predictions.

Flexibility in predicting future states. By conditioning a surrogate model on j for j ∈ {0, . . . , T },
we achieve two major benefits. First, the model can predict all possible intermediate states between
τ = 0 and τ = T · δτ . In comparison to methods such as DYffusion (Cachay et al., 2023) that require
independent forecaster and temporal interpolator networks to achieve this task, our formulation
enables a single network to predict the next timestep in addition to intermediate ones. Second, we
are able to balance between the accuracy of the first-step prediction and error accumulation (Lienen
et al., 2024). For instance, smaller j values would lead to first-step predictions with high accuracy;
however, they would require longer rollout steps, leading to more error accumulation and vice versa.
Thus, we will demonstrate in our experiments how an optimal value for j can lead to better accuracy
than next-step sampling.

1.3 RELATED WORK

DMs as flow surrogates. Regarding time-dependent autoregressive predictions,Yang & Sommer
(2023) attempted to predict nonlinear fluid fields at specific points in time based on initial conditions.
Kohl et al. (2024) introduced an autoregressive conditional diffusion model (ACDM) capable of
predicting fluid states over extended time horizons while maintaining sample quality and temporal
stability, and provided benchmark results on various datasets and against multiple baselines.

Expedited sampling. The slow sampling time of DMs is a major drawback, prompting extensive
research to reduce the computational cost without compromising quality (Nichol & Dhariwal, 2021;
Luhman & Luhman, 2021; Salimans & Ho, 2022). Song et al. (2021) presented Denoising Diffusion
Implicit Models (DDIMs) that generalize DDPMs via a class of non-Markovian diffusion processes
instead of the Markovian diffusion process of DDPMs, leading to shorter deterministic generative
processes. By expressing DMs in a common framework known as elucidated DMs (EDMs), Karras
et al. (2022) introduce a design space featuring separable design choices that can be optimized to
attain expedited sampling with state-of-the-art accuracy. Truncated Diffusion Probabilistic Models
(TDPMs) (Zheng et al., 2023) truncate the last steps of the forward diffusion process, leading to
a shorter generative process starting from a hidden noisy distribution by leveraging an additional
generative adversarial network (GAN)-based implicit generator to match the prior to the aggregated
posterior.

2 NOVEL TRAINING AND SAMPLING APPROACHES

2.1 TSM: TRUNCATED SAMPLING MODEL

Motivation. An interesting phenomenon of DDPMs, particularly when trained with a linear βt, is
the ability to skip a small percentage (i.e., ≤ 20%) of the reverse diffusion process while maintaining
the sampling quality (Nichol & Dhariwal, 2021). Furthermore, approaches have been devised to
target a relevant range of noise levels during training by prioritizing intermediate noise levels (Karras
et al., 2022; Choi et al., 2022), thereby enhancing the loss per noise level.

We re-visit these approaches with a new perspective: We truncate a significant part from the last steps
of the reverse Markov chain with a high skip percentage s to reduce NFEs and focus the training on
noise steps preceding the truncation. We refer to a model trained for a limited part of the diffusion
process and sampled with truncated ancestral sampling as Truncated Sampling Model (TSM). Focused
training by restricting the sampling window for t parallels approaches by Karras et al. (2022) and
Choi et al. (2022) to improve the loss per noise level (see Eq. 2), with our main objective to achieve
enhanced sampling accuracy. Hence, we expect s≫ 0 to lead to better accuracy and reduced NFEs.
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Sampling. Algorithm 1 summarizes the sampling procedure for conditional TSMs, with differences
from ancestral sampling highlighted in blue. TSM sampling follows ancestral sampling until xts , i.e.,
pθ(xts:T ) := p(xT )

∏T
t=ts+1 pθ(xt−1|xt) , where ts = ⌊s · T ⌋ and s ∈ (0, 1]. At t = ts, instead of

sampling xts−1 ∼ pθ(xts−1|xts), we estimate x̂0 using the posterior mean E[x̂0|xt; θ], see Eq. 3.

Training. The TSM training procedure involves the choice of the hyperparameter s (skip percentage)
and its use as a lower bound for sampling diffusion steps. Hence, the sole adjustment to the DDPM
training algorithm from Ho et al. (2020) is defined as t ∼ Uniform({ts, . . . , T}). Based on the skip
percentage s, typically > 0.2 for more pronounced outcomes, a balance between NFEs, sampling
accuracy, and stochasticity can be achieved. Extreme skip percentages (e.g., s ≈ 1) are feasible,
resulting in unprecedented high-accuracy single-step diffusion sampling, albeit at the cost of reduced
stochasticity. Hence, relatively lower s values are optimal for problems of stochastic nature to enable
learning all modes of the data distribution.

TSMs vs TDPMs. We highlight the main differences between TDPMs (Zheng et al., 2023) and our
proposed TSMs. First, TDPMs apply the truncation to the last steps of the forward diffusion process,
whereas TSM focuses on these last steps and conversely truncates the first steps. Second, TDPMs rely
on an additional implicit generator network (GAN) to match the prior with the aggregated posterior.
This implicit generator requires joint training with the DDPM, thus adding extra complexity to the
training process. On the other hand, our training procedure closely resembles the straightforward
DDPM training procedure and doesn’t add complexity, thus rendering TSMs an appealing approach
for enhancing sampling efficiency. Finally, while the sample quality of TDPMs is adversely impacted
by large truncations, TSMs enable one-step inference with the same or improved sampling quality,
relying on characteristics specific to fluid dynamics datasets as we explain in Section 3.

Algorithm 1 Truncated Ancestral Sampling

Require: ϵθ (TSM), s (skip percentage), c (con-
dition)

1: xT ∼ N (0, I)
2: for t = T, ..., ts + 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 = 1√
αt

(
xt − βt√

1−ᾱt
ϵθ(xt, t, c)

)
+ σtz

5: end for
6: if s > 0 then
7: x̂0 = (xts −

√
1− ᾱtsϵθ(xts , ts, c))/

√
ᾱts

8: return x̂0

Algorithm 2 Iterative Refinement

Require: ϵθ (DDPM model), xinit (initial state),
γ = {tr, . . . , te} (refinement schedule)

1: x̂0 ← xinit
2: for each t in γ do
3: ϵ ∼ N (0, I)
4: xt =

√
ᾱtx̂0 +

√
1− ᾱtϵ

5:
6: x̂0 = 1√

ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t, c)

)
7: end for
8: return x̂0

2.2 IR: ITERATIVE REFINEMENT

Motivation. A fundamental characteristic of DMs is their iterative sampling process, which sys-
tematically reduces noise from a pure Gaussian noise xT to a noise-free state x0 over successive
iterations. This ancestral sampling procedure is performed by gradually estimating all intermediate
states xT−1:1 until reaching a fully denoised state x0, matching the training data distribution q(x0).
Nevertheless, during training, a DDPM network learns to only predict the noise field at each noise
level of a predetermined βt independent of any adjacent states (see Eq. 2). Therefore, for a pre-trained
DDPM model, various sampling methods can be employed without re-training, as long as they pertain
to βt originally used for training.

We leverage this property of DMs to introduce an intuitive refinement algorithm as a novel sampling
method for DDPMs, which we refer to as Iterative Refinement (IR). In IR sampling, we consider a
much shorter noise schedule γ = {tr, . . . , te} ⊂ {T, . . . , 1} and interpret the different noise levels
to essentially correspond to different levels of detail for a given state. We observe for any provided
initial state xinit with a distribution similar to the training data, there exists a sequence γ that defines
the minimal number of noise levels (or levels of detail) sufficient to augment the accuracy of xinit.
Hence, we optimize γ to ensure that the accuracy of the final prediction closely matches all levels of
detail present in the ground truth state x0.
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Sampling. Algorithm 2 summarizes the generative process for IR. Given an initial state xinit
(assumed to be a noise-free, low-order approximation of x0) and a refinement schedule γ, we
iteratively apply forward diffusion followed by an estimation of the posterior mean to predict a series
of gradually enhanced approximations of the noise-free state x̂i

0,∀i = 1, . . . , N , where N = |γ|, at
distinct noise levels. Conversely, ancestral sampling pθ(xt−1|xt) gradually removes noise for the
same schedule (assuming γ = {T, . . . , 1}) leading to intermediate states that are partially noisy. IR
allows for a flexible choice of the length and distribution of γ to fit the problem under consideration
and ensures higher accuracy of predictions using fewer NFEs compared to ancestral sampling. We
also argue that xinit can be a (partially) noisy state obtained through truncation of ancestral sampling,
for example, or even sampled from the prior distribution q(xT ), further relaxing the computational
overhead before IR sampling.

Relation to DDIMs. The general recursive sampling formula is defined by Song et al. (2021):

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵ

(t)
θ (xt)√

ᾱt

)
︸ ︷︷ ︸

predicting x0

+
√
1− ᾱt−1 − σ2

t · ϵ
(t)
θ (xt)︸ ︷︷ ︸

direction pointing to xt

+σtϵt, (6)

with σt = 0 resulting in a deterministic forward process. One can see that Eq. 6 consists of two
main components, a prediction of x0 followed by a direction pointing to xt. Using σt =

√
1− ᾱt−1

in the previous equation yields IR sampling as described in Algorithm 2, but but with the order of
lines 4 and 6 reversed. For deterministic DDIMs, the predicted noise ϵθ in Eq. 6 is used to define
the forward process instead of a randomly sampled Gaussian noise. This directly results from their
choice of the mean function for the inference distribution q (xt−1 | xt, x0) (refer to Song et al. (2021)
for more details). Despite the similarity, our results demonstrate that IR consistently outperforms
DDIM. We hypothesize that the stochastic nature of IR aids in rectifying errors incurred in earlier
sampling steps. However, the dynamics of stochastic sampling are complicated in practice and might
introduce additional errors (Karras et al., 2022). Consequently, this observation may not generalize to
other datasets and domains.

3 EXPERIMENT: TRANSONIC FLOW
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Figure 1: Pressure field for transonic
flow.

We consider a two-dimensional (2D) fluid flow scenario, a
compressible transonic flow over a cylinder on a 128× 64
grid including ux, uy, p, and ρ flow fields (Tra). This
dataset is also a benchmark dataset by Kohl et al. (2024).
The case becomes particularly challenging at high Mach
Numbers Ma due to the presence of shock waves. Interpo-
lation int and extrapolation ext datasets for evaluation
involve R = 60 timesteps with Ma ∈ {0.66, 0.67, 0.68}
and Ma ∈ {0.50, 0.51, 0.52}, respectively. Temporal sta-
bility is tested on long with R = 240. The prediction
stride is defined as j ∈ {0, 1, . . . , 10}, i.e., T = 10, and is
provided as an additional input channel to the network. Details regarding training and diffusion-related
hyperparameters for this test case can be found in Appendix C.

Evaluation metrics. We evaluate the accuracy of DMs against the ground truth data through various
metrics. We consider the temporal-average MSE (TA-MSE), turbulent kinetic energy spectrum (TKE)
and temporal correlation ρ for the absolute velocity |u|, and temporal stability for significantly long
rollout horizons. For results obtained with j > 1, we restrict the analysis in this section to sampling
with the stride j without sampling the intermediate states (i.e., we only make ⌈R/j⌉ predictions to
reach the target timestep). Details regarding the sampling of the intermediate states are presented in
Appendix D.

We focus our evaluation on the speedup obtained via a reduction in NFEs, relying on the fact that we
utilize the same architectures with almost the same number of parameters for all models. Training
and sampling were carried out using NVIDIA GeForce RTX 2080 Ti GPU. This section is solely
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dedicated to quantitative analysis of the top-performing models. We provide our comprehensive set
of results as well as other baselines (such as ResNet, Fourier neural operators (FNO), PDE-Refiner,
latent-space transformers (TF)) in Appendix E.1. Qualitative samples are provided in Appendix E.2.
Moreover, we compare our methods against DDPMs, DDIMs, and EDMs and exclude other expedited
sampling methods outlined in Section 1, as distillation techniques require extensive retraining without
yielding significant accuracy improvements over the teacher model.

Figure 2: Comparison of DDIM and IR (left) and
scaled turbulent kinetic energy spectrum (TKE,
right) for different methods.
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Table 1: TA-MSE values for the top performing
models. Standard deviation values are estimated
over all timesteps and multiple samples.

Tra (10−3)

Model NFEs ext int

ACDM T20 (Kohl et al., 2024) 20 2.3 ± 1.4 2.7 ± 2.1
UNetut (Kohl et al., 2024) 1 1.6 ± 0.7 1.5 ± 1.5

DDPM T100 100 3.0 ± 2.7 4.1 ± 3.7
EDM - Deterministic Euler 4 1.3 ± 1.3 1.1 ± 1.0
DDIM T20 10 3.2 ± 2.7 4.2 ± 3.9
IR T100 - N γ1 (Ours) 5 1.6 ± 1.3 2.0 ± 1.7
TSM T100 s =1 (Ours) 1 1.2 ± 1.1 1.5 ± 1.5

We present TA-MSE results in Table 1, where UNetut refers to UNet with unrolled training. In IR,
T100/T80 is the base model, N is Gaussian noise used as xinit, and the absence of γ implies linear
sampling steps. Using j = 1, our approaches significantly surpass DDPMs and DDIMs accuracy
while requiring only a fraction of the NFEs, as low as single-step inference. Our approaches transcend
the benchmark ACDM (Kohl et al., 2024) with ×4 and ×20 (i.e., single-step inference) speedup
for IR and TSM, respectively, while preserving all turbulent scales present in the flow (see Fig.2,
right). Additionally, the single-step TSM outperforms the best baseline from Kohl et al. (2024), while
IR yields marginally lower accuracy. The most accurate result from EDM is reported here, with
comprehensive tests for various samplers detailed in Fig. 5 (Appendix E.1), demonstrating marginal
increase in accuracy compared to TSM, albeit requiring 4× the NFEs.

Comparison of IR and DDIM. In Fig. 2 (left), we compare IR against DDIMs with varying NFEs
for identical sampling schedules. Besides IR’s consistency in transcending DDIMs across various
base DDPMs, we notice a discernible correlation between NFEs and accuracy for DDIMs, whereas
IR does not manifest a noticeable trend. The stochastic nature of IR makes it difficult to find clear
relations across different datasets and NFEs as it is case-by-case tuned (Karras et al., 2022).

Limitations. In TSMs, since the training was focused on a limited part of the diffusion process,
they exhibit inflexible sampling; neither DDIMs nor IR could be applied unless the sampling steps
t = {tstart, . . . , tend} ⊂ {T, . . . , ts}, which is not the case for high s values. Also, while IR and
TSMs enable single- and few-step sampling with increased accuracy compared to ancestral sampling,
they are not guaranteed to supersede the accuracy of deterministic baselines. However, we have
empirically shown that our methods improve over DDPMs, DDIMs, and EDMs in terms of speed
and/or accuracy for the transonic flow experiment.

4 CONCLUSION

We have introduced two novel training and sampling approaches to enable single- and few-step
sampling of DDPMs without compromising inference quality. Our first contribution is a Truncated
Sampling Model (TSM), capable of achieving single-step inference while maintaining or even
enhancing accuracy through early truncation of the reverse process. Additionally, our second
contribution, Iterative Refinement (IR), targets pre-trained DDPMs by formulating the sampling
process as a refinement endeavor to facilitate high-fidelity inference with reduced NFEs compared
to existing sampling methods, such as DDIMs. We have showcased the efficacy of TSMs and IR in
minimizing the disparity between DDPMs and deterministic baselines for a challenging transonic
flow experiment. We believe our proposed methods significantly enhance sampling speed and quality
in fluid dynamics simulations, and we posit their potential applicability in other domains for which
diffusion models are considered state-of-the-art.
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A EXPERIMENTAL SETUP

We summarize the details for our dataset in Table 2. For detailed information regarding the generation
of the datasets, please refer to the corresponding paper (Kohl et al., 2024). For the generation, only a
single parameter is varied, namely Re, and is provided as an input channel to all models. We consider
velocity (ux and uy), pressure (p), and density (ρ) fields as input and output fields. Additionally,
the models are conditioned on the prediction stride j, provided as an additional input channel to the
network.

Table 2: Parameter values for all datasets.

Dataset Param Purpose Values Sequences
per Param

Total
Sequences

R Total
Frames

Tra
(128× 64)

Ma training {0.53, 0.54, . . . , 0.63} ∪ {0.69, 0.70, . . . , 0.90} 1 33 501 16533
test ext: {0.50, 0.51, 0.52} 2 6 60 360

int: {0.66, 0.67, 0.68} 2 6 60 360
long: {0.64, 0.65} 2 4 240 960

B REFINEMENT SCHEDULES FOR IR

The most critical component of IR sampling is γ, balancing between inference quality and NFEs.
Hence, an optimized γ should consider the initial state xinit, the model’s accuracy Lt−1 at each noise
step (defined as in Eq. 2), and the nature of the problem. All our proposed γ schedules are optimized
using a greedy algorithm, which we found to easily lead to highly satisfactory results with minimal
effort and computational cost. A direct consequence of using this greedy algorithm is that the final
output x̂N

0 provides a better approximation of x0 than xinit and all preceding approximations:

E[∥x̂N
0 − x0∥2] < E[∥x̂N−1

0 − x0∥2] < . . . < E[∥x̂1
0 − x0∥2] < E[∥xinit − x0∥2]. (7)

We believe that better results could be achieved through more sophisticated optimization of γ,
although this will incur additional training overhead.

We start the optimization by choosing the max possible length of γ (N ) and a value for the first
refinement step (K). If K is not provided, the default starting value is T (i.e., the number of noise
steps of the pre-trained DDPM). For the first step, we consider K possible options for refinement,
i.e., {x ∈ Z | 1 ≤ x ≤ K}. As long as the validation loss L is decreasing, we keep looping over all
K values. However, if the loss does not improve after tol steps (i.e., a tolerance set by the user to
achieve early stopping for non-promising optimizations), we continue to the next refinement step.
The starting point for the next timestep is defined to be one step smaller the current optimized step
to further reduce the computational cost. If for the current step no value was found to reduce the
current best loss Lbest, the entire optimization is terminated, leading to the loss in Eq. 7, even if
|γ| < N . These restrictions are imposed to reduce the computational cost of optimization, though
they might lead to non-optimal results. More expensive gradient-based and gradient-free optimization
algorithms offer the potential to yield better results; however, we believe that the accuracy gain would
not compensate for the concomitant computational cost.

Using the greedy algorithm, the optimization schedules utilized in all our experiments are summarized
as follows (and visualized in Figure 3):

γ1,i = 0.805− 0.2i, ∀i = 0, 1, 2, 3, 4,

γ2,i = 0.805− 0.1i, ∀i = 0, 1, 2, . . . , 8,

γ3,i = 0.655− 0.05i, ∀i = 0, 1, 2, . . . , 13,

γ4,i = 0.905− 0.05i, ∀i = 0, 1, 2, . . . , 18.

(8)

Also, γ5 = {1/T}. When no γ schedule is provided, we use a linear sampling schedule by default:

γlinear(N) = {x ∈ N | 0 ≤ x < T, for N ∈ N}. (9)
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Algorithm 3 Greedy optimization of γ with early stopping

Require: N (Max length of γ), K (starting value)
Require: tol (tolerance value), xinit (Initial state, ϵθ (pre-trained DDPM)

1: γ ← {}
2: for i = 1 to N do
3: Lbest ←∞
4: topt ← −1
5: counter← 0
6: for j = K to 1 do ▷ Go over all possible values.
7: γtemp ← append(γ, j) ▷ Update γtemp by appending step j to γ (unchanged).
8: L = recursive_sampling(xinit, γtemp, ϵθ) ▷ Evaluate γtemp on the validation dataset.
9: if L < Lbest then ▷ Update the current step if accuracy is higher.

10: Lbest ← L
11: topt ← j
12: counter← 0
13: else
14: counter← counter +1
15: if counter > tol then
16: break ▷ Terminate current step: failed to improve Lbest after tol trials.
17: end if
18: end if
19: end for
20: if topt = −1 then
21: break ▷ Terminate optimization: no improvement found.
22: end if
23: append(γ, topt)
24: K ← topt − 1 ▷ Consider only smaller values for the next refinement step.
25: end for
26: return γ

C SIMULATION PARAMETERS

The training hyperparameters are presented in Table 3. Our training is limited to the L2 loss for
DDPMs, TSMs, EDMs and any baselines. All models were trained with max overlap (i.e., 10 frames
overlapping) but with early stop once the validation loss stabilizes, typically much earlier than the
number of epochs presented in Table 3.

The utilized network architecture and the diffusion-related hyperparameters are summarized in
Table 4. We use the exact same network architecture as provided in the benchmark paper for fair
comparison.

EDM training and sampling. Our implementation of EDMs is based on the work by Karras
et al. (2022). We implement their Algorithm 1 (deterministic sampler) and Algorithm 2 (stochastic
sampler) using 1st-order Euler and 2nd-order Heun’s methods with design choices from the last
column of Table 1 (Karras et al., 2022). Additionally, we consider preconditioning and a weighted
loss function using the parameters recommended by the authors. For each case, we ran the model
using different combination of deterministic/stochastic samplers and Euler’s/Heun’s methods. For the

0 0.2 0.4 0.6 0.8 1

t/T

γ1
γ2
γ3
γ4

Figure 3: Illustration for the refinement schedules defined in Equation 8. Each node represents a
noise step. All schedules start from the node with the largest t/T .
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Table 3: Summary of the training hyperparameters

Parameter Tra

Data size (frames) 16533
Resolution 128×64
Batch size 32
Epochs 3000
Learning rate 10−4

Learning rate schedule None
Optimizer AdamW
Weight decay 10−2

EMA decay 0.999
Early stop? Yes

stochastic sampler, the parameters {Schurn, Stmin, Stmax, Snoise} were non-comprehensively tuned
to attain the best possible results. We found the values 10, 0,∞, and 1 for Schurn, Stmin, Stmax,
and Snoise, respectively, to generally yield satisfactory results. Noteworthy, EDMs introduce more
hyperparameters for tuning compared to DDPMs, DDIMs, and our approaches.

D PARALLEL RECURSIVE SAMPLING

Speedup through parallel sampling. One of the benefits of conditioning a surrogate model on
the prediction stride j is to enable parallel sampling of transient test cases. To date, related work
concerned with physics-based simulations of transient nature focus on autoregressive sampling only.
Nonetheless, we posit that our formulation of the problem definition (see Section 1.2), combined
with our proposed improvement approaches (i.e., TSMs and IR), would enable parallel sampling with
reduced inference time for the same computational budget.

Inspired by the progress in video diffusion models (Ho et al.; 2022; Ni et al., 2023; Wu et al., 2023;
Harvey et al., 2022), we present two examples of sampling schemes that allow for parallel sampling
of diffusion models in transient test cases. As demonstrated in Fig. 4 for a sample problem with R =
10 states, while autoregressive sampling (see Fig. 4a) requires 10 successive predictions to sample
the entire simulation, it only requires 5 steps for parallel sampling with a batch size n = 2 (cf. Fig.
4b). With n = 5, max parallelism can be achieved to sample the entire simulation in 2 steps only
(cf. Fig. 4c). This corresponds to a speedup factor ≈ n, assuming that T ≥ n. For the two parallel
sampling schemes, we assume that sampling with j = 5 will lead to lower TA-MSE compared to
sampling with j = 1 for the entire simulation.

Higher accuracy when sampling intermediate timesteps. For models that allow sampling using
j > 1, we not only enable flexible parallel sampling to reduce inference time as discussed, but also
we improve the overall prediction accuracy. Typically when intermediate states are sampled with a
stride jsec smaller than the primary sampling stride j, we gain (marginally) higher overall accuracy
compared to ignoring intermediate states for sampling (using j only). In Table 5, we demonstrate

Table 4: Network architecture and diffusion-related hyperparameters. cin and cout refer to the
network’s number of input and output channels, respectively. βstart and βend of the noise schedule βt

are similar to Ho et al. (2020) but are scaled by a factor depending on the chosen noise steps T, as
defined in Nichol & Dhariwal (2021) and Kohl et al. (2024).

Parameter Tra

Architecture Kohl et al. (2024)
cin 10
cout 4
βstart 10−4 · (500/T)
βend 0.02 · (500/T)
Schedule Linear
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(a) Autoregressive sampling (n = 1). (b) Parallel sampling with n = 2. (c) Max parallelism with n = 5.

Figure 4: Parallel sampling of a time-dependent simulation with R = 10, enabled through models
conditioned on the prediction stride j. n is the batch size used for sampling. Each row represents
the state of the entire simulation, where the states evolve in time going downwards through the rows.
Numbers within blue cells (cells to predict) correspond to the value of j used to sample from the
nearest initial condition (green cell). Gray cells are states already sampled and are not needed for
current or subsequent predictions. For (b) and (c), we assume that j = 5 leads to highest prediction
accuracy compared to other j values.

this by sampling the best IR and TSM models. We see marginal improvement in the mean TA-MSE
for small j; however, the improvement is more pronounced for higher j values. This is primarily
attributed to the argument discussed by Lienen et al. (2024) pertaining to higher accuracy of predicting
with small timestep sizes for a short rollout horizon (R = j for sampling the intermediate states)
before error accumulation predominates, leading to lower accuracy for longer rollout horizons. This
greatly motivates future research in flexible sampling of time-dependent physics-based simulations
similar to Harvey et al. (2022).

Table 5: Mean TA-MSE results for predictions with j > 1, and with and without sampling the
intermediate states. For the former, the model names include “(all)”. TA-MSE is averaged over
ext and int regions. Standard deviation values are calculated over all timesteps, both regions, and
multiple samples. The results show consistent improvement when sampling the intermediate states
with jsec = 1 over sampling with the primary prediction stride j only.

j

Model 2 4 6 8 10

Tra (10−3)

IR T100 - N γ1 2.06 ± 1.91 2.73 ± 2.61 3.15 ± 2.93 4.18 ± 3.39 3.54 ± 2.98
IR T100 - N γ1 (all) 1.94 ± 1.82 2.33 ± 2.27 2.75 ± 2.83 3.06 ± 2.82 2.72 ± 3.39
TSM T100 s =1 1.46 ± 1.55 1.78 ± 1.82 2.17 ± 2.11 2.35 ± 2.07 2.32 ± 2.12
TSM T100 s =1 (all) 1.36 ± 1.47 1.59 ± 1.68 1.93 ± 2.22 1.74 ± 1.74 2.09 ± 3.22

E FULL RESULTS OF EXPERIMENT

In this section, we present our full results in addition to the top performing models presented in
Section 3. The results are split into quantitative and qualitative sections.

E.1 QUANTITATIVE RESULTS

The results for using j = 1 and optimal j > 1 are presented in Table 6. For TA-MSE values obtained
with j = 1, several insights can be observed. First, in comparison to ACDM (Kohl et al., 2024),
we are able to provide more accurate results through IR and TSMs with single-step and few-step
sampling (NFEs ≤ 5), even though our problem formulation (defined in Section 1) is much harder
compared to ACDM for the same utilized architecture. Noteworthy, the ACDM results are obtained
by conditioning over two previous timesteps, whereas all our models are conditioned on the previous
timestep only. Second, various TSMs are capable of improving over all considered baselines with and
without advanced training mechanisms, with the most accurate model being a single-step solver. IR
only improves over the base DDPMs and surpasses DDIMs by a significant margin for both similar
and optimized sampling schedules. In our experiments, we focused on using random Gaussian noise
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N (0, I) for the initial state xinit to reduce the computational overhead before starting the refinement
process and also because we found in early experiments that this setup yields slightly more accurate
results than starting from a prediction obtained through truncated sampling of the base DDPM.
Third, IR and DDIM were able to provide noise-free results even when the base DDPM produces
noisy output (e.g. DDPM T20). Fourth, in comparison to EDMs, we observe that although using a
deterministic Euler solver yields the best results for this case, with a negligible margin over TSM, it
requires 4 NFEs. In contrast, TSM is the only model that enables single-step, high-fidelity inference.
Note that we evaluate several solvers for EDM (see Fig. 5), but we only report the optimal settings for
each solver in Table 6. Finally, we note that PDE-Refiner performs suboptimally with a significant gap
compared to other baselines. The model was found to be highly sensitive to its key hyperparameters
(Kohl et al., 2024), rendering the hyperparameter tuning for this model challenging and ultimately
resulting in suboptimal performance.
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Figure 5: Evaluating different combinations of EDM samplers for the Tra test case. Standard
deviation regions are omitted for clarity.

For j > 1, we observe substantial improvements in accuracy, even for low-fidelity models, except for
EDMs. Suboptimal few-steps DDIMs are able to achieve comparable accuracy to the best baselines,
which is also true for IR and TSMs. Noteworthy, the numbers reported for j > 1 are limited to
sampling with j only without considering the intermediate states. We show in Appendix D that
sampling intermediate states could further enhance the overall accuracy, particularly for large j.

Temporal analysis. In Fig. 6, we see how the |u| correlation to the ground truth evolves over time
for the most accurate models, demonstrating consistency with the TA-MSE metric. In addition, we
evaluate the temporal stability of these top-performing models on the Tralong dataset, which has
much longer sequence length (i.e., R = 240 instead of 60), to ensure that the models’ predictions
remain physically consistent even after the predicted trajectories have significantly deviated from the
ground truth. In Fig. 7, we compare the time evolution of the stability parameter, defined as the rate
of change of each flow field x, by evaluating ||(xr − xr−1)/∆τ ||1. Compared to the ground truth
results, we see that stability parameter remains bounded within the range [0.015, 0.02] for both the
ground truth and all models, except for a low-fidelity PDE-Refiner model that produces non-physical
predictions beyond r ≈ 200. While DDIM, DDPM, and IR models slightly exceed the lower bound,
they maintain temporal stability.

E.2 QUALITATIVE RESULTS

We provide sample results in this section, see Fig. 8.
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Table 6: TA-MSE (10−3) values of the Tra test case for j = 1 (left) and the best results using
the optimum j (right). UNettn and UNetut refer to a UNet with training noise and unrolled training,
respectively. The reader is referred to Kohl et al. (2024) for a full description of the baselines reported.
Lowest TA-MSE values for each group of models are highlighted in bold. Standard deviation values
are obtained over all timesteps and multiple samples. ∗Model produces noisy output.

j = 1 optimum j

Model NFEs ext int j ext int

Kohl et al. (2024)
ACDM 20 2.3 ± 1.4 2.7 ± 2.1
UNettn 1 1.4 ± 0.8 1.8 ± 1.1
UNetut 1 1.6 ± 0.7 1.5 ± 1.5
ResNetdil. 1 1.7 ± 1.0 1.7 ± 1.4
FNO16 1 4.8 ± 1.2 5.5 ± 2.6
TFEnc 1 3.3 ± 1.2 6.2 ± 4.2
PDE-Refiner 4 5.4 ± 2.1 7.1 ± 2.1

DDPM
T20∗ 20 3.5 ± 3.1 2.6 ± 2.1 4 1.6 ± 1.3 2.1 ± 2.0
T100 100 3.0 ± 2.7 4.1 ± 3.7 5 1.9 ± 1.8 3.1 ± 2.7

EDM
Euler - Deterministic 4 1.3 ± 1.3 1.1 ± 1.0 1 1.3 ± 1.3 1.1 ± 1.0

Stochastic 4 1.7 ± 1.7 1.1 ± 1.0 1 1.7 ± 1.7 1.1 ± 1.0
Heun - Deterministic 40 2.7 ± 2.7 1.6 ± 1.4 2 2.2 ± 2.1 1.2 ± 1.1

Stochastic 40 2.0 ± 2.2 2.0 ± 1.8 2 1.8 ± 2.0 1.8 ± 1.6

DDIM
T20 5 4.4 ± 3.3 6.7 ± 5.4 4 1.9 ± 1.7 2.5 ± 2.2

10 3.2 ± 2.7 4.2 ± 3.9 4 1.4 ± 1.3 1.8 ± 1.7
T100 5 7.8 ± 5.2 6.1 ± 4.3 10 2.8 ± 1.9 4.1 ± 3.0

10 8.8 ± 5.5 6.7 ± 4.3 10 3.3 ± 2.2 4.5 ± 3.0
20 7.8 ± 5.2 6.1 ± 4.3 10 2.8 ± 1.9 4.1 ± 3.0
50 7.1 ± 4.7 6.0 ± 4.4 9 3.2 ± 2.2 3.3 ± 2.3

IR (Ours)
T20 5 2.8 ± 2.9 1.7 ± 1.7 4 1.3 ± 1.4 1.5 ± 1.5

10 3.2 ± 2.9 1.6 ± 1.5 4 1.2 ± 1.1 1.6 ± 1.6

T100 5 1.7 ± 1.4 2.1 ± 1.8 1 1.7 ± 1.4 2.1 ± 1.8
10 3.8 ± 3.2 3.5 ± 3.3 2 2.6 ± 2.3 2.7 ± 2.4
20 3.1 ± 3.1 3.0 ± 2.9 5 1.9 ± 1.7 3.0 ± 2.8
50 4.4 ± 4.0 3.5 ± 3.7 5 1.7 ± 1.5 4.1 ± 3.8

T20, γ1 5 2.3 ± 2.3 2.0 ± 1.9 4 1.3 ± 1.4 1.7 ± 1.8
γ2 9 3.1 ± 2.9 1.6 ± 1.6 4 1.3 ± 1.2 1.7 ± 1.7
γ3 14 1.7 ± 1.8 1.7 ± 1.8 3 1.7 ± 1.7 1.5 ± 1.6
γ4 19 2.4 ± 2.6 1.2 ± 1.1 3 1.3 ± 1.3 1.4 ± 1.4

T100, γ1 5 1.6 ± 1.3 2.0 ± 1.7 1 1.6 ± 1.3 2.0 ± 1.7
γ2 9 3.7 ± 3.0 2.7 ± 2.4 2 2.7 ± 2.4 2.7 ± 2.4
γ3 14 3.2 ± 3.0 2.9 ± 2.8 2 2.5 ± 2.8 2.7 ± 2.5
γ4 19 2.6 ± 2.6 3.1 ± 2.9 2 2.2 ± 2.4 2.6 ± 2.3

TSM (Ours)
T15, s = 0.25 11 1.8 ± 1.8 1.7 ± 1.5 2 1.2 ± 1.2 1.5 ± 1.6

s = 0.5 7 2.1 ± 2.2 1.2 ± 1.1 3 1.2 ± 1.1 1.6 ± 1.4
s = 0.75 3 1.4 ± 1.4 2.4 ± 2.3 6 1.4 ± 1.1 1.6 ± 1.4
s = 1 1 1.3 ± 1.2 1.6 ± 1.5 2 1.2 ± 1.1 1.6 ± 1.6

T100, s = 1 1 1.2 ± 1.1 1.5 ± 1.5 1 1.2 ± 1.1 1.5 ± 1.5
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Figure 6: Tra absolute velocity |u| correlation to ground truth using j = 1 for the models reported in
Table 1. Values are averaged over ext and int regions and the shaded area represents the standard
deviation from both regions and multiple samples.
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top-performing models (see Table 1) compared to the ground truth simulation (GT). Dashed lines are
obtained from Kohl et al. (2024). Standard deviation regions are omitted for clarity.
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Figure 8: Sample predictions of the different flow fields from the Traext test case with Ma = 0.52.
Results are based on the top performing models presented in Table 1.
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