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ABSTRACT

Protein-ligand docking is an essential tool in structure-based drug design with ap-
plications ranging from virtual high-throughput screening to pose prediction for
lead optimization. Most docking programs for pose prediction are optimized for
re-docking to an existing co-crystalized protein structure ignoring protein flexibil-
ity. In real-world drug design applications, however, protein flexibility is an essen-
tial feature of the ligand-binding process. Here we present a deep learning model
for flexible protein-ligand docking based on the prediction of an intermolecular
Euclidean distance matrix (EDM), making the typical use of search algorithms
obsolete. Our method introduces a new approach for the reconstruction of ligand
poses in Cartesian coordinates, utilizing EDM completion and restrained energy-
based optimization. The model was trained on a large-scale dataset of protein-
ligand complexes and evaluated on standardized test sets. Our model generates
high quality poses for a diverse set of protein and ligand structures and outper-
forms comparable docking methods.

1 INTRODUCTION

Protein-ligand docking is widely used in structure-based drug design and throughout early drug
development. Molecular docking enables the identification of key binding interactions which can be
optimized for affinity or selectivity. Furthermore, docking can be applied to virtual screening (VS)
protocols, wherein a large library of compounds are screened for potential target binding (Pereira
et al., 2016; Fan et al., 2019). Docking can also be applied in the context of inverse (or reverse)
docking in which one compound is screened against a large set of potential targets. This technique
is particularly useful in drug repurposing, polypharmacology and side-effect prediction (Kharkar
et al., 2014).

Despite the broad applicability of docking, several challenges still exist with traditional docking
methods. One challenge is the computational cost of the sampling or search algorithms. Docking
programs often generate millions of potential poses and attempt to rank the strongest binding ones
towards the top. This creates a burdensome computational requirement and often makes molecular
docking of large chemical libraries infeasible or requires the use of simplified and less accurate
scoring metrics. Another limitation of many docking methods is the use of a rigid receptor, which
neglects the induced-fit effect known to play a critical role in protein-ligand recognition and binding
(Koshland Jr, 1958; Savir & Tlusty, 2007). Simplified scoring functions which neglect protein
flexibility have detrimental effects on the performance of docking algorithms. Finally, there are still
protein systems where state-of-the-art docking algorithms fail to generate any correct pose.

1.1 RELATED WORK

Over recent years, several different methods employing deep learning models have been applied
to molecular docking. These models can be divided into two predominant approaches: reranking
and generation. In the reranking approach, an ensemble of docked poses are first generated using
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a traditional docking method. Then the deep learning model is trained to rerank the ensemble such
that the top-ranked poses have the lowest RMSD to the native pose obtained from experiment. A
number of neural network architectures have been applied to this approach including convolutional
neural networks(Ragoza et al., 2017; Mahmoud et al., 2020b; Zheng et al., 2019) and graph neural
networks (Wang et al., 2021). While this approach has proven to be powerful in improving the
ranking of poses, they do not address the sampling problem.

In the second approach, deep learning has been employed to generate the docked poses directly.
This approach has been less extensively studied with only a few methods developed in recent years
(McNutt et al., 2021; Mahmoud et al., 2020a; Stärk et al., 2022). Our work falls into the later of
these categories.

Our contributions to the existing methods are two-fold:

• We present an equivariant graph neural network (EGNN) model for the accurate prediction
of protein-ligand distance matrices.

• We provide a method for the reconstruction of the binding poses in Cartesian space based
on the predicted Euclidean distance matrix which respects the physical constraints and
energy of the pose.

2 METHODS

2.1 MODEL

Figure 1: Overview of the model architecture and reconstruction process. The deep neural network
is capable of predicting protein-ligand intermolecular distances. This distance matrix is used as an
intermediate representation of the ligand pose in the binding site. In the second phase, the distances
are used to reconstruct an ensemble of poses in Cartesian coordinates.

In this section, we propose a model architecture for the prediction of protein-ligand distance matri-
ces. The model, depicted in figure 1, consists of two independent graph neural networks (GNNs)
(one for ligand, one for binding site) and stack of fully connected layers. The model predicts distance
matrices as an intermediate representation due to it’s inherent invariance to rigid transformations
such as translation and rotation. The GNN model used in this work, the Equivariant Graph Neural
Network (EGNN) from Satorras et al. (2021) is also unaffected by rigid transformations. The EGNN
was chosen for its ability to learn information about a nodes environment and 3D geometry.

The nodes of the binding site graph are defined by the Cα atoms of residues with any atom within
8Å of the co-crystallized ligand. Therefore, each node represents an entire residue centered on the
Cα atom. As a result, the model is inherently flexible as it disregards the side chain conformation
entirely. The nodes of the ligand are defined by the ligand heavy atoms and input coordinates are
given from a random conformation generated by RDKit (Landrum, 2021).

Given a graph G = (V, E) with nodes vi ∈ V and edges eij ∈ E an EGNN can be defined as
a set of equations which updates V in successive layers. Each node vi is associated with a set of
node features hi ∈ Rf where f is the number of features, and a set of n-dimensional coordinates
xi ∈ Rn (here: n = 3). Each EGNN layer l is provided with these node features hl (with h0

i = hi),
coordinates xl (with x0

i = xi), and edge information E and outputs updated hl+1 and xl+1. The
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equations defining this update are as follows:
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Both EGNNs have the same structure, each with stacks of three layers which successively transform
the input features into feature embeddings containing chemical and geometric information. These
feature embeddings are denoted as hlig and hbs for the ligand and binding site graph respectively.
These two sets of feature embeddings are concatenated for each pair of protein and ligand nodes to
form a tensor B ∈ RN×M×f with

Bij = concat(hlig
i ,hbs

j ) (5)

for i ∈ {1, 2, ..., N} and j ∈ {1, 2, ...,M} where N is the number of ligand nodes and M is the
number of binding site nodes.

This tensor B ∈ RN×M×f is finally transformed into the distance matrix D ∈ RN×M between
ligand and protein atoms using a multi-layer perceptron (MLP) Φd

D = Φd(B) (6)

The distance matrix D can then be used to generate an ensemble of poses in Cartesian coordinates
by the reconstruction process described in section 2.5.

2.2 DATASETS

2.2.1 TRAINING AND VALIDATION

During early experimentation, a significant improvement in performance was observed with increas-
ing training set size. Therefore, we chose the large-scale BioLiP dataset of protein-ligand structures
for training and validation (Yang et al., 2012). The complete set contains nearly 300k protein-ligand
structures. However, many ligands are non-drug-like and had to be excluded from the training set.
The refinement process resulted in about 53k protein-ligand structures used for training and valida-
tion. The complete refinement process is described in figure 7 in the supplementary information.

The validation set was then created from the refined BioLiP dataset. The importance of having an
unbiased validation set has been demonstrated numerous times in the literature (Davis et al., 2020;
Wu et al., 2018; Wallach & Heifets, 2018; Tran-Nguyen et al., 2020). Unfortunately, most of these
recent unbiasing approaches rely on activity data, which is not available for the BioLiP dataset.
Therefore, we decided to apply the Kennard-Stone (KS) algorithm to generate a robust validation
set (Kennard & Stone, 1969; Xu & Goodacre, 2018). The KS algorithm works by selecting the two
most distant samples first. Then selecting the third sample based on the distance from the first two,
and so on. KS produces a uniform selection of samples across the dataset, including samples from
the boundary of the dataset. RDKit fingerprints were generated for every ligand in the dataset and a
sample-wise distance matrix was created using the Tanimoto similarity metric. KS was performed
using this matrix and the size of the desired validation set, 5,233, which represents 10% of the full
dataset.

2.2.2 INDEPENDENT TEST SETS

The PDBbind core set is a subset of 285 high resolution, manually curated protein-ligand structures
used to validate docking methods (Su et al., 2018). We chose to use the latest 2016 PDBbind core
set to evaluate our method for the task of re-docking. Because these structures are also contained
in the larger BioLiP dataset, we excluded them from the training and validation sets. In addition to
re-docking, our method was also evaluated on the task of cross-docking, wherein a ligand is docked
to an independent protein structure which hasn’t been influenced by the ligand. Cross-docking
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is more difficult but also more rigorous in evaluating docking methods with regards to real-world
applications. To this end, the DISCO cross-docking dataset was employed as a second test set
(Wierbowski et al., 2020). The dataset features 94 targets with an average of 50 ligands per target.
As none of these complexes were included in the BioLiP dataset, nothing had to be removed from
the training or validation sets.

2.3 FEATURIZATION

As the ligand and binding site graphs are processed by the model separately, and are have different
levels of granularity, different featurization schemes were used for each. A combination of embed-
dings generated using pre-trained, self-supervised neural networks and hand-crafted features were
used. The ligand embeddings were generated using a self-supervised graph transformer known
as GROVER (Rong et al., 2020). Hand-crafted features for the ligand describe the physical and
chemical nature of each atom. The binding site embeddings were generated using a state-of-the-art
protein sequence transformer model known as ESM1b (Rives et al., 2021). Protein hand-crafted fea-
tures describe the sequence and structure of each residue. All hand-crafted features were encoded
and normalized as needed. A complete description of the featurization is included in section 6.2 of
the supplementary information.

2.4 MODEL TRAINING

The model was trained to minimize the mean squared error between the predicted and known dis-
tances. Training was done using the Adadelta optimizer (Zeiler, 2012) with a learning rate of 0.01.
The Adadelta optimizer was found to have better stability and performance compared to Stochastic
Gradient Descent or Adam optimizers. The model was trained on the full training set (47,095 struc-
tures) for a total of 100 epochs. The validation loss was calculated following each epoch and was
used for the selection of the best model weights. The training and validation loss improved signif-
icantly during training, and good correlation between the two indicates there was no overfitting of
the training data.

2.5 RECONSTRUCTION

Figure 2: Diagram of the reconstruction process.

In order to reconstruct the Cartesian coordinates, first the predicted distance matrix, that contains
only intermolecular protein-ligand distances, must be completed into the full square EDM. This is
accomplished through tiling the ligand distance matrix Dlig, binding site distance matrix Dbs, and
the predicted protein-ligand distance matrix Dpred as depicted in equation 7.

Dcomplete =

[
Dlig DT

pred

Dpred Dbs

]
(7)
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The exact distance matrix of the binding site is computed from the original X-ray structure, as the
backbone atoms (including Cα atoms) are constrained during pose generation. However, the exact
distance matrix of the ligand is not known prior to having the docked pose. Using the native pose
would bias the reconstruction towards the correct result and would show higher performance than
actually achieved. Therefore, the ligand distance matrix used in reconstruction is generated from an
unbiased conformation generated with RDKit.

In order to generate an ensemble of different poses, our method relies on randomly sampling from
the predicted protein-ligand distances and only using these samples to reconstruct the pose. Sam-
pling 50% of distances was found to be a good balance between increased diversity while main-
taining accuracy. Although, this sampling introduces a new problem; The EDM is now sparse and
the missing values will lead to a deformed structure. Thus, an EDM completion algorithm called
Semi-Definite Relaxation (SDR) was used to complete the matrix, resulting in a valid EDM.

Given a precise EDM, Multi-Dimensional Scaling (MDS) is capable of reconstructing the Cartesian
coordinates exactly. MDS uses an intermediate representation called a Gram matrix in order to
accomplish this conversion (Hoffmann & Noé, 2019). The relationship between an EDM D and its
corresponding Gram matrix G is defined in equation 8.

G =
1

2
(D1j +Di1 −Dij) (8)

Because the Gram matrix G is real symmetric matrix, it can be decomposed into eigenvalues and
eigenvectors denoted in equation 9 as S and U respectively.

G = USUT = (U
√
S)(U

√
S)T (9)

The Cartesian coordinates X ∈ R3N can then be reconstructed from U and S using equations 10
and 11 where N is the total number of protein and ligand nodes.

V = U · diag(
√
S) (10)

X =

[
VN−2

VN−1

VN

]
(11)

where the last three row vector of matrix V are used.

However, even when small levels of noise are present in the distance matrix, as is the case with
distances predicted by a neural network, reconstructing the coordinates without distortion becomes
considerably harder. MDS can attempt to reconstruct the coordinates, but will often lead to unreal-
istic molecular conformations with extremely unfavorable bonds and angles. Therefore, we chose to
develop a new approach which uses an energy-based model to refine the atomic coordinates into a
reasonable docked pose which satisfies both the predicted protein-ligand distances as well as physi-
cal constraints described by a molecular force field.

The approach is to utilize the predicted distances as an additional harmonic restraint force between
atoms of the protein and atoms of the ligand during energy minimization. This allows us to perform
a correction on the initial reconstruction so that both the predicted distances are satisfied and the po-
tential energy of the protein-ligand complex is minimized. This can be formalized with the following
equations, where U represents the potential energy as a combination of Uff , the potential energy of
the protein-ligand system described by the ff14SB (Maier et al., 2015) and gaff-2.11 (Wang et al.,
2004) force fields, and Upred, the harmonic restraints imposed by the predicted distances.

U = Uff + Upred (12)

Upred =
∑
ij

{
k

Dij
∗ (Rij −Dij)

2, Dij <= C

0, Dij > C
(13)
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Upred is a harmonic potential based on the difference between current distances Rij (during en-
ergy minimization) and the predicted distances Dij . Additionally, a cutoff C is introduced so that
restraints are only introduced for distances smaller than a prescribed value. Typically, harmonic
forces have a constant spring coefficient k defined by the two bonded atom types. However, in our
case we chose a spring constant that is inversely proportional to the predicted distance. This sig-
nifies that small distances represent important, strong interactions between protein and ligand, e.g.
hydrogen bonds. Those interaction distances should be strongly confined to the predicted values
and therefore have a larger force constant than larger distances. The Cα atoms of the protein were
harmonically restrained with a spring constant of 2 kJ mol−1 Å−2 during minimization. This pre-
vented large changes to the backbone, while sidechains were allowed to move freely. Minimization
was performed until a tolerance of 0.5 kJ/mol was reached. The hyperparameters C and k were
optimized using a grid search with a smaller subset of the training set, and were set to be 10.0 Å and
2.0 kJ mol−1 Å−2 respectively. Finally, the ensemble of poses were ranked according to the final
potential energy U .

Figure 3: Example of a ligand reconstruction before (A) and after (B) minimization procedure.
The docked ligand structure is shown in cyan and the known crystal structure is shown in green.
The electron density map is also shown as a gray mesh to highlight how the residues are initially
deformed. In the unminimized structure, the position of the ligand is generally correct. However
some bonds and angles are unrealistic. The minimized ligand has corrected bond lengths and angles,
and is in better agreement with the known pose. Additionally, some of the nearby residues adopt a
conformation similar to the known ligand-bound structure.

2.6 BENCHMARK COMPARISONS

In order to compare our results to traditional docking methods, we employed two different docking
software packages for benchmarking. GeauxDock is a high-performance docking software devel-
oped to be used on CPU or GPU. It is based on a Monte Carlo search algorithm and has a scoring
function composed of physical-based energy terms and knowledge-based potentials (Fang et al.,
2016). Importantly, GeauxDock only considers Cα atoms of the receptor, thereby making it implic-
itly flexible like our method.

Autodock Vina is another docking method which is widely used in the context of protein-ligand
docking(Koes et al., 2013; Pagadala et al., 2017). For this work, a fork of AutoDock Vina called
Smina was used to run the protocol for its ease-of-use and performance improvements over the
original program(Koes et al., 2013). As opposed to our method and GeauxDock, Autodock Vina
uses all atoms of the receptor. The search space for AutoDock Vina was defined using the same
protocol as the original paper (Koes et al., 2013). The box was centered on the binding site residues
with sides extending 8.0Å from the native ligand with a minimum length of 22.5Å per side. No
flexible residues were used and all other settings were left as their default value.

In the context of re-docking, using all atoms of the receptor imposes a bias towards the final pose
and can lead to deceptively good results (Jain, 2008; 2009; Jain & Nicholls, 2008). Therefore,
AutoDock Vina is not a suitable tool for comparison for the re-docking task. This bias is not an
issue when using methods which use Cα atoms alone to represent the receptor, as the induced side
chain conformation is discarded entirely. For this reason, GeauxDock was selected as the primary
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benchmark for the re-docking task. In the context of cross-docking, ligands are docked to a protein
structure resolved independently from the ligand. This provides a more realistic benchmark, better
aligned to the real-world use of docking programs in structure-based drug design. Moreover, cross-
docking lessens the bias imposed by using all atoms of the receptor. For this reason, AutoDock Vina
was selected as the primary benchmark for the cross-docking task.

3 RESULTS

3.1 RE-DOCKING

First, we summarize the results for the re-docking task. A random sample of docked poses from the
PDBbind core test set is shown in figure 4 superimposed with their native pose. In comparison to
GeauxDock, our model had superior performance with respect to RMSD and rate of success among
the top-1, top-3, and top-5 ranked poses (Figure 5). In terms of RMSD, our method outperformed
GeauxDock with an average improvement of 1.3Å 1.1Å and 0.6Å for the top-1, top-3, and top-5
poses respectively. In terms of rate of success, our method had a 2.3, 1.7, and 1.3-fold improvement
over GeauxDock for the top-1, top-3, and top-5 poses respectively. Success for the re-docking task
was defined as having a docked pose with less than 2.0Å RMSD from the native pose. Another
comparison using a higher cutoff of 3.5Å is provided in figure 9 of the supplementary information.

Although AutoDock Vina is not a suitable comparison for the re-docking task, it was still run for the
PDBbind core test set. The results exceeded our method in several categories. This test, however,
is not a fair comparison due to the artificial enhancement of AutoDock Vina results by using all
receptor atoms in their native conformation in a re-docking setting. Nonetheless, there were about
50 systems where our method outperformed Autodock Vina in the top-1. While the improvement in
most of these cases was modest, a handful of examples showed significant improvement of 7Å or
more. These examples, shown in figure 10 in the supplementary information, failed entirely using
Vina but succeeded with our method.

Figure 4: Non-cherry-picked docking results from test set. Only the top-ranked pose is shown.
Docked poses are in cyan and native poses are in green. The corresponding PDB ID and RMSD to
the native pose is listed below each frame.

3.2 CROSS-DOCKING

Next, we summarize the results for the cross-docking task. As with re-docking, performance was
assessed in terms of RMSD and rate of success among the top-1, top-3, and top-5 ranked poses.
Among the top-1 poses, our method was successful in 52% of systems, an improvement from 40%
with AutoDock Vina. Improvement among the top-3 and top-5 poses was more modest. In terms
of RMSD, our method performed exceptionally well in the top-1 with around 1.0 Å improvement
in mean RMSD. The performance was also examined for each system. Some difficult targets, such
as Adenosine A2a receptor, Farnesyltransferase, HIV integrase, and Histone deacetylase 8 all had
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Figure 5: Results from the re-docking task using our method versus GeauxDock. A) Best pose
RMSD (Å) among the top-1, top-3, and top-5 ranked poses. B) Success rate among the top-1, top-3,
and top-5 ranked poses. Success is defined as having a pose less than 2.0Å.

greater than 2-fold improvements in RMSD. A full overview of the cross-docking results by system
is included in tables 3 and 4 of the supplementary information. GeauxDock was not run for the
cross-docking dataset.

Figure 6: Results from the cross-docking task using our method versus AutoDock Vina. A) Best
pose RMSD (Å) among the top-1, top-3, and top-5 ranked poses. B) Success rate among the top-1,
top-3, and top-5 ranked poses. Success is defined as having a pose less than 3.5Å.

4 DISCUSSION

Despite the excellent results, there are still a couple limitations to our method that should be pointed
out. First, the diversity of the generated poses is not as high as traditional docking methods. The
distance prediction model only generates a single distance matrix and thus the reconstruction proce-
dure often leads to very similar poses. As such, our method performs exceptionally well in the top-1
rank but only improves modestly when considering lower ranked poses. Another limitation is the
ranking procedure. The ranking used in this study is simple and involves no additional scoring func-
tion. The results do show some improvement when considering the lower ranked poses. Therefore,
there is an opportunity to boost performance even further by adding an additional scoring function,
either based on traditional scoring functions or a deep neural network. We hope that future work can
address these limitations and develop our method further.

5 CONCLUSION

In this study, we proposed a novel docking method capable of generating high quality poses for a
diverse set of protein and ligand structures. The method is based on a combination of two indepen-
dent equivariant graph neural networks for protein and ligand, combined by a multi-layer perceptron
model to predict the EDM between the two entities. Pose generation is based on EDM completion,
reconstruction based on MDS and energy-based models. The method was rigorously evaluated on
two independent test sets, covering both re-docking and cross-docking tasks. Moreover, two inde-
pendent docking programs, GeauxDock for re-docking and AutoDock Vina for cross-docking were
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selected as comparison. Our method showed superior performance in both tasks in terms of RMSD
and rates of success. Additionally, our methods performance is uncoupled from a time-consuming
search algorithm and the need to enumerate many possible docked poses. Together, these factors
show that deep learning models are capable of flexible and efficient protein-ligand docking. This
approach is a powerful new paradigm which will be investigated further and used to accelerate mod-
ern structure-based drug discovery.
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6 SUPPLEMENTARY INFORMATION

6.1 DATASET PREPARATION

Figure 7: Diagram of the dataset creation and refinement process. Eight different filters were applied
to the original dataset to filter out complexes with non-drug-like ligands. First, structures from
BioLiP and PDBbind were combined and redundant structures were removed. Then, ligands marked
as peptide, DNA, or RNA were removed to focus the dataset on small molecules. In order to have
confidence in the protein structure and native ligand pose, structures with resolution greater than
2.5 Å were removed. Then, ligands with less than 10 atoms, such as single ions, metals, and small
fragments were removed. Followed by non-drug-like cofactors such as hemes, B12, and chlorophyll.
Proteins with a sequence longer than 1024 were removed as they could not be processed by the ESM
model. Additionally, ligands in contact with multiple protein chains were removed as our method
is only setup to handle a single protein target. And finally, binding sites with less than 20 residues
were removed as these ligands bind are highly solvent exposed and do not have a well defined native
conformation.
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Figure 8: Diagram of the dataset splitting workflow. The refined BioLiP dataset contained 53k
protein-ligand complexes. As there was some overlap with the PDBbind core set, redundant struc-
tures were removed from the refine set. Then, a ligand-based similarity matrix was constructed using
molecular fingerprints and the Tanimoto similarity metric. This matrix was used by the Kennard-
Stone algorithm to split the data and create a robust validation set representing 10% of the full dataset
size.
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6.2 FEATURIZATION DETAILS

6.2.1 BINDING SITE FEATURES

We employed two methods for featurizing the binding site nodes from different perspectives. In
the first approach, we obtained sequence-based embeddings generated by the Evolutionary Scale
Modeling (ESM) deep neural network (Rives et al., 2021). In the second approach, we collected
several handcrafted features which describe the geometry and chemical environment of each residue.

The ESM-1b model was used to generate the sequence embeddings. This model contains roughly
650M parameters in 33 transformer layers. The model was trained on a diverse dataset of 27M
unique protein sequences. It is considered a general-purpose protein language model and has shown
state-of-the-art performance when applied to structure prediction tasks (Rives et al., 2021). To gener-
ate the embeddings, we provide the complete protein sequence to the ESM-1b model. The sequence
is transformed through the stack of layers and is retrieved after the last hidden layer. The resulting
embeddings have a rank of 1280 and are generated for each letter in the sequence. Embeddings
specific to the binding site residues were then extracted.

The second featurization method combines several hand-crafted features which describe the geomet-
ric and chemical environment of each residue. The selected features were used in previous works on
deep learning of protein structures (Jing & Xu, 2021; Cao et al., 2019). The residue type was one-
hot encoded as one of the twenty standard amino acids with an additional category for non-standard
residues. DSSP was used to assign the secondary structure and calculate Solvent Accessible Sur-
face Area (SASA) for each residue (Kabsch & Sander, 1983). The secondary structure was one-hot
encoded as one of eight types. Hydrogen bonding of the protein was calculated using HBPLUS
(McDonald & Thornton, 1994). The hydrogen bonds were segmented into eight categories: one
for each possible combination of donor/acceptor, backbone/sidechain, and occupied/accessible. The
position of the residue within the full sequence is included and normalized by the sequence length.
Finally, the backbone dihedral angles phi, psi, and omega are included. The periodicity of the angles
are handled by transforming with sin and cos functions. This set of features is summarized in table
1.

6.2.2 LIGAND FEATURES

Similar to the binding site features, we also chose to explore multiple approaches for the featuriza-
tion of ligand atoms. In the first method, we use another trained self-supervised transformer model,
GROVER (Rong et al., 2020), to generate abstract atom-level embeddings. In the second method,
we again include a collection of handcrafted features including several known to have a significant
influence on protein-ligand binding.

The GROVER model is another large-scale transformer model. However, rather than working on
a sequence representation, it works directly on the graph representation of molecules. The model
contains roughly 100M parameters and was trained on 10M small, drug-like molecules.

The hand-crafted ligand features includes descriptors known to be important for binding. The atomic
element was one-hot encoded into eight possible classes (C, O, N, P, B, S, Halogens, and Metals).
Different halogens and metal elements were grouped together due to their sparsity in the dataset
and similar chemical characteristics. Still, individual halogens and metal elements are able to be
distinguished based on the other features such as atomic weight and radii. The hybridization type
was also one-hot encoded into one of seven possible classes (S, SP, SP2, SP3, SP3D, SP3D2, and
unknown). The aromaticity of ligand atoms were indicated by a single boolean value. Several
other atom-level properties including atomic weight, atomic radii, partial charge, polar surface area
(PSA), accessible surface area (ASA), and logP, were calculated using RDKit (Landrum, 2021). The
hand-crafted ligand features are summarized in table 2.
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Table 1: Hand-crafted features for protein Cα atoms.
Feature Encoding Normalized Size
Residue One-hot N 21
Disulfide Bond Boolean N 1
Hydrogen Bond Counts Integer N 8
Solvent Accessible Surface Area Float Y 1
Position Float Y 1

Table 2: Hand-crafted features for ligand atoms.
Feature Encoding Normalized Size
Element One-hot N 9
Hybridization One-hot N 7
Aromaticity Boolean N 1
Atomic Weight Float Y 1
Atomic Radii Float Y 1
Gasteiger Partial Charge Float Y 1
Topological Polar Surface Area Float Y 1
Accessible Surface Area Float Y 1
logP Float Y 2
Molar Refractivity Float Y 2

15



Published at the MLDD workshop, ICLR 2022

6.3 RESULTS

Figure 9: Success rate of the re-docking task using our method versus GeauxDock with success
defined as having a pose less than 3.5Å.

Figure 10: Cherry-picked examples from the re-docking test set which failed using AutoDock Vina
but succeeded using our docking method. Autodock Vina poses are in magenta, our poses are in
cyan, and the native poses are in green. The corresponding PDB ID and the improvement in RMSD
to the native pose is listed below each frame.
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Table 3: Cross-docking results by system.
Target Reference

Receptor
Num. of
Ligands

AutoDock
Vina Avg.
RMSD (Å)

AutoDock
Vina

Success

Our Avg.
RMSD (Å)

Our
Success

AA2AR 3EML 2 10.24± 1.73 0.00% 4.06± 2.13 0.50%
ABL1 2HZI 38 8.33± 5.05 0.32% 4.69± 2.43 0.42%
ACE 3BKL 8 6.36± 2.67 0.12% 3.89± 1.98 0.50%
ACES 1E66 40 5.89± 2.99 0.20% 4.94± 2.65 0.40%
ADA 2E1W 15 3.84± 3.09 0.53% 2.60± 1.37 0.80%
ADA17 2OI0 19 5.39± 2.76 0.32% 3.65± 1.25 0.47%
ADRB1 2VT4 15 1.90± 1.01 0.87% 3.07± 1.16 0.73%
ADRB2 3NY8 11 2.97± 3.09 0.82% 3.08± 0.81 0.64%
AKT1 3CQW 10 5.05± 3.73 0.40% 2.62± 0.60 0.90%
AKT2 3D0E 7 6.27± 3.36 0.14% 3.01± 1.02 0.71%
ALDR 2HV5 1 1.15± 0.00 1.00% 1.99± 0.00 1.00%
AMPC 1L2S 40 4.72± 2.06 0.35% 3.56± 1.37 0.53%
ANDR 2AM9 94 2.17± 2.82 0.71% 2.17± 1.25 0.83%
AOFB 1S3B 1 1.97± 0.00 1.00% 2.05± 0.00 1.00%
BACE1 3L5D 281 6.43± 2.56 0.19% 3.42± 1.54 0.57%
BRAF 3D4Q 56 7.91± 3.47 0.14% 4.10± 2.53 0.48%
CAH2 1BCD 275 3.51± 2.40 0.54% 2.47± 1.25 0.85%
CASP3 2CNK 21 6.98± 2.73 0.10% 4.81± 1.73 0.29%
CDK2 1H00 306 5.27± 2.56 0.29% 3.64± 1.88 0.62%
CP2C9 1R9O 4 5.65± 3.08 0.25% 4.64± 2.21 0.25%
CP3A4 3NXU 1 5.76± 0.00 0.00% 4.85± 0.00 0.00%
CSF1R 3KRJ 12 6.26± 2.78 0.25% 4.59± 2.41 0.42%
CXCR4 3ODU 4 6.24± 0.50 0.00% 4.49± 0.54 0.00%
DEF 1LRU 10 4.60± 2.80 0.40% 4.32± 2.39 0.50%
DPP4 2I78 76 4.32± 3.50 0.54% 4.04± 1.32 0.43%
DYR 3NXO 14 4.75± 2.16 0.57% 2.40± 0.60 1.00%
EGFR 2RGP 90 6.13± 2.56 0.16% 4.03± 1.57 0.42%
ESR1 1SJ0 209 4.25± 3.00 0.50% 3.58± 1.49 0.53%
ESR2 2FSZ 33 2.36± 1.75 0.79% 3.47± 1.60 0.58%
FA10 3KL6 104 4.18± 3.53 0.62% 3.26± 1.14 0.70%
FA7 1W7X 44 4.10± 2.46 0.50% 4.03± 1.52 0.39%
FABP4 2NNQ 22 4.66± 1.94 0.18% 3.30± 1.31 0.50%
FAK1 3BZ3 18 5.04± 3.76 0.44% 5.15± 2.68 0.39%
FKB1A 1J4H 26 3.22± 3.29 0.69% 5.02± 2.16 0.19%
FNTA 3E37 14 9.33± 1.60 0.00% 4.17± 1.62 0.43%
GCR 3BQD 21 1.91± 1.79 0.81% 2.99± 1.66 0.62%
GLCM 2V3F 9 2.72± 1.46 0.89% 3.07± 1.23 0.44%
GRIA2 3KGC 83 4.71± 2.11 0.13% 2.14± 0.62 0.96%
GRIK1 1VSO 26 4.65± 1.50 0.23% 3.63± 0.93 0.42%
HDAC2 3MAX 4 2.61± 3.62 0.75% 1.46± 0.46 1.00%
HDAC8 3F07 8 7.29± 2.39 0.12% 3.12± 0.58 0.62%
HIVINT 3NF7 8 7.45± 1.39 0.00% 3.49± 1.61 0.75%
HIVPR 1XL2 415 7.13± 2.19 0.05% 7.02± 1.91 0.01%
HIVRT 3LAN 180 3.27± 2.62 0.68% 5.24± 1.23 0.07%
HMDH 3CCW 17 1.57± 0.64 0.94% 4.54± 1.45 0.29%
HS90A 1UYG 196 4.19± 2.57 0.45% 2.83± 1.52 0.77%
HXK4 3F9M 26 8.13± 2.90 0.12% 5.51± 2.62 0.31%
IGF1R 2OJ9 14 6.56± 2.46 0.07% 4.45± 2.22 0.29%
ITAL 2ICA 13 4.91± 2.48 0.31% 4.89± 1.68 0.15%
JAK2 3LPB 58 4.70± 3.17 0.45% 3.78± 1.66 0.53%
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Table 4: Cross-docking results by system continued.
Target Reference

Receptor
Num. of
Ligands

AutoDock
Vina Avg.
RMSD (Å)

AutoDock
Vina

Success

Our Avg.
RMSD (Å)

Our
Success

KIF11 3CJO 29 2.94± 2.03 0.55% 2.91± 0.97 0.79%
KIT 3G0E 5 4.00± 3.27 0.40% 3.91± 2.52 0.80%
KITH 2B8T 1 0.52± 0.00 1.00% 5.01± 0.00 0.00%
LCK 2OF2 31 5.59± 2.95 0.32% 3.90± 2.14 0.61%
LKHA4 3CHP 43 5.00± 2.75 0.47% 2.89± 1.52 0.72%
MAPK2 3M2W 13 2.62± 2.60 0.77% 3.47± 2.44 0.62%
MCR 2AA2 18 2.01± 2.61 0.78% 1.58± 0.46 1.00%
MET 3LQ8 60 6.34± 2.76 0.18% 3.67± 1.52 0.50%
MK01 2OJG 68 6.95± 2.30 0.04% 4.31± 1.86 0.38%
MK10 2ZDT 54 5.77± 3.15 0.31% 4.37± 1.99 0.46%
MK14 2QD9 186 5.28± 4.10 0.50% 5.61± 2.59 0.26%
MMP13 830C 33 5.56± 3.59 0.39% 3.66± 2.20 0.67%
MP2K1 3EQH 10 5.96± 3.54 0.30% 3.32± 1.67 0.80%
NRAM 1B9V 12 3.29± 2.12 0.42% 3.07± 1.07 0.58%
PA2GA 1KVO 8 3.07± 2.30 0.75% 3.66± 1.24 0.50%
PARP1 3L3M 27 2.55± 2.23 0.85% 1.82± 0.87 0.96%
PDE5A 1UDT 27 5.20± 2.82 0.37% 2.97± 1.11 0.81%
PGH1 2OYU 19 5.15± 2.17 0.26% 4.62± 1.52 0.26%
PGH2 3LN1 30 5.43± 3.07 0.27% 4.00± 1.96 0.47%
PLK1 2OWB 11 3.21± 2.48 0.55% 6.38± 2.17 0.09%
PNPH 3BGS 7 4.22± 2.99 0.43% 2.67± 1.50 0.71%
PPARA 2P54 17 7.39± 3.60 0.24% 3.47± 1.67 0.59%
PPARD 2ZNP 23 7.12± 3.29 0.26% 4.84± 1.95 0.30%
PPARG 2GTK 131 7.14± 2.95 0.17% 4.68± 2.31 0.42%
PRGR 3KBA 18 3.22± 2.17 0.61% 3.46± 1.21 0.56%
PTN1 2AZR 73 4.04± 3.06 0.58% 3.80± 2.41 0.53%
PUR2 1NJS 9 2.35± 2.76 0.89% 2.54± 0.54 0.89%
PYGM 1C8K 17 5.33± 3.40 0.35% 3.49± 1.13 0.47%
PYRD 1D3G 11 3.30± 3.00 0.64% 5.07± 1.64 0.27%
RENI 3G6Z 51 6.57± 2.71 0.16% 3.71± 1.07 0.47%
ROCK1 2ETR 14 4.56± 3.01 0.50% 2.50± 1.00 0.79%
RXRA 1MV9 44 2.58± 2.52 0.77% 3.25± 1.62 0.64%
SAHH 1LI4 2 7.74± 7.47 0.50% 3.35± 1.88 0.50%
SRC 3EL8 52 5.55± 3.43 0.33% 3.26± 1.73 0.65%
TGFR1 3HMM 21 4.38± 2.73 0.43% 3.43± 1.68 0.57%
THB 1Q4X 14 1.01± 0.74 1.00% 1.98± 0.79 0.93%
THRB 1YPE 207 2.93± 2.48 0.71% 3.21± 1.48 0.66%
TRY1 2AYW 172 4.13± 2.93 0.56% 3.16± 1.54 0.72%
TRYB1 2ZEC 11 2.95± 1.53 0.64% 7.30± 2.50 0.18%
TYSY 1SYN 11 6.59± 2.72 0.27% 3.96± 0.98 0.27%
UROK 1SQT 15 4.89± 3.30 0.53% 3.71± 2.15 0.53%
VGFR2 2P2I 24 5.19± 4.00 0.50% 4.03± 2.70 0.62%
WEE1 3BIZ 12 2.31± 2.90 0.83% 2.44± 0.81 0.92%
XIAP 3HL5 21 1.77± 1.57 0.90% 4.46± 2.02 0.33%
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