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Abstract

Diffusion models have become prevalent in generative modeling due to their ability
to sample from complex distributions. To improve the quality of generated samples
and their compliance with user requirements, two commonly used methods are: (i)
Alignment, which involves finetuning a diffusion model to align it with a reward;
and (ii) Composition, which combines several pretrained diffusion models together,
each emphasizing a desirable attribute in the generated outputs. However, trade-offs
often arise when optimizing for multiple rewards or combining multiple models, as
they can often represent competing properties. Existing methods cannot guarantee
that the resulting model faithfully generates samples with all the desired properties.
To address this gap, we propose a constrained optimization framework that unifies
alignment and composition of diffusion models by enforcing that the aligned model
satisfies reward constraints and/or remains close to each pretrained model. We
provide a theoretical characterization of the solutions to the constrained alignment
and composition problems and develop a Lagrangian-based primal-dual training al-
gorithm to approximate these solutions. Empirically, we demonstrate our proposed
approach in image generation, applying it to alignment and composition, and show
that our aligned or composed model satisfies constraints effectively. Our implemen-
tation can be found at: https://github.com/shervinkhalafi/constrained_comp_align

1 Introduction

Diffusion models have emerged as the tool of choice for generative modeling in a variety of settings
[38, 3, 50, 9], image generation being most prominent among them [37]. Users of these diffusion
models would like to adapt them to their specific preferences, but this aspiration is hindered by
the often enormous cost and complexity of their training [48, 56]. For this reason, alignment and
composition of what, in this context, become pretrained models, has become popular [29, 31].

Regardless of whether the goal is alignment or composition, we want to balance what are most
likely conflicting requirements. In alignment, we want to stay close to the pretrained model while
deviating sufficiently so as to affect some rewards of interest [17, 13]. In composition, given several
pretrained models, our goal is to sample from the union or intersection of their distributions [14, 1].
The standard approach to balance these requirements involves the use of weighted averages. This can
be a linear combination of score functions in composition [14, 1] or may involve a loss given by a
linear combination of a Kullback-Leibler (KL) divergence and a reward [17] in the case of alignment.
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In practice, weight-based methods are often designed in an ad hoc manner, with the weights treated as
tunable hyperparameters, which makes the approach notoriously difficult to optimize and generalize.

In this work, we propose a unified view of alignment and composition via the lens of constrained
learning [7, 6]. As their names indicate, constrained alignment and constrained composition problems
balance conflicting requirements using constraints instead of weights. Learning with constraints and
learning with weights are related problems — indeed, we will train constrained diffusion models in
their Lagrangian forms. Yet, they are also fundamentally different. In the constrained formulation,
the hyperparameter tuning spaces are more interpretable (see Section 3), and in some cases — such
as the constrained composition formulation — hyperparameter tuning can even be avoided entirely
(see Section 4). These advantages are particularly evident in constrained problems, as discussed in
Sections 3 and 4. We summarize our key contributions in three aspects below.

(i) Problem Formulation

* For alignment, we formulate a reverse KL divergence-constrained distribution opti-
mization problem that minimizes the reverse KL divergence to a pretrained model,
subject to expected reward constraints with user-specified thresholds.

 For composition, we propose using KL divergence constraints to ensure the closeness
to each pretrained model. It is important to distinguish composition with reverse KL
and forward KL constraints as they lead to a weighted product or weighted mixture [22]
of the individual distributions, respectively. In this work, we focus on composition
with reverse KL constraints, and discuss forward KL constraints in Appendix E.

(i) Theoretical Analysis

* In Section 3, we characterize the solution of the alignment problem as the pretrained
model distribution scaled by an exponential function of a weighted sum of reward
functions. In Section 4, we characterize the solution of the constrained optimization
problem with reverse KL divergence constraints as a tilted product of the individual
distributions. We establish strong duality for both problems, which enables us to use a
dual-based approach to develop primal-dual training algorithms for solving them.

» We illustrate the distinction between the KL divergence between diffusion trajectories
(path-wise), and the KL divergence between the final distributions (point-wise) in
Section 2.2. We also propose a new method to evaluate the point-wise KL divergence.

(iii)) Empirical Results

* For alignment, we demonstrate the difference between constrained and weighted align-
ment through experiments in Section 5.1. The constrained approach scales naturally to
finetuning with multiple rewards, eliminating the need for extensive hyperparameter
searches to determine suitable weights. Moreover, specifying reward thresholds is often
more intuitive than choosing regularization weights. Without constraints, however, the
model can easily overfit to one or several rewards and diverge substantially from the
pretrained model. In contrast, our method identifies the model closest to the pretrained
one that still satisfies the desired reward constraints (see Figure 4).

* For composition, we show the properties of constrained composition of diffusion mod-
els through experiments in Section 5.2. We see that when the composition weights are
not chosen properly, the resulting model can become biased towards certain individ-
ual models while neglecting others. Constrained composition addresses this issue by
finding optimal weights that preserve closeness to each individual model. Particularly,
when composing multiple text-to-image models each finetuned on a different reward,
imposing constraints yields weights that enable the composed model to achieve higher
performance across all rewards, compared to composition with equal weights.

2 Composition and Alignment of Diffusion Models

We introduce constrained distribution problems for alignment and composition in Section 2.1, and
characterize the reverse and forward KL divergences for diffusion models in Section 2.2.
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Figure 1: Product composition (AND). Three Gaussian distributions being composed (Left). Compo-
sition using equal weights (Middle), and with constraints (Right). The constrained model samples
from the intersection of the three models.

2.1 Composition and alignment in distribution space

We formulate Unparameterized constrained distribution optimization problems using Reverse or For-
ward KL divergence, for Alignment and Composition as illustrated in (UR-A) (UR-C), and (UF-C).

Reward alignment: Given a pretrained model ¢ and a set of m rewards {rl M that can be evalu-
ated on a sample x, we consider the reverse KL divergence Dk (p || q) f p(x log (z)/q(x))dx
that measures the difference between a distribution p and the pretralned model q. Additionally, for
each reward r;, we define a constant b; standing for requirement for reward r;. We formulate a
constrained alignment problem that minimizes a reverse KL divergence subject to m constraints:

p* = argmin Dgi(pllq) subject to Eg ~p[ri(z)] > b; fori=1,...,m. (UR-A)
P

As per (UR-A), the constrained alignment problem is solved by the distribution p* that is closest to the
pretrained one ¢ as measured by the reverse KL divergence Dk (p || ¢) among those whose expected
rewards ;. ,[r; ()] accumulate to at least b;. By ‘pretrained model” we refer to a sampling process
that produces samples, not the underlying distribution. Let the primal value be Py ; := Dxv(p* || 9).

Product composition (AND): Given a set of m pretrained models {q }m_,, we formulate a con-
strained composition problem that solves a reverse KL-constrained optimization problem:

(p*,u*) = argmin u subject to Dxi(p|¢*) <w fori=1,...,m. (UR-C)
p,u

In (UR-C), the decision variable u serves as an upper bound on the m KL divergences between a
distribution p and m pretrained models {q"}™ ;. Partial minimization over u allows us to search for
a distribution p that minimizes this common upper bound. Hence, the optimal solution p* minimizes
the maximum KL divergence among m terms, each computed between p and a pretrained model g;.
Let the primal value be Py, := u*. The epigraph formulation (UR-C) is practical, as the constraint
threshold u can be updated dynamically during training. In contrast, Figure 1 shows that the model
composed with equal weights is biased toward the two most similar distributions.

Mixture composition (OR): A different composition modality that also fits within our constrained
framework is the forward KL-constrained composition problem. We obtain this formulation by
replacing the reverse divergence Dy (p || ¢;) in (UR-C) with the forward KL divergence Dxy.(q; || p):

(p*,u*) = argmin u subject to Dxi(¢; ||p) <wu fori=1,...,m. (UF-C)
p,u

Mixture composition was studied in a related but slightly different constrained setting [22]. In fact,
the solution of the constrained problem (UF-C) learns to sample from each distribution in proportion
to its entropy; see [22, Theorem 2]. As shown in Figure 2, the constrained model samples more
frequently from the higher-entropy distribution with two models, whereas the equally weighted
composition samples equally from both distributions, leading to unbalanced sampling. Since the
algorithmic design and analysis for (UF-C) follow those in [22], mixture composition is not the main
focus of this work. For completeness, we compare it with product composition in Appendix E.



i
7) 3 ' B Distribution A
CJ) : W Distribution B
Unconstrained
B Constrained

Figure 2: Mixture composition (OR). Two of Gaussian mixtures being composed (Left). One has two
modes and the other has only a single mode. Composition using equal weights (Middle), and with
constraints (Right).

The reverse KL-based composition (UR-C) tends to sample from the intersection of the pretrained
models {g; }7* , whereas the forward KL-based composition (UF-C) tends to sample from their union.
Thus, product composition enforces a conjunction (logical AND) across pretrained models, while
mixture composition corresponds to a disjunction (logical OR). We emphasize that Problems (UR-A),
(UR-C), and (UF-C) should serve as canonical formulations; the proposed constrained methods can
be readily adapted to their variants, e.g., mixture composition with reward constraints.

2.2 KL divergence for diffusion models

A generative diffusion model consists of forward and backward processes. In the forward process,
we add Gaussian noise €; to a clean sample Xy ~ pg over 7' time steps as follows

— e —
X, = X, 1+ J1-
(77} Q1

e, fort=1,---,T (1)

where ¢, ~ N(0,1) is the standard Gaussian noise, and {a;}7_, is a decreasing sequence of
coefficients called the noise schedule. We denote the marginal density of X at time ¢ as p;(+). Given
a d-dimensional score predictor function s(z,¢): R? x {1,--- T} — R%, we introduce a backward
denoising diffusion implicit model (DDIM) process [42] as follows

1

Xt = Xi + Brs(Xy,t) + oveq 2)

Qi

where €, ~ N(0,) is the standard Gaussian noise, and {o?}7_, is the variance schedule that
determines the level of randomness in the backward process (e.g., 0 = 0 reduces to deterministic

trajectories), and B; == /%= /(1 — o) (1 — a¢) — /(1 — a4—1 — 07)(1 — &) is determined by

(623

the variance schedule o, and the noise schedule a;. Here, we use the equivalence between the
score-matching and denoising formulations of diffusion model to replace the denoising predictor
in [42] by the score function. Given a score function s(z, t), we denote the marginal density of X as
p+(-; s) and the joint distribution over the entire process as po.7(zo.T; $)-

In the score-matching formulation [43], a denoising score-matching objective is minimized to obtain
a function s* that approximates the true score function of the forward process, i.e., s*(x,t) ~
V log pi(z). Then, the marginal densities of the backward process (2) match those of the forward
process (1), i.e., pt(-; s*) = py(+) for all £. Thus we can run the backward process to generate samples
o ~ po that resemble samples from the original data distribution Zy ~ py.

We denote the KL divergence between two joint distributions p, ¢ over the backward process by
Dx1.(po.7(*) || go-7(+)), which is known as path-wise KL [17, 19]. The path-wise KL divergence is
often used in alignment to measure the difference between finetuned and pretrained models.



Lemma 1 (Path-wise KL divergence). If two backward processes po.1(-) and qo.1 () have the same
variance schedule o, and noise schedule o, then the reverse KL divergence between them is given by

1
Drcpoir (i) 14050) = 3 Ere o) oyt~ sia0l? | @)
t

t=1

See Appendix C.1 for the proof. When the two backward processes differ in their variance and noise
schedules, the path-wise KL divergence remains tractable, and we omit it for simplicity. While the
path-wise KL divergence is a useful regularizer for alignment, when composing multiple models,
the point-wise KL divergence Dkp (po(-) || go(+)) is a more natural measure of the closeness between
two diffusion models. This is because we mainly care about the closeness of the final sampling
distributions: po(+), go(+), and not the underlying processes: po.7(+), go.7(-). However, since our
proposed approach to compute the point-wise KL is intractable for alignment, we adopt the path-wise
KL for alignment and retain the point-wise KL for composition; see more discussion in Section 4.2.

However, it is not obvious how to compute the point-wise KL divergence, as evaluating the marginal
densities is intractable. We next establish a similar formula as (3) by limiting the score function class.

Lemma 2 (Point-wise KL divergence). Assume two score functions s,(x,t) = Vlogpi(x),
sq(x,t) = Vloggi(x), where Py, G are two marginal densities induced by two forward diffu-
sion processes, with the same noise schedule, starting from initial distributions py and qo, respectively.
Then, the point-wise KL divergence between two distributions of the samples generated by running
DDIM with s, and s is given by

Dxa(po(-38p) [l 90(-5 Zwt enpiisg) | 18p(@ ) = sq(@ B)ll3 | + e @)

where Wy is a time-dependent constant, and e is a discretization error that depends on the total
number of diffusion time steps T.

See Appendix C.2 for the proof. The key intuition behind Lemma 2 is that if two diffusion processes
are close, and their starting distributions are the same (e.g., AV(0, ) at time ¢ = T'), then the end
points (i.e., the distributions at ¢ = 0) must also be close. The sum on the right-hand side of (4) can
be viewed as the difference of the two processes over time steps, up to a discretization error.

3 Aligning Pretrained Model with Multiple Reward Constraints

We provide a characterization of the solution to Problem (UR-A) in Section 3.1, and establish strong
duality for diffusion models in Section 3.2, together with a dual-based training algorithm.

3.1 Reward alignment in distribution space

To apply Problem (UR-A) to diffusion models, we first employ Lagrangian duality to derive its
solution in distribution space. Alignment with constraints is related but fundamentally different from
the standard approach of minimizing a weighted average of the KL divergence and rewards [17].
They are related because the Lagrangian for Problem (UR-A) is precisely the weighted average:

Lau(p, N) = DKL(pHQ) - /\T(EINp[r(x)] —-b). &)

where we use shorthand b := [by,..., by |7, 7 == [r1,..., 7], and X := [A1,... \,,] T is the
Lagrangian multiplier or dual variable. Let the dual function be Dap;(A) := minimize, Larg (p, N
and an optimal dual variable be \* € argmax, 5 o DaLi(\). Denote D}y := Dari(\*). For any

A > 0, we define the reward weighted distribution qr(\?, ) (subscript rw for reward weighted):

1 T
) = —— g TO)
qrw ( ) T er()\) Q( )e (6)

where Z, ()\) = fq(x)e’\T’"(“‘)da: is the normalizing constant.

In the distribution space, Problem (UR-A) is a convex optimization problem, since the KL divergence
is strongly convex and the reward constraints are linear in p. Thus, we can apply strong duality in



convex optimization [4] to characterize the solution to Problem (UR-A) in Theorem 1. Moreover,
it is ready to formulate the constrained alignment problem (UR-A) as an unconstrained problem by
specializing the dual variable to a solution to the dual problem.

Assumption 1 (Feasibility). There exists a model p such that Ey  p[r;(x)] > b; foralli =1,...,n.

Theorem 1 (Reward alignment). Let Assumption I hold. Then, Problem (UR-A) is strongly dual,
i.e., P51 = Di.1. Moreover, Problem (UR-A) is equivalent to

minipmize DKL(p | Qr(\é ) ) @

where \* is an optimal dual variable, and the dual function has the explicit form: Day1(\) =
—log Zy, (). Furthermore, an optimal solution of (UR-A) is given by
ro=an). ®)

™

See Appendix C.3 for the proof. Theorem 1 provides a closed-form solution to the constrained
alignment problem (UR-A), i.e., qr(@ ). This solution generalizes the reward-tilted distribution [13],
which corresponds to finetuning a model with an expected reward regularizer. In Problem (UR-A),
the optimal dual variable \* assigns weights to the rewards such that all the constraints are satisfied

optimally, while remaining as close as possible to the pretrained model.

3.2 Reward alignment of diffusion models

We introduce diffusion models into Problem (UR-A) by representing p and ¢ as two diffusion models:
po.1(+; 8p) and go.7(+; $4), with score functions s, and s, respectively. The path-wise KL divergence
has been widely used in diffusion model alignment to capture the difference between two diffusion
models [44]. Hence, we instantiate Problem (UR-A) in a space of score functions as follows

minimize Dgr( po.r(;sp) || qo.r (58
mingre Dia (por(:5) a0 (55,) .
subject to EwoNpo(‘;sp)[ri(xo)] >b fori=1,...,m.

We define the Lagrangian for Problem (SR-A) as Lari(sp, A) :== Lari(po.r(+; $p), A). Similarly, we
introduce the primal and dual values: PZ; and D%, . In general, Problem (SR-A) is not guaranteed
to be convex, since the path-wise KL divergence (3) involves an expectation taken over the backward
process po.7(-). Nevertheless, the path-wise KL divergence is convex in the entire path space
{po.7(:)}, and constraints are linear. Hence, when the score function class S is expressive enough to
induce any path distribution, we establish strong duality for Problem (SR-A) in Theorem 2.

Theorem 2 (Strong duality). Let Assumption 1 hold for some s € S. If any path distribution po.7(-)
can be induced by a score function s, € S, then Problem (SR-A) is strongly dual, i.e., P{; | = D

See Appendix C.4 for the proof. It is mild to assume the score function class is expressive, as
diffusion models typically employ overparameterized networks (e.g., U-Nets or transformers) in
practice. Motivated by strong duality, we propose a dual-based method for solving Problem (SR-A),
alternating between minimizing the Lagrangian via gradient descent and maximizing the dual function
via dual sub-gradient ascent below.

Primal minimization: At iteration n, we obtain a new model s("*1) via a Lagrangian maximization:

s"FD ¢ argmin Lapi(sp, A™).
s€S

Dual maximization: Then, we use the model s("*1) to estimate the constraint violation E,, [r(2¢)] —
b, denoted as 7(s("*+1)) — b, and perform a dual sub-gradient ascent step:

A+ — [AW + 7 (NSWU) B b) L'

4 Constrained Composition of Multiple Pretrained Models

We provide a characterization of the solution to Problem (UR-C) in Section 4.1, and establish strong
duality for diffusion models in Section 4.2, together with a dual-based training algorithm.



4.1 Composition in distribution space

To apply Problem (UR-C) to diffusion models, we first employ Lagrangian duality to derive its
solution in distribution space. Let the Lagrangian for Problem (UR-C) be

Lano(p,u, A) = u+ Y X (Dxulpllq) — u), ©)
i=1

and the associated dual function Danp (), which is always concave, is defined as
DAND(A) = Iila;{ LAND(pa u, )\) (10)

Let a solution to Problem (UR-C) be (p*, u*), and let the optimal value of the objective function be
Pixp = u*. Let an optimal dual variable be \* € argmax, - o Danp(A), and the optimal value of
the dual function be Dxyp := Danp(A*). For any A > 0, we define the tilted product distribution

q/(&)D as a product of m tilted distributions {q¢*}7 ;:

SRS S © PR
danp() = m};{l (q ()) an

Aj
where Zanp(A) := [T/~ (¢'(z)) *™* d is the normalizing constant.

In the distribution space, Problem (UR-C) is a convex optimization problem, since the sub-level
set of the KL divergence is convex. Again, we apply strong duality in convex optimization [4] to
characterize the solution to Problem (UR-C) in Theorem 3. Moreover, it is ready to formulate the
constrained composition problem (UR-C) as an unconstrained problem by specializing the dual
variable to a solution to the dual problem.

Assumption 2 (Feasibility). There exists a pair (p,u) such that Dxy(p || ¢*) < uforalli =1,...,n.

Theorem 3 (Product composition). Let Assumption 2 hold. Then, Problem (UR-C) is strongly dual,
i.e., P{yp = Dinp- Moreover, Problem (UR-C) is equivalent to

minimize Dgp. ( Pl qx‘\;D) ) (12)
P

where \* is the optimal dual variable, and the dual function has the explicit form, D()\) =
—log Zanp (). Furthermore, the optimal solution of (12) is given by

P = dio- (13)

LY}
See Appendix C.5 for proof. The distribution qx‘\I)D o IT2 (¢°(-)) *™> allows sampling from
a weighted product of m distributions {¢*}7" ,, where the parameters {);/1" A}, weight the
importance of each distribution. The geometric mean is a special case when all \; are equal [1].

Remark 1. Theorem 3 connects our proposed constrained optimization problem (UR-C) to the
well-known problem of sampling from a product of multiple distributions [1, 14]. Furthermore, our
constraints enforce that the resulting product is properly weighted to ensure the solution diverges as
little as possible from each of the individual distributions (see Figure 1 for illustration).

4.2 Product composition of diffusion models

We introduce diffusion models into Problem (UR-C) by representing p and q" as two diffusion
models: p(xo; s,) and ¢*(zo; s7,), with score functions s, and s;, respectively. The point-wise KL
divergence naturally measures the closeness of the final sampling distributions we care about. Hence,
we instantiate Problem (UR-C) in a space of score functions as follows

minimize u

u>0,s5, €S ) (SR-C)

subject to  Dkv(p(zo; sp) | ¢(z0;5;)) < u fori=1,...,m.

We define the Lagrangian for Problem (SR-C) as Lanp (sp, t, A) := Lanp(p(o; 5p), u, A). Similarly,
we introduce the primal and dual values Pxyp and Dyp. Although Problem (SR-C) is non-convex,



since the point-wise KL divergence (4) involves an expectation taken over the backward process
po.(+). Nevertheless, the point-wise KL divergence is convex in the final distribution space. Hence,
when the score function class S is expressive enough to induce any path distribution (hence any final
distribution), we establish strong duality for Problem (SR-C) in Theorem 4.

Theorem 4 (Strong duality). Let Assumption 2 hold for some s € S. If any path distribution po.r (-)
can be induced by a score function s, € S, then Problem (SR-C) is strongly dual, i.e., PXyp = Dinp-

See Appendix C.6 for proof. It is mild to assume the score function class is expressive, as diffusion
models typically employ overparameterized networks (e.g., U-Nets or transformers) in practice. To
solve Problem (SR-C), similar to the one in Section 3.2, we apply a dual-based approach below.

Primal minimization: At iteration n, we obtain a new model s("*1) via a Lagrangian maximization:
st ¢ argmin EAND(sp, )\(")).
sp €S

Dual maximization: Then, we use the model s("*1) to estimate the constraint violation and perform
a dual sub-gradient ascent step:

)\Z(.nﬂ) = [/\Z(-n) + 7 (DKL(p(xo; s("+1)) I q' (xo; sfz)) — u) Lr fori=1,...,m.

It is nontrivial to compute the point-wise KL divergence in the Lagrangian Lanp (s, A(™) and
the constraint violations above. Recall that Lemma 2 gives us a way to compute the point-wise
KL: Dy (p(zo; s) || q(xo; s})). However, it requires the functions s and s, each to be a valid score

function for some forward process. Indeed, this is the case for s ¢ Since it is a pretrained model where
it would have been trained to approximate the true score of a forward process. Yet, regarding the
function s that we are optimizing over, there is no guarantee that any given s € S is a valid score
function. To address this issue, we introduce Lemma 3 that allows us to minimize the Lagrangian.

Lemma 3. The Lagrangian for Problem (SR-C) is equivalently written as
Lanp(s,A) = DKL(p(ﬂUO% s) |l Q,((?\I)D(ﬂﬁo)) — log Zanp(A). (14)

Furthermore, a Lagrangian minimizer s e argming Lanp(s, A) is given by

s [ -~ 2
€ aigemsln Zwt qf@]))(.)]Erth(wtlro) Is(z,t) — Vlog q(x¢ | zo)]| (15)

where q(xy | zg) ~ (\/@xo, (1 —ay)I), and s = Vlog qAND .

See Appendix C for proof. With Lemma 3, as long as we can obtain samples from the distribution
q/(:f\])D, we can approximate the expectation in (15) and use gradient-based optimization methods to

find a Lagrangian minimizer s}). To do so, we use annealed Markov Chain Monte Carlo (MCMC)

sampling [14], which requires having access to the scores of a sequence of distributions that interpolate

smoothly between g\ (27) and ¢'\\p (0): V log g\Np (2¢) = S AiViog ¢'(z¢). In alignment,

since we don’t have these ‘intermediate’ scores, we cannot employ the approach in Lemma 3. See
Appendix B for sampling details.

For the dual update, we evaluate the KL divergence Dy (po(-; s™) || po(+; s°)) between the marginal

densities induced by the Lagrangian minimizer s and the individual score functions s using
Lemma 2, since both are valid score functions.

Remark 2. In practice, the primal step only yields an approximate Lagrangian minimizer s (z,t) =

Vlog ql(:f\])D’ (). This results in two sources of error in evaluating the expectations on the RHS of (4):

. T . 2
Die(pol-35M) [po(-157) = S @ Ey o py(.sat) [Hs(’\)(x,t)—sl(x,t)HJ +er  (16)
t=0

The first error caused by not using the exact s in HS(A) (x,t) — s%(x, t)HZ The second error
introduced by not evaluating the expectation on correct trajectories given by x ~ py(-; s()‘)).
However, the second error reduces, if we have a way of sampling from the true product xy ~ q/&)D’ o
because we can get samples from pq(-; s(/\)) just by adding Gaussian noise to x.

See Appendix F for the detailed algorithm of product composition.



S Computational Experiments

We demonstrate the effectiveness and merits of our constrained alignment and composition in a series
of computational experiments in Section 5.1 and Section 5.2, respectively.

5.1 Alignment of diffusion models with multiple rewards

We extend the AlignProp framework [35] to handle multiple rewards as constraints. We finetune
Stable Diffusion v1.5” using several widely-used differentiable image quality and aesthetic rewards:
aesthetic [39], hps [52], pickscore [23], imagereward [54] and MPS [60]. Since these rewards vary
substantially in scale, making it difficult to set constraint levels, we normalize each by computing the
average and standard deviation over a number of batches. In all experiments, models are finetuned
using LoRA [21]. Experimental settings and hyperparameters are provided in Appendix G.

I. MPS, local contrast, and saturation constraints. A common shortcoming of several off-the-shelf
aesthetics, image preference, and quality reward models is their tendency to overfit to specific image
characteristics such as saturation and sharp, high-contrast textures; see, for example, images in the
first column in Figure 3 (Right). To mitigate this issue, we add regularizers to the reward function to
explicitly penalize these characteristics. However, if the regularization weight is not carefully tuned,
models may overfit to the regularizers instead of optimizing for the intended reward. As shown in
Figure 3, when using equal weights, the MPS reward decreases (Left). In contrast, our constrained
approach effectively controls multiple undesired artifacts while ensuring none of the rewards are
neglected, achieving a near feasible solution at the specified constraint level: a 50% improvement.

MPS Only Unconstrained Constrained

----- Constraint level I MPS @ Saturation I Local Contrast

o
%]
o

1004

Normalized Reward
w
o

o

Equal Weights Constrained

Figure 3: Reward alignment. Stable diffusion is finetuned using one reward that emphasizes aesthetic
quality (MPS), and Saturation and Local Contrast as regularizers. Reward values for the equal weights
method and our constrained alignment (Left). Images are sampled from the aligned models (Right),
and the model trained solely with MPS reward is used for comparison.

I1. Multiple aesthetic constraints. When finetuning with multiple rewards, arbitrarily assigning fixed
weights can lead to uneven performance across rewards. As shown in Figure 4 (Left), the model tends
to overfit one reward while neglecting more challenging ones (e.g., hps). In contrast, constraining all
rewards enables the model to improve each reward up to its specified level, including the challenging
ones. From Figure 4 (Middle), minimizing the KL divergence subject to these constraints also yields a
smaller KL divergence to the pretrained model. Without constraints, overfitting to a subset of rewards
causes the model to deviate excessively from the pretrained one, which is undesirable (Right).

5.2 Product composition of diffusion models

In high-dimensional settings such as image generation, obtaining samples from the true product
distribution via MCMC and then minimizing the Lagrangian in (15) to estimate the true product score
function is prohibitively expensive. To address this, we employ a surrogate for the true score both for
sampling and for computing the KL divergence, as detailed in Appendix G.

I. Composing models finetuned on different rewards. We investigate the composition of several
finetuned variants of the same base model, where each model is trained with LoRA a different reward

“https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
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Figure 4: Reward alignment. Stable diffusion is finetuned using multiple image quality/aesthetic
rewards. Reward trajectories for the regularization-based method and our constrained alignment
during training (Left). KL divergences to the pretrained model (Middle). Images are sampled from
the aligned models (Right), and the pretrained model is used for comparison.

function. A key challenge is determining appropriate combination weights: arbitrary choices can lead
to undesirable trade-offs and underrepresentation of certain models in the mixture, as evidenced in
Figure 5 by drops in up to 30% in some rewards. Our constrained composition provides a principled
way to select weights that maintain proximity to each model, improving rewards across all models.
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-
N
o

=
o
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80

% Min. CLIP () Min. BLIP ()

40

Normalized Reward (%)

Combined Prompting 22.1 0.204
2 Equal Weights 227 0.252
Constrained (Ours) 229 0.268

Equal Weights Constrained

Figure 5: Product composition. Stable diffusion  Table 1: Product composition. We compare our
with LoRA is finetuned using different rewards,  constrained composition with two baselines us-
for equal weighted and product mixtures. 100%  ing minimum CLIP and BLIP scores. The score
represents the reward levels attained by models  is averaged over 50 different prompt pairs that
aligned solely with the individual reward. Higher = are sampled from a list of simple prompts.

is better.

I1. Concept composition with stable diffusion. Following the setting in [40], we compose two text-
to-image diffusion models, each conditioned on a different input prompt. We apply the constrained
composition (SR-C) to determine the optimal weights for composing two models, and compare against
the baseline that uses equal weights. Closeness to each model encourages faithful representation of
both concepts in the images generated by the composed model, as reflected by improved text-to-image
similarity metrics: CLIP [20] and BLIP [25], which are reported in Table 1. We compute similarity
scores between the generated images and each of the two prompts and compare their minimum
values. We also include a baseline where images are generated from a single combined prompt
containing both inputs. Images from all approaches, along with implementation details and additional
experimental results, are provided in Appendix G.

6 Conclusion

We have developed a constrained optimization framework that unifies alignment and composition of
diffusion models by enforcing that the aligned model satisfies reward constraints and/or remains close
to each pretrained model. Theoretically, we characterize the solutions to the constrained alignment
and composition problems and design dual-based training algorithms to approximate these solutions.
Empirically, we demonstrate our constrained approach on image generation tasks, showing that the
aligned or composed models effectively satisfy the specified constraints.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We use publicly available pretrained models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The models and code used have been properly cited.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: -
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: -
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: -
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: -
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Materials for
“Composition and Alignment of Diffusion Models using
Constrained Learning”

A Limitations and Broader Impact

Limitations: Despite offering a unified constrained learning framework and demonstrating strong
empirical results, further experiments are needed to assess our method’s effectiveness on alignment
and composition tasks beyond image generation, under mixed alignment and composition constraints,
and in combination with inference-time techniques. Additionally, further theoretical work is needed
to understand optimality of non-convex constrained optimization, convergence and sample complexity
of primal-dual training algorithms.

Broader impact: Our method can enhance diffusion models’ compliance with diverse requirements,
such as realism, safety, fairness, and transparency. By introducing a unified constrained learning
framework, our work offers practical guidance for developing more reliable and responsible diffusion
model training algorithms, with potential impact across applications such as content generation,
robotic control, and scientific discovery.

B Related Work

Alignment of diffusion models. Our constrained alignment is related to a line of work on finetuning
diffusion models. Standard finetuning typically involves optimizing either a task-specific reward
that encodes desired properties, or a weighted sum of this reward and a regularization term that
encourages closeness to the pretrained model; see [16, 55, 24, 53, 59, 51, 2, 12, 61] for studies using
the single reward objective and [45, 62, 47, 46, 36, 17, 19] for those using the weighted sum objective.
The former class of single reward-based studies focus exclusively on generating samples with higher
rewards, often at the cost of generalization beyond the training data. The latter class introduces
a regularization term that regulates the model to be close to the pretrained one, while leaving the
trade-off between reward and closeness unspecified; see [44] for their typical pros and cons in
practice. There are three key drawbacks to using either the single reward or weighted sum objective:
(i) the trade-off between reward maximization and leveraging the utility of the pretrained model is
often chosen heuristically; (ii) it is unclear whether the reward satisfies the intended constraints; and
(ii1) multiple constraints are not naturally encoded within a single reward function. In contrast, we
formulate alignment as a constrained learning problem: minimizing deviation from the pretrained
model subject to reward constraints. This offers a more principled alternative to existing ad hoc
approaches [8, 18]. Our new alignment formulation (i) offers a theoretical guarantee of an optimal
trade-off between reward satisfaction and proximity to the pretrained model, and (ii) allows for
the direct imposition of multiple reward constraints. We also remark that our constrained learning
approach generalizes to finetuning of diffusion models with preference [49, 57, 26].

Composition of diffusion models. Our constrained composition approach is related to prior work on
compositional generation with diffusion models. When composing pretrained diffusion models, two
widely used approaches are (i) product composition (or conjunction) and (ii) mixture composition
(or disjunction). In product composition, it has been observed that the diffusion process is not
compositional, e.g., a weighted sum of diffusion models does not generate samples from the product
of the individual target distributions [14, 5, 10]. To address this issue, the weighted sum approach
has been shown to be effective when combined with additional assumptions or techniques, such as
energy-based models [31, 14], MCMC sampling [14], diffusion soup [1], and superposition [40].
However, how to determine optimal weights for the individual models is not yet fully understood.
In contrast, we propose a constrained optimization framework for composing diffusion models that
explicitly determines the optimal composition weights. Hence, this formulation enables an optimal
trade-off among the pretrained diffusion models. Moreover, our constrained composition approach
also generalizes to mixture composition, offering advantages over prior work [31, 14, 1, 40].
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Diffusion models under constraints. Our work is pertinent to a line of research that incorporates
constraints into diffusion models. To ensure that generated samples satisfy given constraints, several
ad hoc approaches have proposed that train diffusion models under hard constraints, e.g., projected
diffusion models [27, 11, 28], constrained posterior sampling [34], and proximal Langevin dynam-
ics [58]. In contrast, our constrained alignment approach focuses on expected constraints defined
via reward functions and provides optimality guarantees through duality theory. A more closely
related work considers constrained diffusion models with expected constraints, focusing on mixture
composition [22]. In comparison, we develop new constrained diffusion models for reward alignment
and product composition.

C Proofs

For conciseness, wherever it is clear from the context we omit the time subscript:
Dx1(po.r (w015 8p)) = Dx(p(To:1; 5p)) a7
C.1 Proof of Lemma 1

Proof. The DDIM process is Markovian in reverse time with the conditional likelihoods given by

p(SCt—l \It;s) = N(

1

zy + Bis(xy,t), a§1> . (18)

Qi

Using (18) we expand the path-wise KL:

Dk (po:r (- Sp) Il g0 (+; Sq))
= Ezprn~p [log p(wo.1; Sp) —log q(wo.7; Sq)]

Tp— 1|17t,5p
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= EwTNpT+1(),wT 1~pr(-lzr), ..., x0o ~p1(-|z1) [Z log q(zi_1 | 2458 Sq
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)
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g\T¢— 1|5Ef75q

1
= E :EJSTNPT+1()1T 1~pr(-lzT), ... ;w0 ~p1(-|z1) |:10g
t="T
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= Z Bao.r ~p [DrL(P(@i—1 [ 265 5p) | g(@i—1 | 245 5¢))]
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L Z Brvns | o Iop(onst) = s an
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= D By |5 Isp(@nt) = sl )]

t=T 20i

where (a) is due to the diffusion process, (b) is due to the exchangeable sum and integration, (c) is
the definition of reverse KL divergence at time ¢, (d) is due to the reverse KL divergence between
two Guassians with the same covariance and means differing by 5;(s,(x¢,t) — sq(z¢, 1)), and in (e)
we abbreviate as B,y that is taken over the randomness of Markov process.

Tt~ Pt+1

C.2 Proof of Lemma 2

The proof for Lemma 2 is quite involved, thus we have divided it into multiple parts for readability.
In Section C.2.1, we give a few definitions for continuous time diffusion processes. In Section C.2.2,
we prove an analogue of Lemma 2 in continuous time. In Section C.2.3, we bound the discretization
error er incurred when going from continuous time processes to corresponding discretized processes
and thus complete the proof. The proofs for all lemmas presented here can be found in Appendix D.

C.2.1 Continuous time preliminaries

Notation Guide: Throughout the proof, we will be dealing with continuous time forward and reverse
diffusion processes and their discretized counterparts.
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» We denote the continuous time variable 7 € [0, 1] to differentiate it from the discrete time
indices t € {0,--- ,T}. t = 0 corresponds to 7 = 1 and t = T corresponds to 7 = 0. *

* We denote as X, the continuous time reverse DDIM process and X; as the corresponding
discrete time process.

* The forward processes we denote with an additional bar e.g. X, X, denote the continuous
time and discrete time forward processes respectively.

 Marginal density of continuos time DDIM process with score predictor s(z, 7) at time 7 we
denote as: p,(z, s).

Given a function s(z,7) : R? x [0,1] — R9, and a noise schedule @, increasing from @y = 0 to
@1 = 1, we define a continuous time reverse DDIM process as

- N 2
o} a o
dx, = (=—/—2X%, — + -D)s(X,,7))dt A8, Xo~N(0,I 19
(5% + (5 5 )s(Er )t + o~ NOT)(19)
The variance schedule o, is arbitrary and determines the randomness of the trajectories (e.g. if
o, = 0 for all 7, then the trajectories will be deterministic). The DDIM generative process (19)
induces marginal densities p, (z, s) for 7 € [0, 1].

For reference the Discrete time DDIM process defined in the main paper is

X, = O‘;*lxt + Bes(Xit) + over (20)
t

Up to first order approximation, the discrete time process (20) is the Euler-Maruyama discretization
of the continuous time process (19). A uniform discretization of time is assumed, i.e., 7 =1 — %
(See [13, Appendix B.1] for the full derivation).

Given random variables Xo ~ po = A(0, 1) and X; ~ p;, where p; is some probability distribution
(e.g., the data distribution), we define a reference flow X, for 7 € [0, 1] as

X, = a, X0+ GX1 (21)

Note that there is no specific process implied by the definition above, since different processes can
have the same marginal densities as the reference flow at all times 7. We denote by p;(-) the density
of X;. As a.; decreases from oy = 1to a; = 0, and (; increases from (; = 0 to {; = 1 the reference
flow gives an interpolation between po = N(0, I) and p;.

If the score predictor s(z, 7) = V. log p.(x), then the DDIM process (19) has the same marginals
as the reference flow (21), i.e., p,(z,s) = p,(x) for 7 € [0, 1]. This is assuming proper choice of

ar, (e, ar =1 —a,, & =a,.
C.2.2 Proof for continuous time

We generalize [32, Theorem 1] to characterize how the KL divergence between the marginals of two
continuous time forward processes changes with time.

Lemma 4. Consider reference flows defined as _%T = ozT_fo + (X, for T € [0,1] where Xo ~
N (0, I). Denote by p~(-), the marginal density of X, when X1 ~ py and similarly q,(-), the marginal
density of X; when X1 ~ q1. The following then holds:

d

2 Dxe(p-() [[a-()) = =732 Dep- () 1 9-() (22)

where v, = (; /., and Dg(p || q) denotes the Fisher divergence.
By integrating the derivative of the KL divergence as given by Lemma 4, we obtain the following

continuous-time analogue of Lemma 2, which characterizes the point-wise KL divergence of two
continuous time diffusion processes.

3For consistency with other works from whom we will utilize some results in our proofs, namely [13, 32],
the direction of time we consider in continuous time is reversed compared to discrete time. This does not affect
our derivations and results beyond a notation change.
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Lemma 5. Consider two score predictors s,(x,7) = Vi 1logp,(x), sq(x,7) = V, log g, (x), where
pr, 0, are marginal densities of two reference flows, with the same noise schedule, starting from initial
distributions po and qo, respectively. Then, the point-wise KL divergence between two distributions
of the samples generated by running continuous time DDIM (19) with s, and sq is given by

1
Br B, o) [Inl@m) = 5@, 1] @3)

Dt (po (-5 59) [| G0l 54)) = /

where W is a time-dependent constant

C.2.3 Bounding the discretization error

We now turn to bridging the gap between continuous and discrete times. In [33], they bound this gap
which arises from the discretization of the continuous time diffusion process. We will utilize the main
result from this paper with a minor modification in that we consider a time-dependent drift term. This
is formalized in Lemma 6 which allows us bound the KL divergence between the marginals p;(-) of
the discrete time backward DDIM process and the corresponding marginal p /7 (+) of the continuous
time backward process.

Lemma 6. (Modification of Theorem 1 from [33].) Under mild assumptions on the score function
(outlined in the proof), the KL divergence between the marginals of the discrete time backward
process py(-) and continuous time backward process ;7 (+) can be bounded as follows:

D (peli5p) [910/7 () < 4

where c is a constant depending on the assumptions.

Next we need to characterize the sensitivity of the KL divergence to perturbations in the first and
second arguments so that we can apply Lemma 6.

Lemma 7. Assume M := max,

log(pog ’S”g )’ is bounded. Then, the point-wise KL between the

continuous time processes approximates the point-wise KL between the discrete time processes up to
a discretization error €1 (T):

[ Dkw(po (-3 $p) 1 d0(+5 5¢)) — Dxe(po(s 5p) [ g0 (-5 5))| < en(T), (25)
where e1(T) = O(1/T).

And lastly, we need to characterize the discretization error in going from a integral over continuous
time to a sum over discrete time steps.

Lemma 8. Assume By, By as defined below are finite:

By = sup ||sp(z,7) — sq(z, )], (26)
d
By := sup d—(sp(a:,T)—sq(x,T)) 27
T, T T 2

Then the integral from Lemma 5 giving the point-wise KL in continuous time can be approximated
with a discrete time sum as follows:

(28)
where the discretization ervor is e2(T) = O(1/T).
It remains to combine Lemmas 7 and 8 to complete the proof of Lemma 2:
Dgr.(po(-5sp) 1 90(-; Zwt @~ pi l[sp(,t) _Sq($>t)||§ +er (29)

where |er| < €1(T) + e2(T) = O(1/T). (We abuse notation to denote +w, 7 as @; in (29) and in
the main paper.)
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C.3 Proof of Theorem 1

Proof. For any A\ > 0, the optimal solution p*(+; A) is uniquely determined by solving a partial
minimization problem,
minimize Lapy(p, A).
peEP

Application of Donsker and Varadhan’s variational formula yields the optimal solution
PN o g()er 0.
Since the strong duality holds for Problem (UR-A), its optimal solution is given by p*(-; A) evaluated
at A = A",
It is straightforward to evaluate the dual function by the definition D(A) = L(p*(-; \), A). O

C.4 Proof of Theorem 2

Proof. We first consider the constrained alignment (SR-A) in the entire path space {po.r(-)}. Since
the path-wise KL divergence is convex in the path space and the constraints are linear, the strong
duality holds in the path space, i.e., there exists a pair (p.(-), A*) such that

Paiy o= Dxu(p6r() | q0:r(584)) = Danr(N) == Djyy.
Equivalently, (pj.1-(-), A\*) is a saddle point of the Lagrangian Lay(po.7(-), A),
Laui(po.r(-),A) < Lau(pp.r(-), \*) < Laui(po:r(-), A*) forall po.7(-) and A > 0.

Since the score function class S is expressive enough, any path distribution pg.7(-) can be represented
as po.7(+; sp) with some s, € S; and vice versa. Thus, we can express p§.-(-) as po.r(-; s ) with

some s; € S. We also note that the dual functions DALI()\) in the path and score functlon spaces
are the same. Hence, the dual value for Problem (SR-A) remains to be Dari(X*). Thus, (s}, \*) is a
saddle point of the Lagrangian EALI(SP, A) = Laui(po:r(-; $p)s A),

Laui(s},A) < Lau(sy, A*) < Lawu(sp, A*) forall s, € Sand A > 0.
Therefore, the strong duality holds for Problem (SR-A) in the score function space S. O
C.5 Proof of Theorem 3
Proof. By the definition,

Lano(p,w;A) = u+ Z Ai (Dx(pll q) — u)
i=1

= u—u)\Tl—i—Z Eunp[logp(z)] — NEg < p [log¢'(z)])

i=1
m m
i Ai
= u—u/\Tl—i-Z/\iEmNp[logp(x)]—Elwp logH(q (z)) ]
i=1 i=1
= u—u\'1
+Z>‘ ( wrpl0gp(T)] = Egnp logH 1TA‘|>
i=1 i=1
m

= u-+ Z Ai (DKL(p I q,(&)D) — u) — 1T)\logZAND(/\),

=1

By taking A = \*, we obtain a primal problem: maximize, ¢ p >0 Lanp (p, u; A*), which solves
the constrained alignment problem (UR-A) because of the strong duality. By the varational optimality,
maximization of Lanp(p, u; A*) over p and w is at a unique maximizer,

PN o g ()
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and u* = 0if 1 — 1T A\* > 0 and u* = oo otherwise. This gives the optimal model p*(-) = p*(-; \*).

Meanwhile, for any A > 0, the primal problem: maximize, ¢ p >0 Lanp (p, u; A) defines the dual
function Danp (). By the varational optimality, maximization of Lanp (p, u; A) over p and u is at a
unique maximizer,

A
A CPWNIESII NG
and u*(\) = 0if 1 — 17X > 0 and u*(\) = oo otherwise. This defines the dual function,
Dano(A) = Lano(p*(sA), u*(A); A)

m

)+ D0 (D0 () [k () = (V) = 17 Alog Zawp(V)

= (1- 1T)\)u*()\) — 1T)\log Zanp(A)

which completes the proof by following the definition of the dual problem and the dual constraint
1TA< 1. O

C.6 Proof of Theorem 4

Proof. Similar to the proof of Theorem 2, we can establish a saddle point condition for the Lagrangian
Lanp(sp, u, A) by leveraging the expressiveness of the function class S which represents the path
space {po.7(-)}. As the proof follows similar steps, we omit the detail. O

C.7 Proof of Lemma 3

Proof. From section C.5, we recall:

Lano(p,w; A) = u+ Z Ai (DKL(p | q&)n) - U) —1"Xlog ZaND(A).- (30)
i=1

Since in the diffusion formulation of the problem (SR-A) we have p = po(z0; s), ¢* = po(xo; s°),
we can derive similarly to (30) that:

Lanp(po(+58),us A) = u+ Z Ai (DKL(PO( s) || qAND o() — U) — 17 Alog Zann(A).  31)
i=1

Since minimizing over w would trivially give min, Lanp(p, u; A\) = —oo unless ATl =1, we

consider the Lagrangian in the non-trivial case where AT 1 = 1. Then we have:

Lano(p(:5):A) = Lawn(s, %) = Dxw(po(59) || aiN.0) — 108 Zann(\). (32)

The second term log Zanp(A) does not depend on s, thus it suffices to minimize
Dxy.(po(+59) || q/(&)D o) to find the Lagrangian minimizer which we call s(\). The KL is minimized

when po(-; 0‘)) = q/g )D o- If we have access to samples from ql(m)D 0» We can fit s to q/(\N)D o by
optimizing the Denoising score matching objective similar to Equatlon (1) in [43]:

2
Lgm(s, A) ;} we E qglﬁg(JE%NQ(It | 0) [Hs(x, t) — Vlog q(xt | zo)] (33)
From [43] we know that given sufficient data and predictor capacity of s we have
argming Ley (s, \) ~ q/(:l\\I)D,O which concludes the proof. O

D Additional Proofs

We provide detailed proofs for all lemmas in Section C.2.
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D.1 Proof of Lemma 4

Proof. We start by defining ), as a time-dependent scaling of X,

1 _ _
VD, = —X; = X1 +7%o (34)

ar

where 7, := (,/a,. Denote by p,(2),), the marginal density of ), when X; ~ p; and similarly
Gt (), the marginal density of ), when X; ~ q;. Now we generalize Theorem 1 from [32] to
show that (22) holds for p, q,. Their Theorem is for the specific case of v, = /1 — t.*

We now present Lemmas 9 and 10 which we will need in the remainder of the proof.

Lemma 9. For density p,(2).) as defined in Theorem 1, the following identity holds:

d~ - -
%p‘r(@‘r) = ’YT'.VTA@TPT(@T)- (35)

Proof. Proof of Lemma 9. We start with p,(9),) which is the convolution of a Gaussian distribution
with P1 (% 1 )Z

- 1 ), — X1 .
p-(Dr) = /5€ Wexp <W> p1(X1), (36)

Taking the derivative we have:

P R 1 (ISR

. I N (37)
_/ i = 5 XP —7’@7_%1" pl(:%l)'
%, Vr (2my2)02 292
On the other hand, taking the gradient of p, (2),) with respect to 2), we get:
= = < = 112
o V,-% 1 19- - % -
Vg p:(D:) = — —_— X1). 38
QJTP (@ ) % 772— (27T'Y$)d/2 exp 2772— pl( 1) ( )
Taking the divergence of the gradient, we have:
= = 12 = = 2
. B 19 - %], -
Ag T T H@ - X
9. P-(D-) /x v (2m2)az P 272 P (39)
= - 112
_/ i#exp _M p1(%1)
x, 12 (2m2)4/2 202
Comparing Equations (37) and (39) proves the result.
O

Lemma 10. For any positive valued function f(z) : R? — R whose gradient Y, f and Laplacian
A, f are well defined, we have the identity

B (@) _ A, tog f(z) + ||V log f()]°- (40)

*Just to avoid any confusion, in [32], at ¢ = 0 we have the data distribution and as ¢ increases the distributions
converge to Gaussians. However in the current paper, the direction of time is the opposite, meaning ¢ = 0
corresponds to the pure Gaussians and at ¢ = 1 we have the data distributions.
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We now continue with the proof of Lemma 4. We start with the definition of Fisher divergence for
generic distributions p, q:

Delplla) = [ ple) |Vlogp(a) - Vloga(o)]* do
Vo) Ve[
| S - S| @n
_ o (Y@ [ Ye@) |, Ve@) Va@)
- /wp”<H e Il el B ene )d

We apply integration by parts to the third term. For any open bounded subset 2 of R? with a piecewise
smooth boundary I' = 9:

TM xr = X T o x X
[ v e = [ vpe)(Vioza(a)a

42)
—/ p(x)Alogq(x)dm—&—/p(:L‘)(Vlogq(x)Tﬁ)dF
IS T

Assuming that both p(z) and ¢(x) are smooth and fast-decaying, the boundary term in (42) vanishes.

Then we can combine (41) and (42) to write:

Detplla) = [ pla) (IVlogp(@)” + [V loga(@)|* + 28, loga(@)) o 43)

Returning to our distributions p,(2),) and q,(2),) we can rewrite (43) as:

DA 13:0) = [ 5e@0) (1088, + 17 108D + 289, 0g3:(D,)) 4.
(44)

For conciseness in notation, we drop references to variables 2), and X, in the integration, the density
functions, and the operators whenever this does not lead to ambiguity. We start by applying Lemma 10
to Equation (43):

De(f, |3,) = / B, (IVlogh |2 + [V logd, [ + 2Alogd, ) .

- (45)
= /gr <V10gﬁ7’2 + = q ) .

Next, we expand the derivative of the KL divergence:
d -~
%DKL(IJT la-) = p'r log ]J-r log pr— p'r IOg qr-

We can eliminate the second term by exchanging integration and differentiation of 7:

&, d (-
/pT long—/dT—E pr = 0.

As a result, there are three remaining terms in computing d%D xL(p-||d-), which we can further
substitute using Lemma 9, as:

d -~ d - ~ d - ~ - d ~
EDKL(pT ” qT) - /EPT long_/%pT loqu_/pTEIquT7
: -~ ~ o~ ~ Ag-
= 7 (/Apr log pr _/Ap‘r log g, _/p‘raq> :
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Using integration by parts, the first term in (46) is changed to:

d -

~ ~ opr . ~

/ Ap,logh, = > 90, log p- (%)
i=1 v

Yi=—00

- /vﬁfv logp.

Yi=

The limits in the first term become zero given the smoothness and fast decay properties of p (%). The
remaining term can be further simplified as:

/VpTVlong /%(VlogET)TVIOgﬁT = /ETIVIOg%IZT

The second term in (46) can be manipulated similarly, by first using integration by parts to get:

/APT logq, = Z a

/ VprVlog ;.

Yi=

Applying integration by parts again to VpZ 'V log q,, we have:

~ Ologq, |”
=T
[ verviogs. — S5, -

i=1

/ prAlogqs.

The limits at the boundary values are all zero due to the smoothness and fast decay properties of
p- (). Now collecting all terms, we have [p.logp, = — [p,|Vlogp,|* and [p,logq, =
J p-Alogq,. Thus (46) becomes:

Yi=

d . . ~ ~ - Aq,
diTDKL(pT la:) = =V /p‘r (|VIng‘r|2 + Alogq, + aq) .

Combining with (45), this leads to the following:

d

- Dxulpr lldr) = =30 De(pr [ dr). (47)

Recall that p,(-) and §(-) were the densities of the scaled random variable ), = - X . This leads
to p,(X,)dX, = p-(D,)dY,. Thus, it is straightforward to show that both KL divergence and
Fisher divergence are invariant to the scaling of the underlying random variables. For KL divergence
we have

DKL(IJ-,— ” q‘r /p‘r QJT dﬁ).,_ /pT ;d:{ = DKL(IJT( ) || q'r('))
(48)
And for Fisher Divergence we can write
= < 2
Do) =[5 fogjg) -0y,
o[V ED) - Ve @) s (49)
= (X, = — = dx,
/p *) T(xT) - (X-)

Thus we can replace the divergences in (47) with those of the non-scaled distribution, which concludes
the proof. O
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D.2 Proof of Lemma 5

Proof. We start with a direct application of Lemma 4:
1

D) as() = Dralpol) o) - [

T=

0 ,Y.T’YTDF(,IST(.) || HT(>)dT

1
_/ VryrBpn. [HVlogﬁT(x) — VlogﬁT(x)Hz} dr
7=0
1 , (50
[ B, [lser) = syt dr

1 .
ar 2
R e TH

T

In the second line we used the fact that po(-) = qo(-) = N (0, I), therefore Dxyr(po(-)||90(+)) = O.
The third line follows from our definition of the score functions. Finally, in the last line we used the

fact that 7,7, = — 2% which follows from v, = ¢; /o and o2 + (2 = 1:
. d ¢ ¢
V¥ = dT(aT ) o,
_ CrGrog — aTC?—
=
T 1
=02 —dr(1—a2) D
= )
Sl
by denoting w, := —z% we conclude the proof. O

D.3 Proof of Lemma 6

Proof. In [33] they prove this result assuming a drift term that only depends on x. For our modifi-
cation, we begin by defining the time-dependent drift b, : R? — RY of the diffusion process (19)

as
fo' fo' 072_
br(x) == <2aTJ:+ <2aT + 2> s(:c,7)> .

Assumption 3. The drift b, (-) satisfies the following properties for all times T € [0, 1],

1. Lipschitz drift term.There is a finite constant L1 such that

1o-(2) = b-(y)ll2 < Lyllx—yl|2 forallz,y € RY. (52)

2. Smooth drift term. There is a finite constant Lo such that

Vb (2) = Vor (W)l < Lol —yll2 forallzy e R (53)

3. Distant dissipativity. There exist strictly positive constants i, 3 such that

(br(z),2) < —plz|3 + B forall xR (54)

4. Time-continuous drift term. There is a finite constant L3 such that

H 0, ()

< L3 forallz € R%. (55)
or

2

There is an additional assumption in [33] on the smoothness of the initial densities of the continuous
and discrete processes. In our case both are the standard Gaussian which satisfies the assumption. We
do not provide the whole proof here as it would consist of almost the entirety of [33]. We focus on a
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small part of the proof, that is the only part that changes when we use a time-dependent drift b, (z) as
opposed to [33] where they assume a time-independent drift b(x).

Consistent with their notation, we define a continuous time diffusion process:
dX, = b, (X;)dr + dB;, (56)

and its Euler-Maruyama discretization parameterized by step size 7 > 0 (In our case = %):

)?(k-i-l)n = )?kn + nbkn(ikn) + \/ﬁfka Ek NN(OaI) (57)

Furthermore they construct a continuous time stochastic process over the interval 7 € [n, (k + 1))
that interpolates (57):

~

R T—kn N T
X, = Xy + / Doy (Xp)ds + / dB, (58)
0 kn

Then they prove that the densities of the two continuous time processes given by (56),(58) denoted as
7 and 7, respectively satisfy the following (Lemma 2 from [33]):

d 1
EDa ) < 5 [ Fla)

~ 2
9 b (z) — bT(z)HQ dz. (59)

where b, () :=E [bkn (X kn)D?T = 1:] where the expectation is over the process (58). Then they

proceed to bound the norm inside the integral. The next equation based on equation (18) from [33] is
where the time dependence of the drift term in our case enters the picture.

brl@) = brl@) = E by (Kin) | K5 = 2] = s ()
= B b (R %r =]~ (brafo) + D57 = )+ O~ k)
= B b (Ru) = b (RIS =] = 22| (k) + O = )

(60)

They prove that the first term in (60) is O(7) and from our additional time-continuity requirement for
the drift in Assumption 3, the second term is also O(n). (Note that T € [kn, (k + 1)n] thus (7 — kn)
can be at most 7). With this, the rest of the proof from [33] goes through. O

D.4 Proof of Lemma 7

Proof. We first prove a similar relation for generic distributions 7 (), p(x) and their perturbations
7(x), px);

Where it is clear from the context, we omit the integration variables. Perturbing the first argument
gives us:

1Dk (7 || p) — Dx(7 || p)| = /ﬂog (i) */”log (;)
— Da(F|m)+ [ (7= m)log (Z)

DKL(% || 7T) “+ max <

+/(%1ogﬁf%logw)

(61)

IN

= D (7| )+ 2log M dry (7, )
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log( 7T(aj)) and drv denotes the total variation distance between distributions.
p(z)

Next, perturbing the second argument we get:

[ree(5)- 7 ()

where log M := max,

[ Dk (7| p) = Dxo( || p)| =

I
|
—
3
5}
0
/
SNES))
N
Il
|
—
)
o}
0
/~
—
+
‘b
)
~

p— T, (62)
< [#2L- [E2Gy)
p Tp
7T ~
< wax (2) [ 15
P
= 2M drv(p, p)

Using (61), (62) we get:
|Dko(7 || p) — Dxo( || p)

IN

1D ([ 9) = Dxu(7 || )| + [ Do (T || p) = D ([ p)]
DKL(’]T H 7T) + 2MdTV p7 + QIOgMdTv(’IT 7T)

DKL 7TH7T —‘rQM\(*DKL pHp —|—210gM\)*DKL 7T||7T

(63)

where in the last line we utilized Pinsker’s inequality to bound the TV distance with the square root
of the KL divergence. Now we apply (63) to diffusion models:

[ Dre(po(55p) [ 90(+55¢)) = D (po (5 5p) [ 90(559))| < D (po(5 5p) [ 90 (+5 5p))

N

IN

+2M \/;DKL(pO('§ 5q) 1 90(+554))

1
+2log M \/QDKL(PO('; sp) | 90(+35p))

(64)

Furthermore from Lemma 6 we know:
Dxr(po(58p) [l a0(55p)) < ¢/T% Dra(po(554) || q0(584) < ¢/T? (65)

Putting together (64) and (65) we get:
|DkL(po(+5 5p) 190 (-3 8q)) — Dxr(po(+58p) | @0(+58¢))| < ex(T) (66)

where €1 (T) := ¢/T? + (2M + 2log M)+/c/T?. The second term dominates therefore €1 (7)) =
O(1/T) which concludes the proof.

D.5 Proof of Lemma 8

Proof. There are two sources of error we need to consider. First we bound the error in approximating
an integral with a sum:

1
[ @B [Isnlem) = a0 - 3 T B i) | I5pl1) = 5y, )2

=0 t=0
1 T 1
= |, St = X s
1 df
Tzl
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where we have defined f(7) := W By v p (.:s,) [ |sp(x, ) — sq(z,T) ||§ } . We now upper bound the
supremum to show that it is finite:

d d
T 2 ([rasslsten - seniia)

- / L o @ 5)) lsp(@s7) — sqla, )2 da (67)
/ Do 5p) e (lsp(ar,7) = s, 7) D

We bound each term in (67) separately. Then the first term in (67) is bounded because %(pT(x i Sp))
is finite as characterized in Lemma 9. The second term in (67) we expand further:

[ e g lsyte. ) = syfe o

d
< 250 () = 5,y || - (s ,7) = sy 7)
x,T 2
< 2B:Bs.

The second source of error is replacing expectation over the continuous time marginal p; /7 (- ; 5p)
with expectation over the discrete time marginal p; (- ; s,) which we can bound by using the fact that
the two aforementioned marginals are close to each other.

T
1.
T B mpyyn o) | 0@, 0) = sq@, )3 ] ZT T B mpitcisy) | Isp(@ ) = sol@, 03]

A =
\EN
N

F@yrdry (pe(-55p),pyr(- 3 5p)) - sup llsp (@, 7) = sq(a, )13

t=0
1 c
~ 2
< Z T\ T Bj
t=0
1 c 2
< T- 7\ B?
1
= O —
(7)
where we used Lemma 6 to get the last line which concludes the proof. [
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E Composition with Forward KL Divergences

We start with the constrained problem formulation using forward KL divergence (UF-C) which we
rewrite here:
minimize w
P . (68)
subject to Dxr(¢*||p) < u fori=1,...,m.
In the case of diffusion models, the KL divergence in (68) becomes the forward path-wise KL between
the processes:
minimize u
P . (69)
subject to  Dxi(gb.r(-) || po:r(s58)) < w fori=1,...,m.

It is important to note here that using the forward KL as a constraint makes sense when ¢’ represent
forward diffusion processes obtained by adding noise to samples from some dataset. We can also
solve this forward KL constrained problem to compose multiple models; In that case we treat samples
generated by each model as a separate dataset with underlying distribution g} ().

In summary, the two key differences of Problem (69) to Problem (UR-A) are: (i) The closeness of
a model p to a pretrained model ¢’ is measured by the forward KL divergence Dxy (¢ || p), instead
of the reverse KL divergence Dxy(p || ¢%); (ii) The distributions {g*}" ; can be the distributions
underlying m datasets, not necessarily m pretrained models.

Regardless of whether the q" represent pretrained models or datasets, evaluating
Dxi.(g4.7 () | po:r(+; ) is intractable since it requires knowing g¢¢.(-) which in turn re-
quires knowing ¢} () exactly. To get around this issue we formulate a closely related problem to (69)
by replacing the KL with the Evidence Lower Bound (Elbo):
minimize w
oY | | (70)
subject to  Elbo(gy.ripo.r) < w fori=1,...,m

where the Elbo is defined as

po:T(xo:T)

. 71
Q($1:T|330) an

Elbo(QO:T%?O:T) = Exowngq(mlzT\mo) IOg
We note that the typical approach to train a diffusion model is minimizing the Elbo. Fur-
thermore, minimizing Elbo(qo.7; po.r) over p is equivalent to minimizing the KL divergence
Dx1(gb.7(*) || po.(+; 8)) since they only differ by a constant that does not depend on p. (see [22] for
more details on this)

For a given )\, we define a weighted mixture of distributions as

() = > 5700) (72)
=1

and we denote by H (q) the differential entropy of a given distribution g,
H(q) = _Ea:Nq[IOg Q(x)] (73)

Theorem 5. Problem (70) is equivalent to the following unconstrained problem:

minimize DKL(q(A*) Ilp) (74a)
P

where \* is the optimal dual variable given by \* = argmax, > o D(A). The dual function has the
explicit form, D(\) = H (qr(n)l‘Z) Furthermore, the optimal solution of (7) is given by
* ¥
) ge
Unlike the reverse KL case, here we can characterize the optimal dual multipliers, and the

optimal solution further; Note that the optimal dual multiplier \* = argmax,-,D(\) =
argmax, s o H (gmix(-; A*)) is one that maximizes the differential entropy H (-) of the distribution of
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the corresponding mixture. This implies that the optimal solution is the most diverse mixture of the
individual distributions.

There are many potential use cases where we may want to compose distributions that don’t overlap in
their supports; For example when combining distributions of multiple dissimilar classes of a dataset.
The following characterizes the optimal solution in such settings.

Corollary 1. For the special case where the distributions q* all have disjoint supports, the optimal
dual multiplier \* of Problem (70) can be characterized explicitly as

)\* eH(d")

T Z;‘n:l eH(q]‘)'

F Algorithm Details

F.1 Alignment

Recall from Section 3.2 that the algorithm consists of two alternating steps:

Primal minimization: At iteration n, we obtain a new model s("*1) via a Lagrangian maximization:

st ¢ argmin EAU(SP,/\(”)).
se8S

Dual maximization: Then, we use the model s("*1) to estimate the constraint violation E,, [ (2¢)] —
b, denoted as 7(s("*1)) — b, and perform a dual sub-gradient ascent step:

A1) — [)\(") + (r(s("+1)) — b)] )
+

In practice we replace minimization over S with minimization over a parametrized family of functions

Sp. The full algorithm is detailed in Algorithm 1.

Algorithm 1 Primal-Dual Algorithm for Reward Alignment of Diffusion Models

1: Input: total diffusion steps 7', diffusion parameter oy, total dual iterations /, number of primal
steps per dual update N, dual step size 1y, primal step size 7,, initial model parameters 6(0).

2: Initialize: \(1) = 1/m.
3: forh=1,--- ,Hdo
4: Initialize 6; = 6(h — 1)
5: forn=1,---,Ndo
6: Take a primal gradient descent step:
Onsr = 6, —1p - VoLau(6,A™). (75)
7: end for
8: Set the value of the parameters to be used for the next dual update: 6(h) = On41.
9: Update dual multipliers fori = 1,--- ,m:

Ai(h+1) = [Xi(h) + 1a(Eagmpo(s0) [Ti(0) | = 0i)] - (76)

10: end for

We now discuss the practicality of the primal gradient descent step (75) regarding the Lagrangian
function,

Laui(0,2) = Dxi(por(+s0) | go:r (5 s4) ) — Z)\i(EIONpO(-;SQ) [ri(zo) ] — bi). )

To derive the gradient of Lar(0, \), we first take the derivative of the expected reward terms by
noting that the expectation is taken over a distribution that depends on the optimization variable 6.
We can use the following result (Lemma 4.1 from [17]) to take the gradient inside the expectation.
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Lemma 11. If pp(zo.7)7(20) and Vgpe(xzo.1)r(z0) are continuous functions of 0, then we can write
the gradient of the reward function as

T
VQEQ:O ~po(-;s0) [7"(330)} = ]Ewo;TNpo;T(‘;Sg) |f’(l’0) Z v@ 1ng(xt—l | Tt 59)] .
t=1

For the gradient of the KL divergence, we have

VoDxr(po:r (5 s0) || go:r (-5 54) )

_ (ZEMM(,&, | sazlsolan ) = sy (o O D

t=1

t=1

= Vy (Z Eqp, o py(50) [DRL(P(Te-1 [ 245 50) [| g(21-1 [ 245 8q))]>

T
= D Eurp(ase) [VoDr(p(@e1 | 245 50) || a(@e1 | 245 54))]

t=1

T T
+ Z Ezt ~pe(-;80) lz Ve lng(fEt/,1 ‘ T/, 80)DKL(p((Et71 | Tty 89) || Q(xtfl | Tty Sq))‘| .

t=1 t'>t

For simplicity, we omit the second term in practice, as it has negligible effect on performance. See [17,
Appendix A.3] for the derivation.

F.2 Composition

For composition, we take a similar approach to Algorithm 1. Recall from Lemma 3 that the Lagrangian
minimizer for the constrained composition problem can be found by minimizing

Lanp(0, ) := Zwt ~ g VEa, ~ g | 20) [||39(337t) - V10g9($t|330)“2} .

Thus, we detail the algorithm for composition in Algorithm 2.

Algorithm 2 Primal-Dual Algorithm for Product Composition (AND) of Diffusion Models

1: Input: total diffusion steps T, diffusion parameter o, total dual iterations H, number of primal
steps per dual update N, dual step size 74, primal step size 7, initial model parameters 6(0).

2: Initialize: \(1) = 1/m.

3: forh=1,---,H do

4: Initialize 6; = 6(h — 1)

5 forn=1,--- N do
6: Take a primal gradient descent step:
Onir = On =1y VoLann(0,A™). (78)
7: end for
8: Set the value of the parameters to be used for the next dual update: 6(h) = On41.
9: Update dual multipliers fori =1,--- ,m:
Ni(h+1) = N(h) + naDxw(po(- 3 sem) || a5 57)). (79)

10: A(h + 1) = proj (X(h + 1)) , where proj(y) projects its input onto the simplex AT1 = 1.
11: end for

The projection of the dual multiplier vector (line 10) ensures that A1 = 1, as required when
maximizing the dual function (see the proof of Theorem 3).
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Note that Algorithm 2 implicitly requires samples from the weighted product distribution q,(\’?\I)D(-) in

order to minimize the Lagrangian ZAND(H, A). We obtain these samples using the Annealed MCMC
sampling algorithm proposed in [14].

Skipping the primal. As discussed in Section 5, both Annealed MCMC sampling and the mini-
mization of the Lagrangian Lanp (6, A) at each primal step—to match the true score V log ql(\’?\])D—are
challenging and computationally expensive. Therefore, for all settings except the low-dimensional

case described in Appendix G.2, we employ Algorithm 3, which skips the primal step entirely.

In Algorithm 3 we bypass the primal steps by using the surrogate product score, rather than the true
score, to compute the point-wise KL used in the dual updates. The distinction between the true and
surrogate scores is discussed in detail in [14].

true score:  V log qf&)Dyt(xt) = Vlog (/ Z(qo(mo))/\iq(mt|xo)dmo> (80)
surrogate score: Vlog qAND () Z AiVlog </q0(x0)q(xtxo)dxg) (81)

Algorithm 3 Dual-Only Algorithm for Product Composition (AND) of Diffusion Models

1: Input: total diffusion steps 7', diffusion parameter o, total dual iterations H, dual step size 7.
2: Initialize: A\(1) = 1/m.

3: forh=1,---,H do

4 Update dual multipliers fori = 1,--- ,m:

Xi(h+1) = Ni(h) + naDxe (@ () 2o (-5 5). (82)

5: A(h+1) = proj (X(h + 1)) , where proj(y) projects its input onto the simplex AT1 = 1.
6: end for

For a given ), the surrogate score can be easily computed:
V log Gin = Y AVl d
08 GAND, o(x4) iV log qo(wo)q(x¢|z0)dxo
= Z)\iVIngt(xﬁsi)

and thus we can use Lemma 2 to compute the point-wise KLs needed for the dual update. As for the
samples needed from the true product distribution, we also replace them with samples obtained by
running DDIM using the surrogate score.
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G Additional Experiments and Experimental Details

G.1 Related work

Here we review related work and explain why these approaches are not directly applicable as baselines
for our experiments.

In [40] they propose a superposition method to sample from the mixture of diffusion models with
arbitrary weights. However, they only use equal weight mixtures and don’t discuss different weights.
They also devise a method to sample points that have equal likelihood under different models which
is fundamentally different to the product composition that we discuss in this work.

Existing works including [11, 27, 34, 58] discuss constrained sampling from diffusion models, but
the nature of their constraints is completely different from our work as it mainly involves sampling
from a constrained set and they propose to do this through projection onto a feasible set at each
diffusion time step. It is not clear how to apply these methods to reward constraints or how to use
them to preserve distance to a model.

Other works like [18, 8] enforce very specific constraints by adding additional losses with fixed
weights to the objective which implicitly enforces the constraint. These methods are very specific to
the constraints they are designed for and do not generalize to arbitrary reward functions and don’t
give us a way to constrain closeness to a model.

G.2 Low-dimensional synthetic experiments

To visually illustrate the difference between the constrained and unconstrained approaches, we
conduct experiments where the generated samples lie in R?. For the score predictor we used the same
ResNet architecture as used in [14].

Product composition (AND). Unlike the image experiments, in this low-dimensional setting we use
Algorithm 2 for product composition. See Figure 1 for visualization of the resulting distributions.

Mixture composition (OR). For this experiment we used the same Algorithm as the one used in [22]
for mixture of distributions. The only modification is doing an additional dual multiplier projection
step similar to the last step of the product composition Algorithm 2. See Figure 2 for visualization of
the resulting distributions.

G.3 Reward product composition (Section 5.2 (I)

Reward
BN Aesthetic [N Mps BB Pickscore [ Imagereward [ Hps

D

Equal Weights Constrained

Figure 6: KL divergence for the product composition of 5 adapters pretrained with different rewards.
Error bars denote the standard deviation computed across 8 text prompts each with four samples.

Implementation details and hyperparameters. We finetuned the model using the Alignprop [35]
official implementation > for each individual reward using the hyperparameters reported in Table 2.
We then composed the trained adapters running dual ascent using the surrogate score as described in
section F.2. We use the average of scores (denoted as “Equal weights”) as a baseline. Hyperparameters
are described in Table 3. The reward values reported in Figure 4 were normalised so that 0%

>https://github.com/mihirp1998/AlignProp
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corresponds to the reward obtained by the pretrained model, and 100% the reward obtained by the
model finetuned solely on the corresponding reward.

Additional results. As shown in Figure 6, equal weighting leads to disparate KL divergences across
adapters — in particular high KL with respect to the adapter trained with the “aesthetic” reward
— while our constrained approach effectively reduces the worst case KL, equalizing divergences
across adapters. Figure 13 shows images sampled from these two compositions exhibit different
characteristics, with our constrained approach producing smoother backgrounds, shallower depth of
field and more painting-like images.

Hyperparameter Value
Batch size 64
Samples per epoch 128
Epochs 10
Sampling steps 50
Backpropagation sampling  Gaussian
KL penalty 0.1
Learning rate 1x1073
LoRA rank 4

Table 2: Hyperparameters used to finetune models using individual rewards.

Hyperparameter Value

Base model runwayml/stable-diffusion-v1-5
{"cheetah", "snail", "hippopotamus",

Prompts "crocodile", "lobster", "octopus"}

Resolution 512

Batch size 4

Dual steps 5

Dual learning rate 1.0
Sampling steps 25
Guidance scale 5.0
Rewards aesthetic, hps, pickscore, imagereward, mps

Table 3: Hyperparameters for product composition of models finetuned with different rewards.

G.4 Concept composition (Section 5.2 (II))

We present additional results for concept composition using three different concepts (as opposed to
just 2 in the main paper and in [40]) As seen in table 4, our approach retains a clear advantage in both
CLIP and BLIP scores. See Table 5 for examples of images generated using each method. Images
with the constrained method typically do a better job of representing all concepts.

Min. CLIP (1) Min. BLIP (1)

Combined Prompting 21.52 0.206
Equal Weights 22.18 0.203
Constrained (Ours) 22.45 0.221

Table 4: Comparing constrained approach to baselines on minimum CLIP and BLIP scores. The
scores are averaged over 50 different prompt triplets sampled from a list of simple prompts.
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Combined Prompting Equal Weights Constrained

Table 5: Concept composition examples for each method. Prompts used for each row:

Row 1: "a pineapple"”, "a volcano". Row 2: "a donut", "a turtle". Row 3: "alemon", "a dandelion".

Row 4: "a dandelion", "a spider web", "a cinammon roll".

G.5 Concept composition for text-to-audio diffusion models

We note that our proposed framework and theoretical analysis do not depend on any specific modality
or task types. From our theoretical guarantees, we would expect experiments in other modalities
to provide results similar to those presented for images. To validate this, we conduct concept
composition experiments with a text-to-audio diffusion model as an example of another modality. We
treat a text-to-audio diffusion model (in this case AudioLDM [30]) conditioned on different inputs,
each representing a concept, as the models to be composed. We apply our constrained learning to
find the optimal weights to compose these two models, and use the CLAP score [15] to measure the
similarity between the generated audio samples and the text prompts representing each model.

Min. CLAP Score(?)

Combined Prompting 0.816
Equal Weights 1.57
Constrained (Ours) 1.92

Table 6: Minimum CLAP scores across prompts for each method

Similar to concept composition for images, we observe in Table 6 that using our constrained approach,
the minimum CLAP score across prompts increases compared to the two baselines. The constraints
ensure closeness to each model, which in turn results in a more equal representation of the concepts.

41



G.6 Alignment experiments

Reward normalization. In practice, setting constraint levels for multiple rewards that are both
feasible and sufficiently strict to enforce the desired behavior is challenging. Different rewards
exhibit widely varying scales. This is illustrated in Table 7, which shows the mean and standard
deviation of reward values for the pretrained model. This issue can be exacerbated by the unknown
interdependencies among constraints and the lack of prior knowledge about their relative difficulty or
sensitivity.

In order to tackle this, we propose normalizing rewards using the pretrained model statistics as a
simple yet effective heuristic. This normalization facilitates the setting of constraint levels, enables
direct comparisons across rewards and enhances interpretability. In all of our experiments, we apply
this normalization before enforcing constraints. Explicitly, we set

7= [ Hore (83)

Opre

where r denotes the original reward and fipye, pre the sample mean and standard deviation of the
reward for the pretrained model. We find that, with this simple transformation, setting equal constraint
levels can yield satisfactory results while forgoing extensive hyperparameter tuning.

Reward Mean Std

Aesthetic 5.1488  0.4390
HPS 0.2669  0.0057
MPS 5.2365 3.5449
PickScore 21.1547 0.6551
Local Contrast  0.0086  0.0032
Saturation 0.1060  0.0706

Table 7: Mean and standard deviation of reward values for the pretrained model.

The effects of varying the constraint thresholds.

What we observed by varying the reward constraint thresholds in our experiments was that for
thresholds up to 1.0 (i.e. fipre + 1.0 X Tpre for each reward) the model was typically able to satisfy the
constraints with minimal violation. Another trend that we observed was that increasing thresholds
usually leads to constraints that are harder to satisfy leading to higher Lagrange multipliers and
resulting in higher KL to the pretrained model. See Tables 8, 9 below.

An advantage of our constrained approach is that Lagrange multipliers give information about the
sensitivity of the objective with respect to relaxing the constraints i.e. if the multiplier for a certain
reward ends up being much higher than the rest it means that constraint is particularly harder to
satisfy. Consequently, even slightly relaxing the threshold for the corresponding reward can lead to
much smaller KL objective.

Constraint Threshold Slack Dual Variable Dgy,

contrast 0.250 -0.245 0.282 0.177
contrast 0.500 -0.985 0.000 0.296
contrast 1.000 -0.381 0.000 0.332
saturation 0.250 -0.126 0.081 0.177
saturation 0.500 0.060 0.006 0.296
saturation 1.000 0.052 1.195 0.332

Table 8: MPS reward alignment with saturation and contrast constraints, for varying thresholds.
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Constraint Threshold Slack Dual Variable Dgp,

contrast 0.250 -0.684 0.000 0.136
contrast 0.500 -1.011 0.000 0.109
contrast 1.000 0.661 0.192 0.293
saturation 0.250 -0.025 0.014 0.136
saturation 0.500 -0.060 0.000 0.109
saturation 1.000 0.062 1.020 0.293

Table 9: Pickscore reward alignment with saturation and contrast constraints, for varying thresholds.

I. MPS + local contrast, saturation.

In this experiment, we augment a standard alignment loss—trained on user preferences—with two
differentiable rewards that control specific image characteristics: local contrast and saturation. These
rewards are computationally inexpensive to evaluate and offer direct interpretability in terms of their
visual effect on the generated images. In addition, the unconstrained maximization of these features
would lead to undesirable generations. other potentially useful rewards not explored in this work are
brightness, chroma energy, edge strength, white balancing and histogram matching.

Local contrast reward. In order to prevent images with excessive sharpness, we minimize the
“local contrast”, which we define as the mean absolute difference between the luminance of the
image and a low-pass filtered version. Explicitly, let Y denote the luminance, computed as Y =
0.2126 R+0.7152G' +0.0722B, and G, * Y the luminance blurred with a Gaussian kernel of standard
deviation o0 = 1.0. We minimize the average per pixel difference by maximizing the reward

1
HW

re = Yij — (Go xY),;
(2]
where H, W denote image dimensions.

Saturation reward. To discourage overly saturated images, we simply penalize saturation, which we
compute from R, G, B pixel values as

() _ (e)
1 maXce{R,G,B} ¥;; — MMcc{R,G,B} ¥; ;
rs = >

HW i maXce{R,G,B} CCECJ) +¢

where £ = 1 x 1078 is a small constant added for numerical stability.

Implementation details and hyperparameters. We implemented our primal-dual alignment ap-
proach (Algorithm 1) in the Alignprop framework. Following their experimental setting, we use
different animal prompts for training and evaluation. Hyperparameters are detailed in Table 10.

Hyperparameter Value
runwayml/stable-

Base model diffusion-v1-5

Sampling steps 15

Dual learning rate 0.05

Batch size (effective) 4 x 16 = 64
Samples per epoch 128

Epochs 20
KL penalty 0.1
LoRA rank 4
MPS: 0.5
Constraint level Saturation: 0.5
Local contrast: 0.25
Equal weights 0.2

Table 10: Hyperparameters for reward alignment with contrast and saturation constraints. Constraint
levels correspond to normalized rewards.
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Additional results. We include images sampled from the constrained model in Figure 14 for hps
and aesthetic reward functions. Samples from a model trained with an equally weighted model are
included for comparison. Constraints prevent overfitting to the saturation and smoothness penalties.

I1. Multiple aesthetic constraints

Implementation details and hyperparameters. We modified the Alignprop framework to acco-
modate Algorithm 1. Following their setup, we use text conditioning on prompts of simple animals,
using separate sets for training and evaluation. In this setting, due to the high variability of rewards
throughout training, utilized an exponential moving average to reduce the variance in slack estimates
(and hence dual subgradients) [41]. Hyperparameters are detailed in Table 11.

Hyperparameter Value
runwayml/stable-

Base model diffusion-vi-5

Sampling steps 15

Dual learning rate 0.05

Batch size (effective) 4 x 16 = 64
Samples per epoch 128

Epochs 25
KL penalty 0.1
LoRA rank 4
MPS: 0.5
HPS: 0.5
Constraint level Aesthetic: 0.5
Pickscore : 0.5
Equal weights 0.2
{"cat", "dog", "horse", "monkey", "rabbit", "zebra"
"spider", "bird”, "sheep", "deer", "COW", "goat"

"lion", "tiger", "bear", "raccoon", "fox", "wolf"
"lizard", "beetle", "ant", "butterfly", "fish", "shark"
"whale", "dolphin", "squirrel", "mouse", "rat", "snake"
"turtle", "frog", "chicken", "duck", "goose", '"bee"
"pig", "turkey", "fly", "llama", "camel", "bat"
"gorilla", "hedgehog", "kangaroo"}

{"cheetah", "snail", "hippopotamus",

"crocodile", "lobster", "octopus"}

Training Prompts

Evaluation Prompts

Table 11: Hyperparameters for reward alignment with multiple rewards. Constraint levels correspond
to normalised rewards.

Additional results. We include two images per method and prompt in Figure 15. These are sampled
from the same latents for both models.

G.7 Combining constrained alignment and composition

As mentioned in Section 2, The constrained alignment and composition problem formulations can be
combined. An example of this is composing reward-specialized models while enforcing a minimum
aggregate reward level. To demonstrate the viability of this approach, we conducted a simple
experiment in which we finetune a pretrained model using two KL constraints: one for pretrained
stable diffusion and one for another model finetuned on the aesthetics reward, respectively, along with
a constraint on the saturation reward. The finetuned model achieves less than 10% reward constraint
violation and similar KL divergences with respect to both pretrained models, as seen in Table 12. We
leave in-depth exploration of the combined Alignment and Composition problem to future work.
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Constraint Dual Variable Initial Value Final Value Slack

Saturation 1.080 0.100 0.533 0.033
KL (pretrained) 0.493 0.000 0.101 0.004
KL (aesthetics) 0.507 0.260 0.097 0.000

Table 12: Results for finetuning a model with both expected reward and KL divergence constraints.

G.8 Computational details

All experiments were run on a single Nvidia A6000 GPU.

For alignment, there is little additional time overhead compared to baselines like AlignProp. For
example, for the experiment in Figure 3, runtime is 33 minutes for both constrained and unconstrained
methods, and for the experiments in Figure 4, constrained runtime is 64 minutes, unconstrained
is 60 minutes. Existing approaches already estimate the KL and sample batches to evaluate and
back-propagate through the reward. The only additional computation for our method is the dual
updates which is negligible in terms of added time.

For composition, there is no meaningful comparison to the equal weights baseline since the weights
are not learned in the equal weights baseline. For constrained composition, it takes around 5-10 dual
updates for dual variables to converge which for composing the 5 finetuned stable diffusion models
takes 9 minutes total and for concept composition it takes 2 minutes.
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Equal Weights Constrained

Table 13: Images sampled from the same latents for the product of adapters using the equal weights
and when using the proposed KL-constrained reweighting scheme using 5 dual steps.
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Equal Weights Constrained

Table 14: Images sampled from models finetuned to maximize MPS [60], along with sharpness
and saturation penalizations. We compare optimizing an equally weighted objective against our
constrained approach.
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Equal Weights Constrained

Table 15: Samples from models finetuned using multiple rewards with equal weights and with our
constrained alignment method.
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