Published as a conference paper at ICLR 2024

IMPROVED TECHNIQUES FOR TRAINING
CONSISTENCY MODELS

Yang Song & Prafulla Dhariwal
OpenAl
{songyang, prafulla}@openai.com

ABSTRACT

Consistency models are a nascent family of generative models that can sample
high quality data in one step without the need for adversarial training. Current
consistency models achieve optimal sample quality by distilling from pre-trained
diffusion models and employing learned metrics such as LPIPS. However, distil-
lation limits the quality of consistency models to that of the pre-trained diffusion
model, and LPIPS causes undesirable bias in evaluation. To tackle these challenges,
we present improved techniques for consistency training, where consistency mod-
els learn directly from data without distillation. We delve into the theory behind
consistency training and identify a previously overlooked flaw, which we address
by eliminating Exponential Moving Average from the teacher consistency model.
To replace learned metrics like LPIPS, we adopt Pseudo-Huber losses from robust
statistics. Additionally, we introduce a lognormal noise schedule for the consis-
tency training objective, and propose to double total discretization steps every
set number of training iterations. Combined with better hyperparameter tuning,
these modifications enable consistency models to achieve FID scores of 2.51 and
3.25 on CIFAR-10 and ImageNet 64 x 64 respectively in a single sampling step.
These scores mark a 3.5x and 4x improvement compared to prior consistency
training approaches. Through two-step sampling, we further reduce FID scores to
2.24 and 2.77 on these two datasets, surpassing those obtained via distillation in
both one-step and two-step settings, while narrowing the gap between consistency
models and other state-of-the-art generative models.

1 INTRODUCTION

Consistency models (Song et al., 2023) are an emerging family of generative models that produce
high-quality samples using a single network evaluation. Unlike GANs (Goodfellow et al., 2014),
consistency models are not trained with adversarial optimization and thus sidestep the associated
training difficulty. Compared to score-based diffusion models (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; 2020; Ho et al., 2020; Song et al., 2021), consistency models do not require numerous
sampling steps to generate high-quality samples. They are trained to generate samples in a single step,
but still retain important advantages of diffusion models, such as the flexibility to exchange compute
for sample quality through multistep sampling, and the ability to perform zero-shot data editing.

We can train consistency models using either consistency distillation (CD) or consistency training
(CT). The former requires pre-training a diffusion model and distilling the knowledge therein into a
consistency model. The latter allows us to train consistency models directly from data, establishing
them as an independent family of generative models. Previous work (Song et al., 2023) demonstrates
that CD significantly outperforms CT. However, CD adds computational overhead to the training
process since it requires learning a separate diffusion model. Additionally, distillation limits the
sample quality of the consistency model to that of the diffusion model. To avoid the downsides of
CD and to position consistency models as an independent family of generative models, we aim to
improve CT to either match or exceed the performance of CD.

For optimal sample quality, both CD and CT rely on learned metrics like the Learned Perceptual
Image Patch Similarity (LPIPS) (Zhang et al., 2018) in previous work (Song et al., 2023). However,
depending on LPIPS has two primary downsides. Firstly, there could be potential bias in evaluation



Published as a conference paper at ICLR 2024

since the same ImageNet dataset (Deng et al., 2009) trains both LPIPS and the Inception network in
Fréchet Inception Distance (FID) (Heusel et al., 2017), which is the predominant metric for image
quality. As analyzed in Kynkiinniemi et al. (2023), improvements of FIDs can come from accidental
leakage of ImageNet features from LPIPS, causing inflated FID scores. Secondly, learned metrics
require pre-training auxiliary networks for feature extraction. Training with these metrics requires
backpropagating through extra neural networks, which increases the demand for compute.

To tackle these challenges, we introduce improved techniques for CT that not only surpass CD in
sample quality but also eliminate the dependence on learned metrics like LPIPS. Our techniques are
motivated from both theoretical analysis, and comprehensive experiments on the CIFAR-10 dataset
(Krizhevsky et al., 2014). Specifically, we perform an in-depth study on the empirical impact of
weighting functions, noise embeddings, and dropout in CT. Additionally, we identify an overlooked
flaw in prior theoretical analysis for CT and propose a simple fix by removing the Exponential
Moving Average (EMA) from the teacher network. We adopt Pseudo-Huber losses from robust
statistics to replace LPIPS. Furthermore, we study how sample quality improves as the number of
discretization steps increases, and utilize the insights to propose a simple but effective curriculum for
total discretization steps. Finally, we propose a new schedule for sampling noise levels in the CT
objective based on lognormal distributions.

Taken together, these techniques allow CT to attain FID scores of 2.51 and 3.25 for CIFAR-10 and
ImageNet 64 x 64 in one sampling step, respectively. These scores not only surpass CD but also
represent improvements of 3.5 x and 4 x over previous CT methods. Furthermore, they significantly
outperform the best few-step diffusion distillation techniques for diffusion models even without the
need for distillation. By two-step generation, we achieve improved FID scores of 2.24 and 2.77 on
CIFAR-10 and ImageNet 64 x 64, surpassing the scores from CD in both one-step and two-step
settings. These results rival many top-tier diffusion models and GANs, showcasing the strong promise
of consistency models as a new independent family of generative models.

2 CONSISTENCY MODELS

Central to the formulation of consistency models is the probability flow ordinary differential equation
(ODE) from Song et al. (2021). Let us denote the data distribution by pga. (x). When we add Gaussian
noise with mean zero and standard deviation o to this data, the resulting perturbed distribution is
given by p,(x) = { paaa(y)N(x | y,02I) dy. The probability flow ODE, as presented in Karras
et al. (2022), takes the form of

dx

o = —0oVx IOgPo(X) o€ [Uminaamax]a (H
where the term Vy log p,(x) is known as the score function of p,(x) (Song et al., 2019; Song &
Ermon, 2019; 2020; Song et al., 2021). Here oy, is a small positive value such that p,, (x) ~
Pdata(X), introduced to avoid numerical issues in ODE solving. Meanwhile, oy, is sufficiently
large so that p,(x) ~ N(0,02,,I). Following Karras et al. (2022); Song et al. (2023), we adopt
omin = 0.002, and o = 80 throughout the paper. Crucially, solving the probability flow ODE from
noise level oy to o2 allows us to transform a sample X,, ~ Py, (X) into Xy, ~ Po, (X).

The ODE in Eq. (1) establishes a bijective mapping between a noisy data sample x, ~ p,(x)
and Xy, ~ Do (X) & Pdaa(X). This mapping, denoted as f* : (x,,0) — X,,,,, is termed the
consistency function. By its very definition, the consistency function satisfies the boundary condition
F* (X, 0min) = X. A consistency model, which we denote by fg(x, ), is a neural network trained to
approximate the consistency function f*(x, o). To meet the boundary condition, we follow Song
et al. (2023) to parameterize the consistency model as

fo(x,0) = cuip(0)x + cou(0) Fo (%, 0), 2

where Fg(x, o) is a free-form neural network, while cgip () and cou (o) are differentiable functions
such that cgip(0min) = 1 and cout(Tmin) = 0.

To train the consistency model, we discretize the probability flow ODE using a sequence of noise
levels oyin = 01 < 02 < -+ < ON = Omax, Where we follow Karras et al. (2022); Song et al. (2023)

in setting o; = (Urln/i,’f + (a,%]/ai - Ul/”))P fori € [1, N], and p = 7, where [a, b] denotes the set

min
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of integers {a,a+ 1,--- ,b}. The model is trained by minimizing the following consistency matching
(CM) loss over 0:

EN(ev 0_) =E [)‘(Ui)d(fe(xaiJrl ) 0i+1)7 .fB_ ()v(a_” Uz))] ) (3)
where X,, = X5, — (07 — 0i11)0i+1Vx 1ogpgi+1(x)\x:xq+l. In Eq. (3), d(x,y) is a metric

function comparing vectors & and y, and A(c) > 0 is a weighting function. Typical metric functions

include the squared /5 metric d(x,y) = || — y||§, and the Learned Perceptual Image Patch Similar-
ity (LPIPS) metric introduced in Zhang et al. (2018). The expectation in Eq. (3) is taken over the
following sampling process: ¢ ~ U[1, N — 1] where U[[1, N — 1] represents the uniform distribution
over {1,2,--- ,N — 1}, and X,,,, ~ Ds,,, (x). Note that X, is derived from x,,,, by solving the
probability flow ODE in the reverse direction for a single step. In Eq. (3), fg and fg- are referred to
as the student network and the teacher network, respectively. The teacher’s parameter 6~ is obtained
by applying Exponential Moving Average (EMA) to the student’s parameter 8 during the course of
training as follows:

6~ — stopgrad(u6~ + (1 — pn)0), 4

with 0 < p < 1 representing the EMA decay rate. Here we explicitly employ the stopgrad operator
to highlight that the teacher network remains fixed for each optimization step of the student network.
However, in subsequent discussions, we will omit the stopgrad operator when its presence is clear
and unambiguous. In practice, we also maintain EMA parameters for the student network to achieve
better sample quality at inference time. It is clear that as IV increases, the consistency model optimized
using Eq. (3) approaches the true consistency function. For faster training, Song et al. (2023) propose
a curriculum learning strategy where IV is progressively increased and the EMA decay rate p is
adjusted accordingly. This curriculum for NV and  is denoted by N (k) and u(k), where k € Nis a
non-negative integer indicating the current training step.

Given that X,,, relies on the unknown score function V log p,, ., (x), directly optimizing the consis-
tency matching objective in Eq. (3) is infeasible. To circumvent this challenge, Song et al. (2023)
propose two training algorithms: consistency distillation (CD) and consistency training (CT). For
consistency distillation, we first train a diffusion model s4(x,0) to estimate Vx logp,(x) via
score matching (Hyvérinen, 2005; Vincent, 2011; Song et al., 2019; Song & Ermon, 2019), then
approximate X,, with X,, = X,,,, — (0 — 0i4+1)0i+18¢(Xs,,,,0i+1). On the other hand, con-
sistency training employs a different approximation method. Recall that x,,,, = x + 0412 with
X ~ Daaa(x) and z ~ N(0, I). Using the same x and z, Song et al. (2023) define X,, = X + 0;Z as
an approximation to X, which leads to the consistency training objective below:

L£E:(0,07) =E[AN0y)d(fo(x + 0is12,0441), fo- (x + 052,0;))] . (5)

As analyzed in Song et al. (2023), this objective is asymptotically equivalent to consistency matching
in the limit of N — co. We will revisit this analysis in Section 3.2.

After training a consistency model fg(x, o) through CD or CT, we can directly generate a sample
x by starting with z ~ N(0, 02, I) and computing x = fg(2, omax). Notably, these models also
enable multistep generation. For a sequence of indices 1 = i; < i3 < --- < 1x = N, we start by
2 _ 52
Tk min
fork=K—-1,K—2,---,1, where z;, ~ N (0, ). The resulting sample x; approximates the
distribution pga, (x). In our experiments, setting ' = 3 (two-step generation) often enhances the
quality of one-step generation considerably, though increasing the number of sampling steps further
provides diminishing benefits.

sampling xc ~ N(0, 02, I) and then iteratively compute xj, — fo(Xk11,04,,,)+41/0 Zj

3 IMPROVED TECHNIQUES FOR CONSISTENCY TRAINING

Below we re-examine the design choices of CT in Song et al. (2023) and pinpoint modifications that
improve its performance, which we summarize in Table 1. We focus on CT without learned metric
functions. For our experiments, we employ the Score SDE architecture in Song et al. (2021) and
train the consistency models for 400,000 iterations on the CIFAR-10 dataset (Krizhevsky et al., 2014)
without class labels. While our primary focus remains on CIFAR-10 in this section, we observe
similar improvements on other datasets, including ImageNet 64 x 64 (Deng et al., 2009). We measure
sample quality using Fréchet Inception Distance (FID) (Heusel et al., 2017).
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Table 1: Comparing the design choices for CT in Song et al. (2023) versus our modifications.

Design choice in Song et al. (2023) Our modifications
EMA decay rate for the | u(k) = exp(%) u(k) =0

teacher network

Metric in consistency loss d(x,y) = LPIPS(z,y) d(z,y) =/llz —yl5 +c2—c

Discretization curriculum N(k) = N(k) = min(.eg?lﬁj, s1) + 1,
e+ 17— )+ 2 —1] +1 where K' = | et |
Noise schedule o;, where i ~ U[[1, N(k) — 1] o;, where i ~ p(i), and p(i)oc
erf (IOg(gyEII;;R“°‘") —erf (log(%;‘f"‘e““)
Weighting function Aoi) =1 Aoy) = ﬁ
so = 2,51 = 150, po = 0.9 on CIFAR-10 so = 10,51 = 1280

s0 = 2,81 = 200, 1o = 0.95 on ImageNet 64 x 64 | ¢ = 0.00054+/d, d is data dimensionality

Parameters Prean = —1.1, Pyg = 2.0

k € [0, K], where K is the total training iterations
v+ i (owl — 00))?, where i € [1, N (k)] p = 7, 0min = 0.002, 0max = 80

0 = (Umin

3.1 WEIGHTING FUNCTIONS, NOISE EMBEDDINGS, AND DROPOUT

We start by exploring several hyperparameters that are known to be important for diffusion models,
including the weighting function A(o), the embedding layer for noise levels, and dropout (Ho et al.,
2020; Song et al., 2021; Dhariwal & Nichol, 2021; Karras et al., 2022). We find that proper selection
of these hyperparameters greatly improve CT when using the squared /5 metric.

The default weighting function in Song et al. (2023) is uniform, i.e., A(c) = 1. This assigns equal
weights to consistency losses at all noise levels, which we find to be suboptimal. We propose to
modify the weighting function so that it reduces as noise levels increase. The rationale is that errors
from minimizing consistency losses in smaller noise levels can influence larger ones and therefore
should be weighted more heavily. Specifically, our weighting function (cf., Table 1) is defined as
Aoi) = 0'1'+11_0'i' The default choice for o;, given in Section 2, ensures that A(o;) = 01“1_(”
reduces monotonically as ¢; increases, thus assigning smaller weights to higher noise levels. As
shown in Fig. lc, this refined weighting function notably improves the sample quality in CT with the

squared ¢5 metric.

In Song et al. (2023), Fourier embedding layers (Tancik et al., 2020) and positional embedding
layers (Vaswani et al., 2017) are used to embed noise levels for CIFAR-10 and ImageNet 64 x 64
respectively. It is essential that noise embeddings are sufficiently sensitive to minute differences to
offer training signals, yet too much sensitivity can lead to training instability. As shown in Fig. 1b,
high sensitivity can lead to the divergence of continuous-time CT (Song et al., 2023). This is a known
challenge in Song et al. (2023), which they circumvent by initializing the consistency model with
parameters from a pre-trained diffusion model. In Fig. 1b, we show continuous-time CT on CIFAR-10
converges with random initial parameters, provided we use a less sensitive noise embedding layer
with a reduced Fourier scale parameter, as visualized in Fig. 1a. For discrete-time CT, models are
less affected by the sensitivity of the noise embedding layers, but as shown in Fig. 1c, reducing the
scale parameter in Fourier embedding layers from the default value of 16.0 to a smaller value of 0.02
still leads to slight improvement of FIDs on CIFAR-10. For ImageNet models, we employ the default
positional embedding, as it has similar sensitivity to Fourier embedding with scale 0.02 (see Fig. 1a).

Previous experiments with consistency models in Song et al. (2023) always employ zero dropout,
motivated by the fact that consistency models generate samples in a single step, unlike diffusion
models that do so in multiple steps. Therefore, it is intuitive that consistency models, facing a more
challenging task, would be less prone to overfitting and need less regularization than their diffusion
counterparts. Contrary to our expectations, we discovered that using larger dropout than diffusion
models improves the sample quality of consistency models. Specifically, as shown in Fig. Ic, a
dropout rate of 0.3 for consistency models on CIFAR-10 obtains better FID scores. For ImageNet
64 x 64, we find it beneficial to apply dropout of 0.2 to layers with resolution less than or equal
to 16 x 16, following Hoogeboom et al. (2023). We additionally ensure that the random number
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(a) Sensitivity of noise embeddings. (b) Continuous-time CT. (c) Ablation study.

Figure 1: (a) As the Fourier scale parameter decreases, Fourier noise embeddings become less
sensitive to minute noise differences. This sensitivity is closest to that of positional embeddings when
the Fourier scale is set to 0.02. (b) Continuous-time CT diverges when noise embeddings are overly
sensitive to minor noise differences. (c) An ablation study examines the effects of our selections for
weighting function (UHll_Ui ), noise embedding (Fourier scale = 0.02), and dropout (= 0.3) on CT
using the squared ¢, metric. Here baseline models for both metrics follow configurations in Song
et al. (2023). All models are trained on CIFAR-10 without class labels.

generators for dropout share the same states across the student and teacher networks when optimizing
the CT objective in Eq. (5).

By choosing the appropriate weighting function, noise embedding layers, and dropout, we signifi-
cantly improve the sample quality of consistency models using the squared ¢ metric, closing the
gap with the original CT in Song et al. (2023) that relies on LPIPS (see Fig. 1c). Although our
modifications do not immediately improve the sample quality of CT with LPIPS, combining with
additional techniques in Section 3.2 will yield significant improvements for both metrics.

3.2 REMOVING EMA FOR THE TEACHER NETWORK

When training consistency models, we minimize the discrepancy between models evaluated at
adjacent noise levels. Recall from Section 2 that the model with the lower noise level is termed the
teacher network, and its counterpart the student network. While Song et al. (2023) maintains EMA
parameters for both networks with potentially varying decay rates, we present a theoretical argument
indicating that the EMA decay rate for the teacher network should always be zero for CT, although
it can be nonzero for CD. We revisit the theoretical analysis in Song et al. (2023) to support our
assertion and provide empirical evidence that omitting EMA from the teacher network in CT notably
improves the sample quality of consistency models.

To support the use of CT, Song et al. (2023) present two theoretical arguments linking the CT and
CM objectives as N — oo. The first line of reasoning, which we call Argument (i), draws upon
Theorem 2 from Song et al. (2023) to show that under certain regularity conditions, £}(8,07) =
LN(0,07) + o(Ac). That is, when N — oo, we have Ao — 0 and hence LX}.(8, 0~) converges to
LN (6,07) asymptotically. The second argument, called Argument (ii), is grounded in Theorem 6
from Song et al. (2023) which asserts that when 8~ = 0, both limy (N — 1)Ve LY (6,67) and
limy o0 (N — 1) Vo LY (8, 07) are well-defined and identical. This suggests that after scaling by
N — 1, gradients of the CT and CM objectives match in the limit of N — o0, leading to equivalent
training dynamics. Unlike Argument (i), Argument (ii) is valid only when 86— = 6, which can be
enforced by setting the EMA decay rate u for the teacher network to zero in Eq. (4).

We show this inconsistency in requirements for Argument (i) and (ii) to hold is caused by flawed
theoretical analysis of the former. Specifically, Argument (i) fails if limy_,o, £V (6,07) is not a
valid objective for learning consistency models, which we show can happen when 8~ # 6. To
give a concrete example, consider a data distribution pgy,(z) = 6(2 — £), which leads to p, (z) =
N(z;¢,0%) and a ground truth consistency function f*(z,0) = Zung 4 (1 — 2ui) £ Let us define
the consistency model as fy(z,0) = 2oy + (1 — ”;‘") 0. In addition, let 0; = opip + %(amX -

Omin) for i € [1, N be the noise levels, where we have Ag = Zme—=Smn. Given z ~ N (0, 1) and

To,, = {40412, itis straightforward to show that Z,, = 4, ,, —0i41(0i—0i+1) V108 Do (2o, )
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Figure 2: (a) Removing EMA in the teacher network leads to significant improvement in FIDs. (b, c)
Pseudo-Huber metrics significantly improve the sample quality of squared ¢ metric, and catches up
with LPIPS when using overall larger N (k), where the Pseudo-Huber metric with ¢ = 0.03 is the
optimal. All training runs here employ the improved techniques from Sections 3.1 and 3.2.

simplifies to Z,, = £ + 0;2. As a result, the objectives for CM and CT align perfectly in this toy
example. Building on top of this analysis, the following result proves that limy_,, £V (6,07) here
is not amenable for learning consistency models whenever 6~ # 6.

Proposition 1. Given the notations introduced earlier, and using the uniform weighting function
Ao) = 1 along with the squared {5 metric, we have

. N T N -\ . M 20 p—\2 cp—
Jim £Y(0,07) = lim £2(6,0 )_E[(1 )0~ 0 )] ifo~ £ 0 ©6)
d T min _ Omin )2 - _
L AENE,67) B[z (1 )0 - 7). =0 -
Now Ao do | T 07 <0
—0o0, 0~ >0
Proof. See Appendix A. O

Recall that typically 6~ # 6 when p # 0. In this case, Eq. (6) shows that the CM/CT objective
is independent of £, thus providing no signal of the data distribution and are therefore impossible
to train correct consistency models. This directly refutes Argument (i). In contrast, when we set
1 = 0toensure 6~ = 6, Eq. (7) indicates that the gradient of the CM/CT objective, when scaled by
1/Ac, converges to the gradient of the mean squared error between 6 and £. Optimizing this gradient
consequently yields 6§ = £, accurately learning the ground truth consistency function. This analysis is
consistent with Argument (ii).

As illustrated in Fig. 2a, discarding EMA from the teacher network notably improves sample quality
for CT across both LPIPS and squared {5 metrics. The curves labeled “Improved” correspond to
CT using the improved design outlined in Section 3.1. Setting p(k) = 0 for all training iteration
k effectively counters the sample quality degradation of LPIPS caused by the modifications in
Section 3.1. Combining the strategies from Section 3.1 with a zero EMA for the teacher, we are able
to match the sample quality of the original CT in Song et al. (2023) that necessitates LPIPS, by using
simple squared {5 metrics.

3.3 PSEUDO-HUBER METRIC FUNCTIONS

Using the methods from Sections 3.1 and 3.2, we are able to improve CT with squared ¢ metric,
matching the original CT in Song et al. (2023) that utilizes LPIPS. Yet, as shown in Fig. 2a, LPIPS
still maintains a significant advantage over traditional metric functions when the same improved
techniques are in effect for all. To address this disparity, we adopt the Pseudo-Huber metric family
(Charbonnier et al., 1997), defined as

d(z,y) =/l —yll; + > —c, (8)
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where ¢ > 0 is an adjustable constant. As depicted in Fig. 5a, Pseudo-Huber metrics smoothly bridge
the /1 and squared /5 metrics, with ¢ determining the breadth of the parabolic section. In contrast to
common metrics like ¢y, ¢1, and /., Pseudo-Huber metrics are continuously twice differentiable, and
hence meet the theoretical requirement for CT outlined in Song et al. (2023).

Compared to the squared /5 metric, the Pseudo-Huber metric is more robust to outliers as it imposes
a smaller penalty for large errors than the squared ¢, metric does, yet behaves similarly for smaller
errors. We posit that this added robustness can reduce variance during training. To validate this
hypothesis, we examine the /5 norms of parameter updates obtained from the Adam optimizer during
the course of training for both squared ¢5 and Pseudo-Huber metric functions, and summarize results
in Fig. 5b. Our observations confirm that the Pseudo-Huber metric results in reduced variance relative
to the squared /5 metric, aligning with our hypothesis.

We evaluate the effectiveness of Pseudo-Huber metrics by training several consistency models with
varying c values on CIFAR-10 and comparing their sample quality with models trained using LPIPS
and squared {5 metrics. We incorporate improved techniques from Sections 3.1 and 3.2 for all metrics.
Fig. 2 reveals that Pseudo-Huber metrics yield notably better sample quality than the squared /5
metric. By increasing the overall size of N (k)—adjusting so and s; from the standard values of
2 and 150 in Song et al. (2023) to our new values of 10 and 1280 (more in Section 3.4)—we for
the first time surpass the performance of CT with LPIPS on equal footing using a traditional metric
function that does not rely on learned feature representations. Furthermore, Fig. 2¢ indicates that
¢ = 0.03 is optimal for CIFAR-10 images. We suggest that ¢ should scale linearly with ||z — y||,,

and propose a heuristic of ¢ = 0.00054+/d for images with d dimensions. Empirically, we find this
recommendation to work well on both CIFAR-10 and ImageNet 64 x 64 datasets.

3.4 IMPROVED CURRICULUM FOR TOTAL DISCRETIZATION STEPS

As mentioned in Section 3.2, CT’s theoretical foundation holds asymptotically as N — co. In
practice, we have to select a finite N for training consistency models, potentially introducing bias
into the learning process. To understand the influence of N on sample quality, we train a consistency
model with improved techniques from Sections 3.1 to 3.3. Unlike Song et al. (2023), we use an
exponentially increasing curriculum for the total discretization steps IV, doubling N after a set
number of training iterations. Specifically, the curriculum is described by
logs|s1/s0] +1

and its shape is labelled “Exp” in Fig. 3b. Here s( and s; control the minimum and maximum number
of discretization steps, and K is the total number of training iterations.

N(k) = min(so2 %) 51) +1, K= |

As revealed in Fig. 3a, the sample quality of consistency models improves predictably as /N increases.
Importantly, FID scores relative to N adhere to a precise power law until reaching saturation, after
which further increases in IV yield diminishing benefits. As noted by Song et al. (2023), while larger
N can reduce bias in CT, they might increase variance. On the contrary, smaller N reduces variance
at the cost of higher bias. Based on Fig. 3a, we cap N at 1281 in N (k), which we empirically
find to strike a good balance between bias and variance. In our experiments, we set sp and s; in
discretization curriculums from their default values of 2 and 150 in Song et al. (2023) to 10 and 1280
respectively.

Aside from the exponential curriculum above, we also explore various shapes for N (k) with the
same sop = 10 and s; = 1280, including a constant function, the square root function from Song et al.
(2023), a linear function, a square function, and a cosine function. The shapes of various curriculums
are illustrated in Fig. 3b. As Fig. 3c demonstrates, the exponential curriculum yields the best sample
quality for consistency models. Consequently, we adopt the exponential curriculum in Eq. (9) as our
standard for setting N (k) going forward.

3.5 IMPROVED NOISE SCHEDULES

Song et al. (2023) propose to sample a random ¢ from U[[1, N — 1] and select o; and 0.1 to compute

the CT objective. Given that o; = (a}n/ig + =L (aé,/aﬁ - Jrln/ig ))?, this corresponds to sampling from

=1 - e i,
ﬁ as N — oo. As shown in Fig. 4a, this distribution exhibits a
p(omx =

max min

the distribution p(log o) = o
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Figure 3: (a) FID scores improve predictably as the number of discretization steps [N grows. (b)
The shapes of various curriculums for total discretization steps N (k). (c) The FID curves of various
curriculums for discretization. All models are trained with improved techniques from Sections 3.1
to 3.3 with the only difference in discretization curriculums.

higher probability density for larger values of log o. This is at odds with the intuition that consistency
losses at lower noise levels influence subsequent ones and cause error accumulation, so losses at
lower noise levels should be given greater emphasis. Inspired by Karras et al. (2022), we address this
by adopting a lognormal distribution to sample noise levels, setting a mean of -1.1 and a standard
deviation of 2.0. As illustrated in Fig. 4a, this lognormal distribution assigns significantly less weight
to high noise levels. Moreover, it also moderates the emphasis on smaller noise levels. This is helpful
because learning is easier at smaller noise levels due to the inductive bias in our parameterization of
the consistency model to meet the boundary condition.

For practical implementation, we sample noise levels in the set {o1, 092, ,0nx} according to a
discretized lognormal distribution defined as
1 A - Pmean 1 i) T Pmean
p(o;)ocerf ( 0g(0i+1) > — erf <0g(0))’ (10)
\/§P std \/§P std

where Ppesn = —1.1 and Py = 2.0. As depicted in Fig. 4b, this lognormal noise schedule
significantly improves the sample quality of consistency models.

4 PUTTING IT TOGETHER

Combining all the improved techniques from Sections 3.1 to 3.5, we employ CT to train several
consistency models on CIFAR-10 and ImageNet 64 x 64 and benchmark their performance with
competing methods in the literature. We evaluate sample quality using FID (Heusel et al., 2017),
Inception score (Salimans et al., 2016), and Precision/Recall (Kynkéédnniemi et al., 2019). For best
performance, we use a larger batch size and an increased EMA decay rate for the student network
in CT across all models. The model architectures are based on Score SDE (Song et al., 2021) for
CIFAR-10 and ADM (Dhariwal & Nichol, 2021) for ImageNet 64 x 64. We also explore deeper
variants of these architectures by doubling the model depth. We call our method iCT which stands
for “improved consistency training”, and the deeper variants iCT-deep. We summarize our results in
Tables 2 and 3 and provide uncurated samples from both iCT and iCT-deep in Figs. 6 to 9. More
experimental details and results are provided in Appendix B.

It is important to note that we exclude methods based on FastGAN (Liu et al., 2020; Sauer et al.,
2021) or StyleGAN-XL (Sauer et al., 2022) from our comparison, because both utilize ImageNet
pre-trained feature extractors in their discriminators. As noted by Kynkéddnniemi et al. (2023), this
can skew FIDs and lead to inflated sample quality. Methods based on LPIPS suffer from similar
issues, as LPIPS is also pre-trained on ImageNet. We include these methods in Tables 2 and 3 for
completeness, but we do not consider them as direct competitors to iCT or iCT-deep methods.

Several key observations emerge from Tables 2 and 3. First, iCT methods surpass previous diffusion
distillation approaches in both one-step and two-step generation on CIFAR-10 and ImageNet 64 x 64,
all while circumventing the need for training diffusion models. Secondly, iCT models demonstrate
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Table 2: Comparing the quality of unconditional Table 3: Comparing the quality of class-

samples on CIFAR-10. conditional samples on ImageNet 64 x 64.
METHOD NFE (]) FID (|) IS (1) METHOD NEE (}) FID ({) Prec. (1) Rec. (1)
Fast samplers & distillation for diffusion models Fast plers & distillation for diffusion models
DDIM (Song et al., 2020) 10 1336 DDIM (Song et al., 2020) 50 137 065  0.56
DPM-solver-fast (Lu et al., 2022) 10 4.70 10 183 0.60 0.49
3-DEIS (Zhang & Chen, 2022) 10 417 DPM solver (Lu et al., 2022) 10 793
UniPC (Zhao et al., 2023) 10 3.87 20 342
Knowledge Distillation (Luhman & Luhman, 2021) 1 9.36 DEIS (Zhang & Chen, 2022) 10 6.65
DFNO (LPIPS) (Zheng et al., 2022) 1 3.78 20 310
2-Rectified Flow (+distill) (Liu et al., 2022) 1 485 901 pENO (LPIPS) (Zheng etal, 2022) 1 783 061
TRACT (Berthelot et al., 2023) 1 3.78 TRACT (Berthelot et al., 2023) I 743
2 33 2 497
Diff-Instruct (Luo et al., 2023) 1 453 9.89
PD* (Salimans & Ho, 2022) | 834 geo DOOT(Guetal,2023) o163 068 036
5 558 905 lef-Insl@cl (Luo et al., 2023) 1 5.57
CD (LPIPS) (Song et al,, 2023) ) 355 o4g PD* (Salimans & Ho, 2022) 1 1539 059  0.62
) 293 975 2 895 0.63  0.65
Direct Generation 4 6.77 0.66 0.65
Score SDE (Song et al,, 2021) 2000 238 083 'P (LPIPS)(Songetal.,2023) I 78 066 063
Score SDE (deep) (Song et al., 2021) 2000 220 9.89 2 .74 067 0.65
DDPM (Ho et al., 2020) 1000 3.7 9.46 4 4% 068 065
LSGM (Vahdat et al., 2021) 147 2.10 CD (LPIPS) (Song et al., 2023) 1 6.20 0.68 0.63
PFGM (Xu et al., 2022) 110 235 9.68 2 470 069 064
EDM* (Karras et al., 2022) 35 204 984 3 432 070  0.64
EDM-G++ (Kim et al., 2023) 35 1.77 Direct Generation
IGEBM (Du & Mordatch, 2019) 60 40.6 6.02 RIN (Jabri et al., 2023) 1000 1.23
NVAE (Vahdat & Kautz, 2020) 1 235 7.18 DDPM (Ho et al., 2020) 250 110 0.67  0.58
Glow (Kingma & Dhariwal, 2018) 1 48.9 3.92 iDDPM (Nichol & Dhariwal, 2021) 250 292 0.74 0.62
Residual Flow (Chen et al., 2019) 1 46.4 ADM (Dhariwal & Nichol, 2021) 250  2.07  0.74  0.63
BigGAN (Brock et al., 2019) 1 147 922 EDM (Karras et al., 2022) 511 1.36
StyleGAN2 (Karras et al., 2020b) 1 832 921 EDM* (Heun) (Karrasetal,,2022) 79 244 071  0.67
StyleGAN2-ADA (Karras et al., 2020a) 1 292 9.83 BigGAN-deep (Brock et al., 2019) 1 4.06 0.79 0.48
CT (LPIPS) (Song et al., 2023) 1 870 8.49 CT (LPIPS) (Song et al., 2023) 1 13.0 071 047
2 583 885 2 1.1 069 056
iCT (ours) L 283 954 5CT (ours) 1 402 070 063
) 2 246 980 2320 073 063
ICT-deep (ours) T 4o iCT-deep (ours) 1325 072 063

224989 2 277 074 062
Most results for existing methods are taken from a previous paper, except for those marked with *, which are from our own re-implementation.

sample quality comparable to many leading generative models, including diffusion models and GANS.
For instance, with one-step generation, iCT-deep obtains FIDs of 2.51 and 3.25 for CIFAR-10 and
ImageNet respectively, whereas DDPMs (Ho et al., 2020) necessitate thousands of sampling steps
to reach FIDs of 3.17 and 11.0 (result taken from Gu et al. (2023)) on both datasets. The one-step
FID for iCT already exceeds that of StyleGAN-ADA (Karras et al., 2020b) on CIFAR-10, and that of
BigGAN-deep (Brock et al., 2019) on ImageNet 64 x 64, let alone iCT-deep models. For two-step
generation, iCT-deep records an FID of 2.24, matching Score SDE in Song et al. (2021), a diffusion
model with an identical architecture but demands 2000 sampling steps for an FID of 2.20. Lastly, iCT
methods show improved recall than CT (LPIPS) in Song et al. (2023) and BigGAN-deep, indicating
better diversity and superior mode coverage.

5 CONCLUSION

Our improved techniques for CT have successfully addressed its previous limitations, surpassing
the performance of CD in generating high-quality samples without relying on LPIPS. We examined
the impact of weighting functions, noise embeddings, and dropout. By removing EMA for teacher
networks, adopting Pseudo-Huber losses in lieu of LPIPS, combined with a new curriculum for
discretization and noise sampling schedule, we have achieved unprecedented FID scores for consis-
tency models on both CIFAR-10 and ImageNet 64 x 64 datasets. Remarkably, these results outpace
previous CT methods by a considerable margin, surpass previous few-step diffusion distillation
techniques, and challenge the sample quality of leading diffusion models and GANS.
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A PROOFS

Proposition 1. Given the notations introduced in Section 3.2, and using the uniform weighting
function \(o) = 1 along with the squared {3 metric, we have

Jim £8(0,07) = Jim £2(0,07) = [(1—%)2(e—e—>2] ifo- =0 (1)

g
i O min _ ”mm —
Lo AeNE,07) el (1= %) 0 -] o= )
Now Ao do ) T 0~ <90
—0o0, 0~ >0

Proof. Since A\(o) = 1 and d(z,y) = (z — y)?, we can write down the CM and CT objectives
as [’N(G’ 9_) = E[(f9($g¢+170'i+1) — fo- (jawai»z] and ‘C]C\{F(e’ 9_) = E[(fQ(xUHNUi-Fl) -
fo- (Zo,,0:))?] respectively. Since pgua(r) = 6(z — &), we have p,(z) = N(z | & 02), and
therefore V log p, (z) = T, and 2, ., = & + 04412, Wwe have

i+1

v

Loy = Loy — (Ui - O—i+1)0i+1V10gp(xai+170i+1)
=To, ., + (0 — 0i+1)0i+1%%_£
Oit1
=To,,, + (0s —0i41)2
= f + 0;4+1% + (Ui - 0'7;+1)Z
=&+ 042

= Zg,.

As a result, the CM and CT objectives are exactly the same, that is, £V (0,07) = £.(0,67).
Recall that the consistency model fy(z, o) is defined as fy(z,0) = Zuing + (1 — “uin) §, so we have
Jo(2g,0) = Ominz + 2228 + (1 — %) 0. Now, let us focus on the CM objective

LY(9,67)

E[(f@(xai+17ai+l) - fG_ (i'amai))Q]
[(fQ x01+1701+1) fé‘* (jaua'i))Q]
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where Ag = Zae—%nis_because 0; = Omin + % (Omax — Omin). By taking the limit N — o0, we

have Ao — 0, and therefore

lim ,cN(a,a )
N—©
2
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Suppose 6~ # 6, we have
lim £N(0,67)

N—

mmA min A min 2
— lim E[( a U§+( 0(1— "))9-(1-”)9—) ]+0(AU)
Ac—0 01 g; g; oF)

= Jim E[(1-722)%(0 —07)?] + o(20)

[0 %],

i

which proves our first statement in the proposition.

Now, let’s consider V¢ £V (6, 07). It has the following form

VoLN(0,67) = 2E[< min ¢ 4 (1 — Znin ) g Tuing (1 - C’m) a) (1 — Jmin ) ]
Oi+1 Oi+1 g; gj Ji+1

As N — o0 and Ao — 0, we have

lim VoLN(6,67)
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Now it becomes obvious from Eq. (13) that when 6~ = 6, we have
LG N _ Timin _ Omin
i, W 0.07) = i 22 S0 -] (1%
Omin Omin
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Moreover, we can deduce from Eq. (13) that
. 1 N _ +00, 0>0"
i Iavf’ﬁ (6,67) = { —o, <6
which concludes the proof. O

B ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

Model architecture Unless otherwise noted, we use the NCSN++ architecture (Song et al., 2021)
on CIFAR-10, and the ADM architecture (Dhariwal & Nichol, 2021) on ImageNet 64 x 64. For
iCT-deep models in Tables 2 and 3, we double the depth of base architectures by increasing the
number of residual blocks per resolution from 4 and 3 to 8 and 6 for CIFAR-10 and ImageNet 64 x 64
respectively. We use a dropout rate of 0.3 for all consistency models on CIFAR-10. For ImageNet
64 x 64, we use a dropout rate of 0.2, but only apply them to convolutional layers whose the feature
map resolution is smaller or equal to 16 x 16, following the configuration in Hoogeboom et al. (2023).
We also found that AdaGN introduced in Dhariwal & Nichol (2021) hurts consistency training and
opt to remove it for our ImageNet 64 x 64 experiments. All models on CIFAR-10 are unconditional,
and all models on ImageNet 64 x 64 are conditioned on class labels.
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Figure 4: The PDF of log o indicates that the default noise schedule in Song et al. (2023) assigns
more weight to larger values of log o, corrected by our lognormal schedule. We compare the FID
scores of CT using both the lognormal noise schedule and the original one, where both models
incorporate the improved techniques in Sections 3.1 to 3.4.
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Figure 5: (a) The shapes of various metric functions. (b) The ¢5 norms of parameter updates in Adam
optimizer. Curves are rescaled to have the same mean. The Pseudo-Huber metric has lower variance
compared to the squared ¢ metric.

Training We train all models with the RAdam optimizer (Liu et al., 2019) using learning rate
0.0001. All CIFAR-10 models are trained for 400,000 iterations, whereas ImageNet 64 x 64 models
are trained for 800,000 iterations. For CIFAR-10 models in Section 3, we use batch size 512 and
EMA decay rate 0.9999 for the student network. For iCT and iCT-deep models in Table 2, we use
batch size 1024 and EMA decay rate of 0.99993 for CIFAR-10 models, and batch size 4096 and
EMA decay rate 0.99997 for ImageNet 64 x 64 models. All models are trained on a cluster of Nvidia
A100 GPUs.

Pseudo-Huber losses and variance reduction In Fig. 5, we provide additional analysis for the
Pseudo-Huber metric proposed in Section 3.3. We show the shapes of squared /s metric, as well
as Pseudo-Huber losses with various values of ¢ in Fig. 5a, illustrating that Pseudo-Huber losses
smoothly interpolates between the ¢; and squared {5 metrics. In Fig. 5b, we plot the /5 norms
of parameter updates retrieved from the Adam optimizer for models trained with squared /5 and
Pseudo-Huber metrics. We observe that the Pseudo-Huber metric has lower variance compared to the
squared /5 metric, which is consistent with our hypothesis in Section 3.3.

Samples We provide additional uncurated samples from iCT and iCT-deep models on both CIFAR-
10 and ImageNet 64 x 64. See Figs. 6 to 9. For two-step sampling, the intermediate noise level o, is
0.821 for CIFAR-10 and 1.526 for ImageNet 64 x 64 when using iCT. When employing iCT-deep,
04, 15 0.661 for CIFAR-10 and 0.973 for ImageNet 64 x 64.
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(a) One-step samples from the iCT model on CIFAR-10 (FID = 2.83).
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(b) Two-step samples from the iCT model on CIFAR-10 (FID = 2.46).

Figure 6: Uncurated samples from iCT models on CIFAR-10. All corresponding samples use the
same initial noise.
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(a) One-step samples from the iCT-deep model on CIFAR-10 (FID = 2.51).
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(b) Two-step samples from the iCT-deep model on CIFAR-10 (FID = 2.24).

Figure 7: Uncurated samples from iCT-deep models on CIFAR-10. All corresponding samples use
the same initial noise.
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(b) Two-step samples from the iCT model on ImageNet 64 x 64 (FID = 3.20).

Figure 8: Uncurated samples from iCT models on ImageNet 64 x 64. All corresponding samples use
the same initial noise.
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(b) Two-step samples from the iCT-deep model on ImageNet 64 x 64 (FID = 2.77).

Figure 9: Uncurated samples from iCT-deep models on ImageNet 64 x 64. All corresponding samples
use the same initial noise.
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