Some hidden traps of confidence intervals in
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Abstract. Medical imaging Al models are usually assessed by reporting
an empirical summary statistic of the performance metric, most com-
monly the mean or median. Recent work has shown that most studies
overlook the uncertainty of these estimates, potentially leading to mis-
leading conclusions and hampering clinical translation of medical imag-
ing Al models. To address this issue, systematic reporting of confidence
intervals (CIs) has been recommended, but numerous different CI meth-
ods exist, and there is very little literature on their behavior in medical
imaging. A fundamental property of a CI method is its coverage. This
paper contributes towards filling this literature gap in the context of
medical image segmentation, studying the coverage of five CI methods
for the two arguably most common summary statistics, the mean and
the median. To that purpose, we perform a large-scale analysis of CI cov-
erage using non-parametric simulations based on benchmarks instances
representing diverse real-world distributions of two common segmenta-
tion metrics (Dice similarity coefficient and normalized surface distance).
For the mean, all CI methods have decent coverage for most instances
when sample sizes exceed 50, even though there are exceptions. For Cls of
the median, we unveil major pitfalls: two common bootstrap CI methods
have a catastrophic behavior on average whereas another only fails on
very degenerate distributions. We believe these pitfalls are important to
communicate to the community and that these findings will contribute
to future efforts to provide standardized guidelines on confidence interval
reporting in medical imaging Al

Keywords: Medical imaging - Validation - Confidence intervals - Seg-
mentation.

1 Introduction

The new FDA guidelines for Al devices [11] require to report not only a summary
statistic of the performance but also a measure of uncertainty. Current practice
in medical imaging Al is to only report an empirical summary statistic of the
performance (most often the mean, sometimes the median), without assessing
how precise this estimate is. For example, a recent study found that the majority
of segmentation papers from MICCAI 2023 did not assess performance variability
at all, while only a single paper reported confidence intervals (CI) [6]. They
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further showed that such practices can sometimes be highly misleading and lead
to spurious conclusions. These practices may also contribute to little industrial
and clinical translation of academic research. Overall, reporting Cls is thus highly
recommended.

However, different methods exist for computing CIs. The most popular meth-
ods can broadly be divided into parametric and non-parametric methods. Para-
metric methods rely on assumptions on the distribution of the data. Non-
parametric methods are mainly different types of bootstrap.

We are not aware of any study that compares the adequateness of different
CIs methods in medical imaging Al, a situation which is different from other
research fields such as psychology [I8] or economics [5] for instance. In generalist
Al a major company just released guidelines on reporting variability [I5]. The
formula they provide assumes that the test set is large and is only applicable
when the summary statistic is the mean. In medical imaging Al, sample sizes
often range from small to moderate. Furthermore, there are cases where the mean
is not the most suited summary statistic, for instance in the presence of outliers
or skewness, and other statistics, such as the median, need to be reported.

Different properties guide the choice of a given CI method, including coverage
and width. The first property to assess is coverage. In particular, CI methods
with low coverage lead to overconfidence in the precision of performance esti-
mates. Then, among CI methods with adequate coverage, one can look at other
properties such as width.

This work aims at studying the coverage of different CI methods for the ar-
guably two most common summary statistics: the mean and the median. Specif-
ically, we perform a large-scale analysis of 228 benchmarking instances, covering
12 segmentation tasks and 19 algorithms, for two performance metrics, the Dice
Similarity Coefficient (DSC) and the Normalized Surface Difference (NSD). For
each instance, we analyze the behavior of CIs using non-parametric simulations
that adequately represent real-life scenarii. We unveil pitfalls which are of prac-
tical importance for the community.

2 Methods

2.1 Confidence interval methods

A Cl is a way to provide information about the precision of a summary statistic.
A X% CI method for a statistic is a procedure which generates intervals such
that, when multiple sets are drawn from the same distribution and one computes
an interval for each set, X% of the intervals will contain the true value of the
statistic. For instance, considering a 95% CI method to estimate the mean (resp.
median) of a distribution, if we take 100 sets from this distribution, 95 intervals
should contain the true mean (resp. median). The proportion of CIs that should
contain the true value of the statistic is called theoretical coverage, whereas the
observed proportion is called empirical coverage.
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CI methods can be broadly divided into two categories: parametric and non-
parametric methods. Parametric methods provide theoretical fixed-sample guar-
antees about the empirical coverage using assumptions on the distribution of the
data. The most common non-parametric methods are arguably variations of the
bootstrap. They give less guarantees about empirical coverage than the para-
metric methods, but require no assumption on the distribution of the data [g].

In this paper, we studied five CI methods, which we perceive to be par-
ticularly frequently used: two parametric methods using normality assumptions,
and the three bootstrap methods implemented in SciPy [19], considering that our
community is mostly Python-based [9]. A detailed description of each method
can be found in [8], but we will briefly recall them here. The two parametric
methods are “parametric t” and “parametric z”. They are both based on normal-
ity assumptions. “Parametric z” supposes the true variance is known (in practice
this is reasonable when the sample size is large), whereas “parametric t” makes a
correction for variance estimation (“parametric t” tends to “parametric z” when
sample size goes to infinity). The studied bootstrap methods are “percentile”,
“basic” (also known as reverse percentile) and “BCa” (bias-corrected and ac-
celerated). “Percentile” works by computing bootstrap sets and the statistic of
interest for each set, then taking the quantiles of the bootstrap distribution to
form a CI. “Basic” aims at reducing the bias of the bootstrap distribution. One
computes the bootstrap distribution of the difference to the estimated statistic
and a CI is given by mean + quantiles of the difference. “BCa” aims to correct
for bias and skewness in bootstrap distributions. It is based on a bias coefficient
and an acceleration coefficient which uses a jackknife estimate of the statistic of
interest to correct for skewness. “BCa” is the default method in SciPy.

Note that, beyond making no assumptions about the metric’s distribution,
bootstrap methods offer the advantage of being applicable to a wide range of
summary statistics, unlike “parametric t” or “parametric z”.

2.2 Dataset

In this study, we used the Medical Segmentation Decathlon (MSD) [3] challenge
which features a wide range of 17 diverse tasks across 10 different organs along
with model performance for a large set of 19 models. Details about tasks and
models can be found in the MSD paper [3]. To ensure statistical robustness, we
selected only the 12 subtasks with test sets containing more than 50 3D images.
Test set sizes vary between 59 and 263 (median=139). During the challenge,
19 different models were submitted, and tested on each subtask independently,
amounting to 12 tasks x 19 models = 228 different benchmarking instances. For
each instance, we analyzed the values of the Dice Similarity Coefficient (DSC)
and the Normalized Surface Distance (NSD) across all test set 3D images.

2.3 Assessing confidence interval methods

The purpose of our analysis was to investigate the following research question:
do the different CI methods have adequate coverage? For a CI method to be
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adequate, its empirical coverage needs to be close to its theoretical coverage. If
the coverage is too low, the user is misled to believe that the estimates are more
precise than they actually are.

However, empirical coverage computation requires simulating from a distri-
bution because the ground truth value of the statistic must be known. In our
case, the distribution would be that of the segmentation metric for a given bench-
marking instance. We thus first need to fit a distribution to each of the bench-
marking instances. We then perform simulations by sampling from the fitted
distribution, for each instance. It is essential that these simulations reflect the
reality of the data. Across the literature, these simulations are most often per-
formed under parametric assumption (e.g. [I3U14JT6]). However, it is unknown
if segmentation metrics follow a parametric distribution. We assessed this by
performing Kolmogorov-Smirnov tests to see if our distributions matched any of
a wide variety of common parametric distributions, including Normal, SkewNor-
mal, 1-LogNormal, 1-Exponential, Beta and Logistic distributions. As shown in
the results, none of these parametric distributions was an adequate fit for DSC
nor NSD. Therefore, parametric simulations would not correspond to the reality
of these segmentation metrics and non-parametric simulations need to be used
instead. To achieve this, for each of the 228 instances and for the two metrics
(DSC and NSD), we first estimated the underlying metric distribution using ker-
nel density estimation (KDE) with the Epanechnikov (parabolic) kernel. This
peculiar kernel choice was made following [20]. It provides a concentrated and
smooth interpolation around data points, thus keeping the interpolated distri-
bution close to the original data. To tackle the problem of our bounded metric,
we used an adaptive bandwidth to keep all the mass inside the domain. From
each of the 2 x 228 KDE distributions, we drew 10000 sets (i.e. random realiza-
tions of the distribution) of varying size n, thus resulting in 2 x 228 experiments.
We call "instance" the actual metric distribution, and "experiment" the analy-
sis and simulations performed on each instance. For each set, we computed the
corresponding CI for each method. Across the 10000 sets, we computed the pro-
portion of CIs containing the true value of the statistic (mean or median), i.e
the empirical coverage.

We repeated this process for n = 10, 25, 50, 75, 100, 125, 150, 200, 250, to
place ourselves in regimes close to those present in the MICCAI papers. Indeed,
we meta-analyzed the segmentation papers published at MICCAT 2023 and found
that the median test set size was 62 (IQR: 25-223).

3 Results

We first briefly describe the results on parametric fits before moving to our main
results on CI, which correspond to the core research question of this paper. DSC
and NSD are in general non-normal: the Gaussian distribution was rejected in
78% (181/228) of cases for DSC and in 86% for NSD (198/228). Other distri-
butions were rejected between 27% and 86% of cases. A realistic simulation had
therefore to be non-parametric.
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Fig. 1. Coverage of ClIs of the mean. All studied methods have adequate
coverage for the majority of instances when n is larger than 50. But there
are exceptions with some instances exhibiting low coverage. For smaller values
of n, “parametric t” and “BCa” have better coverage. For both the DSC (top) and the
NSD (bottom), coverage is shown for each of the tested methods, as a function of the
test set size. The boxplots represent the distribution of coverage across experiments.
Boxes correspond to median and inter-quartile range (IQR) while whiskers correspond
to 2.5 and 97.5 percentiles. Points represent outliers.

The behavior of Cls is presented in Figures [1| (CIs of the mean) and [2| (CIs
of the median). Behaviors were similar for both DSC and NSD.

For CIs of the mean, all methods behave decently across the majority of
experiments when the test set size is larger than 50. However, there are ex-
ceptions: a few instances have low coverage for all methods. For sets smaller
than 25, “parametric t” and “BCa” exhibit better coverage. “Basic” performs sys-
tematically worse than others, even though the difference is minimal when n is
large.
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Fig. 2. Coverage of Cls of the median. Percentile bootstrap is adequate
across all n and all experiments. Basic fails dramatically. BCa degrades as
n increases, and produces catastrophic failures. For both the DSC (top) and the
NSD (bottom) coverage is shown for each of the tested methods, as a function of the
test set size. The boxplots represent the distribution of coverage across experiments.
Boxes correspond to median and inter-quartile range (IQR) while whiskers correspond
to 2.5 and 97.5 percentiles. Points represent outliers.

For CIs of the median, we unveiled that “basic” bootstrap performs catas-
trophically for a large number of experiments. "BCa" bootstrap degrades as
n increases, and exhibits huge undercoverage for a rather large number of in-
stances. On the other hand, the “percentile” bootstrap behaves correctly across
almost all 2 x 228 experiments and across all test set sizes. Note that all outliers
with very high coverage actually correspond to distributions containing a Dirac
weighing more than half the total distribution mass. In such cases, overcoverage
is a normal behavior.
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4 Discussion

To our knowledge, this work presents the first systematic comparison of CI meth-
ods for medical image segmentation metrics. To that purpose, we performed an
extensive analysis across 228 experiments covering a variety of tasks and seg-
mentation methods.

Reporting ClIs is crucial, both for proper validation of methods and to align
with clinical and regulatory guidelines [7] which is key for translation. However,
there are yet no guidelines on how to compute CIs in practice in medical imaging
Al In this preliminary study, we focused on coverage properties and two common
performance metrics for image segmentation. We unveiled some major pitfalls.
Critically, the choice of the CI method depends upon the summary statistic:
mean vs median (or any other order-based statistic).

The most striking results are for Cls of the median, where “basic” and “BCa”
bootstrap led to some catastrophic failures while “percentile” was adequate across
all experiments. We believe that these results are important. Median is a com-
mon robust statistic for central tendency. Many users can be tempted to blindly
rely on “BCa” or “basic” because they are often recommended over “percentile”
and because “BCa” is the default in some bootstrap implementations. For Cls
of the mean, the results are less surprising, but there are still some interesting
lessons. All methods behave decently when n is large enough but “BCa” and
“parametric t” offer a substantial advantage when n is small. Perhaps more sur-
prising is that some experiments exhibit poor coverage across all methods, even
for relatively large n. We inspected the metric distributions corresponding to
these benchmarking instances and found that they either have major outliers or
concentrate large mass in a single point. Thus, in such cases, the mean alone can
be misleading and adequate Cls can require a large sample size.

The failures of “BCa” when used for CIs of the median can be explained by
the way the so-called acceleration factor corrects for skewness using a jackknife
estimate. Indeed, the denominator of this factor is the variance of leave-one-
out estimates of the statistic which can easily become zero or very small for
the median (or for any order statistic). The jackknife failure for non-continuous
summary statistics is thus natural when one looks at the formula and has indeed
been described [1], but we believe it is not common knowledge. The curious
reader may have noticed that “BCa” is worse when n is even than when n is
odd. Again, this can be explained from the acceleration formula: the leave-one-
out estimates of the median are more likely to be equal when n is even. The
“basic” bootstrap has been debated, with some arguing that it provides some
bias correction while others say that it is “asymmetric in the wrong direction
for skewed data” [12]. Indeed, our results show that for segmentation metrics,
where skewness is highly common, “basic” is the worst method both for mean
and median.

Availability in software packages is likely a driving factor underlying re-
searchers’ choices, and the Al community is almost entirely Python-based. It is
extremely useful that the function bootstrap is available in SciPy [19], because it
“democratizes” the use of this statistical methodology. The function implements
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the three most common versions which are “basic”, “percentile” and “BCa”, the
default method being “BCa”. Our results show that there is no “one-size-fits-all”
method. We thus invite the medical imaging community to carefully consider
the available options when using the function: going beyond the default is easily
overlooked.

There is very little work on Cls for validation metrics in medical imaging.
Typical values of CI width have been reported [I0] but without assessing coverage
which is fundamental to know whether a CI method is adequate. Other studies
provide insights about image-derived quantities [4J2II17], but not for validation
metrics. This lack of literature in medical imaging is in sharp contrast with
other fields including psychology [13], neuroscience [I§], social sciences [14] and
generalist AT [2II5]. In general, these works do not come to the same conclusions
as we do which can be explained by major differences: some other works rely
on parametric simulations which are inadequate for segmentation metrics, some
look only at the mean, some deal with cases where n is very large. We thus
believe that medical imaging requires specific studies on the behavior of Cls.

This work has the following limitations. So far, we have only studied the
case of segmentation and two metrics, and future work will need to tackle other
tasks and other relevant metrics. In particular, the case of metrics with discrete
or unbounded support is important and is left for future work. Moreover, due
to space constraints, we focused on CI coverage. CI width is another impor-
tant property that guides selection of a CI method among those which provide
adequate coverage.

Even though preliminary, our results have immediate consequences on how
to compute Cls for medical image segmentation. Indeed, we unveiled cases where
some CI methods behave catastrophically which should have immediate impact
on researchers reporting practices. Our work contributes towards the creation of
standardized guidelines on CI reporting in medical imaging Al
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