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Decoding Urban Industrial Complexity: Enhancing
Knowledge-Driven Insights via IndustryScopeGPT

Anonymous Author(s)

ABSTRACT
Industrial parks are critical to urban economic growth. Yet, their de-
velopment often encounters challenges stemming from imbalances
between industrial requirements and urban services, underscor-
ing the need for strategic planning and operations. This paper
introduces IndustryScopeKG, a pioneering large-scale multi-modal,
multi-level industrial park knowledge graph, which integrates di-
verse urban data including street views, corporate, socio-economic,
and geospatial information, capturing the complex relationships
and semantics within industrial parks. Alongside this, we present
the IndustryScopeGPT framework, which leverages Large Lan-
guage Models (LLMs) with Monte Carlo Tree Search to enhance
tool-augmented reasoning and decision-making in Industrial Park
Planning and Operation (IPPO). Our work significantly improves
site recommendation and functional planning, demonstrating the
potential of combining LLMs with structured datasets to advance
industrial park management. This approach sets a new benchmark
for intelligent IPPO research and lays a robust foundation for ad-
vancing urban industrial development.

CCS CONCEPTS
•Applied computing→Computer-aided design; •Human-centered
computing → Collaborative and social computing.

KEYWORDS
Urban Knowledge Graph, Industrial Park Planning and Operation,
Large Language Model Agent

1 INTRODUCTION
Industrial parks are key engines driving urban economic growth
and centers of innovation within cities. They connect the economy,
living environments, and environmental sustainability, fostering
the integration of technological innovation and urban life [29].
However, many face a significant imbalance between industrial
growth and urban service provision, leading to unsustainable devel-
opment patterns [2]. This imbalance highlights the urgent need for
strategic and scientific planning and operation of industrial parks.
Such operation requires a comprehensive consideration of local
economic levels, infrastructure, and industrial foundations, aim-
ing to provide optimization suggestion, public service facility site
recommendation, and comprehensive industrial zone planning [3].
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Traditional approaches, often based on empiricism and outdated
surveys, fail to dynamically integrate rich urban data for deep ana-
lytical insights. [1, 21].

With the progress of information collection technologies, multi-
source and multi-modal urban data is rapidly accumulating. The
advancement of artificial intelligence further enhances intelligent
urban services and tasks such as traffic management [33],urban
planning [22], urban function prediction [37], public safety [15], and
site recommendation [10]. However, the application of intelligent
operation and planning in industrial parks still holds significant
untapped potential. The emergence of Large Language Models
(LLMs) [19] heralds a significant shift, as they possess powerful
language reasoning and in context learning capabilities [27]. This
adaptability makes them exceptionally suitable for tackling the
complexities of urban systems, thus paving the way for new ap-
proaches to unified and adaptive solutions in intelligent industrial
park planning and operation (IPPO).

Challenge 1: How to effectively construct an industrial
park dataset capturing complex relationships and semantics?

Current datasets often overlook the detailed needs of industrial
parks, focusing mainly on geographical features and neglecting
multi-modal data like cultural and socio-economic elements. Indus-
trial park data is typically multi-source and heterogeneous, includ-
ing information sources such as enterprises, government websites,
statistical yearbooks, street views, etc. Although these data are
not explicitly linked, they inherently share attributes and spatial
relationships that constitute rich semantic information. To thor-
oughly evaluate an industrial park’s development, it is essential
to leverage multidimensional information. Knowledge graphs, by
organizing and integrating these diverse data sources, offer a stream-
lined framework that enhances data management and application
in industrial park settings.

Challenges 2: How to adapt LLMs for industrial park KG?
Industrial park knowledge graphs differ from general knowledge

graphs by being heterogeneous, incorporating image, textual, nu-
merical, and geospatial data with intricate entity relationships. Un-
like LLMs focused on textual tasks, they require real-time geospatial
data transmission and computations, necessitating graph databases
and tools for live interactions (Figure 1). To address the limita-
tions of static knowledge in LLMs, integrating real-time knowledge
graph databases and leveraging retrieval-augmented generation
(RAG) methods [7] offer a promising solution. Further research is
needed to enhance LLMs’ reasoning by bridging the gap between
knowledge bases and user queries effectively.

Challenge 3: How can LLMs flexibly and interpretably
excel in diverse IPPO tasks?

Intelligent planning and operation of industrial parks require
the unification of numerous tasks. Traditional urban models, often
trained on specific datasets for particular tasks, lack the neces-
sary flexibility for broader applications. For example, the features
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Figure 1: The challenges in Integrating LLMs for IPPO Solutions.

considered for situating financial institutions versus restaurants
differ significantly, making it costly to retrain models. Additionally,
popular methods like CNN-based spatial representational learn-
ing [16] can diminish the interpretability and credibility of deci-
sions. Improving decision explainability through clear metrics and
continuous reasoning is essential for effective industrial park plan-
ning. While recent advancements in LLM multi-step reasoning [26]
and autonomous agents [36] show promise for flexibility and in-
terpretability, these often operate in isolation and could benefit
from integration with external graph databases to enhance their
reasoning capabilities.

To tackle the challenges mentioned, this paper introduces a pio-
neering work that constructs a multi-modal, multi-level large-scale
industrial park knowledge graph, IndustryScopeKG. By extracting
entities from diverse multi-modal data sources and combining do-
main knowledge, a substantial industrial park knowledge base with
various spatial and semantic relationships has been built. The Indus-
tryScopeGPT framework is introduced to enable LLMs to dynami-
cally adapt to the structure of the knowledge graph and enhance
decision-making capabilities through Monte Carlo Tree Search and
reward information. The performance of the framework in IPPO
tasks is validated through the development of IndustryScopeQA
benchmark, demonstrating the reliability and advantages of the
framework in handling domain tasks. Our contributions are sum-
marized as follows:

• We innovatively release the first open-source, multi-modal,
multi-level (spatial and semantic level) large-scale knowl-
edge graph dataset, IndustryScopeKG, for diverse tasks in
industrial parks.

• We introduce the IndustryScopeGPT framework, which en-
hances LLMs’ planning, action, and reasoning capabilities
through the integration of external graph databases and var-
ious tools, including Monte Carlo Tree Search for optimal
reasoning paths. This framework represents the inaugural
implementation of LLMs’ fusionwith spatial computing and
dynamic reasoning on graph databases containing external
geographic data.

• We introduce the IndustryScopeQA benchmark to evaluate
the IndustryScopeGPT framework’s performance. Experi-
ments on site selection and industrial park planning confirm

that the IndustryScopeKG dataset and framework enhance
the efficiency and adaptability of LLMs.

2 RELATEDWORK
2.1 Urban Intelligence and Dataset
Researchers utilize deep learning models to extract representations
from urban data like satellite images, Points of Interest (POI), grids,
and road networks [23, 30, 31]. However, the lack of interpretability
in these models hampers understanding and restricts their practical
application in urban settings. Additionally, these models tend to fo-
cus on specific tasks, lacking generality and generalization abilities.
Urban knowledge graphs, organizing urban entities into a complex
graph, have become crucial in modern smart cities [17]. Challenges
include limited datasets tailored for specific tasks and the absence
of publicly available urban knowledge graphs, hindering research
progress. Initiatives like OpenSiteRec [10] and UUKG [18] employ
heterogeneous graphs to enhance brand site recommendations
and urban spatio-temporal predictions. ReCo [6] offers datasets on
residential community layouts with precise vector coordinates, ben-
efiting architecture and urban planning. The reliance on single data
sources in existing datasets limits the integration of multi-modal
urban data, impacting the understanding of urban diversity and the
analysis of complex urban systems.

2.2 LLMs Reasoning
LLMs exhibit strong capabilities through enhanced reasoning abili-
ties via logical structures like chains [26], trees [35], and graphs [20].
Recent advancements enable large models to access internal and
external knowledge for improved decision-making [7]. LLMs are
increasingly used as central controllers for autonomous agents with
human-like decision-making skills [25]. They have spurred innova-
tion in urban research, such as developing mobility strategies [24],
simulating disease spread [28],urban planning [39] and complex
spatio-temporal question answering [11]. However, these meth-
ods primarily focus on textual spatio-temporal features, neglecting
multi-modal urban knowledge.
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Table 1: Urban Dataset Comparison

Dataset Image
(Street View)

Socioeconomic
Indicators

Geographical
Data

Semantic
Feature Multi-scale Size Open

Source

WANT [14] ✓ ✓ 100∗
𝑂2-SiteRec [32] ✓ 39,465
UrbanKG [12] ✓ ✓ ✓ 17,407,159

UrbanKGent [17] ✓ ✓ 67,978 ✓
OpensiteRec [10] ✓ ✓ 6,170,925* ✓
KnowSite [13] ✓ ✓ ✓ 920,504 ✓
UUKG [18] ✓ ✓ 1,490,680 ✓

IndustryScopeKG(Ours) ✓ ✓ ✓ ✓ ✓ 51,684,939 ✓

* denotes the approximate number w.r.t.the corresponding paper
For taubular data,‘size’counts the number of data points, and for KG, it counts the number of triples in total.

3 INDUSTRYSCOPEKG
3.1 Data Collection and Pre-processing
3.1.1 Data Acquisition. We opted to acquire multi-source spatio-
temporal data from the Shanghai, China, considering the richness
and availability of information relevant to industrial parks Figure 2.
The data sources mainly come from three aspects:

Figure 2: Park Vectorization and Grid Processing.

Urban Geospatial Data: Includes (1) detailed building foot-
prints, areas of interest (AOI), and mobility data based on mobile
positioning collected from Baidu Map; (2) points of interest (POI)
data and public transport station data from Amap.

Corporate Data: Includes (1) industrial and commercial regis-
tered enterprise data retrieved from enterprise information inquiry
website Qichacha; (2) enterprise patent data and software copy-
right data from the National Intellectual Property Administration;
(3) listed company data, state-owned enterprise data, high-tech
enterprise data, small and medium-sized enterprises (SMEs) in tech-
nology, and overseas (cooperative) company data from Macrodatas.

Socioeconomic Data: Includes (1) census data and regional
GDP data from government reports; (2) up-to-date information on
housing prices from Beike . Note that all of the data is collected
from open-source data sources to fulfill the ethical regulations.

3.1.2 Data Pre-processing. Before constructing the IndustryScopeKG,
significant data preprocessingwas necessary, focusing on geospatial
tasks like geocoding and spatial positioning. We manually outlined

the vector boundaries of each industrial park using maps of Shang-
hai’s industrial parks, converting text addresses into geocoded lati-
tude and longitude coordinates. Additionally, we standardized the
coordinate systems of the multi-source data to the Baidu system for
accurate positioning within industrial park boundaries. Integrating
visual models, we employed semantic segmentation of street view
images to calculate the green view index, used object detection to
assess permeability, and trained models on street view charm value
based on expert ratings.

3.2 Knowledge Graph Construction
3.2.1 IndustryScopeKG. Definition. We define the graph 𝐺 =

(𝐸, 𝑆, 𝑌 ), where 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒 |𝐸 | } is a set of |𝐸 | entities, 𝑆 de-
notes the set of relational triples, and 𝑌 encompasses the set of
attributional triples. Specifically,

Relational Triples: 𝑆 ⊆ 𝐸 × 𝑅 × 𝐸 represents a collection of
triples that delineate the relationships between entities, with 𝑅

constituting a set of |𝑅 | distinct relations. For instance, “Company
– Located In – Industrial Park”.

Attributional Triples: 𝑌 ⊆ 𝐸×𝐴×𝑉 constitutes a set of triples
indicating the attributes of entities, where 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴 |𝐴 | }
represents a collection of |𝐴| attributes, with each attribute 𝐴𝑖 ∈ 𝐴

paired with a corresponding set of values 𝑉𝑖 ∈ 𝑉 . For example,
“Industrial Park – Number of Companies – 500” (Figure 4).

3.2.2 Relational Triples Extraction. Entity Extraction. For the
IndustryScopeKG, we extract entities from 8 major categories and
32 sub-categories. The major categories include: (1) Industrial
Parks, encompassing 264 industrial parks in Shanghai. (2) Grids,
which are 128,866 fine-grained spatial grids derived from gridding
industrial parks. (3) Grid Dominant Functions, identified from
calculating the dominant Points of Interest (POI) within the grids.
The data is then adjusted using AOI information, resulting in 15
types of grid functions such as business offices, commercial ser-
vices, residential areas, among others. (4) POI, serving as the basic
functional units and places, including 15 POI sub-categories such
as residential, green spaces, business offices, commercial services,
etc. (5) Enterprises, including entities of 1,058,656 enterprises
within the parks. (6) Enterprise Industries, comprising primary
industries, secondary industries, tertiary industries, and scope of
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Figure 3: IndustryScopeKG Construction Pipeline.

operations, divided into 4 sub-categories. (7) Industrial Park In-
dustries, covering planned industries, leading primary industries,
leading secondary industries, leading tertiary industries, and lead-
ing scope of operations, divided into 5 sub-categories. These are
established based on the frequency and significance of their oc-
currence within the enterprises in the parks. For industrial park 𝑃 ,
with enterprises set 𝐸𝑃 , and industry categories𝐶1,𝑃 ,𝐶2,𝑃 ,𝐶3,𝑃 cor-
responding to primary, secondary, and tertiary sectors, the leading
industry and scope of operation are identified as:

𝐿𝑘,𝑃 = argmax
𝑐𝑘 ∈𝐶𝑘,𝑃

(
|{𝑒 ∈ 𝐸𝑃 |𝑒 is categorized as 𝑐𝑘 }|

|𝐸𝑃 |

)
(1)

𝑂𝑠,𝑃 = argmax
𝑠∈𝑆𝑃

(
|{𝑒 ∈ 𝐸𝑃 |scope 𝑠 is listed in 𝑒′𝑠 operations}|

|𝐸𝑃 |

)
(2)

where 𝐿𝑘,𝑃 is the leading industry for the category level 𝑘 and
𝑂𝑠,𝑃 represents the predominant scope of operations based on the
enterprise’s registered activities within 𝑃 .

(8) Grid Industries, following a similar classification structure
to industrial parks, are divided into four sub-categories.

Relation Extraction.We extracted spatial and semantic rela-
tionships. Spatial relationships include geographical containment
and adjacency; semantic relationships cover the similarity between
industrial parks, the correlation of industries within industrial parks,
and possession.

Geographical Containment: This explains how one entity
is located within another entity, categorized into three types: (1)
POI/Enterprise Located in Grid, (2) POI/Enterprise Located in In-
dustrial Park, and (3) Grid Located in Industrial Park, facilitating
detailed spatial analysis.

Geographical Adjacency: This refers to the spatial proximity
between entities, detailed in two types: (1) Grid Adjacent to Grid:
Identifies proximity and adjacency between grids. (2) Industrial Park
Adjacent to Industrial Park: Similarly, this specifies the proximity
between parks.

Similarity: Indicates the resemblance between industrial parks,
expressed as Industrial Park Similar to Industrial Park. We compute

the embeddings for each industrial park’s unique features and assess
park similarities based on cosine distance.

Industry Correlation: Denotes the connection between indus-
trial parks based on industry characteristics, expressed as Industrial
Park Related to Industrial Park. We derive embeddings for each
park’s industry-related aspects, such as planned industries and lead-
ing industries. An industry correlation link is forged between two
parks if their industry similarity surpasses a threshold of 0.9.

Possession: Connects entities with what they possess. For ex-
ample, Industrial Park Has Planned Industries, Grid Has Leading
Primary Industries, and Enterprise Has Scope of Operations.

3.2.3 Attributional Triples Extraction. To address the challenge of
managing diverse entity attributes in a graph database, we use at-
tributional edges for efficient navigation and analysis. Establishing
a comprehensive evaluation system is crucial for the robust devel-
opment of industrial parks, involving an in-depth exploration of
urban vitality and industrial park evaluation frameworks [40]. By
analyzing regions like Silicon Valley based on People, Economy, So-
ciety, Place, and Governance, detailed data reveals the importance
of a quantifiable indicator system covering Industrial Development,
Urban Life, and Innovation and Entrepreneurship.

Industrial Development: Includes the number of enterprises,
large-scale enterprises, average registered capital, state-owned en-
terprises, listed companies, and industrial agglomeration, match
degree of planned industries, working population, GDP, office build-
ing area and its proportion, etc.

Urban Life: Includes accessibility to residential functions, pub-
lic services, transportation stations, functional diversity, density of
public service functions, of function richness, function compatibil-
ity, average housing price, work-life balance index, etc.

Innovation and Entrepreneurship: Includes the number of
newly registered enterprises, technology-based SMEs, high-tech
enterprises, overseas (cooperative) companies, patents and copy-
rights, and industrial diversity, accessibility of innovation support
functions, population with higher education, density of financial
services, density of research functions, etc.
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Table 2: The Statistics of Entities

Basic Statistics Industrial Park Grid Grid Dominant Function POI Enterprise Total

Count 264 128,866 15 112,931 1,058,656 1,300,732

(Leading) Industries Primary Secondary Tertiary Scope of Operations Planned

Industrial Park 202 258 261 261 70 1,052
Grid 1,142 6,270 10,281 20,246 / 37,939

Enterprise 18 90 392 891,814 / 892,314

Table 3: The Statistics of Triples

Relation Head & Tail Entity Triple
Records

Locate in

(POI, Grid)
(Enterprise, Grid)

(POI, Industrial Park)
(Enterprise, Industrial Park)

(Grid, Industrial Park)

2,516,160

Adjacent to (Grid, Grid)
(Industrial Park, Industrial Park) 488,401

Similar to (Industrial Park, Industrial Park) 3,765
Related to (Industrial Park, Industrial Park) 10,687

Has
E.g., (Industrial Park, Planned Industries)

(Grid, Leading Scope of Operations)
(Grid, Dominant Functions)

4,252,341

Attribution

(Industrial Park, Value) (with 111 attributions)
(Grid, Value) (with 82 attribution)

(POI, Value) (including 15 attributions)
(Enterprise, Value) (with 36 attributions)

44,413,585

Within this framework, the industrial park encompasses 74
specific sub-indicators, while the grid is detailed through 48 sub-
indicators. By employing a correlative computational strategy, we
seamlessly integrate the unique attributes of smaller spatial units,
such as individual grids, into the broader analysis of large-scale
entities like industrial parks.

3.2.4 IndustryScopeKG Management. Following the outlined pro-
cess, we have constructed a knowledge graph that contains 2,232,037
entities and 51,684,939 triples. To manage this expansive scale ef-
fectively, we employ the Neo4j graph database system for storage,
querying, and updates. A key advantage of Neo4j is its spatial ca-
pabilities, which greatly enhance our ability to perform spatial
computations.

4 PRELIMINARY
4.0.1 Problem Formulation. When addressing user queries, we de-
veloped an LLM-driven agent that is capable of generating text re-
sponses and interactingwith external tools that facilitate interaction
with graph databases. Following action- reflection style work [38],
we define the agent’s action state at each step 𝑡 as 𝑎𝑡 ∈ 𝐴, which is
a combination of the text generation 𝐴𝑡 and the tool action 𝐴𝑡 ∈ 𝑇 .
Such a state pair is represented as 𝑎𝑡 = (𝐴𝑡 , 𝐴𝑡 ), where thought
𝐴𝑡 is intended to encapsulate an understanding of key information
and guide the subsequent action 𝐴𝑡 . This action is determined by

the policy 𝜋 (𝐴𝑡 | 𝑄, 𝑎1, 𝑜1, . . . , 𝑎𝑡−1, 𝑜𝑡−1, 𝐴𝑡 ). The initial input 𝑄
includes the user’s query, task description, schema, tool instruc-
tions, and some few-shot examples. To balance exploration and
exploitation in finding the best trajectory, we used Monte Carlo
Tree Search (MCTS) [4]. This approach views the large planning
space of IPPO-related decision-making tasks as a tree search pro-
cess. This approach is necessary due to the agent’s uncertainty, the
improper use of tools or their execution failures, and the potential
for better evaluation dimensions or solutions. In this process, each
node state is 𝑆 = [𝑄, 𝑎1, . . . , 𝑎𝑡 , 𝑜1, . . . , 𝑜𝑡 ]. The final answer is de-
rived from the output of the last leaf node on the best trajectory.
Each iteration of MCTS consists of four steps:

4.1 Monte Carlo Tree Search Planner
Selection: The process initiates at the root node (initial state), u
employing an enhanced UCT (Upper Confidence bounds applied to
Trees) [9] algorithm to guide the search towards promising areas
for expansion. This approach dynamically balances exploration
and exploitation based on aggregated rewards. The core of this
refinement is the updated UCT formula:

𝑈𝐶𝑇 = 𝑋 + (𝑊 × 𝐷𝑛) ×
√︂

2 ln(𝑁 )
𝑛

(3)

Where𝑋 is the average reward of the node, indicating the node’s
past performance.𝑊 represents the initial exploration weight. 𝐷
is the decay factor, reducing exploration emphasis with each addi-
tional visit to encourage more exploitation of the node as it becomes
more familiar. 𝑛 counts the visits to the current node, and 𝑁 denotes
the total visits to the parent node.

The search progresses, picking actions that either resolve the
query or demand further exploration until a termination condition
is met. The search process terminates either when a solution is
found, or upon reaching a maximum depth, preventing overly deep
and less relevant explorations. Additionally, in certain tasks, the
process can be configured to terminate if a tool is called more than
four times consecutively, safeguarding against redundant searches
and ensuring every step meaningfully advances towards a solution.

Expansion: During expansion, the search widens by generating
new child nodes from feedback on executed actions, all recorded in
a long-term memory. Each node undergoes a scalar evaluation to
aid future node selection, focusing on simulations that highlight
the most promising paths. This phase enables the parallel execution
of the best N potential actions, thereby expanding the exploration
domain and enhancing the decision tree’s coverage.
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Figure 4: Overview of IndustryScopeGPT.

Reflection: Post-action execution, outcomes are assessed, incor-
porating LLM based self-reflection and external feedback to score
decisions. To avoid potential misinterpretations due to a lack of
context—limited visibility to previous node information—the reflec-
tion process also leverages the trajectory’s memory. This includes
a history of executed actions and generated outcomes, ensuring a
comprehensive contextual understanding.

Back-propagation: Following reflection, the values of nodes
along the explored paths are updated based on the outcomes of
simulations. This critical phase integrates the insights gained from
exploration into the decision-making architecture, ensuring that
each node incrementally approaches the optimal solution within
the complex decision-making landscape of industrial park plan-
ning and operation. The back-propagation uses a recursive update
mechanism,

𝑉 (𝑛) = 𝑉 (𝑛) + 𝑅 −𝑉 (𝑛)
𝑁 (𝑛) (4)

where 𝑉 (𝑛) is the current value of node 𝑛, 𝑅 is the reward ob-
tained from the simulation, and 𝑁 (𝑛) is the number of visits to
node 𝑛, incrementally enhancing the tree’s accuracy and strategic
depth with each iteration.

4.2 Decision Support Tools
In crafting a multifaceted decision support system for IPPO, we’ve
developed a suite of nuanced sub-task tools. These tools interact
with a Neo4j graph database to facilitate sophisticated queries, anal-
yses, and recommendations, directly addressing the complex needs

of urban planners, investors, and businesses. Here’s an overview of
the integrated tools and their primary functionalities:

Cypher Searcher: Tailored to generate and execute Cypher
queries based on user inquiries, this tool sifts through the graph
database to provide detailed insights into industrial park attributes,
facilities, and demographics, streamlining the data retrieval process
for specific user queries.

Similarity Searcher: Based on a semantic similarity, this tool
searches and recommends parks with high similarity to the user’s
input, e.g., type of business. By analyzing the match between park
features and user’s specified business or operational criteria.

Geo-encoder: The tool is designed to real-world convert textual
addresses into precise geographic locations, specifically identifying
relevant grid IDs within a Neo4j graph database. This conversion
allows for a seamless mapping of user-provided locations to the
spatial framework of the database.

Geo-decoder: Conversely, the tool translates geographic grid
IDs, obtained from spatial queries or system recommendations,
back into human-readable textual addresses.

Rank Master: By ranking industrial parks or specific grids
based on an array of metrics like accessibility, POI density, and
demographic indicators, this tool guides users towards making
informed decisions, prioritizing locations that best match their
specified criteria.

Function Planner: An assistant designed to propose functional
planning suggestions for specified areas. Given a grid, it not only
retrieves information for the designated and adjacent grids but
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Table 4: Park- Level Site Recommendation

Methods and Knowledge Accuracy Precision Recall F1

GPT-4 w Table/ SE / / / /
GPT-4 w Cypher Searcher 0.04 0.242 0.220 0.224
CoT w Tools 0.127 0.319 0.319 0.320
ReAct w Tools 0.088 0.276 0.276 0.276
IndustryScopeGPT w Tools 0.204 0.443 0.440 0.441

Table 5: Conditional Park-Level Site Recommendation

Methods and Knowledge Accuracy Precision Recall F1

GPT-4 w Table/ SE / / / /
GPT-4 w Cypher Searcher 0.194 0.555 0.429 0.464
CoT w Tools 0.166 0.488 0.488 0.488
ReAct w Tools 0.205 0.539 0.462 0.485
IndustryScopeGPT w Tools 0.233 0.659 0.566 0.590

Table 6: Grid-Level Site Recommendation

Methods and Knowledge Accuracy Precision Recall F1

GPT-4 w Table/ SE / / / /
GPT-4 w Cypher Searcher 0.064 0.368 0.368 0.368
CoT w Tools 0.236 0.488 0.480 0.483
ReAct w Tools 0.232 0.509 0.428 0.457
IndustryScopeGPT w Tools 0.292 0.584 0.572 0.577

Table 7: Conditional Grid-Level Site Recommendation

Methods and Knowledge Accuracy Precision Recall F1

GPT-4 w Table/ SE / / / /
GPT-4 w Cypher Searcher 0.161 0.475 0.437 0.450
CoT w Tools 0.127 0.550 0.395 0.433
ReAct w Tools 0.06 0.258 0.181 0.204
IndustryScopeGPT w Tools 0.194 0.492 0.483 0.487

/ represents mostly zero or near-zero metrics.

also synthesizes these insights to offer strategic planning advice
(Figure 5).

Figure 5: Typical Reasoning Chain using Tools.

5 EXPERIMENT
To validate the effectiveness of IndustryScopeKG and the Indus-
tryScopeGPT framework, we aim to address the following research
questions:

RQ1:Can the data and graph structure provided by IndustryScopeKG
effectively impact the performance of LLMs on IPPO?

RQ2: How does IndustryScopeGPT perform on tasks based on
IndustryScopeKG compared to existing LLM prompting paradigms?

RQ3: How can IndustryScopeGPT serve industrial park func-
tional planning?

To explore these questions, we designed two typical IPPO tasks.

5.1 Multi-spatial Scale Facility Siting
Recommendation (RQ1, RQ2)

To improve facility siting flexibility, we introduce a multi-spatial
scale recommendation task that leverages LLM’s reasoning abilities

to analyze and filter spatial attribute features for optimal facility
siting, regardless of scale or facility type.

Dataset. We created 20,000 siting questions across various spa-
tial scales and facility categories, incorporating attribute data from
industrial parks and grids in the IndustryScopeKG. LLM identified
5-8 key evaluation attributes for each question, resulting in three
sets. Domain experts selected one set through consensus-building,
and top areas were determined using an optimal ranking method,
forming question-answer pairs. We used 200 question-answer pairs
covering diverse spatial scopes and facility types for test.

Baseline Methods (RQ1). To assess the effectiveness of Indus-
tryScopeKG, we evaluated the performance of GPT-4 in various
configurations: alone, with tabular input for structured data process-
ing, integrated with a search engine to enhance data retrieval capa-
bilities, and combined with Cypher for querying graph databases.
This approach allowed us to compare the impact of different data
integration methods on the model’s ability to handle IPPO tasks.

Baseline Methods (RQ2). For tool invocation, we contrasted
IndustryScopeGPT with methods highlighting LLMs’ external tool
and graph database interaction capabilities. We compared classic
prompting with CoT and ReAct methodologies, examining perfor-
mance across varied siting tasks and spatial scales.

Experiment Settings. The same version of gpt-4-0125-preview
was used across the experiments, with a graph searcher temperature
set to 0 and the QA model temperature set to 0.7.

Metrics. We assessed whether the predicted locations matched
those in the dataset, measuring Accuracy, Precision, Recall and F1
score.

Results. The evaluation demonstrated that GPT-4, whether op-
erating independently or enhanced with tabulated data (where
IndustryScopeKG data was structured into tables and embedded
into a vector library for retrieval-augmented generation ) or search
engine functionalities, performed poorly in complex site recommen-
dation tasks (RQ1). This highlights the significance of our dataset
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and graph structure. In contrast, IndustryScopeGPT exhibited su-
perior performance (RQ2), significantly outperforming methods
such as those using a Cypher searcher, CoT, and ReAct across most
metrics. For example, in the conditional park-level site recommen-
dation, IndustryScopeGPT demonstrated its capability to effectively
leverage structured industrial data, achieving a precision of 0.659,
and an F1 score of 0.590. This showcases its superior performance
in optimizing decision-making for site recommendation tasks.

5.2 Industrial Park Functional Planning (RQ3)
This task focuses on the strategic layout optimization of various
grid functions within an industrial park, aiming to fulfill the foun-
dational needs and balanced layout of functionalities. The plan-
ning process involves a detailed examination of each grid within a
specific industrial park, extracting information from targeted and
adjacent grids and integrating these attribute insights to assign a
function to each grid in industrial park.

BaselineMethods (RQ3).Traditional models like LightGBM [8]
andGCN [34]were used for comparison to evaluate IndustryScopeGPT’s
performance in functional planning.

Dataset. For training LightGBM and GCN, datasets were pre-
pared matching the input formats required by these models. All
128,866 grid attributes were used as features. For GCN, grid adja-
cency relationships were used to define edges, and grid functions
pre-calculated in IndustryScopeKG, corresponding to 15 categories,
served as labels. The data was split into 7:3 for training and testing.

Metrics. Given the absence of uniform standards for planning
evaluation, we focused on improvements to the existing functional
layout. We utilized the Hill numbers formula [5] to quantify func-
tional diversity, which is defined as:

𝐻𝑞 =

(
𝑆∑︁
𝑖=1

𝑝
𝑞

𝑖

) 1
1−𝑞

(5)

where 𝑝𝑖 represents the proportion of the 𝑖-th function type
within the park, and 𝑞 determines the emphasis on abundance.
Specifically, 𝑞 = 0 quantifies the Richness, or the total count of
distinct functional types, providing an initial diversity level. 𝑞 = 1
corresponds to Shannon Entropy, which accounts for the proportion
of each function, offering a more nuanced understanding of diver-
sity. 𝑞 = 2 is tied to Simpson’s Index, focusing on the prevalence
of dominant functions. These measures are vital for assessing how
well the park’s space is utilized and ensuring that diverse functions
are integrated to support industrial and ancillary activities.

Figure 6: Utilizing IndustryScopeGPT for Grid Function Plan-
ning in Parks. (From left to right: Park A, Park B, Park C)

Case study.We focused on three distinct industrial parks: Zhangjiang
Artificial Intelligence Island (Park A), Dachang Urban Industrial

Table 8: Detailed Analysis of Grid Functions by Methods

Methods Grid Functions q=0 q=1 q=2

Real Situation Park A: Green Space 1 1 1
Park B: Residential: Sports Recreation: Green
Space = 8:3:1

3 2.39 2.11

Park C: Sports Recreation: Green Space: Resi-
dential = 12:5:1

2 1.81 1.67

LightGBM Park A: Residential: Green Space = 1:6 2 1.51 1.32
Park B: Residential: Sports Recreation:Green
Space = 8:3:1

3 2.28 1.95

Park C: Sports Recreation: Green Space: Resi-
dential = 12:5:1

2 1.81 1.67

GCN Park A: Residential: Green Space = 3:4 2 1.98 1.96
Park B: Residential: Green Space = 1:3 2 1.76 1.60
Park C: Residential: Green Space = 4:5 2 1.99 1.98

IndustryScopeGPT Park A: Healthcare: Commercial Services: Busi-
ness Office: Residential: Education: Culture:Life
Services: Research Institutions = 1:1:2:1:4:1:2:2

8 7 6.13

Park B: Education: Commercial Services: Green
Space: Residential: Business Office: Sports
Recreation: Life Services: Dining Services:
Healthcare: Research Institutions: Traffic =
8:6:5:4:3:3:3:1:1:1:1

11 8.76 7.54

Park C: Education: Green Space: Business Of-
fice: Residential: Commercial Services: Sports
Recreation: Life Services = 6:4:2:2:2:1:1

7 6.22 5.59

Park (Park B), and Xinyefang Global Sci-Tech Innovation District
(Park C). Each park was chosen for its unique characteristics and the
specific challenges it presents in terms of spatial planning. Indus-
tryScopeGPT was tested against two classic models, as well as the
real-world scenarios. The results showed that IndustryScopeGPT
significantly outperformed these models in the metrics across the
three parks. For example, in Park A, known for its focus on green
space, IndustryScopeGPT was able to ensure a better balance be-
tween green areas and industrial development. In Park B, which
combines residential, sports, and green areas, IndustryScopeGPT
demonstrated superior ability to integrate diverse functions into
a cohesive plan that supports both living and recreational activi-
ties. Similarly, in Park C, IndustryScopeGPT promotied an effective
synergy between education and commercial activities.

6 CONCLUSION
This study presents a transformative approach to intelligent plan-
ning and operation of industrial parks through the integration of
LLMs and a large-scale multi-modal, multi-level knowledge graph,
IndustryScopeKG. Our dataset is pivotal in capturing the intricate
relationships and semantics within industrial parks. Introducing
the IndustryScopeGPT framework, which incorporates advanced
retrieval and reasoning strategies like Monte Carlo Tree Search,
our work sets a new standard in the field, enhancing adaptability
and interpretability across a variety of IPPO tasks. The empirical
findings substantiate the substantial gains in site recommendation
performance and functional planning efficacy, achieved through
this novel integration.This initiative not only highlights the critical
role of IndustryScopeKG in advancing urban industrial applica-
tions but also paves the way for further LLM integration into urban
spatial development strategies.
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