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Abstract

Domain generalization (DG) is about training mod-
els that generalize well under domain shift. Previ-
ous research on DG has been conducted mostly
in single-source or multi-source settings. In this
paper, we consider a third, lesser-known setting
where a training domain is endowed with a col-
lection of pairs of examples that share the same
semantic information. Such semantic sharing (SS)
pairs can be created via data augmentation and
then utilized for consistency regularization (CR).
We present a theory showing CR is conducive to
DG and propose a novel CR method called Logit
Attribution Matching (LAM). We conduct experi-
ments on five DG benchmarks and four pretrained
models with SS pairs created by both generic and
targeted data augmentation methods. LAM outper-
forms representative single/multi-source DG meth-
ods and various CR methods that leverage SS pairs.
The code and data of this project are available at
https://github.com/Gaohan123/LAM.

1 INTRODUCTION

Deep learning models are successful under the indepen-
dent and identically distributed (i.i.d.) assumption that test
data are drawn from the same distribution as training data.
However, models that generalize well in-distribution (ID)
may be generalizing in unintended ways out-of-distribution
(OOD) [Szegedy et al., 2013, Shah et al., 2020, Geirhos
et al., 2020, Di Langosco et al., 2022, Yang et al., 2023].
Some image classifiers with great ID performance, in fact,
rely on background and style cues to predict the class of fore-
ground objects, leading to poor OOD performance [Beery
et al., 2018, Zech et al., 2018, Xiao et al., 2020, Geirhos
et al., 2020]. Such reliance on spurious correlations hinders

*Equal contribution, listed in alphabetical order.

model performance under domain shift, affecting many real-
world applications where the i.i.d. assumption cannot be
guaranteed [Michaelis et al., 2019, Alcorn et al., 2019, Koh
et al., 2021, Ali et al., 2022, Li et al., 2022].

Domain generalization (DG) deals with the conundrum of
generalizing under domain shift. Previous research on DG
has mostly focused on the single-source and multi-source
settings [Zhou et al., 2022, Wang et al., 2022b]. The single-
source setting [Volpi et al., 2018, Hendrycks and Dietterich,
2019] is the most general but also the most challenging
setting where the domain of a datum is a priori unknown.
The lack of domain information makes it difficult to tell
apart features that are invariant to domain shifts from those
that are not. The multi-source setting [Blanchard et al., 2011,
Muandet et al., 2013, Ganin et al., 2016, Arjovsky et al.,
2019], on the other hand, assumes that such information is
available to the degree that every datum is associated with
a coarse domain label. Even so, however, it may require
a prohibitively large number of diverse domains to solve
real-world DG problems [Wang et al., 2024].

In this paper, we study a third lesser-known setting where a
training domain is associated with a collection of pairs of
examples that share the same semantic information. Such
semantic sharing (SS) pairs can be created effortlessly using
existing data augmentation (DA) methods, as demonstrated
by the examples in Figure 1. Given a collection of SS pairs,
the task is then to use them to reduce the dependence on
spurious correlations.1 There are several previous DG meth-
ods that exploit SS pairs for this purpose [Hendrycks et al.,
2020, Mitrovic et al., 2021, Heinze-Deml and Meinshausen,
2021, Mahajan et al., 2021, Robey et al., 2021, Ouyang
et al., 2021, Wang et al., 2022c]. They leverage SS pairs via

1At a high level of abstraction, this task is related to large
language model (LLM) alignment where a collection of preference
pairs is used to align an LLM to human intent [Ouyang et al.,
2022b, Rafailov et al., 2023]. In both tasks, the pairs contain
information about ideal model behavior that is absent from the
training data. In this sense, one might say that what SS pairs is to
domain generalization that preference pairs are to LLM alignment.
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Figure 1: A semantic sharing (SS) pair involves an original training example and a transformed version of it obtained by data
augmentation (DA). The examples in the first two pairs share the same semantic information for the “giraffe” class, and the
examples in the last pair share the same semantic information for the “dog” class. The augmented example in (a) is created
manually via Copy-Paste [Gao et al., 2023], the one in (b) is created using a DA method called RandAugment [Cubuk et al.,
2020], and the one in (c) is created using Stable Diffusion [Rombach et al., 2022] (see Appendix C for more details).

consistency regularization (CR), a technique proposed in
the semi-supervised learning literature to encourage similar
predictions on similar inputs [Bachman et al., 2014, Zhang
et al., 2020, Chen et al., 2020, Caron et al., 2021]. One
drawback they share is that they regard an SS pair (x, x̃) as
unlabeled and assume x and x̃ contain the same semantic
information for all classes. As illustrated in Figure 1, how-
ever, an SS pair is often created to preserve the semantic
information of one particular class, and is hence labeled. In
this paper, we mainly study the use of labeled SS pairs for
domain generalization.

We make three contributions in this paper: 1). We present a
theory to motivate the use of SS pairs for optimal domain
generalization through causally invariant prediction; 2). We
propose a novel method called Logit Attribution Matching
(LAM) that leverages labeled SS pairs; 3). We empirically
demonstrate the advantages of LAM over representative
single-source and multi-source DG methods, as well as
various CR methods that leverage unlabeled SS pairs.

LAM consistently outperforms previous methods across
multiple benchmarks. Take the iWildCam2020-WILDS
dataset [Koh et al., 2021] as an example. ERM achieves
30.2% OOD (Macro F1) score on an ImageNet pretrained
ResNet-50 model [He et al., 2016]. The score increases to
33.8% when the augmented examples created by RandAug-
ment [Cubuk et al., 2020] are simply added to the training
set. It further increases to 36.4% when LAM is applied to
the resulting SS pairs. For the augmented examples created
by a more sophisticated data augmentation method [Gao
et al., 2023], the OOD score is 36.5% when the augmented
examples are simply added to the training set. It further
increases to 41.2% when LAM is applied to the resulting
SS pairs. In this case, the OOD performance increases by
41.2 − 30.2 = 11%, with 41.2 − 36.5 = 4.7% due to the
exploitation of SS pairs. On CLIP ViT-L/14@336 [Radford
et al., 2021], LAM improves the state-of-the-art fine-tuning
method from 47.1% to 48.7%. It is hoped that our work can
inspire the development of better SS pair creation methods
so as to further boost OOD performance of models.

2 RELATED WORK

Domain generalization (DG) is a fundamental problem in
machine learning and has attracted much attention in recent
years. A large number of methods have been proposed. In
this section, we briefly review several representative meth-
ods that are frequently used as baselines in the literature.
They are also used in our experiments as baselines.

Most DG methods assume access to multiple training do-
mains [Blanchard et al., 2011, Muandet et al., 2013]. Among
those multi-source methods, Group Distributionally Robust
Optimization (GDRO) [Sagawa et al., 2020] seeks to mini-
mize the worst-case risk across all possible training domains.
Invariant Risk Minimization (IRM) [Arjovsky et al., 2019]
regularizes ERM with a penalty that enforces cross-domain
optimality on the classifier. Variance Risk Extrapolation (V-
REx) [Krueger et al., 2020] penalizes the variance of risks
in different training domains. Domain-Adversarial Neural
Networks (DANN) [Ganin et al., 2016] aims at mapping
inputs from each training domain to an invariant distribution
in the feature space from which the original domains are
indistinguishable.

Single-source DG does not assume access to multiple train-
ing domains [Volpi et al., 2018, Hendrycks and Dietterich,
2019]. One of the main approaches to single-source DG is
to discover predictive features that are more sophisticated
than simple cues spuriously correlated with labels. Repre-
sentation Self-Challenging (RSC) [Huang et al., 2020] and
Spectral Decoupling (SD) [Pezeshki et al., 2021] are two
prominent methods in this direction. SD suppresses strong
dependencies of output on dominant features by regularizing
the logits. RSC aims to achieve the same goal in a heuristic
manner. Another approach to single-source DG is to simply
add augmented examples to the training set [Zhang et al.,
2017, Cubuk et al., 2020, Gao et al., 2023]. This approach
has been shown to improve OOD performance in many
cases, because data augmentation exposes a model to more
feature variations during training and thereby enhances its
capability in dealing with novel domains.
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Figure 2: Causal latent decomposition (CLD) model. The
input of a training example X is generated from two latent
variables Xc and Xn which may be statistically correlated
due to confounders or direct mechanisms between them.
The ground-truth label Y is generated from only Xc. The
mechanisms that generate X and Y are assumed to be invari-
ant across domains. The corresponding conditional distribu-
tions are denoted as P ∗(X|Xc, Xn) and P ∗(Y |Xc). The
joint distribution P (Xn, Xc) of the two latent variables may
change across domains. We assume Xc always d-separate
Y from the other variables.

Consistency regularization (CR) and semantic sharing
(SS) pair creation. CR encourages a model to make simi-
lar predictions on similar inputs. The idea originated from
the semi-supervised learning literature [Bachman et al.,
2014, Sohn et al., 2020]. It is also used in contrastive learn-
ing [Chen et al., 2020] and non-contrastive self-supervised
learning [Caron et al., 2021]. In the context of DG, Wang
et al. [2022a] conducted a systematic evaluation of various
pre-existing CR methods and found that logit matching is
most effective with L2-norm (among L1-norm, cosine sim-
ilarity, etc.). In addition to logit matching with L2-norm,
we study a few other options including novel ones such as
target-logit matching and LAM which will be discussed in
Section 4.1.

To apply CR in the context of DG, we need semantic shar-
ing (SS) pairs. A straightforward way to create SS pairs
is to use generic data augmentation (DA) techniques like
CutMix [Yun et al., 2019] and RandAugment [Cubuk et al.,
2020]. Previous CR methods primarily adopted generic DA
techniques [Hendrycks et al., 2020, Xie et al., 2020, Wang
et al., 2022a, Chen et al., 2022, Jing et al., 2023, Berezovskiy
and Morozov, 2023]. SS pairs can also be created/obtained
in ways other than conventional DA. For example, Gao
et al. [2023] explored targeted data augmentation (Targeted
DA) which utilizes task-specific domain knowledge to aug-
ment data. Heinze-Deml and Meinshausen [2021] paired
up photos of the same person when analyzing the CelebA
dataset [Liu et al., 2015]. For medical images, Ouyang et al.
[2022a] created pairs by performing image transformations
to simulate different possible acquisition processes. Further-
more, in the case of multiple source domains, SS pairs can
be learned. Robey et al. [2021] and Wang et al. [2022c] build
image-to-image translation networks between domains and
use them to create pairs. Mahajan et al. [2021] propose an

iterative algorithm that uses contrastive learning to map
images to a latent space, and then match up images from
different domains that have the same class label and are
close to each other in the latent space.

3 A CAUSAL THEORY OF DOMAIN
GENERALIZATION

In this section, we present a causal theory of domain gener-
alization, which will be used in the next section to motivate
methods for leveraging SS pairs. In the context of DG, a
domain d is defined by a distribution P (X,Y ) over the
space of input-label pairs (X,Y ). We assume the pairs are
generated by the causal model shown in Figure 2.

The model first appeared in Tenenbaum and Freeman [1996],
where it is called the style and content decomposition (SCD)
model, and Xc and Xn are called the content and style
variables respectively. Similar models appeared recently
in a number of papers under different terminologies. The
variable Xc denotes the essential information in an im-
age X that a human relies on to assign a label Y to the
image. It is hence said to represent causal factors [Maha-
jan et al., 2021, Lv et al., 2022, Ye et al., 2022], intended
factors [Geirhos et al., 2020], semantic factors [Liu et al.,
2021], content factors [Mitrovic et al., 2021], and core fac-
tors [Heinze-Deml and Meinshausen, 2021]. In contrast,
the variable Xn denotes the other aspects of X that are
not essential to label assignment. It is hence said to rep-
resent non-causal factors, non-intended factors, variation
factors, style factors, and non-core factors. As the relation-
ship between Xc and Y does not change across domains,
Xc is sometimes said to represent stable features [Zhang
et al., 2021], domain-independent factors [Ouyang et al.,
2022a], and invariant features [Arjovsky et al., 2019, Ahuja
et al., 2021]. In contrast, Xn is said to represent non-stable
features, domain-dependent factors, and spurious features.

The term “style” in the SCD model should be understood
in a broad sense. In addition to image style, it also includes
factors such as background, context, object pose and so on.
To avoid confusion, we follow Mahajan et al. [2021], Lv
et al. [2022] and refer to Xc and Xn as the causal and non-
causal factors respectively, and rename the SCD model as
the causal latent decomposition (CLD) model.

To ground the CLD model, we need to specify three distri-
butions: P (Xc, Xn), P ∗(X|Xc, Xn) and P ∗(Y |Xc). To-
gether, the three distributions define a joint distribution over
the four variables:

P (Xc, Xn, X, Y ) = P (Xc, Xn)P ∗(X|Xc, Xn)P ∗(Y |Xc).

This joint distribution defines a domain in the CLD frame-
work. We refer to the collection of all such domains for some
fixed P ∗(X|Xc, Xn) and P ∗(Y |Xc) as a CLD family.

Let X c and X n be the sets of all possible values of the
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Figure 3: An illustration of conditions for optimal DG under the
CLD model. Training examples x are sampled from the latent
space, X c × X n, which we depict as a 2-D box. A prediction
model is causally invariant if it makes the same prediction for ex-
amples sampled from the same “vertical line” in the latent space. If
such a model also minimizes the cross-entropy loss of a source do-
main, then it makes optimal predictions on all examples x̃ sampled
from supp[P s(Xc)]× X n (the inner rectangle), not only those
from supp[P s(Xc, Xn)]. This enables optimal generalization to
any target domain P t such that supp[P t(Xc)] ⊆ supp[P s(Xc)].

latent variables Xc and Xn respectively. Consider an exam-
ple x generated by P ∗(X|Xc, Xn) from a pair of values 2

(xc, xn) ∈ X c × X n. Let x̃ be another example sampled
from the same xc and a different x̃n. The two examples x
and x̃ contain the same semantic contents and hence should
be classified into the same class. In this sense, x and x̃ make
up a semantic sharing (SS) pair. Let P̂θ(Ŷ |X) be a pre-
diction model with parameters θ. It is said to be causally
invariant if

P̂θ(Ŷ |X = x) = P̂θ(Ŷ |X = x̃), (1)

for all SS pairs (x, x̃). In other words, the prediction output
does not change in response to variations in the non-causal
factors Xn as long as the causal factors Xc remain fixed.
Such causal invariance is a key condition for optimal DG.

Theorem 1 (Conditions for Optimal DG) Let P̂θ be a
prediction model for a CLD family such that different xc

almost always generate different x, and let P s and P t be
a source and a target domain (from the family) such that
supp[P t(Xc)] ⊆ supp[P s(Xc)]. Suppose:

1). P̂θ minimizes the in-distribution (ID) cross-entropy
loss ℓs(P̂θ) = E(x,y)∼P s [− log P̂θ(Ŷ = y|x)];

2). P̂θ is causally invariant.

Then, the prediction model P̂θ also minimizes the out-of-
distribution (OOD) cross-entropy loss:

ℓt(P̂θ) = E(x,y)∼P t [− log P̂θ(Ŷ = y|x)].

In other words, it generalizes optimally to the target domain.
2We use upper case letters to denote variables and lower case

letters to denote their values. We use P with variables, e.g., P (Xc),
to denote a distribution; and P with variable values, e.g., P (Xc =
xc), to denote a probability value. We may omit the variables if
the context is clear, e.g., we may write P (Xc = xc) as P (xc).

The proof of this theorem can be found in Appendix A.
Closely related theoretical results [Peters et al., 2016, Ar-
jovsky et al., 2019, Mahajan et al., 2021] are discussed in
Appendix B. The support supp[P (Xc)] = {xc ∈ X c |
P (xc) > 0} consists of all causal factors that appear in a
domain P . The assumption on the support between P s and
P t can be relaxed if we consider approximately optimal DG.
We opt for simplicity here since it is not pertinent to the
focus of this paper. More importantly, the second condition
on P̂θ connects consistency regularization (CR) with DG.

The intuition behind Theorem 1 is illustrated in Figure 3. In
short, Theorem 1 articulates a set of sufficient conditions for
optimal DG. While the causal invariance condition is diffi-
cult to verify or fully attain in practice, it can still guide the
development of practical DG algorithms. We next discuss
CR methods that can bring the model closer to meeting the
causal invariance condition.

4 CONSISTENCY REGULARIZATION
FOR DOMAIN GENERALIZATION

Intuitively, one can make a model more causally invariant
by encouraging the model to yield invariant predictions for
SS pairs sharing the same Xc. So, here is the problem we
address in this paper:

Given a source domain P s from a CLD family and
a set of labeled SS pairs {(xi, x̃i; yi)}Ni=1, learn a
prediction model P̂θ(Y |X) that performs well in
any target domain P t from the same CLD family.

Recall that a CLD family consists of all the domains defined
by the causal model in Figure 2 with fixed P ∗(X|Xc, Xn)
and P ∗(Y |Xc).

4.1 CR WITH UNLABELED SS PAIRS

Let us first consider the case where we have a set of unla-
beled SS pairs {(xi, x̃i)}Ni=1. The distinction between la-
beled and unlabeled SS pairs is if the semantic information
is invariant for just one particular class or all classes, not
whether the original examples xi is labeled. Unlabeled SS
pairs contain stronger information than labeled SS pairs: two
examples xi and x̃i contain the same semantic information
for all classes implies that they contain the same semantic
information for every class.

With unlabeled SS pairs, the first two conditions of Theo-
rem 1 can be approximately satisfied by solving the follow-
ing constrained optimization problem:

min
θ

E(x,y)∼P s [− log P̂θ(Ŷ = y|x)]

subject to P̂θ(Ŷ |X = xi) = P̂θ(Ŷ |X = x̃i), i ∈ [N ].



Of course, how well the two conditions are actually satisfied
depends on how representative the unlabeled SS pairs we
have are of all possible SS pairs.

If we turn the equality constraints into a consistency regu-
larization (CR) term, the problem becomes:

min
θ

E(x,y)∼P s [− log P̂θ(Ŷ = y|x)] + λEi[rθ(xi, x̃i)],

where λ is a balancing parameter and the summation over
rθ(xi, x̃i) is a regularization term that relaxes the corre-
sponding equality constraints.

Some notations are needed in order to discuss specific
choices for rθ. Suppose P̂θ consists of a feature extractor fϕ
with parameters ϕ and a linear classification head gw with
parameters w. Hence, θ = (ϕ,w). For an input x, let fu

ϕ (x)
be the component of the feature vector fϕ(x) for a feature
unit u. Let wuy be the weight between a feature unit u and
the output unit for a class y. The logit for class y is

zyθ (x) =
∑
u

fu
ϕ (x)wuy,

where the summation is over all feature units u and the bias
is omitted.

For each unlabeled SS pair (xi, x̃i), the CR term rθ(xi, x̃i)
can be defined in several ways:

rKLθ (xi, x̃i) = DKL

[
P̂θ(Ŷ |X = xi) ∥ P̂θ(Ŷ |X = x̃i)

]
,

rJSθ (xi, x̃i) = DJS

[
P̂θ(Ŷ |X = xi) ∥ P̂θ(Ŷ |X = x̃i)

]
,

rLMθ (xi, x̃i) =
∑

y

[
zyθ (xi)− zyθ (x̃i)

]2
,

rFMθ (xi, x̃i) =
∑

u

[
fu
ϕ (xi)− fu

ϕ (x̃i)
]2
.

The first two terms aim to match the output probability
distributions of xi and x̃i by minimizing either the KL
or JS divergence between them. The third term aims to
match their logit vectors, and the fourth term aims to match
their feature vectors. They are used in previous methods
ReLIC [Mitrovic et al., 2021], AugMix [Hendrycks et al.,
2020], CoRE [Heinze-Deml and Meinshausen, 2021], and
MatchDG [Mahajan et al., 2021] respectively. Note that
while we focus on pairs for simplicity, logit and feature
matching can also be extended to the case of multiple exam-
ples that share the same semantic contents. To achieve this,
we can simply replace the sum of squared differences with
the sum of variances. This is done in CoRE and MatchDG.

4.2 CR WITH LABELED SS PAIRS

Now consider the case where we have a set of labeled SS
pairs {(xi, x̃i; yi)}Ni=1. Here, each pair xi and x̃i share the
same semantic information only for the class yi. It is no
longer justifiable to match all the features, logits or prob-
abilities of all classes. In the following, we propose three
methods for leveraging labeled SS pairs.

First, we can match the probabilities or logits of the target
class yi only, leading to what we call target probability
matching (TPM) and target logit matching (TLM):

rTPMθ (xi, x̃i; yi) =
[
P̂θ(Ŷ = yi|xi)− P̂θ(Ŷ = yi|x̃i)

]2
,

rTLMθ (xi, x̃i; yi) =
[
zyi

θ (xi)− zyi

θ (x̃i)
]2
.

To introduce the third method, note that fu
ϕ (xi)wuyi

is the
contribution to the logit zyi

θ (x) of yi from the feature unit
u. We can match the logit contributions fu

ϕ (xi)wuyi
and

fu
ϕ (x̃i)wuyi

from all feature units u to yi. This gives rise to
logit attribution matching (LAM):

rLAMθ (xi, x̃i; yi) =
∑
u

[
fu
ϕ (xi)wuyi

− fu
ϕ (x̃i)wuyi

]2
.

LAM is of finer grain than TLM. Small rLAMθ implies small
rTLMθ , but not vice versa:

rLAMθ (xi, x̃i; yi) ≥
1

m

[∑
u

fu
ϕ (xi)wuyi

−
∑
u

fu
ϕ (x̃i)wuyi

]2
=

1

m
rTLMθ (xi, x̃i; yi),

where m is the number of feature units. Also, note that

rLAMθ (xi, x̃i; yi) =
∑
u

[
fu
ϕ (xi)− fu

ϕ (x̃i)
]2
w2

uyi
.

Hence, LAM exerts two complementary regularization
forces, one on gw and the other on fϕ:

1). It encourages the classification head gw to put large
weights |wuyi

| on the feature units u where the values
of xi and x̃i are similar, i.e., fu

ϕ (xi) ≈ fu
ϕ (x̃i). In other

words, it makes gw rely on the feature units that reflect
the common information contents of xi and x̃i.

2). It encourages the feature extractor fϕ to make
fu
ϕ (xi) ≈ fu

ϕ (x̃i) for those feature units u that gw
relies on heavily, i.e., with large weights |wuyi |. In
other words, it encourages fϕ to channel the common
information contents of xi and x̃i toward the units that
gw considers important.

As xi and x̃i share the causal factors for class yi but not the
non-causal factors, those forces help a model focus more on
the causal factors.

5 EXPERIMENTS

A direct way to use augmented examples is to add them to
the training set and train a model on the combined data using
ERM. We denote this approach as ERM+DA. Alternatively,
we can pair them up with the original images and apply CR
methods on the resulting SS pairs. The main objective of
our empirical studies is to compare LAM with ERM+DA,



with ERM itself as a baseline. We also compare LAM with
TPM and TLM, as well as previous CR methods.

Another way to utilize the augmented examples is to run
a single-source DG algorithm on the combined data. It is
also possible to treat the augmented examples as a separate
domain and run a multi-source DG algorithm. We further
compare LAM with representative single-source and multi-
source DG methods in those settings.

Additionally, we assess the impact of the quality and quan-
tity of augmented examples. We consider examples from
two DA methods. The first one is RandAugment [Cubuk
et al., 2020]. It creates augmented examples by applying
a random set of transformations such as resizing, rotating,
and color jittering to original images. The second method is
Targeted DA [Gao et al., 2023]. It aims to randomize spuri-
ous factors while preserving robustly predictive factors. The
specific designs of Targeted DA vary across datasets. Tar-
geted DA generally yields more informative SS pairs infused
with more specific domain knowledge. We call examples
produced from Targeted DA target-augmented examples.

5.1 DATASETS

Our experiments involve five DG datasets, three with back-
ground shifts and two with style shifts.

iWildCam2020-WILDS (iWildCam) [Beery et al., 2020,
Koh et al., 2021] consists of camera trap photos of animals
taken at different locations for wildlife classification. The
training domain comprises images from 200 locations, while
the test and validation domains contain images from some
other locations. Targeted DA is performed by Copy-Paste
the animals in a training image to another image (with no
animal) taken at a different location where the same animals
sometimes appear [Gao et al., 2023].

ImageNet-9 [Xiao et al., 2020] includes images of nine
coarse-grain classes from ImageNet [Deng et al., 2009].
Several synthetic variations are created by segmenting the
foreground of each image and place it onto a different back-
ground. In our experiments, the synthetic images with a
black background are used as target-augmented examples.
For the test domain, we use the samples where the fore-
ground of an original image is placed onto the background
of a random image.

NICO [He et al., 2020] includes around 25,000 images
across 19 classes of animals or vehicles in different contexts
such as “at home” or “on the beach”. As there is no pre-
defined train-test split, we randomly select one context per
class for testing and use the remaining contexts for training.
Target-augmented training examples and test domains are
created in a way similar to ImageNet-9.

Camelyon17-WILDS (Camelyon) [Tellez et al., 2018, Koh
et al., 2021] contains histopathology images from multiple

hospitals for binary tumor classification. Images from three
hospitals are used for training, while images from two other
hospitals are used for testing and validation respectively.
There are stylistic variations among images from different
hospitals. One key stylistic difference often observed is the
stain color. Therefore, the stain color jitter is applied to
training images to create target-augmented examples [Gao
et al., 2023].

PACS [Li et al., 2017] contains images of objects and crea-
tures in four different styles: photo, art, cartoon and sketch.
Following common practice [Li et al., 2017, Gulrajani and
Lopez-Paz, 2021], we train a model using three of the do-
mains and test the model on the fourth domain. For Targeted
DA, we apply Stable Diffusion [Rombach et al., 2022] to
images in the photo domain to create target-augmented ex-
amples in the other three domains. The photo domain is
therefore not used as the test domain, while the other three
domains are used as the test domain in turn. See Appendix
C for details.

For all datasets, RandAugment [Cubuk et al., 2020] is per-
formed on all training examples. Targeted DA [Gao et al.,
2023] is also performed on all training examples in iWild-
Cam and Camelyon. However, it is performed on only about
5% of the training data in ImageNet-9 and NICO, and about
10% of the training data for PACS.

All CR methods have a balancing parameter λ, which is
tuned on the validation domain for iWildCam and Camelyon,
and on a test set from the training domain for the other
three datasets. For CR and single-source methods, multiple
training domains are simply combined into one. More details
on how the training data are organized for different types of
methods can be found in Table 5 (Appendix E).

5.2 NETWORK ARCHITECTURE AND WEIGHT
INITIALIZATION

Following Gao et al. [2023], we use a variety of models
for different datasets. Specifically, we use an ImageNet pre-
trained ResNet-50 model [He et al., 2016] for iWildCam,
and a randomly initialized DenseNet-121 model [Huang
et al., 2017] for Camelyon. We use a CLIP-pretrained ViT-
B/16 model [Radford et al., 2021] for ImageNet-9 and
NICO, and a CLIP-pretrained ResNet-50 model for PACS.

To showcase the combined use of LAM with advanced
CLIP model fine-tuning method can yield SOTA-level per-
formance on iWildCam, we also employ CLIP-pretrained
ViT-L/14 and ViT-L/14@336 model for iWildCam.

The use of various model architectures and weight initializa-
tions allows us to assess the relative merits of DG algorithms
on a mixture of datasets and models. Implementation details
about hyperparameters for each dataset and method can also
be found in Appendix E.



Table 1: OOD performances of models trained using ERM, ERM+DA, and LAM. The OOD performance of a model is
assessed on held-out test domain(s) using Macro F1 score on iWildCam and classification accuracy on all the other datasets.
Each model is trained three times, with the standard deviation reported. Bold font indicates the best results.

ImageNet-9 NICO PACS iWildCam Camelyon Average
(CLIP ViT-B/16) (CLIP ViT-B/16) (CLIP ResNet-50) (ImageNet ResNet-50) (DenseNet-121)

ERM 83.3±1.1 95.3±0.1 82.8±0.5 30.2±0.3 65.2±2.6 71.4

RandAugment ERM+DA 85.3±0.2 96.0±0.2 83.3±0.3 33.8±0.4 84.3±2.3 76.6
LAM 85.6±0.2 96.1±0.1 83.8±0.4 36.4±0.2 89.0±1.9 78.2

Targeted DA ERM+DA 86.0±1.0 95.9±0.3 84.5±0.5 36.5±0.4 90.5±0.9 78.7
LAM 88.1±0.2 96.5±0.3 86.0±0.3 41.2±0.2 93.5±1.8 81.1

Figure 4: Grad-CAM saliency maps for the top predicted class by models trained on ImageNet-9 using various methods.
The model learned using LAM focuses on the foreground objects better.

5.3 COMPARISON WITH ERM+DA

Table 1 shows the results for LAM, ERM+DA, and ERM.
We see that simply adding augmented data to the training set
(ERM+DA) increases the average OOD score from 71.4%
to 76.5% with RandAugment [Cubuk et al., 2020], and to
78.7% with Targeted DA [Gao et al., 2023]. Applying LAM
on the resulting SS pairs further increases the scores to
78.2% and 81.1% in the two cases respectively. In the
case of Targeted DA, the average OOD score on those five
benchmarks is improved by 81.1-71.4 = 9.7%, with 78.7-
71.4 = 7.3% due to data augmentation and 81.1-78.7 = 2.4%
due to LAM. The improvements are especially pronounced
on the iWildCam and Camelyon datasets, where Targeted
DA increases the OOD scores drastically. This is consistent
with what was reported in Gao et al. [2023]. LAM further
improves the scores by 4.7% and 3.0% respectively.

While trying to gain some insights, we find that LAM makes
a model focus on much fewer feature units (see Figure 11 in
Appendix F) as compared with ERM+DA. We also use an
XAI method called Grad-CAM [Selvaraju et al., 2017] to
explain the outputs of the model trained on ImageNet-9 by
LAM and they some other methods. Examples are shown in
Figure 4 (and Figure 12 in Appendix F). We see that, in all
those examples, the LAM model focuses on the foreground
objects and gives the correct predictions. Those corroborate

with the analysis we make at the end of Section 4.2. In
contrast, the ERM+DA model is more inclined to focus on
the wrong part of an input image and predict incorrectly.

In addition to comparing LAM over the traditional ERM
which is based on the standard cross-entropy loss, it has been
shown in Goyal et al. [2023] that when fine-tuning CLIP
models, the use of CLIP contrastive loss with utilizing the
CLIP text encoder is more effective. The proposed method is
colloquially known as “finetune like you pretrain” (FLYP).
In Table 3, we show that the use of LAM can also yield
improved OOD performance over FLYP+DA.

5.4 IMPACT OF QUALITY AND QUANTITY OF
AUGMENTED EXAMPLES

Both LAM and ERM+DA achieve better results with Tar-
geted DA than with RandAugment. We believe this is be-
cause Targeted DA generally yields higher quality augmenta-
tions than the latter. To further support the claim, we perform
additional experiments with ImageNet-9 in the Targeted DA
setting. Specifically, we test three different ways to create
augmented examples: 1). use a segmentation method called
GrabCut [Rother et al., 2004], 2). use another less effective
segmentation method called FCN [Long et al., 2015], and
3). simply use bounding boxes that come with ImageNet-9



Table 2: Results for CR methods. Bold font indicates best results and arrows indicate changes relative to ERM+DA.

ImageNet-9 NICO PACS iWildCam Camelyon Average iWildCam-N

RandAugment ERM+DA 85.3±0.2 – 96.0±0.2 – 83.3±0.3 – 33.8±0.4 – 84.3±2.3 – 76.6 – 27.6±0.5 –

KL 85.2±0.3 ↓ 96.0±0.2 – 83.1±0.4 ↓ 34.8±0.2 ↑ 86.7±5.5 ↑ 77.2 ↑ 27.3±0.2 ↓
JS 85.2±0.1 ↓ 95.7±0.5 ↓ 82.7±1.4 ↓ 34.5±0.3 ↑ 83.4±6.7 ↓ 76.3 ↓ 26.6±0.4 ↓
LM 84.9±0.1 ↓ 95.8±0.4 ↓ 82.7±0.2 ↓ 29.6±0.3 ↓ 87.9±1.4 ↑ 76.2 ↓ 26.5±0.4 ↓
FM 85.2±0.1 ↓ 96.2±0.1 ↑ 82.3±1.0 ↓ 31.8±0.3 ↓ 81.7±5.3 ↓ 75.4 ↓ 26.2±0.3 ↓
TPM 85.4±0.1 ↑ 96.2±0.5 ↑ 82.5±0.6 ↓ 34.3±0.2 ↑ 86.9±4.3 ↑ 77.1 ↑ 28.0±0.2 ↑
TLM 85.3±0.1 – 95.1±0.3 ↓ 82.4±0.5 ↓ 34.1±0.4 ↑ 87.2±3.2 ↑ 76.8 ↑ 27.9±0.4 ↑
LAM 85.6±0.2 ↑ 96.1±0.1 ↑ 83.8±0.4 ↑ 36.4±0.2 ↑ 89.0±1.9 ↑ 78.2 ↑ 28.4±0.2 ↑

Targeted DA ERM+DA 86.0±1.0 – 95.9±0.3 – 84.5±0.5 – 36.5±0.4 – 90.5±0.9 – 78.7 – 28.2±0.5 –

KL 86.9±0.2 ↑ 95.4±0.2 ↓ 85.0±1.0 ↑ 40.3±0.3 ↑ 92.8±1.5 ↑ 80.1 ↑ 26.3±0.7 ↓
JS 86.0±0.4 – 95.0±0.3 ↓ 84.3±0.3 ↓ 37.1±0.4 ↑ 94.8±1.2 ↑ 79.4 ↑ 25.5±0.6 ↓
LM 86.8±0.6 ↑ 95.3±0.2 ↓ 83.1±0.8 ↓ 34.3±0.5 ↓ 93.4±0.3 ↑ 78.6 ↓ 23.9±0.5 ↓
FM 87.6±0.1 ↑ 95.5±0.2 ↓ 81.7±0.2 ↓ 36.0±0.3 ↓ 94.3±0.6 ↑ 79.0 ↑ 25.3±0.7 ↓
TPM 86.7±0.1 ↑ 95.8±0.2 ↓ 84.8±0.7 ↑ 38.4±0.2 ↑ 91.7±1.9 ↑ 79.5 ↑ 28.3±0.4 ↑
TLM 86.2±0.2 ↑ 95.9±0.2 – 85.3±1.5 ↑ 38.5±0.3 ↑ 93.9±0.7 ↑ 80.0 ↑ 28.8±0.2 ↑
LAM 88.1±0.2 ↑ 96.5±0.3 ↑ 86.0±0.3 ↑ 41.2±0.2 ↑ 93.5±1.8 ↑ 81.1 ↑ 29.8±0.3 ↑

(Box). The resulting OOD scores are as follows:

Box FCN GrabCut

ERM+DA LAM ERM+DA LAM ERM+DA LAM

85.2 85.9 83.9 86.6 86.0 88.1

We see that, as expected, the results with GrabCut are the
best, followed by those with FCN and Box, in that order.

We also perform additional experiments with ImageNet-9
to investigate how the quantity of augmented examples in-
fluences LAM. Specifically, GrabCut is applied to different
percentages of the training examples and LAM is run on the
resulting SS pairs. To make a comparison, we do the same
thing for the ERM+DA. The resulting OOD scores are as
follows:

5% 10% 20% 50% 100%

ERM+DA 86.0 86.9 86.1 87.4 87.8
LAM 88.1 88.5 88.6 89.7 90.4

It is clear that the increase in the quantity of SS pairs benefits
LAM, and the availability of SS pairs for a small fraction
of training examples can significantly improve OOD per-
formance already. While providing more SS pairs can also
improve the performance of ERM+DA, it is obvious that
the improvement is smaller than that of LAM.

5.5 COMPARISON WITH OTHER CR METHODS

Table 2 shows the results for LAM and other CR methods.
Let us first compare LAM and two other CR methods we

Table 3: Result of finetuning CLIP models with FLYP and
LAM on iWildCam. Targeted DA is used here.

Model Method ID F1 OOD F1

CLIP- FLYP 56.9 43.4
ViT-L/14 FLYP+DA 59.0 44.3

FLYP+DA+LAM 59.0 45.6

CLIP- FLYP 59.9 46.0
ViT-L/14@336 FLYP+DA 58.9 47.1

FLYP+DA+LAM 60.9 48.7

propose in this paper, namely target probability matching
(TPM) and target logit matching (TLM). We see that LAM
achieves higher OOD scores than the other two methods on
average, and it outperforms ERM+DA in all cases while the
other two methods do not. Those show that when making
use of labeled SS pairs, it is more effective to apply consis-
tency regularization to the logit contributions of the target
classes (LAM) rather than the logits themselves (TLM) or
the probabilities of the target classes (TPM).

Next, we compare LAM with previous strong CR methods,
namely probability matching with KL or JS, logit matching
(LM) and feature matching (FM). LAM achieves higher
OOD scores than those methods on average. Moreover, it
achieves the highest score in all cases except for Camelyon
with Targeted DA. Moreover, it outperforms ERM+DA in
all cases, while the other methods do not. Those show that
it is generally beneficial to regard SS pairs created using
both Targeted DA and RandAugment as labeled and apply
LAM on them, rather than considering them unlabeled and
applying any of the previous CR methods on them.



Table 4: Results for LAM and representative single-source and multi-source DG methods. Bold font indicates the best
results and arrows indicate changes relative to ERM+DA.

ImageNet-9 NICO PACS iWildCam Camelyon Average

ERM 83.3±1.1 ↓ 95.3±0.1 ↓ 82.8±0.5 ↓ 30.2±0.3 ↓ 65.2±2.6 ↓ 71.4 ↓
ERM+DA 86.0±1.0 – 95.9±0.3 – 84.5±0.5 – 36.5±0.4 – 90.5±0.9 – 78.7 –

Single-source RSC 86.4±0.2 ↑ 94.0±1.8 ↓ 84.3±0.6 ↓ 32.7±0.9 ↓ 91.6±0.3 ↑ 77.8 ↓
SD 86.7±0.3 ↑ 96.0±0.2 ↑ 85.0±0.4 ↑ 32.7±0.8 ↓ 93.5±0.5 ↑ 78.8 ↑

Multi-source DANN 86.5±0.7 ↑ 95.4±0.7 ↓ 77.9±1.1 ↓ 26.0±2.9 ↓ 90.1±0.9 ↓ 75.2 ↓
GDRO 83.7±0.8 ↓ 91.8±1.2 ↓ 83.5±0.5 ↓ 37.0±1.0 ↑ 92.2±0.9 ↑ 77.6 ↓
IRM 87.1±0.2 ↑ 93.5±0.2 ↓ 83.2±0.4 ↓ 31.7±0.1 ↓ 90.8±2.6 ↑ 77.3 ↓
V-REx 83.6±1.4 ↓ 94.0±0.9 ↓ 84.4±0.2 ↓ 35.6±1.6 ↓ 90.4±4.1 ↓ 77.6 ↓
LAM 88.1±0.2 ↑ 96.5±0.3 ↑ 86.0±0.3 ↑ 41.2±0.2 ↑ 93.5±1.8 ↑ 81.1 ↑

In LAM, a labeled SS pair (xi, x̃i; yi) is used only to regu-
larize the contributions from feature units to the logit of the
ground-truth class yi. It does not impact the other classes.
In the previous CR methods, on the other hand, the pair is
used to regularize the entire feature, logit, or probability
vector for xi. It affects other classes as well as yi. This is
problematic when a training example xi contains multiple
objects of interest. Some objects that appear in the back-
ground of the main object in xi might be removed during
data augmentation. In such a case, the features of those mi-
nor objects would be suppressed. To further demonstrate the
adverse consequences, we created a variant of the iWildCam
dataset [Beery et al., 2020, Koh et al., 2021] by adding a
small segmented image of another animal to the background
of each image. The new dataset is named iWildCam-N (ex-
amples of this dataset are given in Appendix D). On this
dataset, LAM still improves over ERM+DA. However, the
performances of all four previous methods are substantially
worse than that of ERM+DA.

Camelyon is a binary classification problem. There is no
issue of suppressing features of other classes. This is proba-
bly why probability matching with JS is superior to LAM
on Camelyon in the case of Targeted DA.

5.6 COMPARISON WITH OTHER DG METHODS

Table 4 shows the OOD performances of LAM with six
representative single-source and multi-source DG methods
reviewed in Section 2. Here only Targeted DA [Gao et al.,
2023] is considered. On the first four datasets, LAM out-
performs all the six DG methods on average. In particular,
it outperforms them by large margins on iWildCam. While
LAM improves over ERM+DA on all the first four datasets,
the other methods are inferior to ERM+DA in the majority
of the cases. On the binary classification dataset Camelyon,
however, LAM is on par with SD [Pezeshki et al., 2021],
but it still outperforms ERM+DA.

Recall that augmented examples are simply added to the
training set for the single-source methods (RSC [Huang
et al., 2020] and SD), and they are treated as an ad-
ditional training domain for the multi-sources methods
(DANN [Ganin et al., 2016], GDRO [Sagawa et al., 2020],
IRM [Arjovsky et al., 2019] and V-REx [Krueger et al.,
2020]). In contrast, LAM applies consistency regularization
on the resulting SS pairs. The results in Table 4 show that
consistency regularization with LAM is a more effective way
to use augmented examples than representative previous
single-source and multi-source DG methods.

6 CONCLUSION

In this paper, we study the setting where a training domain
is associated with a collection of example pairs that share
the same semantic information. We present a theory to moti-
vate using such semantic sharing (SS) pairs to boost model
robustness under domain shift. We find that applying consis-
tency regularization (CR) on the SS pairs, particularly using
LAM, significantly improves OOD performance compared
to simply adding the augmented examples to the training
set. An interesting future direction is to develop more effi-
cient methods for creating more informative SS pairs, e.g.,
by leveraging advances in generative models. We hope our
work could encourage more efforts in manually creating SS
pairs for domain generalization, similar to the collection of
human preference pairs for LLM alignment.
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A PROOFS

Proof of Theorem 1: Let us start with the ID cross-entropy loss:

ℓs(P̂θ) = E(x,y)∼P s [− log P̂θ(Ŷ = y|x)]
= −E(xc,xn)∼P sEx∼P∗(x|xc,xn)Ey∼P∗(y|xc)[log P̂θ(Ŷ = y|x)].

Because P̂θ is causally invariant, P̂θ(Ŷ = y|x) depends only on xc, but not xn. Denote it as Qθ(Ŷ = y|xc). Then, we get

ℓs(P̂θ) = −Exc∼P sEy∼P∗(y|xc)Exn∼P s(xn|xc)Ex∼P∗(x|xc,xn)[logQθ(Ŷ = y|xc)]

= −Exc∼P sEy∼P∗(y|xc)[logQθ(Ŷ = y|xc)].

As the ID loss ℓs(P̂θ) is minimized, the inner expectation is maximized for any xc such that P s(xc) > 0.

Now, consider the OOD cross-entropy loss ℓt(P̂θ) of the target domain P t. By symmetry, we have:

ℓt(P̂θ) = −Exc∼P tEy∼P∗(y|xc)[logQθ(Ŷ = y|xc)].

We know from above that the inner expectation is maximized for all xc such that P s(xc) > 0. It is also maximized for any
xc such that P t(xc) > 0 because supp[P t(Xc)] ⊆ supp[P s(Xc)]. □

B RELATED THEORETICAL RESULTS

The concept of causally invariant prediction (CIP) that we introduce in Section 3 is closely related to a notion described in
Peters et al. [2016] that bears a very similar name — invariant causal prediction (ICP). There is a subtle difference. causally
invariant prediction refers to the situation where a model makes predictions based on causal factors and, consequently, its
performance remains invariant across domains. On the other hand, invariant causal prediction refers to the situation where a
model’s performance remains invariant across domains and, consequently, its input variables can be considered as causes for
the output variable. CIP is for domain generalization while ICP is for causal discovery. In addition, our work involves latent
variables (Xc and Xn) while Peters et al. [2016] deal with only observed variables.

Our Theorem 1 is closely related to Theorem 1 of Mahajan et al. [2021] and Theorem 3.2 of Arjovsky [2020]. However,
the causal model used by Mahajan et al. [2021] has three more latent variables than the one we use. In fact, our model
can be viewed as their model with the additional latent variables “integrated out”. As such, our theorem targets a more
general setting. In addition, their theorem focuses exclusively on feature matching and hence cannot be used to motivate
logit attribution matching (LAM). Arjovsky’s theorem also focuses on the feature extractor. It requires examples with the
same feature representation to have approximately the same output probability distributions under the generative model. In
this sense, it seeks to obtain features with invariant prediction by the generative model. In contrast, our theorem requires a
prediction model to be invariant to the non-causal factors. While Arjovsky’s theorem is used to motivate a DG algorithm
called invariant risk minimization (IRM), our theorem is used to justify consistency regularization.

In this paper, we use a causal theory of domain generalization to motivate consistency regularization methods. It should be
noted that there are other theories for domain generalization that are based on divergence between domains [Ben-David
et al., 2010, Liu et al., 2020]. Those theories are used to motivate the domain invariant representation approach to domain
generalization. However, they cannot be used to justify consistency regularization methods.

C MORE DETAILS OF SS PAIR CREATION USING TARGETED DA

An SS pair is formed by a training example and an augmented example. The SS pair creation using Targeted DA for each
dataset has been introduced in Section 5.1. We provide more details and examples here.

C.1 IWILDCAM AND IWILDCAM-N

For iWildCam and iWildCam-N, we utilized a Targeted DA technique named Copy-Paste (same-y) from Gao et al. [2023].
This DA method pastes the animal foreground onto a background image sampled from the same habitat where the same



animal species has been observed. There is a category of images labeled “empty” in the iWildCam dataset. These images do
not contain any animals and were used as background images when creating augmented examples. We used the segmentation
for the animal foregrounds provided by Beery et al. [2021] to apply this DA. Augmented examples produced by this DA
approach are provided in Figure 5.

Figure 5: SS pairs created via Copy-Paste (same-y) DA for iWildCam. This DA method involves pasting the animal onto
another image without animals sampled from the location where the same animal species has been observed.

C.2 IMAGENET-9

In our main experiments, the synthetic images with a black background were used as augmented data for ImageNet-9.
Those augmented examples were created based on the GrabCut segmentation. As described in Section 5.4, to assess the
performance of LAM under augmented examples in various qualities, we also considered the augmented examples created
based on the bounding boxes and semantic segmentation. Specifically, we used the bounding boxes provided by the ImageNet
[Deng et al., 2009] and semantic segmentation produced via FCN [Long et al., 2015], a semantic segmentation method.
Augmented examples in various qualities are given in Figure 6.

Figure 6: Augmented examples in various qualities created for ImageNet-9.

C.3 NICO

For creating the augmented examples for NICO, we placed the foreground segmentation onto the background of a random
image. We used GrabCut [Rother et al., 2004] to identify the foreground segmentation for 20 images in each class of NICO,
which constituted about 5% of its training data. On average, the segmentation of an image took us around three seconds.

Since NICO does not have “empty” background images like iWildCam, we had to create synthetic background images. To
do this, we removed the foreground in the image by coloring the image region corresponding to the foreground segmentation
in black. We created the synthetic background images for all images with the foreground segmentation. When creating



the augmented example, the foreground segmentation in the training example is pasted onto a randomly selected synthetic
background image. See Figure 7 for some NICO augmented examples.

Figure 7: SS pairs created for NICO by placing the foreground segmentation onto a randomly selected synthetic background
image.

Figure 8: SS pairs created by stain color jitter for Camelyon dataset. This DA randomizes the average stain level in the
image.

C.4 CAMELYON

In dealing with the Camelyon dataset, we adopted the strategy outlined in Gao et al. [2023] to use the stain color jitter
[Tellez et al., 2018] as the Targeted DA to create the augmented examples. This technique transforms images by jittering
their color in the hematoxylin and eosin staining color space. This DA addresses the style shift associated with the stain
color resulting from diverse staining techniques used across different hospitals. It randomizes the average stain level in each
image while maintaining all other information as predictive features. Some augmented examples are shown in Figure 8.

C.5 PACS

To create SS pairs for PACS, we used StableDiffusion v2 [Rombach et al., 2022] to translate images from the photo domain
of PACS into a different style. Given a training example x of label y, we added a mild level of Gaussian noise to the latent
representation of x, and then removed the noise under the guidance of a text prompt. The prompt we used is “a minimalist
drawing of a class_name, outline only, no texture” where class_name is the name of y. We chose this prompt because
it produces the best visual quality among what we have explored. Finally, we decoded the generated noise-free latent
representation, producing the corresponding augmented example x̃. See Figure 9 for some examples.



Figure 9: SS pairs created via StableDiffusion that generates augmented example from the training examples of the photo
domain in the PACS dataset. The prompt we use is “a minimalist drawing of a class_name, outline only, no texture” where
class_name is the name of the true class label.

D DETAILS OF IWILDCAM-N DATASET

iWildCam-N dataset is an altered version of the iWildCam dataset [Beery et al., 2020, Koh et al., 2021], which includes
extra background noise in addition to the original background shift in the iWildCam. This additional noise was created by
inserting an animal foreground of a different animal species, sampled from a randomly selected image, onto the background
of the image. To ensure the main semantic context of the image is not distorted due to the introduced noise, we limited
the size of the introduced animal to be smaller than the pre-existing animal foreground and took steps to prevent overlap
between the newly incorporated animal and the original animal foreground. We applied this operation on all images in the
iWildCam dataset except for the images in the “empty” category, which do not contain any animals. The “empty” category
was also excluded from the iWildCam-N dataset.

In Figure 10. We provide some examples of the iWildCam-N and their original images in the iWildCam to illustrate the
background noise introduced in iWildCam-N.

iWildCam iWildCam-N iWildCam iWildCam-N

Figure 10: Sample images in iWildCam-N. The background noise is created by adding other small animals to the background
of each image.



E ADDITIONAL IMPLEMENTATION DETAILS

The use of augmented examples in different methods, including in the ERM+DA, CR-based DG methods, and other
multi-source and single-source methods, has been introduced in Section 5. We provide a summary in Table 5.

Table 5: The use of training data in different methods.

Category Methods Training data Remark

Baseline ERM training examples -

ERM+DA &
Single-source

ERM+DA
RSC, SD

training examples
+ aug. examples

As additional training data, augmented examples are
combined with training examples to train the model.

CR-based
LAM, KL, JS,

LM, FM
TLM, TPM

training examples
+ aug. examples

The training examples are paired with
augmented examples to train the model.

Multi-source
DANN, GDRO d1: training examples

d2: aug. examples
Training examples are regarded as one domain;
augmented examples form another domain.IRM, VREx

All experiments were conducted on a single NVIDIA V100 GPU. For ImageNet-9, NICO, and PACS, we used the two-step
training strategy of linear probing and then full finetuning (LP-FT) [Kumar et al., 2022], while for other datasets we did
normal finetuning. The summary of the hyperparameter setting is shown in Table 6.

Table 6: Hyperparameter setting for all the main experiments. SS pair transformation refers to the transformation applied
to training examples and corresponding augmented examples while training. For other DG methods, we use the default
hyperparameters provided by DomainBed [Gulrajani and Lopez-Paz, 2021] as the initial values, followed by a hyperparameter
tuning process. “bs” stands for batch size.

Dataset ImageNet-9 & NICO PACS iWildCam Camelyon
Model CLIP ViT-B/16 CLIP ResNet-50 ResNet-50 DenseNet-121

Pretrained ImageNet pretrained False
Image Size [224, 224] [448, 448] [96, 96]

LAM/
Logit Match (LM)/
Prob. Match (KL)

LP/FT epochs: 10/20 LP/FT epochs: 10/40 epochs: 20 epochs: 10
LP/FT learning rate: 0.003/3e-5 learning rate: 3.49e-5 learning rate: 3.07e-3

LP/FT training bs: 128/64
LP/FT SS pair bs: 256/64

LP/FT training bs: 48/48
LP/FT SS pair bs: 32/32

training bs: 10
SS pair bs: 10

training bs: 128
SS pair bs: 128

λ = 10 λ = 0.5 λ = 0.2
λ = 5 (LAM, KL)
λ = 0.05 (LM)

λ = 10 (LAM)
λ = 1 (LM, KL)

SS pair transform:
RandCrop
RandHorizontalFlip
Normalize

SS pair transform:
RandCrop
RandHorizontalFlip
ColorJitter
RandGrayscale
Normalize

SS pair transform:
Normalize

SS pair transform:
Normalize

N/A p = 0.9 N/A
Feature

Matching (FM)
λ = 0.01 λ = 0.05 λ = 0.1

Prob. Match (JS)
FT training bs: 32
FT SS pair bs: 48

FT training bs: 48
FT SS pair bs: 48

FT training bs:10
FT SS pair bs: 20

FT training bs: 128
FT SS pair bs: 128

Other Methods LP/FT training bs: 128/64 LP/FT training bs: 48/48 training bs: 24 training bs: 128



F VISUALIZATIONS ABOUT THE EFFECTS OF LAM

In Section 4.2, we have argued that LAM exerts two complementary regularization forces, one on the feature extractor and
another on the classification head. In combination, they encourage a model to focus on the causal factors when making
predictions.

To provide some empirical evidence for the claim, we show in Figure 11 the weight distributions of the classification heads
of three models trained on the ImageNet-9 dataset. We see that the LAM model has significantly fewer high weights than
those of the other two models. This indicates that the LAM is indeed more “focused" than the other models.

(a) ERM+DA (b) Prob. Match (JS) (c) LAM

Figure 11: Distributions of the weights of the classification heads of the models learned using ERM+DA, Probability
Matching (JS), and LAM on ImageNet-9 dataset.

What does the LAM model focus on? Visual examples in Figure 4 indicate that it focuses on the foreground objects. This
claim is also supported by the additional examples in Figure 12.

Figure 12: GradCAM saliency maps for the top predicted class by models trained on ImageNet-9 using various methods.
The model learned using LAM focuses on the foreground objects better.
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