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ABSTRACT

The success of Transformer models has pushed the deep learning
model scale to billions of parameters, but the memory limitation of
a single GPU has led to an urgent need for training on multi-GPU
clusters. However, the best practice for choosing the optimal parallel
strategy is still lacking, as it requires domain expertise in both deep
learning and parallel computing. The Colossal-AlI system addressed
the above challenge by introducing a unified interface to scale your
sequential code of model training to distributed environments. It
supports parallel training methods such as data, pipeline, tensor,
and sequence parallelism and is integrated with heterogeneous
training and zero redundancy optimizer. Compared to the baseline
system, Colossal-Al can achieve up to 2.76 times training speedup
on large-scale models.
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1 INTRODUCTION

Deep learning has been successful in many applications and brought
breakthroughs in difficult problems. With large amounts of data,
neural networks like BERT [8] and Vision Transformer [9] are capa-
ble of learning high-dimensional features and making predictions
on a level even humans cannot match. As powerful hardware be-
comes available, neural networks have more diverse architectures
and a larger number of parameters. The Al community has seen a
trend of deep learning models becoming larger, with an array of
large-scale models ranging from BERT-Large, GPT-2 [28] (1.5 billion
parameters), GPT-3 [5] (175 billion parameters), to GLM [10] (1.75
trillion parameters). These large-scale models require more data
and computing resources but also have better generality and per-
formance. As more robust computing hardware and larger datasets
become available, the trend is expected to continue and traditional
training methods will become less effective, making distributed
training necessary for large-scale model training.

The limited fast memory of commonly used accelerator hard-
ware, such as GPU, is a bottleneck of scaling the model to billions of
parameters. The memory consumption in deep learning comes from
model parameters, layer activations, gradients, and optimizer states.
We refer to model parameters, gradients, and optimizer states as
model data and layer activations as non-model data. When training
with adaptive optimizers [11, 18], the total memory consumption
of model data can be several times larger than that consumed by
parameters alone, making a single GPU no longer sufficient for
large-scale model training. 10 billion parameters in FP16 format can
already consume 20 GB of model memory, while a typical GPU only
has 16 or 32 GB of memory. Without any optimization, training a
model of 10 billion parameters with one data sample can cost more
than 80 GB of memory, which is far more than that of a typical
GPU.
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Data parallelism [31] has scaled models such as ResNet [14] to
multi-GPU training and other methods such as activation check-
pointing [7] were proposed to reduce the non-model data by trading
computation for memory. However, these methods failed to cope
with billion-parameter model data. Parallelization techniques such
as pipeline parallelism [15, 24] and tensor parallelism [32] were
explored to shard the model data, making it possible to train mod-
els at a larger scale. The current state-of-the-art systems which
provide a solution to the scaling challenge include GShard [19],
FairScale [2], Megatron-LM [26] and DeepSpeed [29]. Among these
systems, Megatron-Lm and DeepSpeed are the most popular in the
open-source community and deliver the best performance. Thus,
they are chosen as the baseline of our experiments. Megatron-LM
trains Transformer-based models by utilizing optimized pipeline
and tensor parallelism. Meanwhile, DeepSpeed proposed an effi-
cient method to partition the model-related data to fully eliminate
memory redundancy in data parallel training. These two efficient
methods paved the way to scale model training to hundreds of
devices and billions of parameters.

As most deep learning engineers and researchers are used to
writing non-distributed code, it is reasonably difficult for them
to adapt to parallel and distributed programming. The existing
systems either introduce extra complexity in parallelizing the model
training or offer insufficient parallelization techniques. We have
thus developed Colossal-Al, which is an open-source system to
democratize complicated distributed training in the AI community
by unifying an array of training acceleration techniques in one deep
learning system. In this system, we also included novel parallelism
methods such as multi-dimension tensor parallelism and sequence
parallelism. Colossal-Al aims to make distributed training easy by
providing user-friendly APIs while allowing users to maintain their
coding habit of writing single-node programs. In a nutshell, we
bring the following major contributions to large-scale distributed
training in this work:

o Colossal-Al is a unified deep learning system that provides
the fullest set of acceleration techniques for the Al commu-
nity. With its modular design as shown in Figure 1, Colossal-
Al allows for free combination of these techniques to achieve
the best training speedup. The details of the system archi-
tecture will be discussed in the Implementation section.
Optimized parallelism and heterogeneous training methods
are provided in Colossal-Al These methods achieve better
system performance than the baseline systems. They are
provided for the user via friendly APIs with minimum code
changes.

o In-depth analysis was conducted to investigate the suitable

parallelism strategies under different hardware conditions.

2 BACKGROUND

Thanks to the advent of the Transformer architecture, deep learning
models have gained unprecedented performance improvement in
domains such as Computer Vision and Natural Language Process-
ing. The typical architecture of a Transformer layer consists of a
Multi-head Attention block and a Feed Forward block as shown in
Figure 2. This architecture can scale to billions of parameters and
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Figure 1: Architecture of Colossal-Al

larger models can deliver more impressive performance improve-
ment. For example, GPT-3 [5] outperforms the smaller models by
18% absolute increase in prediction accuracy on the LAMBADA
language task [27].
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Figure 2: Architecture of The Transformer Layer

To cope with the increasing model size, Al engineers have ex-
plored distributed training in pursuit of lower time costs. Various
techniques were proposed to accelerate distributed training and
they will be discussed below.

2.1 Data Parallelism

Data parallelism is the most common parallelism technique due to
its simplicity. In data parallel training, the model is replicated across
the devices, and the dataset is split into several shards. Each dataset
shard is fed to the model on one device as shown in Figure 3a.
Collective communication is required to synchronize the parameter
gradients after backward propagation [22]. Data parallelism makes
it easy to train a model on multiple devices and scales sub-linearly
with the number of devices.

One problem of data parallelism is that each device holds a copy
of the model parameters, optimizer states, and gradients, leading
to memory redundancy. When using stateful optimizers such as
Adam [17], the optimizer states (i.e. momentum and variance) can
occupy three times larger memory space compared to that occupied
by the model parameters [12, 17]. To eliminate such redundancy,
Zero Redundancy Optimizer was proposed in DeepSpeed [29] to
partition these redundant model data over different devices during
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Figure 3: Existing parallelism for distributed training

data parallel training. As each device only holds a partition of
gradients, optimizer states, and parameters, it will only update the
partitioned parameters instead of the full model parameters on one
device.

2.2 Model Parallelism

To go beyond data parallel training, more techniques were explored
to shard the model parameters over a larger number of devices. As a
result, model parallelism was proposed to tackle this problem. There
are generally two types of model parallelism: tensor parallelism
and pipeline parallelism.

1) Tensor Parallelism

Tensor parallelism shards the tensor over an array of devices and
requires a distributed matrix-matrix multiplication algorithm for
arithmetic computation as shown in Figure 3b. Megatron-LM [32]
proposed 1D tensor parallelism which splits the linear layer in the
row or column dimensions for the Transformer architecture [35].
More advanced tensor sharding mechanisms such as 2D [39], 2.5D [36],
and 3D [4] were proposed to shard tensors in more dimensions.
Collective communication is required among devices to ensure
arithmetic correctness.

In Meagtron-LM, the tensors are sharded in one dimension.
Taking the Feed Forward module of the Transformer layer as an
example, we can view the module as a matrix multiplication of
Y = WoaW; X as shown in Figure 4, where X is the input, W; and
Wy are the model parameters. Wi and W» can be sharded vertically
and horizontally respectively and produce a partial result of Y on
each device. An all-reduce operation can be applied to the partial
result to obtain the correct final result of the matrix multiplication.
In this way, each device will only hold 1/N of the parameters when
training on N devices. This allows the model size to scale beyond
the memory capacity of a single device.

All-Reduce

GPUO X —

GPU1 X

Figure 4: Megatron-LM MLP Module
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One of the major problems of the 1D method is that it assumes
the interconnect of devices has the same bandwidth. This makes it
friendly only on machines with fully connected NVLinks among
the GPUs on a single node as shown in Figure 9a. However, such
high-end hardware is expensive and scarce. Many machines, even
some in the supercomputing centers, only have partially connected
GPUs as shown in Figure 9b. With this kind of GPU topology, the
communication bandwidth between distant devices via the PCle
bus is much lower than that of directly connected GPUs. Therefore,
the low communication bandwidth can hinder the efficiency of
all-reduce operations in 1D tensor parallelism.

In addition, the 1D tensor parallelism has redundant memory
usage in layer inputs and outputs. Taking the Feed Forward layer
in the Transformer architecture as an example, the input X and
output Y of the MLP layer are duplicated across different devices as
shown in Figure 4. Such memory redundancy limits the maximum
model size which can be trained on limited hardware resources, and
is not helpful with the democratization of large-scale distributed
training.

Besides 1D tensor parallelism, more advanced tensor parallelism
is introduced for large-scale model training, namely 2D, 2.5D, and
3D tensor parallelism [4, 36, 39]. These methods split input, weight,
and output tensors and thus have advantages in memory and com-
munication efficiency, better coping with different hardware speci-
fications. This provides the user with an option of using the most
suitable tensor parallelism technique for their machines.

2D tensor parallelism [39] relies on the SUMMA and Cannon ma-
trix multiplication algorithm [3, 6, 34] and splits a tensor along two
different dimensions. Given N devices arranged in a square network
topology, a tensor of shape [P, Q] will be partitioned into a chunk
tensor of shape [P/VN, Q/\/N]. 2.5D Tesnor Paralleism [36] was
inspired by 2.5D matrix multiplication algorithm [33] and proposed
to further parallelize 2D tensor parallelism. It adds the optional
depth dimension of the matrix for parallelization. When depth = 1,
it is close to 2D tensor parallelism. When depth > 1, it partitions
the matrix 3 times and adds one more degree of parallelization.
Given N devices, the tensor is split in a way such as N = 2 « D
where S is the size of one side of the square and D is the depth of
the cuboid. 3D tensor parallelism [4] was proposed based on the
3D matrix multiplication algorithm [1]. 3D tensor parallelism splits
a tensor in a cubic manner. As not every tensor has 3 dimensions,
we choose to partition the first and last dimension only where the
first dimension will be partitioned twice. For example, a tensor
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of shape [P, Q] will be partitioned into a chunk tensor of shape
[P/N’.Q/N].

As the advanced tensor parallelism methods require different
network topologies, the user needs to choose the method based on
the number of GPUs. 1D method can work with any number of
GPUs while 2D, 2.5D and 3D methods require the n?, axn2, and n3
GPUs respectively, where a and n are positive integers. The user
can fall back to 1D tensor parallelism when the number of GPUs
does not fulfill the requirement. These advanced tensor parallelism
methods provide lower communication volume when scaling to
a larger number of devices [1, 3, 6, 33] and this will be further
discussed in Section 3.1.

2) Pipeline Parallelism

Methods such as PipeDream [25], GPipe [16], and Chimera [20]
were proposed to split the model into several chunks of consecutive
layers and each chunk is allocated to a device as shown in Figure 3c.
Intermediate activations and gradients are passed between pipeline
stages to complete the forward and backward pass. As a result, this
method reduces cross-node communication. Pipeline parallelism
allows multiple devices to compute simultaneously, leading to a
higher throughput. One drawback of pipeline parallel training is
that there will be some bubble time, where some devices are idle
when others are engaged in computation, leading to the waste of
computational resources [25].

2.3 Sequence Parallelism

Tensor parallelism mainly tackles the memory bottleneck brought
by model data. However, the non-model data can be the bottleneck
in applications such as AlphaFold and document-level text under-
standing. This is because these applications rely on long-sequence
data. As the self-attention module in the Transformer layer is of
quadratic complexity with respect to the sequence length, long-
sequence data will increase the memory usage consumed by the
intermediate activation, limiting the training capability of the de-
vices.

Sequence parallelism [21] is proposed to enable long-sequence
modeling by breaking the memory wall brought by the large se-
quence dimension. In sequence parallelism, the model is replicated
across devices just like data parallelism. The input data is split along
the sequence dimension and each device only keeps a sub-sequence.
The self-attention module is replaced with the Ring Self-Attention
module such that the partial query, key, and value embeddings are
exchanged among devices to complete the self-attention calcula-
tion.

2.4 Heterogeneous Training

To further expand the memory capacity of a single device, Deep-
Speed proposed zero-offload [30] which moves the tensors from
GPU to CPU or NVMe disks when not in use to make room for
larger models. It is often seen that CPU memory is much larger than
the GPU memory on machines such as the Nvidia DGX1 worksta-
tion. By utilizing high-performance heterogeneous storage devices
and appropriately swapping tensors between different hardware
devices, it became possible to train a model with billions of pa-
rameters on a single GPU. This is especially friendly to users with
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limited computing resources and essential for the democratization
of large-scale model training.

2.5 Automatic Parallelization

The latest advance in parallel training is the automatic selection and
execution of parallelization strategies as demonstrated in FlexFlow [23]
and Alpa [42]. Alpa was proposed recently to automatically search
for a suitable parallelization plan including data and model paral-
lelism given the cluster mesh. It then compiles the computation
graph into distributed sharded graph with communication oper-
ators and runs the compiled executable on the cluster. However,
Alpa is not made to be hardware-aware and does not automatically
consider the network topology. Meanwhile, it does not search for
other optimization techniques such as activation checkpointing,
leading to suboptimal results.

3 DESIGN

Colossal-Al is featured by an array of acceleration techniques con-
structed in a modular way, which can cover a wide range of training
settings to achieve maximal performance. It addresses the difficul-
ties in achieving consistent acceleration in deep learning training
due to diverse hardware conditions, met by Megatron-LM and Deep-
Speed as well. This section will discuss the implementation and
analysis of the acceleration techniques integrated in Colossal-Al.

3.1 Multi-dimensional model parallelism

First of all, Colossal-Al provides an array of model parallelism
methods to cater to the needs of distributed training. Thus, it allows
the model size to scale to billions of parameters by sharding the
model over devices. In Colossal-Al, all existing tensor parallelism
methods are supported so that the user can choose one method
based on their training requirements and the number of GPUs
while Megatron-LM only supports 1D tensor splitting. As tensor
parallelism is mainly applied to matrix-matrix multiplication, it is
highly suitable for the acceleration of Transformer models which
widely uses linear layers.

Among all tensor parallelism methods, one prominent advantage
of advanced tensor parallelism, namely 2D, 2.5D, and 3D tensor
parallelism, is that it has a lower communication cost compared to
1D tensor parallelism. Table 1 has shown the total communication
volume when computing a matrix multiplication Y = WX where X
is of shape (b, s, h), W is of shape (h, h) and Y is of shape (b, s, h).
In Table 1, the following notations are used.

o p: the total number of GPUs

e j: the number of GPUs on one side of the square-shaped
network topology, where p = j?

k: the number of GPUs on one side of the front square of the
cuboid-shaped network topology, where p = d * k?

d: the number of GPUs in the depth dimension of the cuboid-
shaped network topology

I: the number of GPUs on one side of the cube-shaped net-
work topology, where p = I3

Sx: the number of elements in the input matrix X, the same
semantic is applied to Sy and Sy.

b: batch size of the input matrix X.

s: the sequence length of the input matrix X.
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o h: the hidden size of the weight W.

Mode Total Communication Volume (number
of elements transferred)

1D 2(p—1) * Sy

2D 3(—1) * (Sx +Sw)

2.5D 3(k—1) % (Sx/d + Sw)

3D 2(1 = 1) /1% (Sx + S+ Sy)

Table 1: Communication Volume of Tensor Parallelism

As shown in Figure 5, the communication volume of the ad-
vanced tensor parallelism is significantly lower than that of 1D
tensor parallelism, especially when a large number of nodes is
used. The underlying reason for communication efficiency is that
advanced tensor parallelism only incurs communication on a sub-
group of the computing nodes. For example, in 2D parallelism,
collective communication only involves the nodes in one row or
one column of the square-shaped network. In contrast, 1D tensor
parallelism involves all computing nodes for one collective commu-
nication call. Therefore, advanced tensor parallelism allows scaling
beyond one node while 1D tensor parallelism is often restricted to
intra-node computing.

Communication Volumn
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Figure 5: Scaling Performance of Tensor Parallelism in The-
oretic Analysis (h = 1024, s = 512,b = 32)

Besides tensor parallelism, Colossal-Al has also included se-
quence parallelism and pipeline parallelism so that hybrid par-
allelism is available out of the box to accelerate model training in
large-scale clusters.

3.2 Enhanced Sharding and Offloading

Zero redundancy data parallel training and offloading proposed
by DeepSpeed enable large-scale model training. However, it is
still bound to the CPU-GPU and GPU-GPU communication and
its rigid implementation leads to poor extensibility. Colossal-Al
has re-designed the tensor sharding and offloading mechanism
for better performance. Colossal-Al proposed a unified sharded
tensor interface and supports customizable sharding strategies and
life-cycle hooks for easy modification of the training workflow.
As such, zero-redundancy data parallel can be easily supported
and extended. Meanwhile, it also integrates the chunk strategy
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proposed in PatrickStar [12] to arrange tensors in chunks to further
improve the communication bandwidth utilization and memory
usage, making tensor offloading more efficient.

Such flexible design brings several benefits. Firstly, it enables the
re-use of FP16 storage space in the memory so that larger models
can be trained. In the forward pass, we hold FP16 parameters. In
the backward pass, when the gradients are computed, the FP16
parameters are no longer needed. We can thus save FP16 gradients
in the same storage space which holds FP16 parameters during
forward as shown in Figure 6. In this way, Colossal-AlI further
reduces redundancy and peak memory usage and the CPU memory
can afford to accommodate larger models.

Forward i Backward

FP32 Weights

FP16 Weights

Post-Backward

FP32 Weights

FP16 Gradients

FP32 Weights

FP16 Weights

FP16 Gradients

Figure 6: Memory Space Reuse

Secondly, an adaptive tensor placement and parameter update
can be enabled during heterogeneous training. In DeepSpeed’s zero
offloading, it provides an implementation of CPU Adam to update
the model parameters in the CPU. However, this method requires
all the FP32 master model weights to be placed in the CPU memory.
In Colossal-Al we implemented an adaptive hybrid Adam optimizer
instead. During heterogeneous training, Colossal-AI's hybrid Adam
optimizer monitors the available memory space on the GPU. It does
not statically keep all FP32 weights in the CPU memory, instead, it
dynamically keeps part of parameters and gradients on the GPU
as long as there is space left. In this way, parameters are updated
on both CPU and GPU, leading to better resource utilization and
lower communication cost.

3.3 Automatic Parallelization on Dynamic
Computation Graph

Inspired by Alpa [42], Colossal-Al has included an experimental
automatic parallelism feature to improve upon the Alpa project.
One challenge in automatic parallelization is the sharded tensor
conversion. For example, a tensor sharded on its 0th dimension
can be converted to the one sharded in the last dimension. Alpa
hardcodes a conversion table, but this limits the number of sharded
dimensions to keep the table reasonably small. We implemented
a greedy algorithm to search to speed up sharding conversion
and increase the number of sharding dimensions. Moreover, we
integrate activation checkpoint into the search problem such that a
model can be both sharded and activation checkpointed to achieve
maximum performance. As this feature is only experimental, it will
be discussed separately in another paper as a future work.

4 IMPLEMENTATION

The overall architecture of Colossal-Al is shown in Figure 1. It has a
parallel context manager that manages the meta information of the
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complex hybrid parallel distributed environment and automatically
switches to the corresponding parallel mode based on the parallel
context. It has a user-friendly interface for building tensor-parallel
models and various acceleration tools, including activation check-
pointing and mixed precision training. It also has an execution
engine and trainer that provide extensibility for user customization,
allowing them to define their own training schedule and hooks at
the operator or trainer level.

4.0.1 Modularity. The principle of modularity and extensibility
is upheld throughout the development and the different acceler-
ation techniques can easily be combined in pursuit of maximal
performance.

4.0.2 Extensibility. Asa system under constant development, Colossal-

Al provides various interfaces to implement customized functions
for future extensions. For example, the sharding module allows the
user to define their own sharding strategy and life-cycle hooks in
order in an attempt to explore more efficient training methods.

4.0.3 User-Friendliness. To minimize the change to the user code,
Colossal-Al provides user-friendly APIs for model training. The user
only needs to prepare a configuration that specifies the features
by following a pre-defined schema. Colossal-AI will then inject
the acceleration features into the execution engine with ‘colos-
salai.initialize® as shown in Listing ??.

Colossal-AI also provides parallelized popular model compo-
nents such as BERT [8], GPT [28], ViT [9], which the users can use
directly. This does not require the users to have domain expertise so
that they do not have to manually design their parallelism strategy
like GShard [19].

import colossalai
3 # specify using 1D tensor parallelism with parallel size 4
4 config = dict(paralle=dict(
5 tensor=dict(
6 size=4,
7 mode="'1d"

> # launch distributed network
3 colossalai.launch_from_torch(config=config)

# define your training components

# initialize with Colossal-AI
engine, trainloader

, - =\
colossalai.initialize(model,
optimizer,
criterion,
trainloader)

# run training
s for data, label in train_dataloader:

engine.zero_grad()

output = engine(data)

train_loss = engine.criterion(output, label)
engine.backward(train_loss)

engine.step()

Listing 1: Colossal-AI Usage
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Figure 7: Convergence Performance of ViT on ImageNet

5 EVALUATION
5.1 Experiment Setup

To holistically evaluate the system performance of Colossal-Al we
have conducted various experiments on different hardware. The
system specification is listed in Table 2. Due to resource constraints,
we only tested a portion of the prominent features on each system
as stated in the Experiment Item column. We used Megatron-LM
and DeepSpeed as our baselines for experiments and Megatron-
LM tensor parallelism is annotated as 1D tensor parallelism in the
results.

5.2 Multi-Dimensional Tensor Parallelism

1) Convergence

Experiments were conducted with Vision Transformer (ViT) [9]
on the ImageNet-1k dataset to verify the arithmetic correctness
and numerical stability of multi-dimensional tensor parallelism
on System III. The ViT model has 12 Transformer layers with 384
hidden size and 6 attention heads. We used Jax initialization and
AdamW optimizer with 0.003 learning rate and 0.3 weight decay.
The input image is of shape 224 and the patch size is 16. The global
batch size is 4k and the model is trained for 250 epochs. As shown in
Figure 7, the testing accuracy curves of Multi-Dimensional tensor
parallelism well align with that of the PyTorch data parallel training.

2) Memory Efficiency

As 2D, 2.5D, 3D tensor parallelisms partition the input data,
layer weight, and output activation while 1D tensor parallelism
only partitions the layer weight, the former is expected to have
lower memory consumption. As a result, the first three methods
allow the GPUs to accommodate larger models. To demonstrate
the memory efficiency, we have conducted two range tests which
scale by batch size and hidden size on System I. In this range test,
we created a model which consists of two linear layers. We run
1D, 2D and 2.5D experiments on 4 GPUs and 1D, 2.5D (depth=2),
and 3D experiments on 8 GPUs. We measure the max allocated
CUDA memory during the forward and backward pass, and the
results are shown in Figure 8. The memory consumption of 1D
tensor parallelism is much higher than those of 2D, 2.5D, and 3D
tensor parallelism. With the batch size equal to 512 and 8 GPUs,
the memory consumption of 2.5D and 3D is 44% and 65% lower
than that of 1D tensor parallelism respectively in Figure 8b. With
the hidden size of 16384 and 8 GPUs, the memory performance of
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System ID | #GPUs #Nodes | GPU Model GPU Interconnect Cross-node Interconnect Experiment Item
per node
I 8 1 Nvidia A100 (80GB) NVlink N/A Tensor Parallelism
I 8 1 Nvidia A100 (80GB) NVlink between adjacent | N/A Tensor Parallelism, ZeRO
GPUs, PCle between dis-
tant GPUs
I 4 16 Nvidia A100 (40GB) NVLink InfiniBand HDR (200Gb/s), | Tensor Parallelism, Sequence
and Dragonfly network topol- | Parallelism
ogy
v 1 64 Nvidia P100 (16GB) RDMA Cray Aries routing and com- | Tensor Parallelism
munications ASIC, and Drag-
onfly network topology

Table 2: System Specification for Experiments
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Figure 8: Range Test for Memory Consumption of Tensor Parallelism with 4/8 GPUs

2.5D and 3D tensor parallelism is 62% and 74.2% better than that
of 1D tensor parallelism respectively in Figure 8d. Therefore, more
advanced tensor parallelism is a better option when scaling to super
large-scale models.

NVLink I I
=

PCle i i

(b) Partially Connected
(a) Fully Connected GPUs GPUs

<—>

Figure 9: Common network topology on GPU nodes

3) Hardware Compatibility

Experiments were conducted on Systems I and II to further inves-
tigate the impact of GPU interconnect on the performance of tensor
parallelism. System I and System II were selected for experiments as
the former have fully connected NVLink between any pair of GPUs
as shown in Figure 9a while the latter only has NVLink between 4
pairs of adjacent GPUs as shown in Figure 9b. The communication
bandwidth of System I is consistently high regardless of whether it
is measured for a pair of GPUs or a group of GPUs as shown in Fig-
ure 10. However, the communication bandwidth drops significantly
from 184 GB/s to 15 GB/s when the communication occurs among

772

non-adjacent GPUs as only adjacent GPUs have high-performance
NVLink.

Bandwidth Between Two GPU Collective C ication idth
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(a) Communication Bandwidth be-(b) Communication Bandwidth for
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Figure 10: Communication Bandwidth on System I and II
(broadcasting 125 MB data using the NCCL Bandwidth Test
tool)

The GPU topology of System II is therefore not friendly to 1D
tensor parallelism which relies on all-reduce operations across all
the GPUs via PCle. Instead, the 2D and 2.5D only have commu-
nication between a pair of GPUs instead of across all GPUs. This
allows part of the communication to still utilize the high NVLink
bandwidth between adjacent GPUs.

We trained ViT on the ImageNet-1k dataset with different config-
urations for 4 GPUs and 8 GPUs on both System I and II. On 4 GPUs,
the ViT model has 64 Transformer layers with hidden size of 3072
and 48 attention heads. On 8 GPUs, the hidden size and the number
of attention heads are adjusted to 4096 and 64 respectively as there
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#GPUs | Mode #Transformer Layer | Hidden Size | #Attention Heads | Batch Size Throughput | Speedup over 1D
(img/sec) (%)
1D 128 5.06 -

4 2D 24 2048 32 256 6.18 22.1
2.5D 256 6.73 33.0
1D 256 7.46 -

8 2.5D 24 2048 32 384 6.57 -11.9
3D 512 8.38 12.3
1D 64 3.42 -

16 2D 32 4096 64 256 5.33 55.8
2.5D 256 5.46 59.6
1D 128 4.22 -

32 2.5D 32 4096 64 256 5.46 50.6
1D 128 4.63 -
2D 512 12.76 275.5

64 2.5D 32 4096 64 512 4.93 6.5
3D 512 8.63 86.4

Table 3: Performance of Tensor Parallelism with Different Number of GPUs

E Throughput of ViT - System | g 3°Throughput of ViT - System Il
50 ; [ | 3 | 7
D30 -///// - 925 A
£y @ Ezl N
T R B ol
ESr | 7 Eidl W
2l hem B om
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2 2
= 0 a 8 = 4 8
Number of GPUs Number of GPUs
WSS 1D NN 2D %% 2.5D @SS 3D EEA 1D EEW 2D %% 2.5D @& 3D
(a) System I (b) System II

Figure 11: Throughput of ViT Training on System I and II

is more memory available. The model is trained with increasing
batch size until the out-of-memory problem occurs. As such, we
present the best throughput for each tensor parallelism method. In
Figure 11a, the throughput of 2D, 2.5D, and 3D tensor parallelism
cannot compete with 1D tensor parallelism on both 4 GPUs and 8
GPUs. This is expected for two reasons. The first reason is that 1D
tensor parallelism can utilize the high communication bandwidth
with all GPUs involved in System I. The second reason is that 2D,
2.5D, and 3D tensor parallelisms have more communication volume
with a small number of processors and will only surpass 1D tensor
parallelism when the number of processors increases.

However, when the experiment is switched to System I in Fig-
ure 11b, 1D tensor parallelism will encounter a bottleneck due to the
low communication bandwidth in collective communication across
4 and 8 GPUs. Meanwhile, 2D and 2.5D can deliver a throughput
that is 40% higher than that of 1D tensor parallelism with 4 GPUs.
With 8 GPUs, 2.5D tensor parallelism can still outperform 1D ten-
sor parallelism by 20.6%. 3D tensor parallelism still delivers lower
performance than 1D tensor parallelism due to the low scaling.

4) Throughput Comparison

To test the performance of tensor parallelism with more GPUs,
we trained ViT on System IV. As System IV only has 16 GB GPU
memory, therefore, we adjusted the configuration of the ViT model
accordingly. The model is set to have 24 layers with the hidden size
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of 2048 and 32 attention heads for 4 and 8 GPUs. From 16 GPUs
onwards, the model is set to have 32 layers with the hidden size of
4096 and 64 attention heads.

The results for 4 to 64 GPUs are shown in Table 3. It can be
observed that as the number of GPUs increases, the speedup of
advanced tensor parallelism over 1D tensor parallelism increases up
to 2.76. This can be attributed to the lower communication volume
of advanced tensor parallelism methods when scaling to more pro-
cessors. Together with memory efficiency and low communication
volume, 2D, 2.5D, and 3D tensor parallelism is a better option for
large-scale distributed training.

5.3 Sequence Parallelism

In this section, we compare Sequence Parallelism with 1D tensor
parallelism for memory efficiency and training throughput. As
Sequence Parallelism is designed for situations where activations
consume more memory than model data, BERT-Base is chosen as
our experiment model and trained on the Wikipedia dataset [13].
We conducted the experiments on System III. It should be noted
that 1D tensor parallelism requires the number of attention heads
(12) to be divisible by the parallel size, we can only use 4, 6, and
12 GPUs whereas the 6-GPU experiment uses 2 nodes and 3 GPUs
from each node. Meanwhile, Sequence Parallelism is not limited by
the number of attention heads, thus we conducted experiments on
4,8, and 12 GPUs.

1) Memory Efficiency

We increase the batch size and sequence length until the out-
of-memory problem occurs for both 1D tensor parallelism and
Sequence Parallelism. The sequence length is fixed at 512 for the
batch size test while the batch size is fixed at 64 for the sequence
length test.

As shown in Figure 12a, Sequence Parallelism can reach larger
batch size than 1D tensor parallelism. This is because that 1D tensor
parallelism has a memory bottleneck in the duplicated activations
where the activation is split along the sequence dimension in Se-
quence Parallelism. The maximum batch size of Sequence Paral-
lelism is 4.44 times larger than that of the 1D tensor parallelism
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Figure 12: Memory Efficiency of Sequence Parallelism over
1D Tensor Parallelism

with 12 GPUs. The same pattern is observed in the maximum se-
quence length test as shown in Figure 12b. The maximum sequence
length of Sequence Parallelism is 1.18 times larger than that of 1D
tensor parallelism. If linear-complexity attention modules [37, 40] is
used instead of the quadratic-complexity self-attention in BERT, Se-
quence Parallelism can achieve linear scaling of maximum sequence
length with the number of GPUs, better supporting document-level
text understanding.
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Figure 13: Training Throughput of BERT-Base

2) Throughput Comparison

To evaluate the training speed of Sequence Parallelism, we trained
BERT-Base with the sequence length of 512 and its maximum batch
size. As shown in Figure 13a, Sequence Parallelism is up to 1.43
times faster than that of 1D tensor parallelism.

As sequence parallelism splits the input data and activation, it
is naturally compatible with Pipeline Parallelism. While 1D tensor
parallelism will split the activation before transferring the tensor to
the next stage and gather it back afterward, Sequence Parallelism re-
quires no such communication between pipeline stages. We further
scaled the training with Pipeline Parallelism. The parallel size for
both Sequence and 1D tensor parallelism is fixed at 4 and we scale
the number of pipeline stages from 1 to 4. As shown in Figure 13b,
Sequence Parallelism can train 1.55 times faster than 1D tensor
parallelism with 4 pipeline stages.

5.4 Sharding and Offloading

In this section, we evaluated our own sharding and offloading mod-
ule as discussed in Section 3.2 against DeepSpeed. We used Deep-
Speed Stage 3 as the baseline, which partitions model parameters,
gradients, and optimizer states in data parallel training. To demon-
strate the capability of dynamic tensor placement in ColossalAl, we
trained GPT-2 model with 10 billion parameters on the Wikipedia

774

ICPP 2023, August 07-10, 2023, Salt Lake City, UT, USA

dataset on System II. We set the batch size to 4 and scaled the data
parallel training from 1 GPU to 8 GPU. As the batch size is small,
the GPU memory is not completely used up. However, DeepSpeed’s
static policy will still offload all model data to the CPU memory,
leading to low memory efficiency and high communication over-
head. Instead, Colossal-Al will dynamically determine whether a
tensor should be placed on GPU or CPU depending on the memory
availability. In this case, since Colossal-Al detects that there is still
free memory on the GPU, it will only offload a small portion of the
model data, leading to better utilization of the hardware resources
and better training throughput as shown in Figure 14. We have also
performed training on the OPT model [41] of 13 billion parameters
with the batch size per GPU equal to 32. With a larger batch size,
both systems utilized almost all GPU memory and Colossal-Al can
still achieve 1.33 times speed up over DeepSpeed on 8 GPUs.

Throughput of GPT

o o
© o

—— DeepSpeed
ColossalAl

f——

1 2 3 4 5 6 7 8
Number of GPUs

w A U O N
© © © ©
© © © ©

= N
[=]
o

Throughput (tokens/sec)

Figure 14: Throughput of GPT Training with Sharding and
Offloading with Batch Size 4

6 FUTURE WORK

The Colossal-Al system is open-sourced and maintained on GitHub.
One future work is to design a hardware-aware and efficient al-
gorithm to automatically search for the optimal parallelization
strategy as mentioned in Section 3.3. As an open-source project,
we would actively integrate with model zoos such as Hugging Face
Transformers [38]. We expect ColossalAl to be capable of paral-
lelizing models in state-of-the-art model zoos so that distributed
training can be more accessible to the Deep Learning community.

7 CONCLUSION

In this work, we designed and implemented Colossal-Al which
integrated a vast number of advanced acceleration techniques into
one unified system for large-scale distributed training. Colossal-Al
comes with a flexible system design that supports an easy combina-
tion of different parallelism methods. In addition, its acceleration
techniques provide robust performance under different hardware
conditions and deliver superior performance compared to the base-
line systems. In our experiments, we have demonstrated Colossal-Al
can achieve up to 2.76x speedup over the baseline systems.
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