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Abstract

Remaining useful life (RUL) prediction is crucial in predictive maintenance. Recently,
deep learning forecasting methods, especially Spatio-Temporal Graph Neural Networks (ST-
GNNs), have achieved remarkable performance in RUL prediction. The existing ST-GNNs
require searching for the graph structure before utilizing GNNs to learn spatial graph rep-
resentation, and they necessitate a temporal model such as LSTM to leverage the temporal
dependencies in a fixed lookback window. However, such an approach has several limita-
tions. Firstly, it demands substantial computational resources to learn graph structures for
the time series data. Secondly, independently learning spatial and temporal information dis-
regards their inherent correlation, and thirdly, capturing information within a fixed lookback
window ignores long-term dependencies across the entire time series. To mitigate the issues
above, instead of treating the data within the lookback window as a sequence of graphs in
ST-GNN methods, we regard it as a complete graph and employ a Fourier Graph Neural
Network (FGN) to learn the spatiotemporal information within this graph in the frequency
space. Additionally, we create training and test graphs with varying sizes of lookback win-
dows, enabling the model to learn both short-term and long-term dependencies and provide
multiple predictions for ensemble averaging. We also consider scenarios where sensor signals
exhibit multiple operation conditions and design a sequence decomposition plugin to denoise
input signals, aiming to enhance the performance of FGN. We evaluate the proposed model
on the C-MAPSS benchmark dataset, demonstrating its superior performance on the RUL
prediction task compared to state-of-the-art approaches.

1 Introduction

The widespread adoption of Cyber-Physical Systems (CPS) and the Internet of Things (IoT) has enabled
organizations to leverage predictive maintenance techniques more effectively. This has resulted in extended
equipment operational lifecycles, prevented unscheduled downtime, and decreased energy consumption. Pre-
dictive maintenance is a proactive approach that estimates the equipment’s Remaining Useful Life (RUL),
i.e., forecasts the time point at which equipment may fail or become ineffective in future usage. It then
develops appropriate maintenance plans and procedures to ensure the equipment’s reliability and contin-
uous operation. Among these, forecasting RUL is considered the most significant and valuable task Zhou
et al. (2021). RUL prediction typically depends on historical operational data and condition monitoring
information, including sensor data, operation records, maintenance histories, and so on. Common prediction
approaches include those based on physical models, data-driven methods, and hybrid methods Ferreira &
Gonçalves (2022). These models examine equipment’s operational status and health to predict probable
failures. With the advancements in sensing technology and data analytics, data-driven strategies, espe-
cially deep learning-based RUL prediction, are emerging as a significant research and application area in
engineering.

When utilizing deep learning techniques for RUL prediction, we tackle the problem as a multivariate time
series regression task. Generally, we apply the sliding time window approach to generate samples of time
series data. The basic idea is to segment raw time series data by sliding a fixed-length time window,
taking the data within each time window as a sample, and then using these samples for machine learning
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model training and prediction. Existing deep learning models for predicting RUL mostly use Convolutional
Neural Networks (CNNs) Yang et al. (2019); Ren et al. (2020); Xu et al. (2022), Long Short-Term Memory
(LSTMs) Shi & Chehade (2021); Wu et al. (2021), and Transformers Li et al. (2022); Zhang et al. (2022b);
Jiang et al. (2023). These methods have effectively captured the temporal dependencies in time series data.
However, they are limited as they do not consider the potential interactions between sensor signals, hindering
prediction models’ effectiveness. Researchers have started using Spatio-Temporal Graph Neural Networks
(ST-GNNs) Jin et al. (2023) to address this problem. This approach constructs a graph for the sensor
signal data at each time step, leveraging GNNs to capture spatial information within the graph, followed by
sequence models such as LSTMs to abstract the temporal information of a sequence of graph embedding.

Although the experimental results in Kong et al. (2022); Wang et al. (2023a; 2024) show ST-GNNs can
outperform traditional sequence models in RUL prediction tasks, the current ST-GNNs models still have
the following four main drawbacks: (1)Need to learn the graph structure. Unlike the natural graph structure
inherent in problems like traffic flow prediction in road networks, there is no explicit graph structure among
sensor signals in RUL prediction. Therefore, it often necessitates the use of graph structure learning methods,
demanding substantial computational resources. (2)Modeling spatial and temporal information separately.
The conventional ST-GNNs separately employ GNN to capture spatial information and LSTM to capture
temporal information. This technique fails to consider the possible spatiotemporal inter-dependencies present
in sensor signals. (3)Fixed and short-term dependency modelling. Traditional models employ a single fixed
lookback window to generate samples, often resulting in a window size too small for longer time series data.
Consequently, the model struggles to capture long-term dependencies across the entire time series. (4)Ignore
operation condition information. Equipment may operate under various operation conditions, and analyzing
historical operational records can facilitate the learning of potential degradation trends. Existing models
solely focus on modeling sensor signals, disregarding operation condition information.

To tackle the above problems, we propose an RUL prediction model named Ensemble Multi-Term Fourier
Graph Neural Networks (MT-FGNE). The characteristics and advantages of this model are as follows:

• We adopt a novel approach to time series processing. We no longer view a sample as a sequence
of graphs like ST-GNNs; instead, we consider samples as complete graphs. After converting it to
the frequency domain using the Discrete Fourier Transform (DFT), we utilize Fourier Graph Neural
Networks (FGN) to capture the degradation trends. This approach avoids separately modeling spa-
tial and temporal information, enabling the learning of potential spatiotemporal interdependencies
within sensor signal data.

• We propose a multi-term learning framework to address the issue of traditional models’ inadequate
learning of long-term dependencies. In this framework, we generate training and test graphs with
variable lookback window sizes, allowing the model to learn both short-term and long-term depen-
dencies while providing multiple predictions for ensemble averaging.

• We consider the specificity of degradation under multiple operation conditions by incorporating
historical operational recording data into the modeling process. After decomposing and interpolating
the original signals, we input them into the model and average the prediction results.

• We evaluate our MT-FGNE model on widely studied benchmarks and achieve competitive perfor-
mance against state-of-the-art traditional and ST-GNN methods.

2 Related Work

2.1 Deep learning models for RUL prediction

Due to their ability to handle complex nonlinear relationships and perform end-to-end learning, deep learning
models have been applied to RUL prediction tasks for quite some time. CNNs can extract local patterns
from time series data, while LSTMs effectively capture long-term dependencies by introducing gate units.
The early models consisted mainly of CNNs Yang et al. (2019); Ren et al. (2020); Xu et al. (2022) and
LSTMs Shi & Chehade (2021); Wu et al. (2021). Hybrid models combining both have also been widely
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utilized, leveraging their capability to extract both spatial and temporal features Zraibi et al. (2021); Ren
et al. (2020). Through self-attention mechanisms, Transformers can attend to all positions in the input
sequence at each time step, thus better capturing long-term dependencies and global patterns in time series
data. Researchers have also applied them to RUL prediction and made various improvements to the attention
mechanism Li et al. (2022); Zhang et al. (2022b); Jiang et al. (2023).

Later, researchers recognized that GNNs are superior tools for modeling spatial information. They began
constructing a graph from the signal data at each time step and employed graph neural networks for spatial
feature learning. The main GNN architectures include Graph Convolutional Network (GCN) Wang et al.
(2021; 2023a), Graph Attention Network (GAT) Zhang et al. (2022b); Kong et al. (2022), and custom Message
Passing Neural Networks (MPNNs) Wang et al. (2023b). In terms of graph construction, one study generates
graphs based on domain knowledge Kong et al. (2022), while another calculates adjacency matrices based
on Pearson Correlation Coefficients among sensors Wang et al. (2021). Recent research prefers to apply
graph structure learning approaches. In Chen & Zeng (2023), the authors construct the graph structure
by computing the cosine similarity between the embedding vectors outputted by GAT. In Wang et al.
(2023a), researchers design a dynamic graph learning module to capture the dynamic relationships between
sensor data. CDSG Wang et al. (2023a) examines how time scales impact predictions by dividing the data
into segments inside a lookback window, generating several time scales to provide more detailed structural
insights.

In summary, existing ST-GNN methods commonly view samples as sequences of graphs, often requiring
graph construction and learning on the original data in the time domain. The FGN method employed in
this paper differs significantly in treating samples as complete graphs, eliminating the need to learn graph
structures, and transforming the samples into the frequency domain through DFT.

2.2 Multi-term learning

The closest idea to our proposed multi-term learning is multi-scale learning. Multi-scale learning is com-
monly employed in a variety of domains and tasks, including computer vision and time series data analysis.
By employing multi-scale learning, CNNs can extract features from receptive fields of different sizes simul-
taneously, enabling a more comprehensive capture of information in images, including both local details and
global structures Cai et al. (2016). CrossViT Chen et al. (2021a) divides input images into multiple patches
of different sizes and employs a multi-scale feature fusion mechanism to integrate feature representations
from different scales. As time series data typically contains patterns and trends at multiple time scales,
adopting multi-scale learning in time series analysis helps models gain a more comprehensive understand-
ing and capture structural information within the data Cui et al. (2016). A classical approach is to apply
multi-scale convolution, which generates feature maps at different scales to capture information along the
time axis Chen & Shi (2021); Chen et al. (2021b). In Chen et al. (2023), researchers apply a multi-scale
pyramid network to preserve the various temporal dependencies. The model’s input remains at equal scales
in the aforementioned multi-scale methods. In contrast, our multi-term learning approach generates inputs
of varying scales by employing different lookback window sizes. Some samples contain long-term dependency
information, while others only contain short-term information. In the following sections, we will go into the
details of the proposed multi-term learning framework.

3 Method

The overview of MT-FGNE is shown in Figure 1, which consists of two main components and one plugin.
The first component is FGN, which is an individual model to learn spatial and temporal dependencies. The
other component is a multi-term ensemble learning framework, which constructs samples at different scales
to enable the model to abstract both short-term and long-term dependencies. Considering that some sensor
signals are generated when the equipment operates under various operation conditions, we designed a time
series decomposition plugin to enhance the model’s performance for such inputs.
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Figure 1: The overall framework of the proposed MT-FGNE. In MT-FGNE, a multi-term ensemble learning
strategy is applied to construct samples at different scales to enable the model to abstract both short-term
and long-term dependencies, and multiple FGNs are used to learn spatial and temporal dependencies within
multi-term samples. Besides, a sequence decomposition plugin is designed to tackle sensor signals recorded
under different operation conditions.

3.1 Preliminaries and motivations

Given multiple condition monitoring time series data
{

X(1), X(2), ..., X(M)}, where X(i) =[
x(i)

1 , ..., x(i)
t , ..., x(i)

Li

]
∈ RLi×N represents the i-th time series with length Li and feature dimension N ,

x(i)
t ∈ RN represents the value of N features at timestamp t. We convert the raw time series into

samples by applying the sliding time window approach, with the lookback window size T , each con-
taining T observations at one time step as input features, and the corresponding output label Y

(i)
t .

X
(i)
t =

[
x(i)

t−T +1, x(i)
t−T +2, ..., x(i)

t

]
∈ RT ×N denotes the input features of one sample at timestamps t. The

RUL prediction task involves predicting the label Y
(i)

t based on the input features X
(i)
t . When employing

traditional sequential models to abstract the temporal information, the prediction process can be formulated
by:

Ŷ
(i)

t := Fθt
(X(i)

t ) = Fθt
(
[
x(i)

t−T +1, x(i)
t−T +2, ..., x(i)

t

]
) (1)

where Ŷ
(i)

t are the forecasts matching the ground truth Y
(i)

t . The forecasting function is denoted as Fθt

parameterized by θt. When using the ST-GNNs method, we first design the graphs or apply graph structure
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learning approaches to transform x(i)
t into g(i)

t at each timestep t, and then the RUL prediction can be
expressed as the following formulation:

Ŷ
(i)

t := Fθt,θg
(X(i)

t ) = Fθt,θg
(
[
g(i)

t−T +1, g(i)
t−T +2, ..., g(i)

t

]
) (2)

where the forecasting function is denoted as Fθt,θg
parameterized by θt and θg, indicating ST-GNNs separately

model spatial and temporal dependencies.

3.2 Fourier Graph Neural Networks

A recent study Yi et al. (2024) introduces FGN to address the oversight of potential spatiotemporal inter-
dependencies that arise from modeling spatial and temporal dependencies separately in ST-GNNs. FGN
aims to enhance learning efficiency by learning unified spatiotemporal dependencies. FGN no longer treats
input samples as a sequence of graphs; instead, it regards them as one complete graph. Therefore, Equation
2 can be rewritten as:

Ŷ
(i)

t := FGNθg
(X(i)

t , A
(i)
t ) (3)

where X
(i)
t ∈ R(T ×N)×1, A

(i)
t ∈ {1}(T ×N)×(T ×N) is the adjacency matrix of a complete graph, and θg

are the parameters of the FGN. In FGN, we initially project the node features into a higher-dimensional
space d to obtain node embeddings X

(i)
t ∈ R(T ×N)×d, and perform a Discrete Fourier Transform (DFT) to

transform node embeddings into the frequency domain and get F(X(i)
t ) ∈ C(

⌊
(T ×N)

2

⌋
+1)×d. Then we conduct

recursive multiplications between F(X(i)
t ) and Fourier Graph Operators (FGOs) in the Fourier space and

make summations. Finally, we transform the node embeddings to the time domain using the Inverse Discrete
Fourier Transform (IDFT), and utilize fully connected layers to map embeddings to labels, as illustrated in
Figure 1. The detailed FGN procedure can be formulated as follows:

FGNθg (X(i)
t , A

(i)
t ) := F−1(

K∑
k=0

σ(F(X(i)
t )S0:k + bk)), S0:k =

k∏
i=0

Si. (4)

where F(·) and F−1(·) stand for DFT and IDFT, respectively. Sk ∈ Cd×d is the FGO in the k-th layer.
σ is the activation function, and bk ∈ Cd are the complex-valued bias parameters. By treating time series
samples as complete graphs and performing transformations in the frequency domain, FGN can efficiently
encode potential spatiotemporal inter-dependencies within sensor signal data while removing noise.

3.3 Multi-term ensemble learning framework

When employing the sliding time window approach to generate samples, one parameter that needs to be
set is the lookback window size T . If only one fixed size of the time window exists, it cannot exceed the
minimum length of the sequence; otherwise, some sequence data cannot be processed and predicted, so there
is a constraint T ≤ mini∈{1,2,...,M} Li. This constraint often makes the chosen T too small and insufficient
to contain long-term dependency information. Therefore, we propose a multi-term learning strategy. We
apply a set of lookback windows instead of just one to generate samples:

T := {Tmin, Tmin + 1 × D, . . . , Tmin + (C − 1) × D} (5)

where C indicates the lookback window numbers and D is the magnitude of the time window increment.
Tmin is the smallest time window we use, set to be smaller than the minimum length of the test sequences
to ensure that the model can provide predictions for all test sequences. Then we gradually increase the
time window to include more information in the samples. By using a set of different time window sizes, we
generate multi-term samples, as shown in Figure 1.

In the training phase, we created multi-term training samples with multiple time window sizes. In the
process of creating training samples, there may arise situations where the length of the training sequence
is shorter than the set time window size. In such cases, we discarded the entire training sequence. Then
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we trained an FGN model for each scale of the training samples. This means the number of FGN models
trained equaled the number of time windows we employed. Since the sizes of samples from different terms
varied, training each model independently is advantageous for the model’s learning process. After training,
we obtain a group of trained FGNs: {FGN

(1)
trained, FGN

(2)
trained, . . . , FGN

(C)
trained}. In existing methods, it is

common practice to utilize the data within the last time window of the test sequence as the testing sample,
inputting it into the trained model to obtain one prediction. In contrast, within our proposed framework,
we generate multiple testing samples that correspond to the same label using different lookback window
sizes. Some short sequences cannot generate a complete sample using larger time windows. This limitation
becomes particularly evident during testing. Our strategy involves grouping the testing sequences based on
the size of the time window used and conducting different tests for each group. As shown in Figure 1, longer
sequences can generate multiple samples that are input into the corresponding trained models, resulting in
multiple predictions. In contrast, shorter sequences can only utilize fewer or even only one model to obtain
prediction results. Finally, we ensemble the multiple predictions to enhance prediction stability.

In summary, we adopted a multi-term ensemble learning approach to enhance the model’s performance.
The primary motivation behind this approach stems from our ability to generate more training samples and
ensure they contain richer information from the same original time series data. Similarly, during testing, we
generated multiple testing samples, thus improving the utilization of the testing data. Finally, by integrating
the predictions obtained from multiple sources, we further enhanced the predictive performance and stability
of the model.

3.4 Sequence decomposition under multiple operation conditions

Due to the equipment’s varying operation conditions, the collected sensor signals often adhere to multiple
distributions. A typical example of monitoring data with two operation conditions is illustrated in Figure
2. Sensor values frequently switch between two trajectories, exhibiting two distinct overall trends. With
such overlapping signals from two different distributions, the risk of inaccurate identification of frequency
components of the original signal arises, leading to aliasing errors Cao et al. (2022). Those with higher
amplitudes might obscure signals with lower amplitudes, consequently diminishing the overall signal-to-
noise ratio and potentially causing loss or distortion of signal information. This overlapping of signals with
varying amplitudes adversely affects the learning of FGN in the frequency domain. To mitigate this issue,
we employ a simple sequence decomposition method to denoise the input signals.

Our first step involves identifying operation conditions. If the condition monitoring data already includes
records of operation conditions, we can analyze them directly. Alternatively, we extract information on
operation conditions from sensor signals. We utilize the straightforward and efficient k-means Ahmed et al.
(2020) method for clustering analysis of the raw sensor signals to determine which operation condition a
given sensor signal belongs to at timestep t. Then we segment the sensor signals based on the identified
operation conditions. This involves dividing the data into subsets, each corresponding to a specific operation
condition, as shown in the following formulation.

X(i) k-means−−−−−→ {X(i,1), X(i,2), . . . , X(i,k)} (6)

where X(i) represents the i-th original time series, and {X(i,1), X(i,2), . . . , X(i,k)} represent the time series
resulting from the k-means clustering process, where k is the number of clusters obtained by the k-means al-
gorithm. The newly generated multiple time series data are complementary to each other, with many missing
values that require interpolation. While numerous novel interpolation methods have been proposed Oh et al.
(2020), given the substantial number of data points requiring interpolation, we opt for the most straight-
forward method, equal-value interpolation. We use nearby values to fill in the missing values to enhance
efficiency and avoid overfitting.

{X(i,1), X(i,2), . . . , X(i,k)}
interpolation−−−−−−−−→ {X̂(i,1), X̂(i,2), . . . , X̂(i,k)}

(7)
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Finally, we utilize a sliding time window approach to generate samples {X̂
(i,1)
t , X̂

(i,2)
t , . . . , X̂

(i,k)
t } for each

operation condition sequence, inputting them into FGNs. The predicted mean under different operation
conditions is then the final output.

Ŷ
(i)

t := 1
k

k∑
l=1

FGN l
θg

(X̂(l,k)
t , Â

(l,k)
t ) (8)
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Figure 2: A typical example illustrates original sensor signals and their frequency distributions under multiple
operation conditions.

4 Experiment and Results

In this section, we extensively evaluate the proposed MT-FGNE on a benchmark dataset.

4.1 Datasets description and analysis

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset is a widely used public
dataset in the field of RUL prediction Xia et al. (2020). There are four subsets in this dataset. Each
subset is divided into a training set and a test set. The training set contains multiple turbofan engine
condition monitoring data from healthy operation to complete failure. The condition monitoring data in
the test set ends before complete failure occurs. The goal is to forecast the engines’ RUL in the test set.
The characteristics of each subset are detailed in Table 1. Among the four data sets FD001-FD004, the
engines in FD001 and FD003 operated under a single operation condition, while those in FD002 and FD004
operated under six different operation conditions, increasing the prediction complexity. Additionally, engines
in FD001 and FD002 only have one fault mode, which is the High-Pressure Compressor (HPC) failure, while
FD003 and FD004 hold two fault modes. Table1 also displays the minimum and maximum sequence lengths
of the dataset, indicating significant variations in sequence lengths across different engines. Since training
data captures engine operation up to the point of failure, the signal record is usually relatively long. Also,
variations in initial engine states and failure processes lead to different sequence lengths for each engine.
Existing models commonly use a single fixed lookback window to generate samples Kong et al. (2022); Wang
et al. (2021); Chen & Zeng (2023). However, this lookback window size cannot exceed the minimum sequence
length of the test engines; otherwise, the model cannot be applied to obtain predictions for all test engines.
This relatively small lookback window size is inappropriate for test engines whose sensor data length is
relatively large and may hinder the model’s ability to learn long-term dependencies.

4.2 Implementation details

We maintain consistency in the data preprocessing settings with Kong et al. (2022); Wang et al. (2021) to
ensure a fair comparison with existing models. We first normalize the 14 effective features selected from the
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Table 1: Description of C-MAPSS turbofan engine dataset.

Subsets Operation Condition Fault Mode Training units Test units Max length Min length
FD001 1 HPC 100 100 362 31
FD002 6 HPC 260 259 378 21
FD003 1 HPC+Fan 100 100 525 38
FD004 6 HPC+Fan 249 248 543 19
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Figure 3: The training and test sequence length distribution of four subsets in the C-MAPSS dataset,
multiple dashed lines parallel to the y-axis represent the various sizes of the lookback window we employed.
These dashed lines partition the training and testing time series into multiple subgroups.

original 24 features. Then, we apply a piecewise function to rectify the training and test labels, ensuring
that they do not exceed 125 to mitigate the possibility of overestimating RUL. Next, we apply the proposed
multi-term learning approach by employing multiple lookback windows to generate various samples. For
the four subsets, the lookback window sizes used are shown in Table 2. Unlike existing methods that use
a single window size, which cannot exceed the minimum sequence length in the subset, resulting in short
samples that fail to capture long-term dependencies in the time series, we adopt a set of lookback window
sizes. We keep the first window size smaller than the minimum sequence length to ensure the applicability
of the predictive model. Subsequently, we gradually increase the window size to generate longer samples,
allowing the model to learn potential long-term dependencies. The employed lookback time windows and
their comparison with the length of the time series are illustrated in Figure 3. We partition the training
and testing sequences into subgroups using the multiple lookback windows we defined. We generate training
and testing samples adaptively based on the length of sequences within each subgroup. Given the relatively
longer sequences on the right side of each sub-figure, they could adopt all lookback windows on the left side
of the sequences, while the reverse was not valid.
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Table 2: Comparison of multiple time windows used in the proposed framework against existing single time
windows.

Subsets Min length Single window size Kong et al. (2022) Window sizes in MT-FGNE
FD001 31 30 30/60/90/120/150/180
FD002 21 20 20/40/60/80/100/120/140/160/180
FD003 38 30 30/60/90/120/150/180/210/240
FD004 19 15 18/40/62/84/106/128/150/172/194

Due to the operation of FD002 and FD004 data under six different operation conditions, directly applying
FGN for frequency-domain learning may lead to a low signal-to-noise ratio. We select six features highly
correlated with the labels ["s7", "s9", "s11", "s12", and "s13"] Huang et al. (2023) and cluster the data.
After dividing it into six subsets, we employ a simple equal-value interpolation to fill in missing values.
Subsequently, FGN is used to learn from each of the six subsequences separately. We set the number of
FGO layers to three, which is deep enough for the RUL prediction task. The proposed model’s training
parameters were optimized using the RMSprop optimizer, with the following hyperparameters: 100 epochs,
a learning rate of 0.001, and a batch size of 256. Two metrics are employed in the evaluation, including
the Root Mean Square Error (RMSE) and a Score function Kong et al. (2022) as described in the following
equation:

Score(v, v̂i) =
{∑M

i=1(e− v̂i−vi
13 − 1) if v̂i < vi∑M

i=1(e
v̂i−vi

10 − 1) if v̂i ≥ vi

(9)

The asymmetric Score function imposes a more significant penalty for overestimating RUL, as overestimating
RUL leads to more severe consequences. Similarly to RMSE, a lower value of the score function indicates a
better prediction performance.

4.3 Comparisons with state-of-the-art

This section compares our method with the most advanced RUL prediction techniques available. We mainly
compare our method with ST-GNNs because of their outstanding performance on this task. Table 3 displays
a comparison of different approaches on the C-MAPSS dataset. The current advanced approaches can be
broadly categorized into two groups. The first group consists of sequence models, with the most popular being
Transformer-based models. The second group comprises ST-GNNs, which excel in predictive performance by
capturing spatial information, generally outperforming sequence models. Our approach differs significantly
from existing methods. First, FGN conducts learning in the frequency domain space instead of the time
domain. Secondly, we transform samples into a graph rather than a sequence of graphs. Finally, we adopt
a multi-term learning approach to enhance the model’s learning of long-term dependencies within samples.

We compare our method with several best models in the literature. The values reported in Table 3 are taken
directly from the papers as their implementations are not publicly available. One immediate observation on
the performances of these baseline models is that there is no single best model that is capable of outperforming
others on all four datasets, demonstrating the difficulty of the prediction task and the diversity shown in
the datasets. In comparison to these baselines, our proposed MT-FGNE demonstrates superior performance
on the first three datasets, FD001, FD002, and FD003. It shows a 13.6%, 2.3%, and 5.3% improvement
compared to the second-best baseline on these three datasets, respectively. On FD004, our model is ranked
second among eighteen models in terms of RMSE, with only small gaps to the best-performing models.
The results indicate that even under various operation conditions and relatively low signal-to-noise ratios
in original sensor signals, FGN can effectively learn dependencies after proper sequence decomposition and
processing. Compared to traditional ST-GNNs, our method does not require learning graph structures or
separately learning spatial and temporal information. Moreover, the Fourier Graph Operator is significantly
less computationally expensive than the message-passing operators of GNNs. We follow STFA Kong et al.
(2022) and create an ST-GNN. The training time of ST-GNN and FGN on FD001 is 2518s and 729s, and
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the trainable parameters of ST-GNN and FGN are 183,905 and 74,064, respectively, showing that FGN has
a lower computational burden. Overall, our method consistently delivers outstanding performance across
different scenarios, demonstrating its ability to provide significant contributions to RUL prediction.

Table 3: Compare the RMSE and Score values of MT-FGNE with other advanced sequence models and
ST-GNN methods for the C-MAPSS dataset (bold: best; underline: runner-up).

Models FD001 FD002 FD003 FD004 Average
RMSE Score RMSE Score RMSE Score RMSE Score RMSE Score

DA-Transformer Liu et al. (2022) 12.25 198 17.08 1575 13.39 290 19.86 1741 15.65 951.00
BiGRU-TSAM Zhang et al. (2022a) 12.56 213 18.94 2264 12.45 233 20.47 3610 16.11 1580.00

MSIDSN Zhao et al. (2023) 11.74 206 18.26 2047 12.04 196 22.48 2911 16.13 1340.00
EAPN Zhang et al. (2023) 12.11 245 15.68 1127 12.52 267 18.12 2051 14.61 922.50

Crossformer Wang et al. (2023b) 12.11 216 14.16 837 12.32 260 14.81 956 13.35 567.25
HAGCN Li et al. (2021) 11.93 222 15.05 1144 11.53 240 15.74 1219 13.56 706.25

STGCN Wang et al. (2021) 14.55 402 14.58 943 13.06 394 14.60 1065 14.20 701.00
STFA Kong et al. (2022) 11.35 194 19.17 2493 11.64 225 21.41 2760 15.89 1418.00

DAST Zhang et al. (2022b) 11.43 203 15.25 925 11.32 155 18.36 1491 14.09 693.50
GGCN Wang et al. (2022) 11.82 187 17.24 1494 12.21 245 17.36 1372 14.66 824.50

ConvGAT Chen & Zeng (2023) 11.34 197 14.12 772 10.97 235 15.51 1231 12.99 608.75
CDSG Wang et al. (2023a) 11.26 188 18.13 1740 12.03 218 19.73 2332 15.29 1119.50

DCFA Gao et al. (2023) 11.74 190 16.81 1076 10.71 198 17.77 1571 14.26 758.75
LOGO Wang et al. (2023b) 12.13 226 13.54 832 12.18 261 14.29 944 13.04 565.75

NSD-TGTN Gao et al. (2024) 12.13 226 15.87 1477 12.01 220 16.64 1493 14.16 854.00
DVGTformer Wang et al. (2024) 11.33 180 14.28 797 11.89 255 15.50 1108 13.25 585.00

THGNN Wen et al. (2024) 13.15 285 13.84 806 12.61 255 14.65 1166 13.56 628.00
MT-FGNE 9.73 152 13.23 694 10.14 178 14.40 958 11.88 495.50

4.4 Ablation studies

To demonstrate the effectiveness of the proposed framework, we conducted an ablation study comparing MT-
FGNE with its variants. We primarily evaluated two components of MT-FGNE: the multi-term ensemble
learning (MTE) framework, and the sequence decomposition (SD) plugin.

4.4.1 Multi-term ensemble ablations

The first variant is the single FGN model. Like existing methods, individual FGN adopts smaller, fixed time
windows to generate samples at a certain scale, resulting in unsatisfactory predictive performance. As shown
in Table 4, compared to individual FGN, our MT-FGNE reduced 18.0% in prediction error on the FD001
dataset. Similar effects are observed across all four datasets, demonstrating the high applicability of the
proposed framework. As analyzed earlier, the multi-term ensemble learning framework primarily relies on
generating longer samples to enhance the model’s ability to learn long-term dependencies. The prerequisite
for performance improvement is that the adopted model possesses strong sequence modeling capabilities.
For instance, MT-FGNE w/o SD applied multi-term learning, yet its performance on FD002 did not show
significant enhancement. It is attributed to the sensitivity of the adopted model to noise in sensor signals,
leading to poor learning capabilities. Merely increasing the time window does not contribute to resolving
the noise issue in this situation.

The proposed multi-term ensemble learning framework is not limited to a specific individual model for learn-
ing and theoretically can be applied to all existing models to further enhance performance. We employed a
simple sequence modeling tool, CNN, as the individual model. Following the adoption of multi-term learning,
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its predictive performance saw significant improvement. Particularly noteworthy is its performance on the
FD002 and FD004 datasets, where the prediction error surpassed that of MT-FGNE and even outperformed
the current state-of-the-art model by 16.2%. This result suggests that employing smaller, fixed time window
settings hinders the model’s ability to capture long-range dependencies in the data, thereby limiting the
performance of most existing models. Figure 4 illustrates the performance of individual FGN models and
ensemble results on the last four test subsets of the FD001 dataset. In subset 3, the test sequence length
is insufficient to apply all FGN models, while in subset 6, the sequence length exceeds the maximum time
window, set at 180, thus allowing the application of all trained FGN models for prediction. On each test
subset, FGN models trained with samples generated from larger time windows demonstrate superior pre-
dictive performance, as they are better at capturing long-term dependencies. In most cases, the ensemble
predictions further enhance accuracy and significantly reduce the variance of prediction errors, indicating
improved stability of the predictive models.

Table 4: Ablation study on the C-MAPSS dataset.

Variants FGN MTE SD FD001 FD002 FD003 FD004
RMSE Score RMSE Score RMSE Score RMSE Score

CNN ✗ ✗ ✗ 12.71 241 15.74 1504 11.47 185 17.81 1809
MT-CNNE ✗ ✓ ✗ 11.76 248 11.83 537 10.77 240 13.76 853

FGN ✓ ✗ ✗ 11.87 194 20.87 2221 12.64 208 27.22 4777
MT-FGNE w/o SD ✓ ✓ ✗ - - 19.21 1563 - - 23.38 2781

MT-FGNE w/o MTE ✓ ✗ ✓ - - 16.39 1411 - - 18.37 2168
MT-FGNE ✓ ✓ ✓ 9.73 152 13.23 694 10.14 178 14.40 958

MTE: Multi-Term Ensemble, SD: Sequence Decomposition.
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Figure 4: The individual FGN models’ performance and ensemble results on the last four test subsets in
FD001.

4.4.2 Sequence decomposition ablations

The FD002 and FD004 datasets were generated under six different operation conditions. Our study primarily
focuses on these two datasets to validate the effectiveness of sequence decomposition. As shown in Table
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Figure 5: The frequency spectrum comparison of raw sensor signals and signals after decomposition in
FD002.

4, although the individual FGN w/o SD method exhibits decent predictive performance on FD001 and
FD003, its predictive errors on FD002 and FD004 are quite significant. By comparing FGN with MT-FGNE
w/o SD, we can find that the prediction performance of MT-FGNE w/o SD on FD002 is not significantly
improved even with the MTE strategy. It indicates that even when the samples contain more information
on long-term dependencies, the FGN model fails to learn from them effectively, diminishing the value of
MTE. In contrast to FGN, the MT-FGNE w/o MTE model incorporates the SD plugin, resulting in a
substantial improvement in predictive performance on FD002 and FD004. Figure 5 illustrates the frequency
spectrum of an FD002 sample’s original signal and the signal after denoising with SD. We observe a more
uniform energy distribution in the original signal with frequent random fluctuations in frequency and no
clear frequency range with high-amplitude signals. After denoising with SD, there is a significant increase in
amplitude in the low-frequency region of the frequency spectrum, indicating an enhancement in the signal-
to-noise ratio. Finally, a significant enhancement in predictive performance is observed when combining SD
for signal denoising, followed by the MTE module. This phenomenon underscores the necessity of applying
SD for denoising signals, particularly for datasets with multiple operation conditions.

5 Conclusion

This paper investigates the RUL prediction problem. Unlike existing deep learning models with fixed-
size input samples, we consider the diversity in the time series lengths and propose a model capable of
learning multi-term dependencies. We adaptively employ multiple lookback windows based on the time
series length to generate multiple samples with the same label. Subsequently, these samples are transformed
into complete graphs, and FGN models are employed to learn both spatial and temporal dependencies across
multiple terms. The predictions from FGN models are then integrated to obtain the final prediction. This
approach enhances the model’s capability to learn long-range temporal dependencies in long sequences and
further improves prediction performance by integrating predictions from different terms. For condition
monitoring data generated under various operation conditions, we cluster the data based on operation
conditions and then interpolate missing values, learn spectral features through FGN after DFT on data from
different operation conditions, and finally average the prediction results. Extensive experimental results
demonstrate that our proposed MT-FGNE model achieves state-of-the-art predictive performance on the
C-MAPSS turbofan engine dataset.
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