
Under review as a conference paper at ICLR 2024

CONTRASTIVE DIFFUSER: PLANNING TOWARDS HIGH
RETURN STATES VIA CONTRASTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Applying Diffusion in reinforcement learning for long-term planning has gained
much attention recently. Depending on the capability of diffusion in modeling
the underlying distribution, those methods leverage the diffusion to generate the
subsequent trajectories for planning, and achieve significant improvement. How-
ever, these methods neglect the differences of samples in offline datasets, in which
different states have different returns. They simply leverage diffusion to learn
the distribution of data, and generate the trajectories whose states have the same
distribution with the offline datasets. As a result, the probability of these mod-
els reaching the high-return states is largely dependent on the distribution in the
dataset. Even equipped with the guidance model, the performance is still sup-
pressed. To address these limitations, in this paper, we propose a novel method
called CDiffuser, which devises a return contrast mechanism to pull the states in
generated trajectories towards high-return states while pushing them away from
low-return states. Experiments on 12 commonly used D4RL benchmarks demon-
strate the effectiveness of our proposed method. Our code is publicly available at
https://anonymous.4open.science/r/ContrastiveDiffuser.

1 INTRODUCTION

Offline reinforcement learning (offline RL) (Levine et al., 2020; Prudencio et al., 2023) has gained
significant attention in recent years, where an agent is trained on pre-collected offline datasets and is
evaluated online with the environment later. Since offline RL avoids potential risks from interacting
with the environment during policy improvements, it has broad applications in numerous real-world
scenarios, like commercial recommendation (Xiao & Wang, 2021), health care (Fatemi et al., 2022),
dialog (Jaques et al., 2020) and autonomous driving (Shi et al., 2021).

While offline RL obviates costly online explorations, restricting the policy learning on static datasets
poses additional challenges. Direct application of off-policy algorithms in offline scenarios comes
with the extrapolation error problem (Fujimoto et al., 2019), which can cause inaccurate value esti-
mations on out-of-distribution (OOD) actions to accumulate during Bellman backup. Extrapolation
errors are alleviated in prior studies by adding conservative priors, e.g., regularizing the policy (Fuji-
moto & Gu, 2021; Wu et al., 2019) or penalizing the value estimations (Kumar et al., 2020; Kostrikov
et al., 2021). However, such conservative updates may leave the learning policy trapped in local op-
tima, especially when offline datasets are collected by a mixture of policies (Wang et al., 2022).
Recently, diffusion models have been used in offline RL as a powerful policy class (Pearce et al.,
2023; Chi et al., 2023; Ada et al., 2023; Wang et al., 2022). Due to diffusion models’ ability to
model arbitrary distributions, using them to fit the entire dataset can effectively regularize the policy
without concerning of lacking expressiveness.

Among diffusion-based offline RL methods, a common approach is to utilize diffusion for long-term
planning (Ajay et al., 2023; Janner et al., 2022). Specifically, these methods leverage the diffusion
model to generate subsequent trajectories, which include state-action pairs in a period of future. The
generated trajectories carry the estimated future states and enrich the information for planning, there-
fore they enhance models to make better decisions to be taken in the environment. However, these
methods neglect the diversity of samples in offline datasets, in which different states have different
returns. They simply leverage diffusion to learn the dataset distribution and generate the trajectories
whose states share the same distribution with the offline dataset. As shown in Figure 1, the state

1

https://anonymous.4open.science/r/ContrastiveDiffuser

Under review as a conference paper at ICLR 2024

Figure 1: Comparison of different distributions: (a) The dataset distribution; (b) The uniform sam-
pling of diffusion; (c) The classifier guide sampling of diffusion; (d) The improved sampling of
diffusion; (e) The improved guidance sampling of distribution. Each scatter in sub-figure represents
a two-dimensional state, and the color of each scatter denotes the corresponding return.

distribution learned by diffusion (b) is similar to the original distribution of the offline dataset (a),
which makes the probability of sampling high-return states relatively low if there are many low-
return states in the dataset. Even with guided sampling (Dhariwal & Nichol, 2021) techniques to
enforce the generation towards the high-return region, the results remain unsatisfactory as depicted
in Figure 1(c). Although the sampling distribution is more concentrated within the guidance circle,
there are still many samples spread over the entire low-return part. Intuitively, if constraining the
trajectory generated by diffusion to close to the area with high-return states and away from the area
with low-return states, like Figure 1 (d), we would obtain better results under the guidance, like
Figure 1(e).

Considering contrastive learning (CL) (Khosla et al., 2020; Yeh et al., 2022) is designed for pulling a
sample towards the similar samples and pushing it away from dissimilar samples, which is analogous
to the case of pulling the states in the generated trajectory towards the high-return areas and away
from low-return areas, we propose a novel method called Contrastive Diffuser (CDiffuser). Differ-
ent from the previous works (Qiu et al., 2022; Laskin et al., 2020; Yuan & Lu, 2022; Agarwal et al.,
2020) which leverage CL for the representation learning in RL, we introduce CL to bias the diffusion
model training with return contrasting. Specifically, we group the states in the offline dataset into
high-return states and low-return states in a soft manner. Then, we learn a diffusion-based trajectory
generation model to generate the trajectories whose states are constrained by contrastive learning to
keep close to the high-return states and away from the low-return states. With the help of contrastive
learning, CDiffuser generates better trajectories for planning. To evaluate the performance of CD-
iffuser, we conduct experiment on 12 D4RL (Fu et al., 2020) benchmarks. The experiment results
demonstrate that CDiffuser has superior performance.

In summary, our contributions are as follows: (i) We propose a novel method called CDiffuser, which
improves the performance of diffusion based RL algorithms. (ii) We perform contrastive learning
over returns of states. To the best of our knowledge, our work is the first which apply contrastive
learning to contrast the return to enhance the diffusion model training in RL. (iii) Experiment results
on D4RL datasets demonstrate the outstanding performance of CDiffuser.

2 BACKGROUND

2.1 DENOISING PROBABILISTIC MODELS

Denoising Probabilistic Models (Diffusion Models) (Sohl-Dickstein et al., 2015; Song et al.; Ho
et al., 2020) are a group of generative models, which generate samples by denoising from Gaussian
noises. A diffusion model is composed of a forward process and a backward process. Given the
original data x0 ∼ q(x0), the forward process transfers x0 into a Gaussian noise by gradually
adding noises, i.e., q(xi|xi−1) = N (xi;

√
1− βixi−1, βiI), in which I is an identity matrix, βi

is the noise schedule measuring the proportion of noise added at each step. The reverse process
recovers x0 by gradually removing the noise and each step, which is formulated with a Gaussian
distribution (Feller, 1949) parameterized by θ, i.e., pθ(xi−1|xi) = N (µθ(x

i, i),Σθ(x
i, i)), ᾱi =∏i

j=1(1− βi).

Following DDPM (Ho et al., 2020), the objective function can be formulated as follows if we fix
Σθ(xt, t) = βtI:

L = Ex0, i∼[1,N][∥x0 − ψθ(x
i, i)∥2], (1)

where ψθ(·, ·) is a model to reconstruct x0.

2

Under review as a conference paper at ICLR 2024

2.2 CONTRASTIVE LEARNING

Contrastive learning (Schroff et al., 2015; Sohn, 2016; Khosla et al., 2020; Yeh et al., 2022; Oord
et al., 2018) is a class of self-supervised learning method which aims at pulling similar samples to-
gether and pushing different samples away. Specifically, given a sample x and a similarity measure,
the positive sample x+ is defined as the sample similar to x, and the negative set S− is defined as
the collection of samples dissimilar to x. Contrastive learning minimizes the distance of between x
and x+, and maximizes the distance between x and S−. That is:

L = − log

[
exp(sim(f(x), f(x+)))

exp(sim(f(x), f(x+))) +
∑

x−∈S− exp(sim(f(x), f(x−)))

]
, (2)

where f(·) denotes the function that mapping samples to a latent space and sim(·, ·) denotes the
similarity measure.

2.3 PROBLEM SETTING

Considering a system composed of three parts: policy, agent, and environment. The environment
in RL is usually formulated as a Markov Decision Process (MDP) (Sutton & Barto, 2018) M =
{S,A,P, r, γ}, where S is the state space,A is the action space, P(s′|s, a) is the transition function,
γ represents the discount factor, r is the instant reward of each step. At each step t, the agent respond
to the state of environment st by action at according to policy πθ parameterized by θ, and gets an
instant return rt. The interaction history is formulated as a trajectory τ = {(st,at, rt)|t ≥ 0}.
Please notice that in this paper, we define the cumulative discounted reward from step t as vt =∑

i≥t γ
i−tri and call it as the return of st.

We focus on the offline RL setting in this paper. Therefore, given an offline dataset D ≜
{(st,at, rt, st+1)|t ≥ 0} consisting of transition tuples, and defining the return of trajectory τ

as R(τ) ≜
∑

t≥0 γ
trt, our goal is learning πθ to maximize the expected return without directly

interacting with the environment, i.e.,

πθ = argmax
θ

Eτ∼πθ
[R(τ)] . (3)

3 METHODOLOGY

Following Diffuser (Janner et al., 2022), we formulate the offline RL problem as a state-conditioned
sequence generative task. To tackle the limitation of overlooking sample differences in prior works,
we propose a method called CDiffuser, which introduces contrastive learning and addresses the lim-
itation with a return contrast mechanism. Specifically, our CDiffuser is composed of two modules:
(1) the Planning Module, which aims to generate subsequent trajectories; (2) the Contrastive Mod-
ule, which is designed to keep the states in generated trajectories within the high-return regions but
away from low-return states, as is illustrated in Figure 2.

3.1 PLANNING MODULE

Following Diffuser (Janner et al., 2022), given a state st at step t, the Planning Module estimates
vt as guidance, and leverages the guidance as well as st as the condition to generate the subsequent
trajectory, as is illustrated in Figure 2. Specifically, we first sample τ̂Nt from N (0, I), and replace
ŝNt with st as condition on the current observation:

τ̂N
t = {(st, âN

t), (ŝNt+1, â
N
t+1), ..., (ŝ

N
t+H , â

N
t+H)} , (4)

in which all the elements except st are pure Gaussian noise. We further feed τ̂N
t into the reverse

process to generate the subsequent trajectory:

pθ(τ̂
i−1
t |τ̂ i

t) = N (µθ(τ̂
i
t , i) + ρ∇Jϕ(τ̂ i

t , i), βiI) , (5)

µθ(τ̂
i
t , i) =

√
αi(1− ᾱi−1)

1− ᾱi−1
τ̂ i
t +

√
ᾱi−1βi

1− ᾱi
τ̂ i,0
t . (6)

3

Under review as a conference paper at ICLR 2024

Contrastive Module

MLPsampling contrast

offline dataset

noised trajectory generated trajectory

states in sampled states contrast states

diffusion

enlarg
e

reduce

pad
action()

trajectory in

MSE

Planning Module
MSE

generated states
high-value states
low-value states

original states

: action
: state

Figure 2: The overall framework of CDiffuser. CDiffuser is composed of two modules, namely the
the Planning Module and the Contrastive Module. The Planning Module is designed to generate the
subsequent trajectories, and the Contrastive Module is designed to pull the states in the generated
trajectories toward the high-return states and push them away from the low-return states during the
training phase.

Here τ̂ i,0
t = ψθ(τ̂

i
t , i) represents the τ 0

t constructed from τ̂ i
t at diffusion step i, ψθ(·, ·) is a network

for trajectory generation, i ∼ [1, N] is the diffusion step, ρ represents the guidance scale, Jϕ(·, ·)
is a learned function to predict the return given any noisy trajectory τ i

t . We abbreviate τ̂ 0
t to τ̂t for

convenience, and denote it as τ̂t = {(st, ât), (ŝt+1, ât+1), ..., (ŝt+H , ât+H)}. We take out the ât

in τ̂ as the action corresponding to the state st.

3.2 CONTRASTIVE MODULE

1.0 0.5 0.0 0.5 1.0
Return

0.0
0.2
0.4
0.6
0.8
1.0

Po
ss

ib
ili

ty

g (), = 25, = 0.5
g + (), = 25, = 0.5
g (), = 12, = 0.5
g + (), = 12, = 0.5
g (), = 25, = 0.3
g + (), = 25, = 0.3

Figure 3: Modified influence functions.

Although the Planning Module can indepen-
dently generate the action responding to the
environment, its performance is limited due
to neglecting the differences of training sam-
ples. Fortunately, this can be improved via the
Contrastive Module, which adopts contrastive
learning to pull the planned states toward the
high-return states and push them away from the
low-return states. Note that different from the
previous works (Laskin et al., 2020; Qiu et al.,
2022; Yuan & Lu, 2022; Agarwal et al., 2020)
which apply contrastive learning to obtain a
better representation, we contrast the return of states for reaching high-return states. In the fol-
lowing parts of this section, we first introduce the construction of contrastive sample sets, and then
we explain how we perform contrastive learning to improve the trajectory generation in the Planning
Module.

3.2.1 SAMPLE POSITIVE AND NEGATIVE STATES

The positive samples and negative samples are necessary before applying contrastive learning. In-
tuitively, we can naively use hard thresholds to split states into positive and negative sets. However,
such a radical method is unable to fully utilize samples located near the boundaries. Thus, we
propose to conduct probabilistic partitioning.

Specifically, for an arbitrary state st in the offline dataset, we compute its return vt first. Then, we
adopt modified influence functions (Thoma et al., 2020), g+(·) and g−(·), to perform soft classifi-
cation, determining the probability of classifying st as a positive sample or negative sample:

p+(st) ≜ g+(vt) =
1

1 + eσ(ξ−vt)
, (7)

p−(st) ≜ g−(vt) =
1

1 + eσ(vt−ζ)
, (8)

where p+(st) denotes the probability of st being grouped into positive samples, and p−(st) denotes
the probability of st being grouped into negative samples.

4

Under review as a conference paper at ICLR 2024

In our modified influence functions, ξ and ζ are the fuzzy centers of boundaries of positive and
negative samples, σ represents the fuzzy coefficient. As is shown in Figure 3, with ξ getting larger,
fewer samples are grouped into positive samples; With ζ getting smaller, fewer samples are grouped
into negative samples; A larger σ makes g+(vt) and g−(vt) sharper.

3.2.2 CONSTRAIN THE TRAJECTORY WITH CONTRASTIVE LEARNING

Following Kang et al. (2023), instead of running the whole reverse denoising process to sample τ̂t
for contrastive, we cheaply contruct τ̂ i,0

t = {(ŝi,0t , âi,0
t), (ŝi,0t+1, â

i,0
t+1), ..., (ŝ

i,0
t+H , â

i,0
t+H)} from τ i

t
by performing one-step denoising.

To constrain the states in this trajectory, we extract states in τ̂ i,0
t as Sτ̂ i,0

t
= {ŝi,0t+1, ŝ

i,0
t+2, ..., ŝ

i,0
t+H}

first. Next, for each state ŝi,0h ∈ Sτ̂ i,0
t

, we sample κ states via Equation (7) as the positive samples
and sample κ states via Equation (8) as negative samples, denoted as S+h and S−h correspondingly.
Inspired by Schroff et al. (2015); Sohn (2016), we adopt the following equation to pull the states in
the generated trajectory toward the high-return states and away from the low-return states:

Li
h = − log

∑κ
k=0 exp(sim(f(ŝi,0h), f(s+h))/T)∑κ
k=0 exp(sim(f(ŝi,0h), f(s−h))/T)

, (9)

where s+h ∈ S
+
h , s−h ∈ S

−
h , f(·) represents the projection function, T represents the temperature,

and sim(·, ·) denotes the similarity measure, which is computed as

sim(a, b) =
a⊤b

∥a∥ · ∥b∥
. (10)

3.3 MODEL LEARNING

Recall that the action responding to state st is one of the elements in the generated trajectory, and
is influenced by Jϕ(·, ·) and contrastive learning. Therefore, we optimize our method from the
perspective of trajectory generation, return prediction and trajectory generation constrain.

Specifically, we optimize the trajectory generation by minimizing the Mean Square Error between
the ground truth and clean trajectory predicted by ψθ(·, ·) given any intermediate noisy trajectories
as input:

Ld = Eτt∈D,t>0,i∼[1,N]

[
∥τt − ψθ(τ

i
t , i)∥2

]
, (11)

where i denotes the step of diffusion, τ i
t is obtained in the i-th step of forward process. We optimize

the return prediction by minimizing the Mean Square Error between the predicted return Jϕ(τ i
t , i)

and the ground-truth return vt:

Lv = Eτt∈D,t>0,i∼[1,N][∥Jϕ(τ i
t , i)− vt∥2] . (12)

We constrain the trajectory generation with a reweighted contrastive loss:

Lc = Et>0,i∼[1,N]

[
t+H∑
h=t

1

h+ 1
Li
h

]
, (13)

in which the coefficient 1
h+1 decreases as h increases since the impact of predictions in the future

on planning is smaller.

Hence, the overall objective function of CDiffuser can be written as a weighted sum of the afore-
mentioned loss terms:

L = λdLd + λvLv + λcLc , (14)
where λd, λv , λc are hyperparameters, which balance the importances of the corresponding learning
targets. Please notice that optimizing the return predictor J ϕ(·, ·) with Equation (14) is equal to
optimizing it with Equation (12) only, we put the objectives together in Equation (14) for neatness.
Please refer to Appendix A.5 for details.

The pseudo code of CDiffuser is presented in Appendix A.1, and the detail of implementation will
be discussed in the next section.

5

Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

In this section, we evaluate the performance of CDiffuser in three locomotion environments under
three settings, as well as a navigation environment under three settings.

4.1 EXPERIMENT SETTINGS

Environments and datasets. Following Diffuser (Janner et al., 2022), we evaluate the performance
of CDiffuser on the locomotion tasks and navigation tasks. Specifically, we evaluate the locomotion
capability of CDiffuser on the environment of Halfcheetah, Hopper, Walker2d, and we evaluate the
navigation capability of CDiffuser on the environment of Maze2d. For each environment, we train
CDiffuser with three scales of offline datasets provided by D4RL (Fu et al., 2020), and test the
performance of CDiffuser on the corresponding environment.

Baselines. We compare CDiffuser with diffusion-free methods such as CQL (Kumar et al., 2020),
IQL (Kostrikov et al., 2021), MOPO (Yu et al., 2020), Decision Transformer (DT) (Chen et al.,
2021) and Trajectory Transformer (TT) (Janner et al., 2021). Further, we compare CDiffuser with
diffusion-based methods, such as Diffuser (Janner et al., 2022) and Decision Diffuser (DD) (Ajay
et al., 2023), which apply diffusion to model RL as sequence generation problems.

Implementation details. We adopt U-Net (Ronneberger et al., 2015) as the denoise network ψθ(·, ·)
and the return predictor Jϕ(·, ·), and adopt a linear layer with Sigmoid as the activation function
as the projector f(·). Our model is trained on a device with 4 NVIDIA A40 GPUs (48GB GPU
memory, 37.4 TFLOPS computing capabilities), Intel Gold 5220 CPU (72 cores, 2.20GHz clock
frequency) and 504G memory, optimized by Adam (Kingma & Ba, 2014) optimizer. Details of
hyper-parameters are shown in Appendix A.3.

Table 1: The average normalized score of different methods on various environments, with ± de-
noting the variance. The mean and std are computed over 10 random seeds. The best and the
second-best results of each setting are marked as bold and underline, respectively.

Dataset Environment CQL IQL DT TT MOPO Diffuser DD CDiffuser
Med-Expert HalfCheetah 91.6 86.7 86.8 95.0 63.3 88.9 90.6 92.0 ± 0.4
Med-Expert Hopper 105.4 91.5 107.6 110.0 23.7 103.3 111.8 112.4 ± 1.2
Med-Expert Walker2d 108.8 109.6 108.1 101.9 44.6 106.9 108.8 108.2 ± 0.4
Medium HalfCheetah 44.0 47.4 42.6 46.9 42.3 42.8 49.1 43.9 ± 0.9
Medium Hopper 58.5 66.3 67.6 61.1 28.0 74.3 79.3 92.3 ± 2.6
Medium Walker2d 72.5 78.3 74.0 79.0 17.8 79.6 82.5 82.9 ± 0.5
Med-Replay HalfCheetah 45.5 44.2 36.6 41.9 53.1 37.7 39.3 40.0 ± 1.1
Med-Replay Hopper 95 94.7 82.7 91.5 67.5 93.6 100 96.4 ± 1.1
Med-Replay Walker2d 77.2 73.9 66.6 82.6 39.0 70.6 75 84.2 ± 1.2
U-Maze Maze2d 5.7 47.4 - - - 113.9 - 142.9 ± 2.2
Medium Maze2d 5.0 34.9 - - - 121.5 - 140.0 ± 0.7
Large Maze2d 12.5 58.6 - - - 123.0 - 131.5 ± 3.2

4.2 BENCHMARK RESULTS

We compare CDiffuser to baseline methods with respect to the normalized average returns (Fu et al.,
2020) obtained during online evaluation. We conducted 10 trials with different seeds and reported
the average results. The results of CDiffuser and baseline methods are summarized in Table 1.

From Table 1, we can observe that: (1) Compared with all the baseline methods, CDiffuser achieves
the best or the second-best performance on 6 out of 9 locomotion tasks, demonstrating the outstand-
ing performance of CDiffuser under periodic settings. Moreover, CDiffuser achieves the best perfor-
mance on all the three navigation tasks, demonstrating the excellent ability of CDiffuser in long-term
planning. (2) Compared with our backbone method Diffuser, CDiffuser outperforms Diffuser in all
the 12 tasks, which demonstrates the effectiveness of contrast in boosting diffusion-based RL meth-
ods. Moreover, CDiffuser exhibits more improvement in medium and medium-replay datasets than

6

Under review as a conference paper at ICLR 2024

88

90

92

Pe
rf

or
m

an
ce

half-cheetah
80

90

100

110

120

Pe
rf

or
m

an
ce

(a) Expert
hopper

95

100

105

110

115

120

Pe
rf

or
m

an
ce

walker

42

43

44

45

Pe
rf

or
m

an
ce

half-cheetah

60

80

100

Pe
rf

or
m

an
ce

(b) Medium
hopper

60

70

80

90

Pe
rf

or
m

an
ce

walker

20

25

30

35

40

45

Pe
rf

or
m

an
ce

half-cheetah

60

80

100

120

Pe
rf

or
m

an
ce

(c) Medium Replay

hopper
20

40

60

80

100

Pe
rf

or
m

an
ce

walker

CDiffuser-N CDiffuser-C CDiffuser-G Diffuser-G CDiffuser

Figure 4: Results of the ablation experiments on different variants.

the expert dataset. We believe that is because the expert datasets have more high-return samples,
which makes it easier for Diffuser to learn and achieve better results. However, both medium and
medium-replay have more low-return samples, which increases the difficulty for Diffuser to learn a
good policy. These results demonstrate that CDiffuser is better at making use of low-return samples.

4.3 ABLATION STUDIES

We conduct abalation studies to further investigate the impact of contrasting returns on performance.
Specifically, we explore the following four variants:

• CDiffuser-C: remove contrastive learning from CDiffuser, i.e., remove Lc from Equation (14).
• CDiffuser-N: only apply the samples with high-return to train the model.
• CDiffuser-G: remove the guidance from CDiffuser, i.e., removing ρ∇Jϕ(·, ·) from Equation (5).
• Diffuser-G: remove the classifier guidance from Diffuser.

The results are summarized in Figure 4. From Figure 4, we can observe that: (1) CDiffuser surpasses
CDiffuser-C, illustrating the clear benefits of contrasting the trajectory generation process with high-
return and low-return samples; (2) CDiffuser-G outperforms Diffuser-G in 8 out of 9 datasets. Since
the only difference is whether using the contrastive learning, the result demonstrates contrasting with
high-return and low-return samples is effective in improving online performance; (3) CDiffuser-
N underperforms CDiffuser in all the cases. Since CDiffuser-N applies no negative samples, this
phenomenon demonstrates the success of performing contrastive learning with both positive and
negative samples. (4) CDiffuser-N underperforms CDiffuser-C in 4 out of 9 cases. We argue that
since CDiffuser-N is trained using only a small portion of samples (i.e., positive samples), this results
in its inability to learn information from the discarded samples, leading to worse performance than
CDiffuser-C, which is trained over the whole dataset; (5) CDiffuser-G is better than CDiffuser-C in
most cases, especially in medium and medium-replay. That implies the constraint of states’ return
is more useful than the guidance in the cases like medium or medium-replay, in which the numbers
of high-return samples are limited.

4.4 FURTHER INVESTIGATION

To further investigate the performance of CDiffuser, we analyze the state-reward distribution and the
long-term dynamic consistency.

State-reward distribution analysis. we randomly collect the (state, reward) pairs from the offline
dataset of Walker2d-Med-Replay and the (state, reward) pairs collected when Diffuser, Decision
Diffuser, and CDiffuser interact with the environment, and compare them in Figure 5. Here, we
choose Diffuser and Decision Diffuser as both of them apply diffusion to model RL as a sequence

7

Under review as a conference paper at ICLR 2024

Figure 5: The distribution of state and reward. It is better to view in color mode. CDiffuser achieves
higher rewards in both in-distribution areas(circled with blue) and out-of-distribution areas(circled
with red).

1 11 21 31
States in trajectory

Tr
aj

ec
to

ri
es

(a) Diffuser.

1 11 21 31
States in trajectory

Tr
aj

ec
to

ri
es

(b) Decision Diffuser.

1 11 21 31
States in trajectory

Tr
aj

ec
to

ri
es

(c) CDiffuser.

0.25

0.00

0.25

0.50

0.75

St
at

es
 S

im
ila

ri
ty

Figure 6: The similarities between the states in the generated trajectories and actual states. The
generated states of CDiffuser are more similar with the actual states, demonstrating the better long-
term dynamic consistency.

generation problem. In Figure 5, each scatter represents a state, and its color denotes the reward
grained in the corresponding state. From the results illustrated in Figure 5, we can observe that: in
both in-distribution states(circled with blue) and out-of-distribution states(circled with red), our CD-
iffuser gains higher rewards. We suppose that because the contrastive module enhances CDiffuser’s
long-term dynamic consistency, which represents the similarity of the states in the generated trajec-
tories and the actual states provided by environment. According to Equation (5) and Equation (6),
the long-term dynamic consistency benefits the decision making of CDiffuser.

Long-term dynamic consistency analysis. To further investigate whether the contrastive module
enhances the long-term dynamic consistency of CDiffuser, we randomly take 24 trajectories gener-
ated by Diffuser, Decision Diffuser, and CDiffuser. For each generated trajectory, we take the states
of consecutive 32 steps and compute the similarity between each generated state and the actual state
of the same step provided by the environment. Thus, there are 24 × 32 similarity values for each
model, which corresponds to a similarity matrix as the subgraphs in Figure 6 illustrated. Each line
in the subgraphs of Figure 6 represents a generated trajectory, and the grids of each line represent
the similarity of the states in the generated trajectory and the states provided by the environment.
From Figure 6, we can observe that: (1) Most grids in Figure 6 (c) are blue, which denotes that
most generated states consistent with the actual states; (2) Figure 6 (c) contains more blue grids
than Figure 6 (a) and (b), which denotes that CDiffuser has better long-term dynamic consistency
than Diffuser and Decision Diffuser. Since the difference between CDiffuser and Diffuser is the
contrastive module, combining Figure 5 and Figure 6, we can conclude that the contrative mod-
ule benefits the long-term dynamic consistency of CDiffuser, making it gain high rewards in both
in-distribution and out-of-distribution situations.

4.5 HYPERPARAMETER ANALYSIS

We conduct additional experiments to investigate the impact of different hyper-parameters on the
performance. Specifically, we evaluate the performance of CDiffuser under different ξ, ζ, σ and λc.
In these experiments, all the settings remain the same except the value of the tested hyper-parameter.
The experiment results are illustrated in Figure 7.

In the result presented in Figure 7, we can find: (1) with the increase of ξ (Figure 7(a)), the per-
formance gradually increases but the decreases when ξ > 0.85. The underlying reason is that with
ξ increases, the proportion of high-return states in positive samples increases, leading to an im-
provement in model performance. However, as ξ gradually becomes larger, the available samples
for contrasting decreases, resulting in a decline in performance. We can observe a similar pattern
with ζ decreases, as is shown in Figure 7(b). (2) With the increase of σ, the performance gradually

8

Under review as a conference paper at ICLR 2024

0.70 0.75 0.80 0.85 0.90
70

75

80

(a) Positive bound .
0.1 0.2 0.3 0.4

70.0

72.5

75.0

77.5

80.0

(b) Negative bound .
400 600 800 1000 1200

70

75

80

85

(c) Fuzzy coefficient .
0.00 0.25 0.50 0.75 1.00

50

60

70

80

(d) Contrastive weight c.
Figure 7: The impact of hyperparameter.

increases and then decreases. We argue that since it is difficult to confidently classify samples near
the boundary as positive or negative, an appropriate σ provides efficient tolerance for the classifica-
tion of these samples. However, a low σ blurs the boundary between positive and negative samples,
while a high σ loses the aforementioned tolerance, thus resulting in worse performance. (3) With the
increases of λc , the performance increases at the very steps but decreases then. We conclude that
increasing the weight of contrasting leads the generated states towards high-return states. However,
over-emphasizing the contrast will lead to neglecting dataset distribution, thus losing the generaliza-
tion of diffusion and resulting in a decrease in performance. (4) It can be observed that CDiffuser
exhibits a smooth and regular change in performance with hyperparameters various, which makes it
easier for us to tune the parameters.

5 RELATED WORKS

5.1 DIFFUSION IN DECISION MAKING
We group the diffusion-based methods in RL into action generation methods and trajectory gener-
ation methods. The action generation methods (Ada et al., 2023; Wang et al., 2022; Chen et al.,
2022; Chi et al., 2023) adopt diffusion models as policies to predict the action of the current step.
One of the typical works in this group is Diffusion Q-learning (Wang et al., 2022), which proposes
to design policy as a diffusion model and improve it with double Q-learning architecture. Following
Diffusion Q-Learning, SRDPs (Ada et al., 2023) incorporates state reconstruction feature learning
into the recent category of diffusion policies to address the out-of-distribution generalization prob-
lem. The second group of methods generate the subsequent trajectory including the action to take
at the current step by diffusion. For instance, Diffuser (Janner et al., 2022) models trajectories as
sequences of state-action pairs. Based on Diffuser, Decision Diffuser (Ajay et al., 2022) proposes
to predict state sequences with a diffusion model conditioned on historical information, and adopts
a reverse dynamic model to predict actions based on the generated state sequence. Though these
methods have gain significant achievements, they neglect the differences in samples.
5.2 CONTRASTIVE LEARNING IN RL
The motivation for introducing contrastive learning in RL is to enrich the representation in the previ-
ous works. We group these works into three types. The first type of methods apply contrastive learn-
ing to enhance the state representations (Laskin et al., 2020; Qiu et al., 2022). For instance, Laskin
et al. (2020) propose to learn image representations via contrastive learning; Qiu et al. (2022) pro-
pose to learn the transition with contrastive learning. The second type of methods apply contrastive
learning to learn the representations of tasks. For instance, Yuan & Lu (2022) apply contrastive
learning to enhance the representation of tuples to distinguish between different tasks; Agarwal et al.
(2020) apply contrastive learning to learn the representations of the environments. Some works ap-
ply contrastive learning in other ways. For instance, Laskin et al. (2022) utilizes contrastive learning
to learn behavior representations and maximizes the entropy to encourage behavioral diversity. In
contrast to the methods mentioned above, CDiffuser adopts contrastive learning to constrain the
generated sample, rather than learning representations.

6 CONCLUSION AND DISCUSSION

In this paper, we introduce CDiffuser for offline RL, which introduces contrastive learning to con-
strain the trajectory generation. Different from the previous works which apply contrastive learning
to enhance the representation, we contrast the return of states. Specifically, we apply diffusion to
generate the subsequent trajectory for planning, and then we constrain the states in the generated
trajectory toward the states with high returns and away from the states with low returns. In that way,
the actions taken by the agent are always toward the high-return states, which makes the agent gain
better performance in the online evaluation. We evaluated CDiffuser on 12 D4RL benchmarks, the
results demonstrate that our CDiffuser achieves outstanding performance. However, the CDiffuser is
limited in the case in which a certain state corresponds with both high and low return, as CDiffuser
relies the return on the state to contrast. Nevertheless, the contrast based on the return of state is just
the beginning, the contrast on actions also deserves to be explored. We will leave it to future works.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Suzan Ece Ada, Erhan Oztop, and Emre Ugur. Diffusion policies for out-of-distribution generaliza-
tion in offline reinforcement learning. arXiv preprint arXiv:2307.04726, 2023.

Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. In International
Conference on Learning Representations, 2020.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=sP1fo2K9DFG.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, 2021. URL https://openreview.net/forum?id=
AAWuCvzaVt.

Mehdi Fatemi, Mary Wu, Jeremy Petch, Walter Nelson, Stuart J Connolly, Alexander Benz, Anthony
Carnicelli, and Marzyeh Ghassemi. Semi-markov offline reinforcement learning for healthcare.
In Conference on Health, Inference, and Learning, pp. 119–137. PMLR, 2022.

William Feller. On the theory of stochastic processes, with particular reference to applications.
1949. URL https://api.semanticscholar.org/CorpusID:121027442.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Shane Gu, and Rosalind Picard. Human-centric dialog training via offline rein-
forcement learning. arXiv preprint arXiv:2010.05848, 2020.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. arXiv preprint arXiv:2305.20081, 2023.

10

https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=AAWuCvzaVt
https://openreview.net/forum?id=AAWuCvzaVt
https://api.semanticscholar.org/CorpusID:121027442

Under review as a conference paper at ICLR 2024

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pp. 5774–5783. PMLR, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International Conference on Machine Learning, pp. 5639–
5650. PMLR, 2020.

Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel.
Unsupervised reinforcement learning with contrastive intrinsic control. Advances in Neural In-
formation Processing Systems, 35:34478–34491, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Ser-
gio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating human
behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Shuang Qiu, Lingxiao Wang, Chenjia Bai, Zhuoran Yang, and Zhaoran Wang. Contrastive ucb:
Provably efficient contrastive self-supervised learning in online reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 18168–18210. PMLR, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18, pp. 234–241. Springer, 2015.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, 2015.

Tianyu Shi, Dong Chen, Kaian Chen, and Zhaojian Li. Offline reinforcement learning for au-
tonomous driving with safety and exploration enhancement. arXiv preprint arXiv:2110.07067,
2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. Advances in
neural information processing systems, 29, 2016.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations.

11

Under review as a conference paper at ICLR 2024

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Janine Thoma, Danda Pani Paudel, and Luc V Gool. Soft contrastive learning for visual localization.
Advances in Neural Information Processing Systems, 33:11119–11130, 2020.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Teng Xiao and Donglin Wang. A general offline reinforcement learning framework for interactive
recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 4512–4520, 2021.

Chun-Hsiao Yeh, Cheng-Yao Hong, Yen-Chi Hsu, Tyng-Luh Liu, Yubei Chen, and Yann LeCun.
Decoupled contrastive learning. In European Conference on Computer Vision, pp. 668–684.
Springer, 2022.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Haoqi Yuan and Zongqing Lu. Robust task representations for offline meta-reinforcement learning
via contrastive learning. In International Conference on Machine Learning, pp. 25747–25759.
PMLR, 2022.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PSEUDOCODE OF CDIFFUSER.

Algorithm 1 Training
1: Calculate the candidate set C.
2: while not converged do
3: τt, vt ∼ D.
4: i ∼ [1, N].
5: Generate τ i

t .
6: Reconstruct τt as τ̂ i,0

t = ψθ(τ
i
t , i).

7: Calculate loss Ld with Equation (11).
8: Calculate loss Lv with Equation (12).
9: Extract states in τ̂ i,0

t as Sτ̂ i,0
t

= {ŝi,0t+1, ŝ
i,0
t+2, ..., ŝ

i,0
t+H}.

10: for ŝi,0h in Sτ̂ i,0
t

do
11: Sample S+ and S− with Equation (7) and Equation (8).
12: Calculate Li

h using Equation (9).
13: end for
14: Calculate Lc using Equation (13).
15: Calculate L using Equation (14).
16: Update model by taking gradient decent with L.
17: end while

Algorithm 2 Planning
Require: CDiffuser ψθ(·, ·), return-to-go predictor Jϕ(·, ·), guidance scale ρ, co-variances Σi.

1: t← 1.
2: while not done do
3: Observe state st; sample τN

t ∼ N (0, I)
4: for i = N,N − 1, ..., 1 do
5: Predict return-to-go with Jϕ(τ̂ i

t , i).
6: Sample τ̂ i−1

t using Equation (5).
7: end for
8: Extract ât form τ̂ 0.
9: Interact with environment using action ât.

10: t← t+ 1.
11: end while

A.2 IMPACT OF HYPERPARAMETERS ON TRAINING STABILITY.

To evaluate the impact of hyperparameters on training stability, we visualize the training curves of
Hopper-Medium with various values of hyperparameters ξ, ζ, σ and λc, as is shown in Figure 8.
It can be concluded that in most of situations, these hyperparameters will not unstable the training
process, for example, whatever value ξ, ζ, σ and λc take, the training process is stable and CDiffuser
converges to a certain point.

A.3 HYPER-PARAMETERS.

We consider the following hyper-parameter for CDiffuser: Learnign rate, positive bound (ξ), nega-
tive bound (ζ), fuzzy coefficient (σ), loss weight of plannign module (λd), loss weight of contrastive
learning (λc), loss weight of return predictor Jϕ(·, ·) (λv), guidance scale (ρ), diffusion steps (N)
and the length of subsequent trajectory (H). Please notice that both the Planning Module and Ccn-
trastive Module are trained 1× 106 steps, while the return predictor Jϕ(·, ·) is trained 2× 105 steps.
Detailed hyper-parameter settings for each dataset is provided in Table 2. Following Diffuser, we
perform un-guided sampeling for Maze2d environments.

13

Under review as a conference paper at ICLR 2024

103 104 105 106

Training Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
ec

on
st

ru
ct

 L
os

s

(a) Positive bound .

=0.65
=0.7
=0.75
=0.8
=0.85

103 104 105 106

Training Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
ec

on
st

ru
ct

 L
os

s

(b) Negative bound .

=0.2
=0.25
=0.3
=0.35

103 104 105 106

Training Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
ec

on
st

ru
ct

 L
os

s

(c) Fuzzy coefficient .

=200
=400
=600
=800
=1000
=1200
=1400
=1600

103 104 105 106

Training Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
ec

on
st

ru
ct

 L
os

s

(d) Contrastive weight c.

c=0.001
c=0.01
c=0.1
c=0.2

Figure 8: Training curves of hopper-medium-v2 with various values of ξ, ζ, σ and λc.

Table 2: Hyper-parameter settings for each dataset.

Dataset Environment learning rate ξ ζ σ λd λv λc ρ N H

Med-Expert HalfCheetah 2×10−4 0.65 0.05 1.6 × 103 1 1 0.1 0.001 20 4
Med-Expert Hopper 2×10−4 0.65 0.35 1.4 × 103 1 1 0.001 0.0001 20 32
Med-Expert Walker2d 2×10−4 0.65 0.1 1 × 108 1 1 0.001 0.1 20 32
Medium HalfCheetah 2×10−4 0.85 0.2 7 × 102 1 1 0.01 0.001 20 4
Medium Hopper 2×10−4 0.65 0.2 8 × 102 1 1 0.001 0.1 20 32
Medium Walker2d 2×10−4 0.65 0.2 4 × 102 1 1 0.01 0.1 20 32
Med-Replay HalfCheetah 2×10−4 0.65 0.4 1 × 108 1 1 0.1 0.001 20 4
Med-Replay Hopper 2×10−4 0.55 0.2 9 × 102 1 1 0.001 0.1 20 32
Med-Replay Walker2d 2×10−4 0.6 0.05 1 × 108 1 1 0.1 0.1 20 32
U-Maze Maze2d 2×10−4 5 0.2 1 × 108 1 1 0.1 - 20 128
Medium Maze2d 2×10−4 0.1 0.02 1 × 108 1 1 0.1 - 20 256
Large Maze2d 2×10−4 0.6 0.01 1 × 108 1 1 0.1 - 20 384

A.4 VISUALIZATION OF POSITIVE AND NEGATIVE SAMPLES.

We randomly sample a subset of positive samples (states with high returns) and negative samples
(states with low returns), as is shown in Figure 9. It can be observed that an agent in a state cor-
responding to a high return tends to be in a position more conducive to walking or running, such
as standing upright; correspondingly, an agent with a state corresponding to a low return will be in
a position that is hard to walk, such as having already fallen down or about to fall down. This is
reasonable, since poses such as standing upright are more conducive to walking or running, which
causes the agent to continue moving and results in a higher return, while poses such as having fallen
or about to fall cause the environment to give a stop signal, which results in a lower return.

A.5 OPTIMIZING J ϕ(·, ·) WITH EQUATION (14)

Suppose we have the diffuison model ψθ(·) parameterized by θ, and the return predictor Jϕ param-
eterized by ϕ. Following Equation (14), we have

L = λdLd + λvLv + λcLc. (15)

Further,

Ld = Eτt∈D,t>0,i∼[1,N]

[
∥τt − ψθ(τ

i
t , i)∥2

]
, (16)

Lv = Eτt∈D,t>0,i∼[1,N][∥Jϕ(τ it , i)− vt∥2]. (17)

The training process can be viewed as a procedure of calculating gradients of all the parameters and
updating them, specifically,

14

Under review as a conference paper at ICLR 2024

(a) Agents with high-return states.

(b) Agents with low-return states.

Figure 9: Visualization of positive samples (states with high returns) and negative samples (states
with low returns) in Walker2d-Med-Replay.

∇θ = ∂L
∂θ

(18)

= λd
∂Ld

∂θ
+ λv

∂Lv

∂θ
+ λc

∂Lc

∂θ
(19)

= λv
∂Lv

∂θ
+ λc

∂Lc

∂θ
, (20)

∇ϕ =
∂L
∂ϕ

(21)

= λd
∂Ld

∂ϕ
+ λv

∂Lv

∂ϕ
+ λc

∂Lc

∂ϕ
(22)

= λd
∂Ld

∂ϕ
. (23)

15

Under review as a conference paper at ICLR 2024

Thus, calculating the gradients of θ with L is equal to calculate θ with Ld and Lc, calculating the
gradients of ϕ with L is equal to calculate ϕ with Lv , i.e., optimizing the return predictor J ϕ(·, ·)
with Equation (14) is equal to optimizing it with Equation (12) only.

16

	Introduction
	Background
	Denoising Probabilistic Models
	Contrastive Learning
	Problem setting

	Methodology
	Planning Module
	Contrastive Module
	Sample Positive and Negative States
	Constrain the trajectory with contrastive learning

	Model Learning

	Experiments
	Experiment Settings
	Benchmark Results
	Ablation Studies
	Further Investigation
	Hyperparameter Analysis

	Related Works
	Diffusion in Decision Making
	Contrastive Learning in RL

	Conclusion and Discussion
	Appendix
	Pseudocode of CDiffuser.
	Impact of hyperparameters on training stability.
	Hyper-parameters.
	Visualization of positive and negative samples.
	optimizing J(,) with eq:loss:all

