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Abstract

Large-scale question-answer pairs (QAP) are001
valuable for many applications, such as knowl-002
edge bases construction and machine reading003
comprehension. Although its importance has004
been widely recognized, existing approaches005
are still faced with critical challenges. On006
the one hand, QAPs are obtained by select-007
ing spans from original texts as their answers,008
while abstractive answer generation is more009
suitable and natural for complex QA appli-010
cations. On the other hand, the interaction011
between the sub-tasks of answer generation012
and question generation should be well cap-013
tured to enhance each other mutually. To014
this end, we propose a Unified Abstractive015
model for Question-Answer Pairs generation016
(UA-QAP). Specifically, we devise the joint017
model with a query-guided gate to collectively018
model the two sub-tasks simultaneously and019
capture the interaction information between020
them. Therefore, our model can generate021
semantically comprehensive question-answer022
pairs. We conduct extensive experiments on023
three large-scale datasets. The experimental024
results demonstrate that our model achieves025
state-of-the-art performance.026

1 Introduction027

Automatically generating question-answer pairs028

(QAP) from given documents is essential for many029

applications, such as assisting the construction of030

knowledge base, improving search engines by gen-031

erating questions from documents(Liu et al., 2020),032

and training chatbots to make a fluent conversation033

(Tang et al., 2018; Krishna and Iyyer, 2019). How-034

ever, the above tasks rely heavily on a large number035

of human-annotated question-answer pairs. Fur-036

thermore, high-quality manual datasets represent a037

significant expenditure of time and effort. There-038

fore, there is an urgent need for efficient methods039

which can automatically generate a large quantity040

of high-quality question-answer pairs.041
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Figure 1: A simplified view of the different growth
trends between the previous work and our model. The
middle denotes the generated question-answer distribu-
tion in which N is the length of the document and V is
the size of the vocabulary.

Most existing literature about generating 042

question-answer pairs (Liu et al., 2020; Du and 043

Cardie, 2018; Li et al., 2020; Krishna and Iyyer, 044

2019; Tang et al., 2018) adopt a pipeline approach, 045

in which the answer extraction (AE) and the 046

question generation (QG) are independent during 047

the training process. Recently, some researchers 048

have adopted an end2end approach that simultane- 049

ously accomplishes AE and QG. However, for the 050

pipeline and the end2end, there still exist several 051

issues. Firstly, acquiring answers requires select- 052

ing some spans within passages, which will be 053

unnatural and unsuitable for complex applications. 054

Moreover, the extractive method of answering ques- 055

tion is far from sufficient for human-like question- 056

answer pairs. Secondly, as shown in Figure 1, the 057

previous work suffers from vicious competition, 058

which means that both AE and QG cannot optimize 059

collectively. This is because, for AE and QG, the 060

imbalanced loss from the generative distribution 061

space in different sizes leads to the opposed train- 062

ing trends (Vandenhende and Georgoulis, 2021). 063

Thirdly, the interaction of the end2end between the 064

AE and QG merely reflects in the encoder. Thus, 065
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this interaction is insufficient and incomplete so as066

not to generate more compatible question-answer067

pairs.068

In this paper, we propose a unified abstractive069

model (UA-QAP) with the query-guided gate and070

the copy mechanism to address these three issues.071

Specifically, our unified abstractive model takes072

a document as input and generates an answer as073

well as an answer-specific question. Firstly, we074

introduce the copy mechanism(See et al., 2017)075

into our framework, allowing the answer genera-076

tion in an extractive and abstractive way. Secondly,077

we propose to integrate the decoding processes of078

the question-answer generation into the joint archi-079

tecture, in which they can collaborate and benefit080

from each other to generate compatible and high-081

quality question-answer pairs. Moreover, the way082

for question-answer generation can bring mutual083

optimization for the question generation and an-084

swer generation so as to avoid a scenario where085

one task has a domain influence, or both tasks can-086

not achieve the best at the same time. Thirdly, in087

order to make the question match exactly the gen-088

erated answer, we utilize a query-guided gate to089

enhance the information exchange between them.090

To demonstrate the effectiveness of our model,091

we conduct extensive experiments on three bench-092

mark datasets: SQuAD, NewsQA, and CoQA.093

Compared with involved baselines in terms of ques-094

tion generation and answer generation, our model095

achieves state-of-the-art performance. In addition,096

we conduct several ablation experiments to verify097

the effectiveness of each component in our model.098

The contributions of this paper are concluded as099

follow:100

• We propose a unified abstractive model which101

takes advantage of the query-based gate to102

simultaneously generate strongly compatible103

question-answer pairs.104

• Our unified abstractive model for question-105

answer generation can prevent the emergence106

of imbalanced optimization for question-107

answer pair generation.108

• The abstractive network allows answer gener-109

ation in a both extractive and abstractive way110

through the copy mechanism.111

• We conduct extensive experiments on three112

benchmark datasets to evaluate our model in113

regard to question generation and answer gen-114

eration.115

2 Related Work 116

2.1 Question Answer 117

Question answer aims at predicting a continuous 118

sub-span from the document for answering a ques- 119

tion. Extractive question answering has gained 120

widespread attention in the past several years. Sev- 121

eral extractive models have been proposed, includ- 122

ing QANet(Yu et al., 2018), BiDAF(Seo et al., 123

2017) and VQAP(Shinoda and Aizawa, 2020). 124

These methods mainly learn to point out answer 125

boundaries or select a span of consecutive words 126

within the document as the final answers. However, 127

the extractive mechanisms may not work well on 128

generative scenario(Lan and Jiang, 2020; Hsu et al., 129

2021; Baheti et al., 2020; Mao et al., 2021; Nguyen 130

et al., 2016). 131

2.2 Question Generation 132

Most earlier work on question generation has em- 133

ployed template-based or rule-based approaches to 134

convert a sub-span text of the document into many 135

questions(Labutov et al., 2015; Heilman and Smith, 136

2010). With the development of deep learning, 137

there has been a great deal of research on an end- 138

to-end neural network to generate questions(Tang 139

et al., 2017; Song et al., 2017; Yuan et al., 2017; 140

Zhao et al., 2018), which requires the document 141

and additional selected answers as input. However, 142

these models cannot directly generate questions 143

from raw texts. The additional entity and tagging 144

information(Subramanian et al., 2018; Wang et al., 145

2019) have been introduced to decide on which 146

part of a document is used to generate the question. 147

Du and Cardie (2017) proposed a hierarchical neu- 148

ral sentence-level sequence tagging model to iden- 149

tify question-worthy sentences that humans could 150

ask about. Nevertheless, in fact, these techniques 151

mostly contain independent components that have 152

difficulty in tuning for the overall performance. 153

2.3 Question-Answer Pair Generation 154

At present, the main work on generating question- 155

answer pairs has resorted to a pipeline approach 156

(Du and Cardie, 2018; Li et al., 2020; Liu et al., 157

2020; Lee et al., 2020). Du and Cardie (2018) 158

proposed a neural network that incorporates coref- 159

erence knowledge via a novel gating mechanism 160

to detect the question-worthy answer and then gen- 161

erate an answer-aware question. Liu et al. (2020) 162

imitated the way a human asks the question to in- 163

troduce answer-clue-style-aware question genera- 164
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Figure 2: An overview of our proposed model

tion. But the pipeline architecture not only brought165

the incompatibility for question-answer pairs but166

also gave rise to cumulative error during the two-167

stage training. To overcome the shortcomings, Cui168

et al. (2021) introduced a OneStop approach for169

question-answer pair, which integrated the ques-170

tion generation and the answer extraction into a171

unified framework However, the joint training of172

answer extraction and question generation led to173

the imbalanced loss so that it cannot obtain better174

performance. Besides, the interaction between the175

AE and QG merely reflects in the encoder.176

3 Methodology177

In this section, we will present our unified abstrac-178

tive architecture for generating question-answer179

pairs. Section 3.1 shows an overview of our model.180

Section 3.2 and section 3.3 respectively describe181

the answer generation and the question generation.182

Then we introduce the details about the loss func-183

tion in Section 3.4184

3.1 Model Overview185

As you see in Figure 2, our model takes as input a186

document: D = (d1, . . . , dN−1, dN ) of length N187

and separately generates two sequences: a ques-188

tion Q = (q1, . . . , qM−1, qM ) of length M and an189

answerA = (a1, . . . , aL−1, aL) of length L. Math-190

ematically, our goal is to obtain a question-answer191

pair from a document through the joint model:192

Q̄, Ā = arg max
Q,A

P (Q,A|D)

= arg max
Q,A

P (A|D; θ)P (Q|A,D; θ)
(1)193

where document D is a sentence or a paragraph194

that only contains a question-answer pair.195

In this paper, we take T5(Raffel et al., 2020) as 196

the pre-trained model since T5 is a unified frame- 197

work that achieves significant performance on text 198

generation. The unified abstractive model con- 199

sists of three major components: 1) 12-layered 200

pre-trained encoder-decoder based on the trans- 201

former. 2) the query-guided gate. 3) the copy 202

mechanism. The encoder receives a document 203

followed by producing the hidden state henc = 204

(h1, . . . , hN−1, hN ). For the answer generation, 205

the output layer generates an output sequence by 206

absorbing the decoded information and utilizing 207

the copy mechanism. For the question generation, 208

we fuse the decoded information of question and 209

answer via a query-based gate to generate the vo- 210

cabulary distribution. In addition, we add </s> to 211

the end of decoder input in order to prevent contin- 212

uous generation. 213

3.2 Answer Generation 214

In contrast to the pipeline and OneStop, we de- 215

fine the problem of obtaining a candidate answer 216

from a sentence or paragraph as the sequence- 217

to-sequence generation task rather than identi- 218

fying answer spans. Our encoder reads the 219

input sequence D = (d1, . . . , dN−1, dN ) and 220

produces a sequence of hidden state henc = 221

(h1, . . . , hN−1, hN ). Then the decoder takes henc 222

and produces a sequence of hidden state hadec = 223

(ha1, . . . , h
a
L−1, h

a
L) and a sequence of cross atten- 224

tion aadec = (aa1, . . . , a
a
N−1, a

a
N ). We can get the 225

vocabulary distribution Pvoc over all words by feed- 226

ing hadec into a linear layer and a softmax layer. 227

Pvoc(w) = softmax(V ahadec + ba) (2) 228

where V a and ba are learnable parameters. 229

As seen in Figure 3, our component of obtaining 230

answers is hybrid, which can generate words from 231

the vocabulary and copy from the document. We 232

use the attention distribution to produce a weighted 233

sum of the encoder hidden states, named context 234

vector c : 235

c =
∑
i

aai hi (3) 236

After that, our model concatenates the decoder 237

hidden hadec with context vector c and decoder em- 238

beddings ea = (ea1, . . . , e
a
L−1, e

a
L) followed by a 239

linear transformer and a sigmoid function to ac- 240

quire the generation probability Pgen ∈ [0, 1]. 241

Pgen = σ(Wgen[hadec; c; e
a] + bgen) (4) 242
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Figure 3: A sketch of our copy mechanism

where Wgen and bgen are learnable parameters and243

σ is the sigmoid function. Pgen is used as a gate244

which decides on copying words from the input or245

generating words from the vocabulary. Then, we246

obtain the final probability distribution:247

Pa(w) = PgenPvoc(w) + (1− Pgen)Pco(w) (5)248

Pco(w) =
N∑

i:wi=w

aai (6)249

3.3 Question Generation250

After obtaining the answer, our model makes use of251

the answer hidden state hadec to assist in generating252

the corresponding question via a query-based gate.253

Assume that the decoder derives the hidden state254

of question hqdec = (hq1, . . . , h
q
M−1, h

q
M ). Then255

we take advantage of self-attention architecture to256

make the question match the answer closely. In257

view of imperfect matching, we add the gate mech-258

anism to control the information flow in the neural259

network. As figure 4 described,260

Q,V,K = Wqh
q
dec,Wvh

a
dec,Wkh

a
dec (7)261

Attn = softmax(
QV√
dk

) (8)262

Hq = LayerNorm(Attn� V + hqdec) (9)263

where Wq,Wv,Wk are weight matrices and dk264

refers to the the dimension of hqdec. After obtaining265

the Hq, we adopt the gate mechanism to further266

absorb the answer information. Similar to the an-267

swer generation, we employ a linear transformer268

followed by a softmax layer to provide us with our269

final distribution over the vocabulary.270

G = Wgh
a
dec (10)271

Pq(w) = Vq(H
q �G) + bq (11)272

MatMul

Scale
LinearMask

Softmax

MatMul

K V

LayerNorm

Q
LinearLinearLinear

ℎ"#$
% = (ℎ(

%,… , ℎ+,(
% , ℎ+

% ) ℎ"#$. = (ℎ(.,… , ℎ/,(. , ℎ/.)

Linear

𝑃 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛

Figure 4: The query-based gate

where � denotes an element-wise product between 273

two vectors and Wg, Vq, bq are trainable parame- 274

ters. 275

3.4 Loss Function 276

As is shown in Equation 1, the final probability 277

distribution is 278

P (Q,A|D) = Pa(w)Pq(w)

= (

L∏
t=1

p(at|a<t, d; θ))(

M∏
t=1

p(qt|q<t, d, a; θ))

(12) 279

Based on the above formulas, we can calculate the 280

negative log-likelihood of the generated sequences 281

with respect to training data D to update the model 282

parameter θ: 283

Φ = − logPa(w)− logPq(w)

= (
L∑

t=1

p(at|a<t, d; θ)) + (
M∑
t=1

p(qt|q<t, d, a; θ))

= Φa + Φq

(13) 284

4



where Φa and Φq mean the loss function of the285

answer and question.286

In contrast to Cui et al. (2021), we directly add287

up the objective of our model instead of introducing288

a hyperparameter λ to balance the loss between289

question generation and answer generation.290

4 Experiments291

In this section, we make a detailed description of292

datasets, evaluation metrics, baselines, and experi-293

mental settings. Then we compare our model with294

the baselines followed by elaborating the analysis295

of experimental results and conducting the ablation296

experiments.297

4.1 Datasets298

In this paper, we conduct experiments on three ma-299

chine reading comprehension datasets from differ-300

ent perspectives to evaluate our unified abstractive301

model.302

• SQuAD(Rajpurkar et al., 2016): A machine303

reading comprehension dataset consists of304

over 100k crowd-sourced question-answer305

pairs, in which answers exist in the corre-306

sponding documents.307

• NewsQA(Trischler et al., 2017): The crowd-308

workers supply questions and answers for the309

NewsQA based on a set of over 10,000 news310

articles from CNN, with answers consisting of311

spans of text from the corresponding articles.312

• CoQA(Reddy et al., 2019): The CoQA con-313

tains 127k question-answer pairs, harvested314

and refined from 8k conversations about text315

passages from seven diverse domains. The316

questions are conversational, and the answers317

are free-form text with their corresponding318

evidence highlighted in the passage.319

In consideration of the answer extraction for con-320

trast experiments, we remove the data whose an-321

swer is not the sub-span of the corresponding doc-322

ument for SQuAD, NewsQA, and DuReader. Then323

we employ CoQA(Reddy et al., 2019) whose an-324

swer is free-form text to examine the abstractive325

ability of our model. In addition, for all datasets,326

we split the long document into multiple sub-327

documents to construct the data items whose sub-328

document involves a question-answer pair. The test329

split of SQuAD, CoQA, and DuReader are hidden330

from the public. Therefore, We take a portion from331

their validation set as the test set.332

SQuAD NewsQA DuReader CoQA
Size of Train 36078 92449 74403 108647
Size of Dev 1584 5166 4960 2395
Size of Test 4009 5122 3307 5588
Avg.len of document 25.77 36.5 78.0 10.6
Avg.len of question 11.6 7.7 9.6 6.4
Avg.len of answer 3.8 5.5 51.8 2.9

Table 1: The statistics of the filterd datasets

4.2 Baselines and Ablation Tests 333

We conduct experiments on two tasks: question 334

generation and abstractive question answering. To 335

evaluate the performance of our model, we com- 336

pare our method of question generation with the 337

following baselines 338

• DeepNQG(Du et al., 2017): An attetion- 339

based sequence learning model for question 340

generation. 341

• T5-QG: A T5-based model(Raffel et al., 342

2020) for generating question whose input is 343

the document and output is the corresponding 344

question. 345

• T5-A2QG: We follow the pipeline approach 346

and design a two-stage model based on pre- 347

trained T5(Raffel et al., 2020). The first stage 348

takes the document as input followed by gen- 349

erating the answer. Then in the second stage 350

the embedding of the document and the gener- 351

ated answer are concatenated to generate the 352

corresponding question. 353

• OneStop: According to Cui et al. (2021), we 354

reproduce the OneStop model based on a pre- 355

trained T5(Raffel et al., 2020) which can pro- 356

duce simultaneously the extractive answer and 357

the abstractive question. The model takes the 358

document as input and generates the question. 359

Subsequently, the answer generator utilizes 360

the encoder hidden state and decoder hidden 361

state to predict the answer span via the self- 362

attention module. 363

As for answer generation, we compare our 364

task with the following baselines as well as On- 365

eStop(Cui et al., 2021). 366

• T5-QA: A T5-based model for generating an- 367

swer, whose input is the document and output 368

is the corresponding answer. 369

• T5-MPQA: According to the training mode 370

of (Song et al., 2017), we cast both the QG and 371
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QA tasks into one process by training the QG372

and the QA in turn via the joint pre-trained373

model. In this way, we can boost the perfor-374

mance of answer generation by incorporating375

the information from question generation.376

Moreover, we conduct ablation tests to prove the377

validity of each component proposed in this paper.378

• Ours-gate:Ours-gate removes the query-379

based gate while the other components remain380

unchanged.381

• Ours-two-decoder:Ours-two-decoder sepa-382

rately generates the answer and the question383

through an identical encoder and two individ-384

ual decoders. The other components remain385

unchanged.386

• Ours-pointer:We get rid of the copy mecha-387

nism in the process of answer generation to388

investigate its effectiveness.389

4.3 Evaluation Metric390

The performance of question and answer genera-391

tion is evaluated by the following metrics.392

• BLEU(Papineni et al., 2002):BLEU measures393

n-gram precision by counting how many the394

n-gram words in predictions exist in that of395

references. BLEU-1 and BLEU-2 are respec-396

tively calculated by 1-gram and 2-gram.397

• ROUGE-L(Lin, 2004): ROUGE-L measures398

n-gram recall by counting how many longest399

common subsequences in references appear400

in that of predictions.401

• METEOR(Banerjee and Lavie, 2005): ME-402

TEOR calculates the harmonic mean of un-403

igram precision and recall, in which recall404

weights are higher than precision.405

4.4 Experiment Settings406

In our experiment, we utilize pre-trained T5 con-407

taining 12 layers and a hidden size of 768 from408

google T5-base for SQuAD, NewsQA, and CoQA.409

The query-based gate self-attention has 12 heads410

and a hidden dimension of 768. The batch size is411

set to 16, and an Adam optimizer with a learning412

rate of 0.00001 is chosen to perform gradient de-413

scent. All models compute the cross-entropy loss414

for question and answer generation and are trained415

for 7 epochs. Lastly, all the experiments are con-416

ducted with v100 GPUs. Our code will be released417

for the purpose of research.418

Dataset Model BLEU-1 Rouge-L METEOR

SQuAD

DeepNQG 22.0 41.8 16.2
T5-QG 37.3 40.5 26.7

T5+A2QG 34.1 37.9 23.5
OneStop 35.8 35.4 25.4

Ours 38.4 41.6 28.2

NewQA

DeepNQG 12.9 36.8 13.4
T5-QG 30.0 43.5 16.9

T5+A2QG 30.2 30.9 16.6
OneStop 28.3 30.0 15.4

Ours 30.3 44.1 17.4

CoQA

DeepNQG 11.4 35.5 11.5
T5-QG 30.5 41.8 14.2

T5+A2QG 27.7 40.3 13.0
OneStop - - -

Ours 32.3 43.2 16.3

Table 2: The comparison on question generation

4.5 Experiment Result and Analysis 419

Question Generation: The experimental results 420

about question generation are listed in Table 2. In 421

terms of METEOR, it is usually considered as the 422

comprehensive evaluation metric for text genera- 423

tion. Compared to T5-QG, Ours can benefit from 424

the generated answer as well as the query-guided 425

gate. For the pipeline approach of T5-A2QG, our 426

model separately outperforms T5-A2QG by 4.7 427

points on SQuAD, 0.8 points on NewQA, and 3.3 428

points on CoQA, which explains that our unified 429

model can improve the question generation through 430

the interaction between question and answer. Our 431

model exceeds OneStop by 2.8 points on SQuAD 432

and 2 points on NewsQA. The comparison between 433

OneStop and our model proves that the abstractive 434

answer is more effective than extracted answer in 435

enhancing question generation. 436

Answer Generation: Since Song et al. (2017) 437

adopts a unified generative model for question gen- 438

eration, we re-implement a version T5-MPQG with 439

T5. We compare our model with T5-QA and T5- 440

MPQG on the answer generation.

Dataset Model BLEU-1 Rouge-L METEOR

SQuAD

T5+QA 23.7 54.0 21.2
T5+MPQG 18.3 55.9 21.0

OneStop 29.1 43.2 30.0
Ours 25.8 46.6 33.0

NewsQA
T5+QA 31.8 57.0 38.7

T5+MPQG 18.3 55.9 29.0
OneStop 29.7 48.9 40.0

Ours 27.2 59.0 45.9

CoQA
T5+QA 18.5 54.1 21.3

T5+MPQG 20.9 58.4 24.7
OneStop - - -

Ours 24.3 48.9 29.1

Table 3: The comparison between the baselines and our
model on answer generation
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As can be observed in Table 3, our model obtains441

obvious improvement in promoting the answer gen-442

eration on three benchmark datasets, achieving a443

state-of-the-art METEOR score of 33.0 on SQuAD,444

45.9 on NewsQA, and 29.1 on CoQA. T5+MPQG445

surpasses T5+QA on SQuAD and NewsQA but446

is weak on CoQA, which indicates that question447

generation is helpful in enhancing the answer gen-448

eration when the answers exist in documents. On449

the contrary, the answer generation of our model450

still benefits from the question generation since our451

model adopts the joint training via the identical452

encoder-decoder. The performance on CoQA il-453

lustrates that our model is capable of generating454

answers which are not sub-spans of the document.455

Question-Answer Pair: Based on the above456

analysis, we can conclude that our model achieves457

better performance than baselines with regard to458

question generation (QG) and answer generation459

(AG).460

To show the ability of mutual optimization for461

QG and AG, we compare our model with OneStop462

on SQuAD in Figure 5. As for OneStop, we add463

the loss from the question and answer with a hyper-464

parameter λ465

Φ = Φa + λΦq (14)466

where Φa and Φq respectively mean the loss of467

answer and question.468

Different from OneStop, our model adds some469

linear layers that adopt a random initialization strat-470

egy to question generation and answer generation.471

This explains why our model is inferior to OneStop472

in the beginning. In the left of Figure 5, we can473

observe that at first, the QG in OneStop rapidly474

reaches the highest, and subsequently, it starts to475

decline. However, the AG continues to rise. In476

contrast, both the QG and the AG in our model477

show mutual growth.478

In order to better evaluate the overall perfor-479

mance between QG and AG, we design a new eval-480

uation metric named CM ,481

CM =
Mra

Mra +Mrq
Mrq +

Mrq
Mra +Mrq

Mra (15)482

whereMra refers to METEOR of answer andMrq483

means METEOR of question. The CM is able to484

measure the overall result of generated question-485

answer pairs by adding up the cross-weighted ME-486

TEOR.487

Dataset Model
BLEU-1 Rouge-L METEOR

QG AG QG AG QG AG

SQuAD

Ours-gate 21.7 19.0 35.4 58.8 19.4 21.7
Ours-two-decoder 35.0 21.9 38.6 62.3 24.7 26.6

Ours-pointer 19.9 18.1 33.9 55.8 17.8 22.1
Ours 38.3 25.8 41.3 46.6 27.7 33.0

NewQA

Ours-gate 30.3 20.7 40.1 61.8 13.0 31.5
Ours-two-decoder 17.4 23.8 38.9 60.3 11.8 40.7

Ours-pointer 16.9 19.5 40.4 61.8 13.0 31.5
Ours 30.3 27.2 44.1 59.0 17.4 45.9

CoQA

Ours-gate 10.2 17.9 39.0 66.6 10.2 19.3
Ours-two-decoder 9.4 15.8 37.7 63.6 9.7 16.8

Ours-pointer 23.6 16.0 38.2 64.1 9.2 16.7
Ours 32.3 24.3 43.2 48.9 16.3 29.1

Table 4: The evaluation results about ablation experi-
ments. In this table, QG refers to the question genera-
tion, and AG means answer generation.

As is shown in the right of Figure 5, CM in our 488

model keeps growing and eventually reaches about 489

30 points. While in OneStop, after a temporary 490

increase, CM starts to fall. 491

In Figure 5, we can observe that in OneStop, the 492

different loss weights from the question not only 493

affect the respective growth trend of both tasks but 494

also cause a shift in overall performance. This phe- 495

nomenon indicates that question generation (QG) 496

and answer generation (AG) suffer vicious compe- 497

tition during the training and can not reach joint op- 498

timization. While in our model, the unified frame- 499

work brings mutual optimization for QG and AG 500

so that both tasks can enhance each other. 501

4.6 Ablation Experiments 502

We also conduct extensive ablation experiments to 503

show the effectiveness of our proposed components 504

in Table 4. Firstly, we turn off the query-based gate 505

of our model, which is short for Ours-gate. We still 506

take METEOR as our metric. In this case, we can 507

observe that the average results drop 11.8 points in 508

AG and 6.3 points in QG on three datasets, which 509

indicates that the query-based gate has the ability 510

to improve the interaction between AG and QG. Es- 511

pecially, our model with two decoders to separately 512

decode question and answer through the shared 513

encoder is denoted as Our-two-decoder. Unsurpris- 514

ingly with two decoders, the performance decreases 515

averagely by 8 points in AG and 5 points in QG. It 516

is demonstrated that our unified framework is effec- 517

tive in enhancing information exchange to generate 518

compatible question-answer pairs. Next, removing 519

the pointer from our model leads to a catastrophic 520

performance. This is because our pointer allows 521

QA to copy the words from the document. 522
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Figure 5: The Comparison results of our model with OneStop On SQuAD. The horizontal axis refers to the
number of steps, and the vertical axis denotes the METEOR score. The left respectively shows METEOR change
of question and answer during the training, and the right represents the overall performance change of our model
and OneStop. 0.8 and 0.5 refer to the weight λ.

4.7 Case Study523

To better illustrate the superiority of our model, we524

present some cases from our model as well as On-525

eStop in Table 5, where OneStop is our implement526

of (Cui et al., 2021). In general, our model can527

generate more accurate, readable, and compatible528

question-answer pairs. As can be seen in the first529

case, ’how much money’ expresses more directly530

and accurately than ’what is the size’ as regards the531

amount. For the second case, we can observe that532

both our model and OneStop can generate a read-533

able and reasonable question, while the question-534

answer pair of our model is closer than that of535

OneStop. From the above cases, our model can pro-536

duce semantically similar but structurally different537

questions and comprehensive answers, which can538

account for the relatively low metrics. To sum up,539

these cases can indicate our model has the strong540

ability of comprehension and generation.541

5 Conclusion542

In this paper, we propose a unified generative543

model based on the pre-trained T5 for better gen-544

erating compatible question-answer pairs. Com-545

pared to previous work, our model is able to obtain546

answers in an extractive and abstractive way. In547

addition, the unified model with the query-guided548

gate can improve each other to achieve mutual op-549

timization. Extensive experiments on three bench-550

mark datasets show that our model outperforms551

state-of-the-art baselines. The ablation study il-552

lustrates the effectiveness of each component pro- 553

posed in our model. For future work, we will apply 554

our model to generate question-answer pairs from 555

multi-paragraph documents. 556

Criteria D: HarVard’s $37.6 billion financial
endowment is the largest of any
academic institution

Q: What is the size of the school’s
endowment?

A: $37.6 billion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OneStop Q: What is the largest financial en-
dowment in Harvard?

A: billion
Our model Q: How much money is Harvard’s

financial endowment?
A: $ 37.6 billion financial endow-

ment

Criteria D: The invading Normans and their
descendants replaced the Anglo-
Saxons as the ruling class of Eng-
land

Q: Who was the ruling class ahead
of the Normans?

A: Anglo-Saxons
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OneStop Q: What did the Normans replace?
A: the ruling class of England

Our model Q: What was the ruling class of Eng-
land?

A: An Anglo-Saxons as the ruling
class

Table 5: Selected outputs from our model and On-
eStop. Both Answer and Question are from the refer-
ence dataset.
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