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Abstract

Large-scale question-answer pairs (QAP) are
valuable for many applications, such as knowl-
edge bases construction and machine reading
comprehension. Although its importance has
been widely recognized, existing approaches
are still faced with critical challenges. On
the one hand, QAPs are obtained by select-
ing spans from original texts as their answers,
while abstractive answer generation is more
suitable and natural for complex QA appli-
cations. On the other hand, the interaction
between the sub-tasks of answer generation
and question generation should be well cap-
tured to enhance each other mutually. To
this end, we propose a Unified Abstractive
model for Question-Answer Pairs generation
(UA-QAP). Specifically, we devise the joint
model with a query-guided gate to collectively
model the two sub-tasks simultaneously and
capture the interaction information between
them. Therefore, our model can generate
semantically comprehensive question-answer
pairs. We conduct extensive experiments on
three large-scale datasets. The experimental
results demonstrate that our model achieves
state-of-the-art performance.

1 Introduction

Automatically generating question-answer pairs
(QAP) from given documents is essential for many
applications, such as assisting the construction of
knowledge base, improving search engines by gen-
erating questions from documents(Liu et al., 2020),
and training chatbots to make a fluent conversation
(Tang et al., 2018; Krishna and Iyyer, 2019). How-
ever, the above tasks rely heavily on a large number
of human-annotated question-answer pairs. Fur-
thermore, high-quality manual datasets represent a
significant expenditure of time and effort. There-
fore, there is an urgent need for efficient methods
which can automatically generate a large quantity
of high-quality question-answer pairs.
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Figure 1: A simplified view of the different growth
trends between the previous work and our model. The
middle denotes the generated question-answer distribu-
tion in which N is the length of the document and V' is
the size of the vocabulary.

Most existing literature about generating
question-answer pairs (Liu et al., 2020; Du and
Cardie, 2018; Li et al., 2020; Krishna and lyyer,
2019; Tang et al., 2018) adopt a pipeline approach,
in which the answer extraction (AE) and the
question generation (QG) are independent during
the training process. Recently, some researchers
have adopted an end2end approach that simultane-
ously accomplishes AE and QG. However, for the
pipeline and the end2end, there still exist several
issues. Firstly, acquiring answers requires select-
ing some spans within passages, which will be
unnatural and unsuitable for complex applications.
Moreover, the extractive method of answering ques-
tion is far from sufficient for human-like question-
answer pairs. Secondly, as shown in Figure 1, the
previous work suffers from vicious competition,
which means that both AE and QG cannot optimize
collectively. This is because, for AE and QG, the
imbalanced loss from the generative distribution
space in different sizes leads to the opposed train-
ing trends (Vandenhende and Georgoulis, 2021).
Thirdly, the interaction of the end2end between the
AE and QG merely reflects in the encoder. Thus,



this interaction is insufficient and incomplete so as
not to generate more compatible question-answer
pairs.

In this paper, we propose a unified abstractive
model (UA-QAP) with the query-guided gate and
the copy mechanism to address these three issues.
Specifically, our unified abstractive model takes
a document as input and generates an answer as
well as an answer-specific question. Firstly, we
introduce the copy mechanism(See et al., 2017)
into our framework, allowing the answer genera-
tion in an extractive and abstractive way. Secondly,
we propose to integrate the decoding processes of
the question-answer generation into the joint archi-
tecture, in which they can collaborate and benefit
from each other to generate compatible and high-
quality question-answer pairs. Moreover, the way
for question-answer generation can bring mutual
optimization for the question generation and an-
swer generation so as to avoid a scenario where
one task has a domain influence, or both tasks can-
not achieve the best at the same time. Thirdly, in
order to make the question match exactly the gen-
erated answer, we utilize a query-guided gate to
enhance the information exchange between them.

To demonstrate the effectiveness of our model,
we conduct extensive experiments on three bench-
mark datasets: SQuAD, NewsQA, and CoQA.
Compared with involved baselines in terms of ques-
tion generation and answer generation, our model
achieves state-of-the-art performance. In addition,
we conduct several ablation experiments to verify
the effectiveness of each component in our model.
The contributions of this paper are concluded as
follow:

* We propose a unified abstractive model which
takes advantage of the query-based gate to
simultaneously generate strongly compatible
question-answer pairs.

* Our unified abstractive model for question-
answer generation can prevent the emergence
of imbalanced optimization for question-
answer pair generation.

* The abstractive network allows answer gener-
ation in a both extractive and abstractive way
through the copy mechanism.

* We conduct extensive experiments on three
benchmark datasets to evaluate our model in
regard to question generation and answer gen-
eration.

2 Related Work

2.1 Question Answer

Question answer aims at predicting a continuous
sub-span from the document for answering a ques-
tion. Extractive question answering has gained
widespread attention in the past several years. Sev-
eral extractive models have been proposed, includ-
ing QANet(Yu et al., 2018), BiDAF(Seo et al.,
2017) and VQAP(Shinoda and Aizawa, 2020).
These methods mainly learn to point out answer
boundaries or select a span of consecutive words
within the document as the final answers. However,
the extractive mechanisms may not work well on
generative scenario(Lan and Jiang, 2020; Hsu et al.,
2021; Baheti et al., 2020; Mao et al., 2021; Nguyen
et al., 2016).

2.2 Question Generation

Most earlier work on question generation has em-
ployed template-based or rule-based approaches to
convert a sub-span text of the document into many
questions(Labutov et al., 2015; Heilman and Smith,
2010). With the development of deep learning,
there has been a great deal of research on an end-
to-end neural network to generate questions(Tang
et al., 2017; Song et al., 2017; Yuan et al., 2017;
Zhao et al., 2018), which requires the document
and additional selected answers as input. However,
these models cannot directly generate questions
from raw texts. The additional entity and tagging
information(Subramanian et al., 2018; Wang et al.,
2019) have been introduced to decide on which
part of a document is used to generate the question.
Du and Cardie (2017) proposed a hierarchical neu-
ral sentence-level sequence tagging model to iden-
tify question-worthy sentences that humans could
ask about. Nevertheless, in fact, these techniques
mostly contain independent components that have
difficulty in tuning for the overall performance.

2.3 Question-Answer Pair Generation

At present, the main work on generating question-
answer pairs has resorted to a pipeline approach
(Du and Cardie, 2018; Li et al., 2020; Liu et al.,
2020; Lee et al., 2020). Du and Cardie (2018)
proposed a neural network that incorporates coref-
erence knowledge via a novel gating mechanism
to detect the question-worthy answer and then gen-
erate an answer-aware question. Liu et al. (2020)
imitated the way a human asks the question to in-
troduce answer-clue-style-aware question genera-
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Figure 2: An overview of our proposed model

tion. But the pipeline architecture not only brought
the incompatibility for question-answer pairs but
also gave rise to cumulative error during the two-
stage training. To overcome the shortcomings, Cui
et al. (2021) introduced a OneStop approach for
question-answer pair, which integrated the ques-
tion generation and the answer extraction into a
unified framework However, the joint training of
answer extraction and question generation led to
the imbalanced loss so that it cannot obtain better
performance. Besides, the interaction between the
AE and QG merely reflects in the encoder.

3 Methodology

In this section, we will present our unified abstrac-
tive architecture for generating question-answer
pairs. Section 3.1 shows an overview of our model.
Section 3.2 and section 3.3 respectively describe
the answer generation and the question generation.
Then we introduce the details about the loss func-
tion in Section 3.4

3.1 Model Overview

As you see in Figure 2, our model takes as input a
document: D = (dy,...,dn—1,dyn) of length N
and separately generates two sequences: a ques-
tion Q = (q1,-..,qm—1,qn) of length M and an
answer A = (ay,...,ar—1,ar) of length L. Math-
ematically, our goal is to obtain a question-answer
pair from a document through the joint model:
Q, A = argmax P(Q, A|D)
o (1)
= argmax P(A|D;0)P(Q|A, D;6)
Q,A

where document D is a sentence or a paragraph
that only contains a question-answer pair.

In this paper, we take T5(Raffel et al., 2020) as
the pre-trained model since T5 is a unified frame-
work that achieves significant performance on text
generation. The unified abstractive model con-
sists of three major components: 1) 12-layered
pre-trained encoder-decoder based on the trans-
former. 2) the query-guided gate. 3) the copy
mechanism. The encoder receives a document
followed by producing the hidden state hen. =
(h1,...,hn—1,hn). For the answer generation,
the output layer generates an output sequence by
absorbing the decoded information and utilizing
the copy mechanism. For the question generation,
we fuse the decoded information of question and
answer via a query-based gate to generate the vo-
cabulary distribution. In addition, we add </s> to
the end of decoder input in order to prevent contin-
uous generation.

3.2 Answer Generation

In contrast to the pipeline and OneStop, we de-
fine the problem of obtaining a candidate answer
from a sentence or paragraph as the sequence-
to-sequence generation task rather than identi-
fying answer spans. Our encoder reads the
input sequence D = (dj,...,dy—_1,dyn) and
produces a sequence of hidden state My,
(h1,...,hn—1,hn). Then the decoder takes hep,
and produces a sequence of hidden state hj, . =
(h{,...,hY_4,h{) and a sequence of cross atten-
tion aj,. = (af,...,a%_;,a%;). We can get the
vocabulary distribution P, over all words by feed-
ing h§__ into a linear layer and a softmax layer.

Pyoc(w) = softmax(Vhy.. +b*)  (2)

where V¢ and b“ are learnable parameters.

As seen in Figure 3, our component of obtaining
answers is hybrid, which can generate words from
the vocabulary and copy from the document. We
use the attention distribution to produce a weighted
sum of the encoder hidden states, named context

vector ¢ :
C = Z afhi (3)
i

After that, our model concatenates the decoder
hidden hj, . with context vector ¢ and decoder em-
beddings e = (ef,...,e}_;,e}) followed by a
linear transformer and a sigmoid function to ac-
quire the generation probability Py, € [0, 1].

Pyen, = 0(Wyen[hiee; ¢; €] + bgen)  (4)



hec = (h{, ., h{_1, h])

{ Linear f———{ Softmax ] alal [P

®
edec = (ef', . ef 1. ef) P(answer)
N r—
ihl.
PL‘O
Figure 3: A sketch of our copy mechanism
where W, and by, are learnable parameters and (1T} ||
o is the sigmoid function. Py, is used as a gate P(question)

which decides on copying words from the input or
generating words from the vocabulary. Then, we
obtain the final probability distribution:

Pa(w) = Pgeanoc(w) + (1 - Pgen)Pco(w> S)

P.o(w) = Z a;i (6)

3.3 Question Generation

After obtaining the answer, our model makes use of
the answer hidden state b, to assist in generating
the corresponding question via a query-based gate.
Assume that the decoder derives the hidden state
of question h? = = (h{,... ,h%, ;,h%,). Then
we take advantage of self-attention architecture to
make the question match the answer closely. In
view of imperfect matching, we add the gate mech-
anism to control the information flow in the neural

network. As figure 4 described,

Q7 ‘/7 K = thge(;? WUhgeC’ thgec (7)

Attn = softma:n(%) (8)

HY = LayerNorm(Attn ©V + b ) (9)

dec

where W,, W,,, W}, are weight matrices and dj,
refers to the the dimension of A .. After obtaining
the HY, we adopt the gate mechanism to further
absorb the answer information. Similar to the an-
swer generation, we employ a linear transformer
followed by a softmax layer to provide us with our
final distribution over the vocabulary.

G: Wghgec
Pq(w) = Vq(Hq ©G)+ bg

(10)
Y
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Figure 4: The query-based gate

where ©® denotes an element-wise product between
two vectors and W, V;, b, are trainable parame-
ters.

3.4 Loss Function

As is shown in Equation 1, the final probability
distribution is

P(Q, AID) = Pa(w)Py(w)
L M
= ([ I ptasla<e, d; 0))(] [ p(aelg<t, d, a;6))

t=1 t=1 (12)
Based on the above formulas, we can calculate the
negative log-likelihood of the generated sequences
with respect to training data D to update the model
parameter 6:

® = —log Py (w) — log Py (w)
M

L
= (Zp(at|a<t7d; 0)) + (Zp(qt|q<i7 d: a; 9)) (13)
t=1

t=1

=D, + B,



where ®, and ®, mean the loss function of the
answer and question.

In contrast to Cui et al. (2021), we directly add
up the objective of our model instead of introducing
a hyperparameter A\ to balance the loss between
question generation and answer generation.

4 [Experiments

In this section, we make a detailed description of
datasets, evaluation metrics, baselines, and experi-
mental settings. Then we compare our model with
the baselines followed by elaborating the analysis
of experimental results and conducting the ablation
experiments.

4.1 Datasets

In this paper, we conduct experiments on three ma-
chine reading comprehension datasets from differ-
ent perspectives to evaluate our unified abstractive
model.

* SQuAD(Rajpurkar et al., 2016): A machine
reading comprehension dataset consists of
over 100k crowd-sourced question-answer
pairs, in which answers exist in the corre-
sponding documents.

e NewsQA(Trischler et al., 2017): The crowd-
workers supply questions and answers for the
NewsQA based on a set of over 10,000 news
articles from CNN, with answers consisting of
spans of text from the corresponding articles.

* CoQA(Reddy et al., 2019): The CoQA con-
tains 127k question-answer pairs, harvested
and refined from 8k conversations about text
passages from seven diverse domains. The
questions are conversational, and the answers
are free-form text with their corresponding
evidence highlighted in the passage.

In consideration of the answer extraction for con-
trast experiments, we remove the data whose an-
swer is not the sub-span of the corresponding doc-
ument for SQUAD, NewsQA, and DuReader. Then
we employ CoQA(Reddy et al., 2019) whose an-
swer is free-form text to examine the abstractive
ability of our model. In addition, for all datasets,
we split the long document into multiple sub-
documents to construct the data items whose sub-
document involves a question-answer pair. The test
split of SQUAD, CoQA, and DuReader are hidden
from the public. Therefore, We take a portion from
their validation set as the test set.

SQuAD NewsQA DuReader CoQA
Size of Train 36078 92449 74403 108647
Size of Dev 1584 5166 4960 2395
Size of Test 4009 5122 3307 5588
Avg.len of document ~ 25.77 36.5 78.0 10.6
Avg.len of question 11.6 7.7 9.6 6.4
Avg.len of answer 3.8 5.5 51.8 2.9

Table 1: The statistics of the filterd datasets

4.2 Baselines and Ablation Tests

We conduct experiments on two tasks: question
generation and abstractive question answering. To
evaluate the performance of our model, we com-
pare our method of question generation with the
following baselines

* DeepNQG(Du et al.,, 2017): An attetion-
based sequence learning model for question
generation.

* T5-QG: A T5-based model(Raffel et al.,
2020) for generating question whose input is
the document and output is the corresponding
question.

* T5-A2QG: We follow the pipeline approach
and design a two-stage model based on pre-
trained T5(Raffel et al., 2020). The first stage
takes the document as input followed by gen-
erating the answer. Then in the second stage
the embedding of the document and the gener-
ated answer are concatenated to generate the
corresponding question.

* OneStop: According to Cui et al. (2021), we
reproduce the OneStop model based on a pre-
trained T5(Raffel et al., 2020) which can pro-
duce simultaneously the extractive answer and
the abstractive question. The model takes the
document as input and generates the question.
Subsequently, the answer generator utilizes
the encoder hidden state and decoder hidden
state to predict the answer span via the self-
attention module.

As for answer generation, we compare our
task with the following baselines as well as On-
eStop(Cui et al., 2021).

* T5-QA: A T5-based model for generating an-
swer, whose input is the document and output
is the corresponding answer.

* T5-MPQA: According to the training mode
of (Song et al., 2017), we cast both the QG and



QA tasks into one process by training the QG
and the QA in turn via the joint pre-trained
model. In this way, we can boost the perfor-
mance of answer generation by incorporating
the information from question generation.

Moreover, we conduct ablation tests to prove the
validity of each component proposed in this paper.

* Ours-gate:Ours-gate removes the query-
based gate while the other components remain
unchanged.

* Ours-two-decoder:Ours-two-decoder sepa-
rately generates the answer and the question
through an identical encoder and two individ-
ual decoders. The other components remain
unchanged.

* Ours-pointer:We get rid of the copy mecha-
nism in the process of answer generation to
investigate its effectiveness.

4.3 Evaluation Metric

The performance of question and answer genera-
tion is evaluated by the following metrics.

e BLEU(Papineni et al., 2002):BLEU measures
n-gram precision by counting how many the
n-gram words in predictions exist in that of
references. BLEU-1 and BLEU-2 are respec-
tively calculated by 1-gram and 2-gram.

¢ ROUGE-L(Lin, 2004): ROUGE-L measures
n-gram recall by counting how many longest
common subsequences in references appear
in that of predictions.

* METEOR(Banerjee and Lavie, 2005): ME-
TEOR calculates the harmonic mean of un-
igram precision and recall, in which recall
weights are higher than precision.

4.4 Experiment Settings

In our experiment, we utilize pre-trained TS con-
taining 12 layers and a hidden size of 768 from
google T5-base for SQuUAD, NewsQA, and CoQA.
The query-based gate self-attention has 12 heads
and a hidden dimension of 768. The batch size is
set to 16, and an Adam optimizer with a learning
rate of 0.00001 is chosen to perform gradient de-
scent. All models compute the cross-entropy loss
for question and answer generation and are trained
for 7 epochs. Lastly, all the experiments are con-
ducted with v100 GPUs. Our code will be released
for the purpose of research.

Dataset Model BLEU-1 Rouge-L METEOR
DeepNQG 22.0 41.8 16.2
T5-QG 37.3 40.5 26.7
SQuAD | T5+A2QG 34.1 37.9 23.5
OneStop 35.8 354 254
Ours 38.4 41.6 28.2
DeepNQG 12.9 36.8 13.4
T5-QG 30.0 435 16.9
NewQA | T5+A2QG 30.2 30.9 16.6
OneStop 28.3 30.0 154
Ours 30.3 44.1 17.4
DeepNQG 11.4 355 11.5
T5-QG 30.5 41.8 14.2
CoQA | T5+A2QG 27.7 40.3 13.0
OneStop - - -
Ours 32.3 43.2 16.3

Table 2: The comparison on question generation

4.5 Experiment Result and Analysis

Question Generation: The experimental results
about question generation are listed in Table 2. In
terms of METEOR, it is usually considered as the
comprehensive evaluation metric for text genera-
tion. Compared to T5-QG, Ours can benefit from
the generated answer as well as the query-guided
gate. For the pipeline approach of T5-A2QG, our
model separately outperforms T5-A2QG by 4.7
points on SQuAD, 0.8 points on NewQA, and 3.3
points on CoQA, which explains that our unified
model can improve the question generation through
the interaction between question and answer. Our
model exceeds OneStop by 2.8 points on SQuAD
and 2 points on NewsQA. The comparison between
OneStop and our model proves that the abstractive
answer is more effective than extracted answer in
enhancing question generation.

Answer Generation: Since Song et al. (2017)
adopts a unified generative model for question gen-
eration, we re-implement a version T5-MPQG with
T5. We compare our model with T5-QA and T5-
MPQG on the answer generation.

Dataset Model BLEU-1 Rouge-L METEOR
T5+QA 23.7 54.0 21.2
T5+MPQG 18.3 55.9 21.0
SQUAD |y estop | 29.1 432 30.0
Ours 25.8 46.6 33.0
T5+QA 31.8 57.0 38.7
NewsQA | TS+MPQG 18.3 55.9 29.0
OneStop 29.7 48.9 40.0
Ours 27.2 59.0 45.9
T5+QA 18.5 54.1 21.3
CoQA | T5+MPQG 20.9 58.4 24.7
OneStop - - -
Ours 24.3 48.9 29.1

Table 3: The comparison between the baselines and our
model on answer generation



As can be observed in Table 3, our model obtains
obvious improvement in promoting the answer gen-
eration on three benchmark datasets, achieving a
state-of-the-art METEOR score of 33.0 on SQuAD,
45.9 on NewsQA, and 29.1 on CoQA. T5+MPQG
surpasses T5+QA on SQuAD and NewsQA but
is weak on CoQA, which indicates that question
generation is helpful in enhancing the answer gen-
eration when the answers exist in documents. On
the contrary, the answer generation of our model
still benefits from the question generation since our
model adopts the joint training via the identical
encoder-decoder. The performance on CoQA il-
lustrates that our model is capable of generating
answers which are not sub-spans of the document.

Question-Answer Pair: Based on the above
analysis, we can conclude that our model achieves
better performance than baselines with regard to
question generation (QG) and answer generation
(AG).

To show the ability of mutual optimization for
QG and AG, we compare our model with OneStop
on SQuAD in Figure 5. As for OneStop, we add
the loss from the question and answer with a hyper-
parameter A

b=, + A\, (14)
where @, and ®, respectively mean the loss of
answer and question.

Different from OneStop, our model adds some
linear layers that adopt a random initialization strat-
egy to question generation and answer generation.
This explains why our model is inferior to OneStop
in the beginning. In the left of Figure 5, we can
observe that at first, the QG in OneStop rapidly
reaches the highest, and subsequently, it starts to
decline. However, the AG continues to rise. In
contrast, both the QG and the AG in our model
show mutual growth.

In order to better evaluate the overall perfor-
mance between QG and AG, we design a new eval-
uation metric named C' M,

_ Mr,
T Mr, + Mr,

Mrq

M _
Mrq, 4+ Mrg

Mrq + Mrq  (15)
where M, refers to METEOR of answer and M,
means METEOR of question. The C'M is able to
measure the overall result of generated question-
answer pairs by adding up the cross-weighted ME-

TEOR.

BLEU-1 Rouge-L METEOR
Dataset Model QG AG [QOG AG | QG AG
Ours-gate 21.7 19.0 | 354 588 | 194 21.7
Ours-two-decoder | 35.0 21.9 | 38.6 623 | 24.7 26.6

SQuAD .
Ours-pointer 199 18.1 [ 339 558 |17.8 22.1
Ours 38.3 25.8 | 41.3 46.6 | 27.7 33.0
Ours-gate 30.3 20.7 | 40.1 61.8 | 13.0 315
NewQA Ours-two-decoder | 17.4 23.8 | 389 603 | 11.8 40.7
Ours-pointer 169 19.5| 404 61.8 | 13.0 315
Ours 30.3 27.2 | 441 59.0 | 174 459
Ours-gate 102 179 [ 39.0 66.6 | 10.2 19.3
CoQA Ours-two-decoder | 9.4 158 | 37.7 63.6 | 9.7 168
Ours-pointer 236 160|382 64.1| 92 167
Ours 323 243|432 489|163 29.1

Table 4: The evaluation results about ablation experi-
ments. In this table, QG refers to the question genera-
tion, and AG means answer generation.

As is shown in the right of Figure 5, C'M in our
model keeps growing and eventually reaches about
30 points. While in OneStop, after a temporary
increase, C'M starts to fall.

In Figure 5, we can observe that in OneStop, the
different loss weights from the question not only
affect the respective growth trend of both tasks but
also cause a shift in overall performance. This phe-
nomenon indicates that question generation (QG)
and answer generation (AG) suffer vicious compe-
tition during the training and can not reach joint op-
timization. While in our model, the unified frame-
work brings mutual optimization for QG and AG
so that both tasks can enhance each other.

4.6 Ablation Experiments

We also conduct extensive ablation experiments to
show the effectiveness of our proposed components
in Table 4. Firstly, we turn off the query-based gate
of our model, which is short for Ours-gate. We still
take METEOR as our metric. In this case, we can
observe that the average results drop 11.8 points in
AG and 6.3 points in QG on three datasets, which
indicates that the query-based gate has the ability
to improve the interaction between AG and QG. Es-
pecially, our model with two decoders to separately
decode question and answer through the shared
encoder is denoted as Our-two-decoder. Unsurpris-
ingly with two decoders, the performance decreases
averagely by 8 points in AG and 5 points in QG. It
is demonstrated that our unified framework is effec-
tive in enhancing information exchange to generate
compatible question-answer pairs. Next, removing
the pointer from our model leads to a catastrophic
performance. This is because our pointer allows
QA to copy the words from the document.
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Figure 5: The Comparison results of our model with OneStop On SQuAD. The horizontal axis refers to the
number of steps, and the vertical axis denotes the METEOR score. The left respectively shows METEOR change
of question and answer during the training, and the right represents the overall performance change of our model

and OneStop. 0.8 and 0.5 refer to the weight \.

4.7 Case Study

To better illustrate the superiority of our model, we
present some cases from our model as well as On-
eStop in Table 5, where OneStop is our implement
of (Cui et al., 2021). In general, our model can
generate more accurate, readable, and compatible
question-answer pairs. As can be seen in the first
case, "’how much money’ expresses more directly
and accurately than *what is the size’ as regards the
amount. For the second case, we can observe that
both our model and OneStop can generate a read-
able and reasonable question, while the question-
answer pair of our model is closer than that of
OneStop. From the above cases, our model can pro-
duce semantically similar but structurally different
questions and comprehensive answers, which can
account for the relatively low metrics. To sum up,
these cases can indicate our model has the strong
ability of comprehension and generation.

5 Conclusion

In this paper, we propose a unified generative
model based on the pre-trained TS5 for better gen-
erating compatible question-answer pairs. Com-
pared to previous work, our model is able to obtain
answers in an extractive and abstractive way. In
addition, the unified model with the query-guided
gate can improve each other to achieve mutual op-
timization. Extensive experiments on three bench-
mark datasets show that our model outperforms
state-of-the-art baselines. The ablation study il-

lustrates the effectiveness of each component pro-
posed in our model. For future work, we will apply
our model to generate question-answer pairs from
multi-paragraph documents.

HarVard’s $37.6 billion financial

endowment is the largest of any

academic institution

Q: What is the size of the school’s
endowment?

A: $37.6 billion

Criteria D:

OneStop What is the largest financial en-
dowment in Harvard?

billion

How much money is Harvard’s
financial endowment?

$ 37.6 billion financial endow-
ment

0

A:
Our model Q:

A

Criteria D: The invading Normans and their

descendants replaced the Anglo-

Saxons as the ruling class of Eng-

land

QO: Who was the ruling class ahead
of the Normans?

A: Anglo-Saxons

OneStop Q: What did the Normans replace?
A: the ruling class of England
Our model 03 What was the ruling class of Eng-
land?
A An Anglo-Saxons as the ruling

class

Table 5: Selected outputs from our model and On-
eStop. Both Answer and Question are from the refer-
ence dataset.
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