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Abstract

In enterprise settings, organizational data is segregated, siloed and carefully pro-1

tected by elaborate access control frameworks. These access control structures can2

completely break down if an LLM fine-tuned on the siloed data serves requests, for3

downstream tasks, from individuals with disparate access privileges. We propose4

Permissioned LLMs, a new class of LLMs that superimpose the organizational data5

access control structures on query responses they generate. We formalize abstrac-6

tions underpinning the means to determine whether access control enforcement7

happens correctly over LLM query responses. Our formalism introduces the notion8

of a relevant response that can be used to prove whether a PermLLM mechanism9

has been implemented correctly. We also introduce a novel metric, called access10

advantage, to empirically evaluate the efficacy of a PermLLM mechanism. We11

introduce three novel PermLLM mechanisms that build on Parameter Efficient12

Fine-Tuning to achieve the desired access control. We furthermore present two13

instantiations of access advantage–(i) Domain Distinguishability Index (DDI) based14

on Membership Inference Attacks, and (ii) Utility Gap Index (UGI) based on LLM15

utility evaluation. We demonstrate the efficacy of our PermLLM mechanisms16

through extensive experiments on five public datasets in addition to evaluating the17

validity of DDI and UGI metrics for quantifying access control in LLMs.18

1 Introduction19

Large Language Models (LLMs) are being adopted in a vast range of applications across the entire20

computing industry [21, 48]. The day may not be too far off when LLMs become the primary interface21

to a large swath of computing and information extraction tasks. In this paper, we focus on enterprise22

settings where LLMs are used to perform a wide variety of computing tasks using organization-wide23

data. Using LLMs that have a wide purview over organizational data brings massive troves of24

information and utility, including the ability to combine learnings from disparate information silos25

of the organization, to the finger tips of individuals in the organization. However, making all the26

learnings from organizational data available to any individual who can query the LLM becomes a27

critical security challenge: Organizations have access control structures and hierarchies that tightly28

control information flow to and from individuals within them. Information access via LLMs, if not29

carefully controlled, risks undermining the existing access control structures and hierarchies.30

As an example, consider government agencies using LLMs for a multitude of tasks. The data in31

government agencies is typically segregated in multiple “clearance levels” and users can access just32

the data they have access privileges for [30]. Any other agency data is inaccessible to the users. An33

LLM trained on this agency-wide data can leak privileged information to unauthorized users, thus34

breaking the agency’s access control framework that works on the raw data. Another example is that35

of role-based access control [10, 11]: Consider a health clinic setting, where individuals performing36
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different “roles” (doctors, nurses, technicians, administrative staff, patients, etc.) interact with an37

LLM to perform many tasks. The roles of the users determine what part of the clinic-wide data they38

should have access to. An LLM trained on the clinic-wide data can be easily tricked into leaking39

information to unauthorized users.40

Research proposals to build system prompts that instruct an LLM to control what information is41

generated in the output can help curb some leakage of sensitive information to unauthorized users [8,42

25]. However, they do not achieve absolute security, and clever jailbreaking prompts [26, 27, 34, 40]43

can be used to overrule these system prompts. A recent work proposes tagging LLM queries with44

encrypted access credentials to authenticate users and block unauthorized queries [7]. This is a good45

start, but it lacks the flexibility needed to enable access to disparate learnings from the LLM for46

different users based on their access credentials. We discuss access control problems and solutions47

for agentic systems and Retrieval Augmented Generation (RAG) systems [23] in Appendix J.48

This paper focuses on the access control problem for LLMs when they are tuned on data coming from49

a multitude of data silos. The challenge here is to guarantee that users who do not have access to50

specific data silos cannot retrieve information from those silos by sending carefully crafted queries to51

the LLMs tuned on data from those silos. A recent work [12] took an initial step in this direction, but52

lacks the formal framework to evaluate the access control, and only explores one type of mechanism.53

Contributions. In this paper, we comprehensively study the problem of access control in LLM54

fine-tuning. More specifically: (i) We formalize the notion of access control mechanism in LLMs in55

terms of the relevance of responses generated by an LLM to the raw data the users have access to.56

We use the notion of security domains in our formalism. Our formalism of response relevance can57

be used to prove correctness of access control mechanisms. We also propose a novel metric called58

access advantage that helps us empirically quantify the effectiveness of an access control mechanism59

on LLMs (§ 2). (ii) We present three new PermLLM fine-tuning mechanisms (see Figure 1), based60

on Parameter Efficient Fine-Tuning (PEFT) [17, 42] (§ 3). (iii) We introduce two novel instances of61

our access advantage metric, Domain Distinguishability Index (DDI) and Utility Gap Index (UGI),62

as tools to audit access control enforcement via an adversarial gaming setting (Appendix E). (iv)63

We empirically evaluate our access control mechanisms on two LLMs (Mistral-0.1-7B and Llama-64

3.1-8B) using five different data sets: GPQA [33], RCV1 [22], SimpleQA [41], WMDP [24], and65

PubMedQA [20] (Appendix G). Our evaluation shows the effectiveness of our metrics in assessing66

whether a proposed access control mechanism for LLMs is enforcing data protection correctly.67

2 Formalizing Access Control in LLMs68

Basic Setup and Notation. We define a security domain (henceforth called “domain” for brevity) as a69

collection of data records that require identical credentials for access (e.g. files with the same group in70

their access control lists). We consider settings where pretrained LLMs are fine-tuned over data from71

different domains with an added constraint – responses to inference time queries will be generated72

from learnings on data coming from just the domains the user has access to. This added constraint is73

enforced via access control mechanisms that govern how the LLM uses data from different domains.74

Consider a universe of n different domains S =
⋃n

i=1{si}, and a training data set consisting of data75

from these domains D =
⋃n

i=1 Dsi ∼ Dsi (here Dsi is a data set sampled from data distribution76

Dsi of domain si). Let fD be the LLM tuned using data set D. Let W be the set of fD’s parameters.77

Model fine-tuning changes values of a subset of W . We say that a domain si affects a subset of78

parameters Wsi ⊆ W if data from Dsi is used to change parameters Wsi during model fine-tuning79

(unless stated otherwise, the terms “affect” and “affected” mean this relation between si and Wsi80

in the rest of the paper). We define M as an access control mechanism that dictates the mapping81

of domain si to parameters Wsi via the affects relation. We say that a LLM fine-tuned using data82

set D is permissioned (PermLLM), denoted as fM
D , if it uses the access control mechanism M to83

map its parameters W to a multitude of domains from S, where each domain si affects parameters84

Wsi ⊆ W . Operationally, during fine-tuning, M specifies which set of model parameters Wsi85

are tuned for a given domain si (see § 3 for more details). Similarly, during inference, M can86

specify which set of model parameters should be used to answer a query based on the user’s access87

credentials. We assume a setting where the PermLLM fM
D resides in an enclosing system S that88

authenticates users who send queries to fM
D . S determines the user u’s access credentials credu89

and calls authenticate(credu) that takes user credentials credu and maps them to a subset of90
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domains Su that u can access. Su is maintained by S and is never exposed to user u. This process91

ensures u cannot arbitrarily change Su. Each of user u’s subsequent query q to fM
D is annotated with92

Su by S. M determines the model parameters WSu used to generate a response rSu to q, where93

WSu
=

⋃
s∈Su

Ws.94

2.1 Definitions95

Definition 2.1 (Relevant Response). Given a PermLLM fM
D , a query q from user u, and the set Su96

of domains u has access to, let r = fM
D (q) be the response of fM

D to query q. Response r is said to97

be relevant to Su (i.e., r = rSu
) if fM

D uses parameters WSu
(in addition to any domain-agnostic98

model parameters) to generate r.99

We say that an access control mechanism M is correctly enforced on PermLLM fM
D iff every100

response r generated for every user u’s query q is relevant to Su.101

The above definition of relevant response helps us formally determine if a proposed access control102

mechanism M is algorithmically correct. We however require an empirically quantifiable metric to103

determine if the implementation (and the algorithm by extension) of M is correct. This is particularly104

important for auditing. To that end, we propose a new metric called response relevance score,105

relv(fM
D (q), Su), which quantifies the information gained on data in the domain set Su by observing106

responses to queries generated using model parameters WSu
affected by domains of Su. relv is107

expected to be higher when q ∼ DSu
(i.e., q is related to domain set Su), compared to when q ̸∼ DSu

.108

We restrict the domain of relv to the real number interval [0, 1], where 1 is the best expected score109

for relevance. relv itself can be represented by another empirical metric such as prediction accuracy,110

or logits for the expected response. However, given that LLMs (and ML models in general) are111

generalization engines, in practice we expect relv to be less than 1. This restriction can be effectively112

addressed by measuring relv for domains that the user has access to and comparing it to relv for113

domains that the user does not have access to. We call this the access advantage.114

Definition 2.2 (Access Advantage). Given PermLLM fM
D trained over data set D consisting of data115

from domains S =
⋃n

i=1{si}, with access control mechanism M, a subset of domains Su ⊆ S, fM
D116

achieves α-access advantage w.r.t. Su if:117

Eq∼DSu ,Sv⊆S;Su∩Sv=ϕ

[
relv(fM

D (q), Su)⊖ relv(fM
D (q), Sv)

]
≥ α

where relv() is the response relevance score on the corresponding domain subset (Su or Sv), ⊖ is a118

“difference” operator specific to the access control assessment method (e.g., subtraction), and α is an119

advantage threshold that lies in the range [0,1].120

The access advantage metric relies on the assumption that fM
D performs significantly better on121

domains user u has access to compared to domains u does not have access to. In other words,122

fM
D should have explicit segregation between the different domains, as dictated by M. We believe123

access advantage is a critical metric for auditors to determine if an access control mechanism is124

truly achieving the segregation of domains as intended. Hence it is in the auditor’s best interest to125

ensure that Su ∩ Sv = ϕ. Access advantage can diminish significantly when Su ∩ Sv ̸= ϕ, leading to126

incorrect conclusions about the efficacy of the access control mechanism.127

The existing approaches to model fine-tuning fail to achieve this goal as the model is traditionally128

trained on all the domains without any built-in domain segregation mechanism. To the best of our129

knowledge, no prior work on LLM and privacy formally tackles this problem of access control through130

explicit domain segregation. We next propose novel mechanisms to achieve domain segregation in131

§ 3 and propose empirical metrics to evaluate the access control protocols in Appendix E.132

Prior works on retrieval augmented generation (RAG) based LLM deployments do not explicitly133

tackle the problem of measuring effectiveness of access control mechanisms formally or empirically.134

Our formalism of relevant response and access advantage extends to RAG systems as well, closing135

that gap in formalism and empirical evaluation of access control protocols. Detailed analysis of136

conditions for formal correctness of access control in RAG systems appears in Appendix A.137

2.2 Auditing Access Control138

We consider a classic adversarial game between the system S enclosing the model fM
D and the auditor139

A. We give A the ability to choose domain access by emulating an end user, send arbitrary queries to140
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Figure 1: We propose three types of PermLLM mechanisms. (a) Activate: that has one-to-one
mapping between the security domains and PEFT adapters. When a user queries the model, the
mechanism activates the relevant adapter(s). (b) Merge: merges subsets of relevant PEFT adapters
to serve the users that have access to multiple security domains. (c) Union: trains adapters on the
unions of various security domains, and at the inference phase the relevant PEFT adapter is activated
to serve a user query that requires access to multiple security domains.

the model via S and observe the responses. A can replay the game multiple times as different users141

to conclude if the access control is correctly implemented.142

Audit Game. The formal game between auditor A and system S is as follows:143

1. Auditor A chooses domain set Su and emulates user u. A sends user credentials credu and144

query q ∼ DSu
to system S.145

2. S verifies the user credential credu and sends back the model response fM
D (q) to A.146

3. A chooses domain set Sv such that Sv ∩ Su = ϕ and emulates user v. A sends user147

credentials credv and the same query q ∼ DSu
to S.148

4. S verifies the user credential credv and sends back the model response fM
D (q) to A.149

5. A concludes the access control mechanism is correctly implemented if the access advantage150

|relv(fM
D (q), Su)⊖ relv(fM

D (q), Sv)| ≥ α.151

Note that the auditor A has superuser privileges to choose arbitrary domain access unlike an ordinary152

user. This is by design to allow the auditor to evaluate the correctness of the claimed access control153

while still following the protocol of querying the model as a benign user. Detailed instantiations of154

this adversarial game for different suites of access advantage metrics are discussed in Appendix D.155

3 Permissioned LLM Mechanisms156

We rely on Parameter Efficient Fine-Tuning (PEFT) [17, 42] to obtain model parameter segregation157

for domains. We focus on the LoRA PEFT adapter [17], however our mechanisms seamlessly apply to158

other types of adapters [16, 42]. The three mechanisms we describe ensure that domain data is steered159

to train select LoRA adapters. Each domain has a unique identifier (domain Id). Our access control160

mechanism builds a map between domains and LoRA adapters within the PermLLM’s metadata. The161

map is used to steer all examples from a domain to the corresponding adapter/s for training. This162

map is also used to steer queries to the correct LoRA adapters at inference time. Figure 1 depicts our163

three PermLLM mechanisms. More details on these mechanisms appears in Appendix B.164

The careful mapping of domains (or groups of domains) to the correct LoRA adapters, and steering165

of training examples from domains to the corresponding LoRA adapters ensures precise parameter166

segregation for domains. Our assumption that users cannot tamper with their access credentials at167

inference time further aids the PermLLM’s enclosing system to determine the correct set of domains168

corresponding to a query. The query steering that happens through the PermLLM using domain169

IDs guarantees that all responses generated by the PermLLM are relevant to the user’s domains.170
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Furthermore, the responses are not generated using LoRA adapters that were trained using data171

from domains that the user does not have access to. Response relevance for all responses implies172

correctness of our PermLLM access control mechanisms. Our proof appears in Appendix C.173

4 Auditing Access Control in Permissioned LLM Mechanisms174

We now introduce two novel instantiations of our access advantage metric (Definition 2.2)—Domain175

Distinguishability Index (DDI) and Utility Gap Index (UGI)—that quantify access control efficacy176

independently of any particular system design. More details on these can be found in Appendix E.177

DDI quantifies access control in terms of effectiveness of Membership-Inference-Attacks (MIAs) to178

distinguish security domains.179

Definition 4.1 (Domain Distinguishability Index (DDI)). For a domain universe S consisting of n180

security domains, let fM
D denote the PermLLM trained on data D from all security domains with181

access control mechanism M. For each ordered pair of domain sets (Si ⊆ S, Sj ⊆ S) with no182

overlap (i.e.,Si ∩ Sj = ϕ), let O(Si,Sj) = O(fM
D (q)|Si, f

M
D (q)|Sj); ∀q ∼ DSi

be the output of a183

membership inference oracle O. For a given membership inference metric m(·), the DDI is defined184

as: DDI(m) = ESi⊆S,Sj⊆S
[
m
(
O(Si,Sj)

)]
, where E is the expectation over all domain sets.185

The UGI metric measures the drop in model utility on the target domain’s data when a different186

domain’s adapter is activated in PermLLM instead of the target domain.187

Definition 4.2 (Utility Gap Index (UGI)). Let U(·) be a chosen utility metric and for a domain set188

pair (Si ⊆ S, Sj ⊆ S) with no overlap (i.e.,Si∩Sj = ϕ), UtilityGap(Si,Sj)(U) = |U(fM
D (q)|Si)−189

U(fM
D (q)|Sj)|; ∀q ∼ DSi . The UGI aggregates utility gaps across all ordered domain set pairs:190

∆U = ESi⊆S,Sj⊆S
[
UtilityGap(Si,Sj)(U)

]
, where E is the expectation over all domain sets.191

5 Experimental Evaluation192

For our experiments, we fine-tune Llama-3.1-8B and Mistral-0.1-7B pretrained models on five193

datasets (WMDP [24], GPQA [33], SimpleQA [41], RCV1 [22], and PubMedQA [20]) covering194

multiple distinct security domains (henceforth called domains), where we fine-tune a separate LoRA195

adapter for each domain. Details about the model hyperparameters can be found in Appendix § F.1.196

We empirically evaluate the effectiveness of our access control mechanisms using a suite of metrics.197

Here we consider the case where the user has access to only one domain. Due to space constraints,198

we cover settings where the user has access to multiple domains in Appendix G.199

In Section E, we proposed an adversarial audit framework for empirically assessing access control200

in PermLLMs. We introduced two concrete instantiations of the general access advantage metric:201

the Domain Distinguishability Index (DDI) and the Utility Gap Index (UGI) ∆U . Although § 3202

gives formal guarantees—each response is computed solely from domains the user is authorized to203

access—we measure access control enforcement strength with DDI and UGI (∆U ) to confirm that204

the guarantees hold in practice, which is necessary to verify correctness of implementations.205

Theoretically, ∆U may reach 1.0, but empirically we observe much smaller—yet substantial—access206

advantage gaps for four of the data sets (Figure 2). These gaps are significantly impacted by domain207

distributions and the strictness of the scoring metric. For example, SimpleQA exhibits the largest208

UGIs (up to ∆blue≈0.50 and ∆acc≈0.50) because it has the highest number of distinct domains (10209

in total). Moreover, we observe that ∆bleu and ∆acc have the largest values as these metrics look for210

verbatim pattern matches, thus requiring the model to memorize the nuances in the target domain. On211

the other hand, ∆bleurt and ∆bert look for approximate similarities, and hence are impacted by the212

similarities across the domains. This suggests that the verbatim matching metrics, ∆bleu and ∆acc,213

are better model utility metrics for measuring access advantage compared to the similarity based214

metrics ∆bleurt and ∆bert. For large data sets like RCV1, all the metrics achieve similar values as215

the model begins to generalize more. While these values are not close to 1, they still provide credence216

to the fact that the domains are different and our access control protocol works as expected due to the217

utility gaps. The access advantage threshold α is dependent on the type of utility metric: verbatim218

matching metrics ∆bleu and ∆acc have higher threshold than similarity based metrics ∆bleurt and219

∆bert. For ∆acc metric, α > 0.2 is sufficient to infer that access control is happening correctly.220

5



WMDP GPQA SimpleQA RCV1 PubMedQA
0.0

0.2

0.4

0.6

0.8

1.0

M
et

ri
c 

G
ap

 (
m

et
ric

)

bleu bleurt bert acc Llama-3.1-8B Mistral-0.1-7B

Figure 2: Utility Gap Index, ∆U (mean± std) when user has access to one security domain.

PubMedQA is an exception where ∆U values are close to zero; this is because the security domains221

are artificially obtained via k-means and hence have the same underlying data distribution.222

Table 1 shows DDI values obtained from a suite of state-of-the-art MIAs. Across domain pairs, the223

access advantage (distinguishability) scores approach α = 1.0, indicating that an external auditor224

can almost perfectly identify the active domain (even when the domain distributions are similar as in225

the case of PubMedQA). Hence, even when UGI values fall significantly below 1.0 because of model226

generalization, the high DDI values show that access control in Activate still functions as intended.227

This clearly suggests that DDI is the better method for PermLLM access control efficacy evaluation.228

Table 1: DDI values with m ∈ {AUC–ROC,TPR@1%FPR,TPR@5%FPR} for the different MIAs.
Mink++ is run with k = 10%. Entries are reported as mean± std across security domains.

MIA Llama-3.1-8B Mistral-0.1-7B
auc-roc tpr@1%fpr tpr@5%fpr auc-roc tpr@1%fpr tpr@5%fpr

W
M

D
P Loss 0.99± 0.01 0.93± 0.10 0.96± 0.06 1.00± 0.00 0.95± 0.06 0.99± 0.01

ZLIB 0.98± 0.03 0.77± 0.31 0.85± 0.21 0.99± 0.02 0.85± 0.25 0.92± 0.14
Mink++ 1.00± 0.00 0.99± 0.01 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
Ref 0.99± 0.01 0.93± 0.10 0.96± 0.06 1.00± 0.00 0.95± 0.08 0.98± 0.03

G
PQ

A

Loss 0.97± 0.05 0.81± 0.26 0.94± 0.08 0.98± 0.03 0.93± 0.10 0.95± 0.07
ZLIB 0.95± 0.04 0.45± 0.22 0.77± 0.15 0.97± 0.02 0.57± 0.24 0.83± 0.13
Mink++ 1.00± 0.00 1.00± 0.01 1.00± 0.00 1.00± 0.00 0.99± 0.01 1.00± 0.00
Ref 1.00± 0.00 0.97± 0.04 0.99± 0.01 1.00± 0.00 0.97± 0.05 0.99± 0.02

Si
m

pl
eQ

A Loss 0.98± 0.03 0.81± 0.34 0.90± 0.25 0.99± 0.03 0.81± 0.32 0.92± 0.20
ZLIB 0.98± 0.03 0.80± 0.33 0.90± 0.23 0.99± 0.03 0.80± 0.33 0.91± 0.20
Mink++ 0.98± 0.03 0.81± 0.32 0.91± 0.21 0.99± 0.03 0.82± 0.31 0.92± 0.21
Ref 0.98± 0.04 0.78± 0.36 0.90± 0.25 0.98± 0.03 0.79± 0.36 0.90± 0.24

R
C

V
1

Loss 0.99± 0.01 0.86± 0.21 0.97± 0.06 0.99± 0.02 0.85± 0.24 0.96± 0.09
ZLIB 0.93± 0.07 0.71± 0.26 0.81± 0.18 0.94± 0.08 0.73± 0.28 0.83± 0.19
Mink++ 1.00± 0.00 0.97± 0.05 0.99± 0.01 1.00± 0.01 0.96± 0.06 0.99± 0.02
Ref 0.99± 0.01 0.77± 0.28 0.99± 0.03 0.99± 0.01 0.80± 0.28 0.98± 0.05

Pu
bM

ed
Q

A Loss 0.81± 0.07 0.16± 0.11 0.36± 0.15 0.95± 0.03 0.51± 0.21 0.75± 0.14
ZLIB 0.77± 0.07 0.10± 0.05 0.30± 0.13 0.88± 0.05 0.32± 0.17 0.57± 0.15
Mink++ 0.90± 0.02 0.31± 0.08 0.57± 0.08 0.99± 0.01 0.93± 0.07 0.98± 0.02
Ref 1.00± 0.00 0.98± 0.02 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

6 Conclusion229

We presented a comprehensive treatment of the access control problem on fine-tuned LLMs that230

includes novel formalism, empirical evaluation metrics, access control enforcement mechanisms,231

and evaluation of the mechanisms as well as the proposed metrics. We formalized a new class of232

LLMs called Permissioned LLMs (PermLLM) whose access control enforcement can be verified233

both theoretically and empirically using the formal tools provided in our work. Further discussion on234

limitations and related work appears in Appendix J.235
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A Formalizing Access Control for Retrieval Augmented Generation403

For Retrieval Augmented Generation (RAG), we assume a pre-trained LLM f that is used in404

applications without additional fine-tuning. Instead, we augment f with a retriever engine R to give405

us a retrieval augmented LLM fR.406

Each query qc to fR is accompanied by a context c, retrieved by R, that enhances fR’s response to407

the query. Let R retrieve contexts from the context database C, i.e. c ∈ C. Furthermore, we have408

C =
⋃n

i=1 Csi ∼ Csi , where each Csi is a collection of contexts belonging to security domain si.409

For this discussion, we define M as an access control mechanism that dictates the mapping of every410

Csi ⊆ C to the security domain si. We say that a RAG system that uses contexts from the context411

database C is permissioned (PermRAG), if it uses retriever RM
C , which in turn uses the access412

control mechanism M to retrieve context c ∈ Csi from a selected security domain si. Intuitively,413

given a security domain si, R uses M to retrieve context c ∈ Csi . One can trivially generalize this414

definition of PermRAG to work with subsets of security domains instead of a singleton security415

domain si.416

For PermRAG, we assume an identical enclosing system setting as in PermLLM (see § 2):417

Given a user u the enclosing system determines u’s access credentials credu and calls418

authenticate(credu) that takes user credentials credu and maps them to a subset of secu-419

rity domains Su that u can access. User u cannot arbitrarily change Su. Each of user u’s subsequent420

query q to fR is annotated with Su. The retriever RM
C of fR uses access control mechanism M to421

retrieve a context c ∈ CSu
.422

Definition A.1 (Relevant Response for PermRAG). Given a PermRAG fR, with retriever RM
C ,423

a query q from user u, and Su the security domains u has access to, r = fR(q) is the response by424

fR to query q. Response r is said to be relevant to Su (i.e. r = rSu
) if retriever RM

C uses a context425

c ∈ CSu
to augment the query for r.426

To empirically quantify response relevance, we can use the same response relevance score,427

relv(fR(q), Su) that quantifies the information gained on data in the security domains q’s user428

u has access to (this is the same set of security domains that mapping M gives for u for the retriever429

RM
C , i.e. Su). Here RM

C retrieves the query context c ∈ C using mapping M; c is then augmented430

to the query q. We restrict the domain of relv to the real number interval [0, 1], where 1 is the best431

expected score for relevance. Similar to PermLLM, we define access advantage for PermRAG as432

follows:433
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Definition A.2 (Access Advantage for PermRAG). Given PermRAG fR that uses retriever RM
C434

which in turn uses the context database C containing data from domains S =
⋃n

i=1{si}, with access435

control mechanism M, a subset of security domains Su ⊆ S, context c ∈ C that is augmented to436

query q, fR achieves α-access advantage w.r.t. Su if:437

Eq∼DSu ,Sv⊆S;Su∩Sv=ϕ

[
relv(fR(q), Su)⊖ relv(fR(q), Sv)

]
≥ α

where relv() is the response relevance score on the corresponding security domain subset (Su or438

Sv), ⊖ is a “difference” operator specific to the access control assessment method (e.g. subtraction),439

and α is an advantage threshold that lies in the range [0,1].440

B Permissioned LLM Mechanisms’ Details441

One LoRA per Security Domain For our base mechanism called Activate, we assume that users442

have access to at most one domain. Figure 1(a) depicts our base mechanism that performs a simple443

1-1 mapping between domains and LoRA adapters. We assume that the number of domains is known444

beforehand, and use that knowledge to instantiate corresponding number of LoRA adapters. During445

training, each minibatch is sampled from one domain, and the domain’s Id is used to select the LoRA446

adapter to train. At inference time, a user’s query is annotated with the domain Id the user has access447

to. This domain Id is used to activate the LoRA adapter for the corresponding domain.448

Merging LoRA Adapters for Security Domain Groups In many application settings, users have449

access to data from multiple domains. For queries coming from such users, our Activate enables all450

corresponding LoRA adapters, whose activations are averaged at inference time. We however found451

that activations from different LoRA adapters tend to disruptively interfere with each other resulting in452

catastrophic performance degradation beyond two domains. We leave further refinement of activation453

space steering [35, 45] to future work. In our second mechanism, Merge (Figure 1(b)), we adopt454

the LoRA adapter merging strategy for users with access to multiple domains [38, 43, 46, 50]. We455

experimented with several LoRA merging algorithms including TIES [43] and DARE [46], but456

eventually favored the SVD approach [38] because of its better performance and stability in the457

context of LoRA merging. We assume that the combination of domains that users may have access to458

are known beforehand. Thus, after training LoRA adapters for individual domains, we can merge459

them for those exact domain combinations. Correspondingly, our domain-LoRA adapter map is460

updated with the domain IDs and the merged LoRA adapters. These new mappings are used at461

inference time to activate the correct merged LoRA adapters. We found that adapter merging is more462

robust to cross-adapter interference than activation merging.463

Training a LoRA per Combination of Security Domains Although Merge is better than activation464

space merging of multiple LoRA adapters, we observed that it also leads to model performance465

degradation with increasing number of merged adapters. As a result, we explored another simple466

alternative, Union, which trains a LoRA adapter on data from each unique combination of domains467

users have access to. Union indeed delivers the best performance in all our mechanisms. However, it468

comes at the cost of significantly greater tuning time compute – a domain can occur in numerous469

combinations of domains (e.g. in Figure 1(c), data Ds2 gets used in the training set of all three LoRA470

adapters). Furthermore, data sets containing large number of domains presents the added challenge471

of an exponential blow up in domain combinations (at most 2n). However, we believe the number of472

combinations present in a real-world setting will be much smaller than that upper bound.473

C Formal Access Control Enforcement in PermLLM Mechanisms474

We now present formal proofs for correct access control enforcement in our PermLLM mechanisms475

presented in § 3: Activate, Merge, and Union.476

Refreshing the formalism from § 2, we consider a universe of n different security domains S =477 ⋃n
i=1{si}, and a training data set consisting of data from these domains D =

⋃n
i=1 Dsi ∼ Dsi (here478

Dsi is a data set sampled from data distribution Dsi of domain si). Let fD be the LLM tuned using479

data set D. Let W be the set of fD’s parameters. Model tuning changes values of a subset of W . Let480

security domain si affect, per the meaning of affect in § 2, a subset of parameters Wsi ⊆ W . Thus481

data from Dsi is used to change parameters Wsi during model fine-tuning. Let M be the access482
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control mechanism that dictates the mapping of security domain si to parameters Wsi via the affects483

relation.484

Consider a set of LoRA adapters [17] l1, l2, ..., lm. Each adapter li comprises parameters Wli , such485

that Wli ∩Wlj = ϕ, ∀i ̸= j. Let i be the adapter Id for adapter li. Let fM
D by the PermLLM that486

uses mapping M of security domains to parameters during tuning and testing. Let FM be the system487

enclosing fM
D that performs the mapping from user credentials credu to sets of security domains Su488

for each user u. We make two assumptions about FM: (i) FM can correctly determine and maintain489

the security domains Su a user u has access to; and (ii) Su remains opaque to the user and any other490

adversary and as a result, cannot be tampered with by any user or adversary.491

We assume that both fine-tuning and testing are mediated through FM. During fine-tuning, the492

dataset D is passed to FM. FM extracts information about the security domains s1, .., sn covered493

by D. For settings where users have access to multiple security domains, the list of security domain494

combinations that users have access to is also passed on to FM. FM does the mapping between495

security domain groups and LoRA adapters differently for each of our PermLLM mechanisms:496

Activate FM maps each security domain si to a unique LoRA adapter li. For fine-tuning of fM
D ,497

minibatches sampled for each si are routed to the corresponding LoRA adapter li, the other498

LoRA adapters are deactivated for the sampled mini-batch.499

Merge Security domain-LoRA adapter mappings and fine-tuning of fM
D proceeds identically to500

that in Activate. However, after the fine-tuning is done, the security domain groups are used501

to merged LoRA adapters. These new LoRA adapters are added to the set of LoRA adapters502

in fM
D . The mapping M is also updated with the new mappings between security domain503

groups and LoRA adapters.504

Union Datasets corresponding to the security domain groups are used to fine-tuning unique LoRA505

adapters. M is also updated with these new security domain group-LoRA adapter mappings.506

At the end of fine-tuning, M will have a mapping between each security domain group Su (for each507

respective user u) and each LoRA adapter in mechanisms Merge and Union. More formally,508

Lemma C.1. In Merge and Union, after fine-tuning, for every user u that has access to Su ⊆ S,∃lSu
,509

where lSu
is a LoRA adapter, Su affects parameters WlSu

, and WlSu
is not affected by any other510

security domains in S.511

In case of Activate, Su is used at inference time to activate the LoRA adapters lsi , where si ∈ Su.512

More formally,513

Lemma C.2. In Activate, after fine-tuning, for every user u that has access to Su ⊆ S, ∀si ∈ Su, si514

affects parameters Wlsi
, and Wlsi

is not affected by any other security domain sj ∈ Su, i ̸= j, or515

sk ∈ S \ Su.516

At inference time, user u sends query q to FM. FM first determines u’s security domains Su, and517

then passes q and Su to fM
D , which then activates the LoRA adapter/s corresponding to Su: lSu518

in case of Merge and Union, and lsi , where si ∈ Su, in case of Activate. Our assumptions about519

accessibility of Su to the user or adversary ensure that the adversary cannot tamper with Su within520

the scope of FM.521

Theorem C.3. Given any query q from any user u, the response r = fM
D (q) is relevant to Su for M522

in Activate, Merge, or Union.523

Proof. From Lemmas Theorem C.1 and Theorem C.2, through the fine-tuning process Su affects524

parameters WlSu
in Merge and Union, and parameters Wlsi

, ∀si ∈ Su in Activate. At inference time,525

these same parameters (along with the pretrained model’s parameters) are used to generate response526

r = fM
D (q). By implication, the parameters affected by Su are used to generated r. Hence r is527

relevant to Su, i.e. r = rSu
.528

Since the above response relevance condition applies for all responses r = fM
D (q) on all queries q by529

all users u, we say that Activate, Merge, and Union correctly enforce parameter separation and hence530

correctly enforce access control for all users u.531
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D Audit Games532

We formalize black-box games that capture: (i) the distinguishability of security domain-specific533

responses for DDI, and (ii) the utility disparity induced by access restrictions for UGI. Intuitively,534

in these auditing games, we measure how effectively an external auditor can conclude if the access535

control mechanism is correctly implemented by verifying if the correct domain adapter is activated536

for a query. This effectiveness is directly correlated with the access advantage score for the target537

security domain(s). Higher access advantage score denotes stronger access control enforcement. A538

perfectly separated system provides the auditor with an access advantage score of 1.0.539

We consider the same threat setting and auditor privileges for our adversarial games between auditor540

A and system S enclosing the PermLLM fM
D as described in § 2.2.541

Game 1: Domain Distinguishability. This game assesses whether the auditor can effectively542

conclude if the correct security domains were used based on the generated responses. The primary543

motivation of this game is to measure the distinguishability of different security domains’ distributions.544

1. Auditor A chooses security domain set Su and emulates user u. A sends user credentials545

credu and query q ∼ DSu
to system S . S verifies the user credential credu and sends back546

the model response fM
D (q) to A.547

2. A chooses security domain set Sv such that Sv ∩ Su = ϕ and emulates user v. A sends user548

credentials credv and the same query q ∼ DSu
to S. S verifies the user credential credv549

and sends back the model response fM
D (q) to A.550

3. A sends the models responses and domain information to membership inference oracle O551

to obtain domain distinguishability score m(O(fM
D (q)|Su, f

M
D (q)|Sv)), where m(·) is a552

membership inference metric (e.g., AUC-ROC or TPR@1%FPR) in the [0,1] range.553

4. A concludes the access control mechanism is correctly implemented if the domain distin-554

guishability score m(O(fM
D (q)|Su, f

M
D (q)|Sv)) ≥ α.555

Note that we can change the above game to distinguish members (q ∼ DSu
) and non-members556

(q ∼ DSv
) for the target domain set Su, similar to prior MIA setups, which is what we do in our557

experiments in Appendix G.558

Game 2: Utility Gap Evaluation. The second game evaluates how distinctly the responses from559

two different security domains impact the utility perceived by users. The rationale behind this game560

is to confirm that enforced access controls result in meaningful variations in response quality.561

1. Auditor A chooses security domain set Su and emulates user u. A sends user credentials562

credu and query q ∼ DSu
to system S . S verifies the user credential credu and sends back563

the model response fM
D (q) to A.564

2. A chooses security domain set Sv such that Sv ∩ Su = ϕ and emulates user v. A sends user565

credentials credv and the same query q ∼ DSu
to S. S verifies the user credential credv566

and sends back the model response fM
D (q) to A.567

3. Given a utility function U(·) (e.g., BLEURT or task accuracy) that outputs values in [0,1]568

range, A concludes the access control mechanism is correctly implemented if the utility gap569

score |U(fM
D (q)|Su)− U(fM

D (q)|Sv)| ≥ α.570

We aggregate the utility gaps from this game across all domain set pairs to obtain our UGI metric.571

E Auditing Access Control in Permissioned LLM Mechanisms572

We now introduce two novel instantiations of our access advantage metric (Definition 2.2)—Domain573

Distinguishability Index (DDI) and Utility Gap Index (UGI)—that quantify access control efficacy574

independently of any particular system design. We show how these metrics fit into the framework for575

empirically assessing access control mechanisms in PermLLMs through adversarial audit games in576

Appendix D. These metrics are in [0,1] range with higher values denoting better access control.577
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E.1 Metric 1: Domain Distinguishability Index (DDI)578

In traditional privacy evaluations, membership inference attacks (MIAs) leverage a sampled member579

data set (from the target model’s training set) and a sampled non-member data set to assess privacy580

leakage [18, 37]: the more accurately an adversary separates and classifies samples as members or581

non-members, the higher the privacy risk. Analogously, we adopt this MIA framework for access582

control assessment to distinguish security domains. Specifically, for any security domain set Si,583

the auditor holds samples from Si’s training data (member set) and samples from Sj’s training data584

(non-member set), where Sj ∩ Si = ϕ. The auditor then evaluates how successfully it can distinguish585

the member set from the non-member set when the PermLLM is activated for Si. This evaluation586

occurs for all security domains, giving us an aggregate access advantage, which we call Domain587

Distinguishability Index (DDI).588

Definition E.1 (Domain Distinguishability Index (DDI)). For a domain universe S consisting of n589

security domains, let fM
D denote the PermLLM trained on data D from all security domains with590

access control mechanism M. For each ordered pair of domain sets (Si ⊆ S, Sj ⊆ S) with no591

overlap (i.e.,Si ∩ Sj = ϕ), let O(Si,Sj) = O(fM
D (q)|Si, f

M
D (q)|Sj); ∀q ∼ DSi

be the output of a592

membership inference oracle O. For a given membership inference metric m(·), the DDI is defined593

as: DDI(m) = ESi⊆S,Sj⊆S
[
m
(
O(Si,Sj)

)]
, where E is the expectation over all domain sets.594

We also report the standard deviation of m
(
O(Si,Sj)

)
across all domain set pairs to capture variability.595

By 2.2, DDI can be viewed as an access advantage metric, where the response relevance score relv596

for Si on query q, relv(fM
D (q), Si), is a binary value on whether the membership inference oracle597

O’s output is above a membership threshold. The difference operator ⊖ is the MIA method specific598

composition of response relevance for all the samples in the member and non-member sets.599

We use AUC-ROC and TPR@(low)FPR, as instantiations of DDI, where higher scores indicate600

stronger enforcement, as Si-specific responses become more distinguishable. See Appendices I.1601

and I.2 for details on MIA evaluation metrics and an overview of existing MIAs against LLMs.602

A higher DDI indicates more robust separation between security domains. In our evaluations, we603

employ state-of-the-art MIAs for LLMs, including Loss [44], Zlib [5], Mink [36], Mink++ [47],604

Reference [5] attacks.605

E.2 Metric 2: Utility Gap Index (UGI)606

The UGI metric measures the drop in model utility on the target domain’s data when a different607

domain’s adapter is activated in PermLLM instead of the target domain.608

Definition E.2 (Utility Gap Index (UGI)). Let U(·) be a chosen utility metric and for a domain set609

pair (Si ⊆ S, Sj ⊆ S) with no overlap (i.e.,Si∩Sj = ϕ), UtilityGap(Si,Sj)(U) = |U(fM
D (q)|Si)−610

U(fM
D (q)|Sj)|; ∀q ∼ DSi . The UGI aggregates utility gaps across all ordered domain set pairs:611

∆U = ESi⊆S,Sj⊆S
[
UtilityGap(Si,Sj)(U)

]
, where E is the expectation over all domain sets.612

By 2.2, UGI is also an instantiation of the access advantage metric in which the relevance score for613

security domain set Si on query q is the utility value itself, relv
(
fM
D (q), Si

)
= U

(
fM
D (q)|Si

)
, and614

the operator ⊖ computes the absolute difference of those relevance scores across the sampled queries.615

A larger UGI indicates that enforced access controls yield more pronounced—and thus more easily616

perceivable—differences in response quality between security domains. As with DDI, we also report617

the standard deviation across pairs to characterize variability. We evaluate the utility gaps w.r.t. Bleurt618

Score (∆bluert), Bert F1-Score (∆bert), Sacrebleu Score (∆bleu) and Verbatim Accuracy (∆acc) for619

our UGI metrics in Appendix G. More details on these metrics can be found in Appendix § F.3.620

F Detailed Experiment Setup621

F.1 Models622

For our instantiation of PermLLM, we fine-tune Llama-3.1-8B[15] and Mistral-0.1-7B[19] pretrained623

models on four datasets covering multiple distinct security domains (henceforth called domains),624

where we fine-tune a separate LoRA adapter for each domain. To compare our PermLLM, we train625
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Table 2: Data Set Details. Generalization Loss Gap (i.e., gap between model’s loss on training and
test sets) for all models are reported after fine-tuning for 5 epochs on each data set.

Data Set Data Set Size Llama-3.1-8B Loss Gap Mistral-0.1-7B Loss Gap
(# Domains) Train Test Full FT LoRA PermLLM Full FT LoRA PermLLM

WMDP (3) 2936 732 1.96 0.52 1.15 1.36 0.65 1.07
GPQA (3) 360 88 2.51 1.06 1.04 1.58 0.61 1.09
SimpleQA (10) 4089 1018 2.91 0.96 1.49 1.87 0.90 1.25
RCV1 (4) 45622 22811 4.07 0.35 0.83 2.48 0.37 0.74
PubMedQA (10) 200000 11269 3.53 0.07 0.36 2.56 0.07 0.35

two additional models with full fine-tuning and LoRA fine-tuning respectively on entire training data.626

Note that these models are only used for utility baselines as they do not provide access control. For all627

the LoRA adapters, we use 64 rank and 0.1 dropout. We use AdamW optimizer with 0.1 weight decay628

to fine-tuned all the models for 5 epochs with 300 warmup steps, 2 batch size and 5× 10−4 learning629

rate (except for Mistral-0.1-7B full fine-tuning that uses a learning rate of 5× 10−5). We performed630

grid search over multiple learning rates and warmup steps and found these values to give the best631

results. For all our experiments, we use 8 H100 GPUs (with 80GB VRAM per GPU), 4 workers per632

GPU, and 384 GB RAM. One epoch of fine-tuning took from few minutes (for our smallest data633

set: GPQA) to a couple of hours (for our largest data set: RCV1). Mistral-0.1-7B is released under634

Apache 2.0 license, and Llama-3.1-8B is released under Llama 3.1 Community License.635

F.2 Data Sets636

For our experiments, we require data sets that consist of multiple distinct domains and are possibly637

not seen by the pretrained models. We use four different data sets, namely, WMDP [24], GPQA [33],638

SimpleQA [41], and RCV1 [22]. While the first three data sets were collected after the pretraining639

cutoff dates for Llama-3.1-8B and Mistral-0.1-7B, RCV1 is an older data set and hence we do not640

know if it was used in pretraining. However, we observe a high initial training loss on this data641

set, thereby indicating that it was either not used in pretraining or was catastrophically forgotten by642

the models, allowing for a gradual reduction in training loss during our fine-tuning (see Figure 6).643

Table 2 shows the data set details, along with the generalization gap (test loss - train loss) for different644

approaches of fine-tuning the models on these data sets. See Figure 3, Figure 4, Figure 5, Figure 6,645

and Figure 7 for complete training and test loss trajectories across different data sets.646

WMDP. Weapons of Mass Destruction Proxy (WMDP) [24] is a data set consisting of multi-choice647

question–answer pairs spanning three domains: biological weapons (bio), chemical weapons (chem)648

and cyber-warfare weapons (cyber). We do 4:1 split of the data set to obtain training and test sets.649

The training set consists of 2936 question–answer pairs where 1019 are from bio, 327 are from chem650

and the remaining 1590 are from cyber. The test set size is 732 records, consisting of 254 bio, 81651

chem and 397 cyber records. The largest record from this data set consists of 1934 tokens (tokenized652

using Llama3 tokenizer). This data set is released under MIT License.653

GPQA. Graduate-Level Google-Proof Q&A Benchmark (GPQA) [33] data set consists of general654

question–answer pairs from three domains: biology, chemistry and physics. We do 4:1 split of the655

data set to obtain training and test sets. The training set consists of 360 question–answer pairs where656

63 are from biology, 147 are from chemistry and the remaining 150 are from physics. The test set657

size is 88 records, consisting of 15 biology, 36 chemistry and 37 physics records. The largest record658

from this data set consists of 911 tokens (tokenized using Llama3 tokenizer). This data set is released659

under MIT License.660

SimpleQA. SimpleQA [41] is a factuality benchmark that measures the ability for language models661

to answer short, fact-seeking questions. It consists of general question–answer pairs from ten domains:662

art, geography, history, music, other, politics, science and technology, sports, tv shows, and video663

games. We do 4:1 split of the data set to obtain training and test sets. The training set consists of664

4089 question–answer pairs divided across all ten domains. The test set size is 1018 records spanning665

across all ten domains. The largest record from this data set consists of 156 tokens (tokenized using666

Llama3 tokenizer). This data set is released under MIT License.667
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Figure 3: Comparing model loss on WMDP data set.
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Figure 4: Comparing model loss on GPQA data set.

RCV1. RCV1 [22] is a benchmark dataset on text categorization. It is a collection of newswire668

articles produced by Reuters between 1996 and 1997. It contains 804,414 manually labeled newswire669

documents, broadly categorized with respect to three categories: industries, topics and regions. We670

took a subset of this data set and created four non-overlapping domains using topics: commercial671

(CCAT), economic (ECAT), governance (GCAT), and mechanical (MCAT). We then did 2:1 split672

of the subset to obtain training and test sets. The training set consists of 45622 question–answer673

pairs where 23822 are from CCAT, 7460 are from GCAT, 3370 are from ECAT and the remaining674

10970 are from MCAT. The test set size is 22811 records, consisting of 11911 CCAT, 3730 GCAT,675

1685 ECAT, and 5485 MCAT records. The largest record from this data set consists of 1199 tokens676

(tokenized using Llama3 tokenizer). This data set is released under CC BY 4.0 License.677

PubMedQA. PubMedQA [20] contains approximately 200K medical articles formatted as ⟨Context678

+ Question + Answer⟩. We encoded these articles using the GTE sentence encoder and applied k-679

means clustering to the resulting embeddings to derive 10 non-overlapping security domains. While680

clustering enforces semantic similarity within each domain and dissimilarity across domains, the681

underlying data distribution remains the same, since all samples originate from the same dataset. The682

largest record from this data set consists of 1614 tokens (tokenized using Llama3 tokenizer). This683

data set is released under MIT License.684
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Figure 5: Comparing model loss on SimpleQA data set.
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Figure 6: Comparing model loss on RCV1 data set.
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Figure 7: Comparing model loss on PubMedQA data set.

F.3 Model Utility Evaluation685

We use four metrics to evaluate the utility of the model generations: Bleurt Score (bluert), Bert686

F1-Score (bert), Sacrebleu Score (bleu) and Verbatim Accuracy (acc). These metrics measure how687

similar the generated text is to the ground truth. bleurt and bert measure the semantic similarity, bleu688

measures the fraction of common n-grams, and acc gives a binary decision of whether the generated689

text verbatim matches the ground truth. All the metrics lie in a [0,1] range, where values close to 1690

indicate high model utility.691

We check the utility of Activate to determine if tuning different LoRA adapters for each security692

domain leads to acceptable model utility. To that end, we show in Table 3 the utility of Llama-3.1-8B693

models fine-tuned on different data sets with the three approaches: full fine-tuning, LoRA fine-tuning694

and our PermLLM. We do not report the bleu score for WMDP as it is a multi-choice question-695

answering task where model only has to generate a single token. bleu requires generating at least696

four tokens. Our approach achieves similar or better utility on the training set compared to the LoRA697

approach. On the test set, our approach achieves similar utility to LoRA for most of the data sets,698

except for SimpleQA where LoRA performs better. This is because SimpleQA has more domains699

(10 in total), thus each of our individual domain adapter sees only a fraction of data of what LoRA700

approach’s adapter sees (given that SimpleQA is already a small data set). We expect the performance701

of our domain-specific adapters to increase as the data set size increases. Full fine-tuning is highly702

sensitive to training hyper-parameters, and as a result it either completely overfits on training set to703

achieve high utility (e.g., on SimpleQA and RCV1), or it underfits and achieves low utility (e.g., on704

WMDP and GPQA). We observe similar results for Mistral-0.1-7B models (see Table 4).705

G Detailed Experimental Evaluation706

For our experiments, we fine-tune Llama-3.1-8B and Mistral-0.1-7B pretrained models on five707

datasets covering multiple distinct security domains (henceforth called domains), where we fine-708

tune a separate LoRA adapter for each domain. Details about the model hyperparameters can be709

found in Appendix § F.1. The data sets we use in our experiments are WMDP [24], GPQA [33],710

SimpleQA [41], RCV1 [22], and PubMedQA [20]. Table 5 shows the brief data set details. More711

details on the data sets and generalization gaps can be found in Appendix § F.2. Appendix § F.3712

discusses the utility evaluation of all our models.713
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Table 3: Utility comparison of Llama-3.1-8B models trained with different approaches. All reported
values are mean± std across domains.

Metric Full Fine-Tuning LoRA Fine-Tuning PermLLM
Train Test Train Test Train Test

W
M

D
P bleurt 0.74± 0.06 0.74± 0.06 0.90± 0.08 0.85± 0.08 0.92± 0.08 0.82± 0.06

bert 0.89± 0.03 0.89± 0.03 0.96± 0.03 0.94± 0.03 0.97± 0.03 0.93± 0.03
acc 0.26± 0.07 0.27± 0.07 0.76± 0.20 0.60± 0.20 0.84± 0.22 0.49± 0.15

G
PQ

A

bleu 0.26± 0.02 0.05± 0.03 0.45± 0.12 0.10± 0.05 0.39± 0.20 0.10± 0.04
bleurt 0.53± 0.05 0.39± 0.05 0.64± 0.09 0.46± 0.07 0.62± 0.11 0.47± 0.07
bert 0.67± 0.06 0.59± 0.05 0.77± 0.08 0.67± 0.05 0.75± 0.09 0.67± 0.05
acc 0.24± 0.06 0.02± 0.03 0.32± 0.05 0.05± 0.05 0.31± 0.09 0.04± 0.05

Si
m

pl
eQ

A bleu 0.80± 0.06 0.34± 0.11 0.65± 0.06 0.29± 0.08 0.67± 0.10 0.09± 0.04
bleurt 0.86± 0.03 0.58± 0.05 0.80± 0.02 0.61± 0.02 0.82± 0.04 0.53± 0.04
bert 0.96± 0.01 0.84± 0.02 0.94± 0.01 0.86± 0.01 0.95± 0.02 0.82± 0.03
acc 0.68± 0.10 0.20± 0.12 0.52± 0.07 0.17± 0.07 0.55± 0.13 0.02± 0.02

R
C

V
1

bleu 0.75± 0.08 0.14± 0.08 0.22± 0.10 0.16± 0.08 0.27± 0.10 0.16± 0.08
bleurt 0.88± 0.04 0.46± 0.12 0.57± 0.13 0.49± 0.11 0.62± 0.13 0.50± 0.12
bert 0.94± 0.03 0.67± 0.09 0.75± 0.08 0.70± 0.07 0.78± 0.08 0.70± 0.08
acc 0.78± 0.06 0.16± 0.10 0.27± 0.14 0.17± 0.10 0.31± 0.15 0.18± 0.10

Pu
bM

ed
Q

A bleu 0.71± 0.05 0.07± 0.01 0.09± 0.01 0.09± 0.01 0.10± 0.02 0.09± 0.01
bleurt 0.77± 0.03 0.38± 0.01 0.40± 0.01 0.40± 0.01 0.42± 0.01 0.40± 0.02
bert 0.90± 0.02 0.64± 0.02 0.68± 0.01 0.68± 0.01 0.69± 0.02 0.67± 0.02
acc - - - - - -
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Figure 8: Utility Gap Index, ∆U (mean± std) for Mistral-0.1-7B models fine-tuned on SimpleQA
when user has access to multiple security domains.

G.1 Evaluating Access Control714

Our approach achieves comparable model utility to existing approaches of fine-tuning (see discussion715

in § F.3), in addition to providing access control. Here we will empirically evaluate the effectiveness716

of our access control using a suite of metrics. In § 5 we covered the case where the user has access717

to only one domain. Now we consider the case where the user has access to multiple domains. For718

comparison, we also include an evaluation of a prompt-based access control baseline in Appendix H719

but find it to be ineffective.720

G.1.1 Multiple Active Domains721

As discussed earlier in § 3, we explore three methods of combining knowledge from multiple domains722

the user has access to: (a) activating all the domain-specific LoRA modules (Activate), (b) merging the723

LoRA modules (Merge), and (c) training separate LoRA modules on the union of domains and using724

those for inference (Union). Table 6 reports the UGI (∆U ) for these approaches when the user has725

access to two domains for all the data sets. We note that WMDP and GPQA have only three security726

domains, and hence activating any two domains always lead to overlap when calculating ∆U as per727

4.2. For these data sets, we calculate ∆U on the non-overlapping data. Activate is computationally728

inexpensive but suffers from considerable utility loss when compared to the previous case of single729

domain. This is due to the high interference across the multiple domains in the activation space,730

which is a known issue in the multi-task learning literature [49, 39, 31]. The utility loss suppresses731
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Table 4: Utility comparison of Mistral-0.1-7B models trained with different approaches. All reported
values are mean± std across domains.

Metric Full Fine-Tuning LoRA Fine-Tuning PermLLM
Train Test Train Test Train Test

W
M

D
P bleurt 0.95± 0.01 0.82± 0.03 0.96± 0.02 0.87± 0.03 0.96± 0.01 0.86± 0.03

bert 0.98± 0.01 0.92± 0.02 0.99± 0.01 0.94± 0.02 0.99± 0.01 0.94± 0.02
acc 0.88± 0.04 0.46± 0.14 0.92± 0.07 0.60± 0.09 0.93± 0.04 0.58± 0.11

G
PQ

A

bleu 0.46± 0.03 0.06± 0.05 0.35± 0.08 0.11± 0.07 0.55± 0.18 0.13± 0.06
bleurt 0.65± 0.04 0.42± 0.08 0.59± 0.09 0.47± 0.06 0.67± 0.09 0.47± 0.08
bert 0.75± 0.05 0.62± 0.07 0.73± 0.08 0.68± 0.05 0.79± 0.08 0.66± 0.09
acc 0.38± 0.04 0.04± 0.05 0.24± 0.04 0.05± 0.06 0.40± 0.09 0.08± 0.02

Si
m

pl
eQ

A bleu 0.94± 0.02 0.36± 0.11 0.73± 0.06 0.34± 0.09 0.70± 0.13 0.10± 0.04
bleurt 0.94± 0.01 0.60± 0.04 0.84± 0.03 0.62± 0.03 0.83± 0.06 0.52± 0.04
bert 0.99± 0.01 0.85± 0.02 0.96± 0.01 0.87± 0.01 0.95± 0.03 0.82± 0.03
acc 0.91± 0.04 0.23± 0.12 0.62± 0.08 0.20± 0.10 0.60± 0.16 0.03± 0.02

R
C

V
1

bleu 0.92± 0.06 0.17± 0.09 0.28± 0.13 0.20± 0.10 0.37± 0.14 0.19± 0.09
bleurt 0.93± 0.02 0.48± 0.12 0.60± 0.13 0.51± 0.12 0.66± 0.12 0.50± 0.12
bert 0.98± 0.02 0.69± 0.08 0.78± 0.09 0.71± 0.08 0.81± 0.08 0.71± 0.08
cc 0.92± 0.03 0.19± 0.11 0.31± 0.15 0.20± 0.11 0.38± 0.17 0.19± 0.10

Pu
bM

ed
Q

A bleu 0.75± 0.04 0.08± 0.01 0.09± 0.01 0.08± 0.01 0.11± 0.02 0.08± 0.01
bleurt 0.80± 0.03 0.39± 0.01 0.41± 0.01 0.41± 0.01 0.43± 0.02 0.41± 0.01
bert 0.92± 0.01 0.65± 0.02 0.69± 0.01 0.68± 0.02 0.70± 0.02 0.68± 0.01
acc - - - - - -

Table 5: Data Set Details.
WMDP GPQA SimpleQA RCV1 PubMedQA

Data Set Size (Train / Test) 2936 / 732 360 / 88 4089 / 1018 45622 / 22811 200000 / 11269
Number of Security Domains 3 3 10 4 10

the absolute ∆U in our experiments. As can be seen in Figure 9, Merge reduces the cross-domain732

interference, but still suffers from utility loss. Interestingly Merge achieves even lower ∆U than733

Activate when combining two domains, as shown in Table 6. Although it quickly outperforms734

Activate when the user has access to more than two domains, the utility loss due to model merging735

interference [38, 43, 46, 50] also results in progressive degradation of ∆U (see Figure 9). Union736

retains ∆U even beyond four domains, and hence is the best choice when combining knowledge737

from several domains. But this comes at the cost of more training-time computation since new738

domain-specific modules have to be trained for the union of domains, and there could be potential739

combinatorial blow-up of the number of such combinations. As with the single active domain case,740

we observe close to zero utility gap on PubMedQA as the domains share the same data distribution.741

We observe similar results for Mistral-0.1-7B model (see Figure 8 in the appendix).742

The DDI results for a two-domain setting appear in Table 7 (Llama-3.1-8B) and Table 8 (Mistral-0.1-743

7B). As we can see from these tables, we achieve high DDI values (e.g., close to α = 1.0 for auc-roc).744
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Figure 9: Utility Gap Index, ∆U (mean± std) for Llama-3.1-8B models fine-tuned on SimpleQA
when user has access to multiple security domains.
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Table 6: Utility Gap Index (∆U ) for models with different approaches of combining domains when
user has access to two domains. All reported values are mean± std across domains.

Metric Llama-3.1-8B Mistral-0.1-7B
Activate Merge Union Activate Merge Union

W
M

D
P ∆bleurt 0.09± 0.01 0.07± 0.02 0.11± 0.02 0.10± 0.02 0.08± 0.03 0.14± 0.03

∆bert 0.05± 0.01 0.03± 0.01 0.06± 0.01 0.05± 0.01 0.04± 0.02 0.07± 0.02
∆acc 0.27± 0.07 0.21± 0.09 0.34± 0.11 0.32± 0.04 0.25± 0.07 0.49± 0.09

G
PQ

A

∆bleu 0.15± 0.06 0.11± 0.06 0.51± 0.07 0.24± 0.10 0.17± 0.10 0.62± 0.02
∆bleurt 0.10± 0.02 0.06± 0.02 0.26± 0.03 0.14± 0.06 0.10± 0.04 0.32± 0.02
∆bert 0.07± 0.02 0.04± 0.03 0.18± 0.02 0.11± 0.04 0.08± 0.03 0.21± 0.02
∆acc 0.09± 0.04 0.05± 0.02 0.31± 0.08 0.16± 0.07 0.08± 0.07 0.51± 0.04

Si
m

pl
eQ

A ∆bleu 0.26± 0.09 0.23± 0.09 0.61± 0.03 0.30± 0.13 0.25± 0.04 0.61± 0.08
∆bleurt 0.16± 0.05 0.12± 0.04 0.32± 0.04 0.19± 0.05 0.14± 0.02 0.33± 0.05
∆bert 0.07± 0.03 0.05± 0.02 0.14± 0.02 0.08± 0.03 0.06± 0.01 0.14± 0.03
∆acc 0.20± 0.07 0.18± 0.07 0.59± 0.05 0.27± 0.09 0.21± 0.03 0.62± 0.09

R
C

V
1

∆bleu 0.05± 0.03 0.04± 0.02 0.16± 0.09 0.04± 0.02 0.01± 0.03 0.19± 0.10
∆bleurt 0.11± 0.01 0.07± 0.03 0.22± 0.08 0.08± 0.01 0.03± 0.04 0.22± 0.08
∆bert 0.08± 0.01 0.06± 0.02 0.16± 0.04 0.06± 0.01 0.03± 0.05 0.18± 0.06
∆acc 0.03± 0.01 0.04± 0.04 0.24± 0.14 0.02± 0.02 0.01± 0.03 0.26± 0.15

Pu
bM

ed
Q

A ∆bleu 0.01± 0.00 0.00± 0.00 0.01± 0.00 0.01± 0.00 0.00± 0.00 0.01± 0.01
∆bleurt 0.01± 0.00 0.00± 0.00 0.01± 0.00 0.01± 0.00 0.00± 0.00 0.01± 0.01
∆bert 0.01± 0.00 0.00± 0.00 0.01± 0.00 0.01± 0.00 0.00± 0.00 0.01± 0.00
∆acc - - - - - -

Table 7: DDI values for models (with base model Llama-3.1-8B) with different approaches of
combining domains when user has access to two domains. All reported values are mean± std across
domains

MIA Activate Merge Union
auc-roc tpr@1%fpr tpr@5%fpr auc-roc tpr@1%fpr tpr@5%fpr auc-roc tpr@1%fpr tpr@5%fpr

W
M

D
P

Loss 0.98 ± 0.02 0.77 ± 0.22 0.87 ± 0.13 0.93 ± 0.05 0.53 ± 0.25 0.67 ± 0.21 0.99 ± 0.02 0.90 ± 0.14 0.94 ± 0.09
ZLIB 0.92 ± 0.08 0.60 ± 0.27 0.67 ± 0.28 0.86 ± 0.09 0.38 ± 0.21 0.50 ± 0.26 0.97 ± 0.05 0.77 ± 0.31 0.80 ± 0.28
Mink 0.99 ± 0.01 0.88 ± 0.08 0.93 ± 0.04 0.96 ± 0.02 0.65 ± 0.19 0.78 ± 0.12 1.00 ± 0.00 0.94 ± 0.08 0.99 ± 0.01
Mink++ 0.90 ± 0.05 0.62 ± 0.21 0.71 ± 0.16 0.94 ± 0.04 0.65 ± 0.21 0.80 ± 0.15 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Ref 1.00 ± 0.00 0.98 ± 0.02 0.99 ± 0.01 0.99 ± 0.00 0.81 ± 0.05 0.91 ± 0.02 1.00 ± 0.00 0.98 ± 0.02 1.00 ± 0.00

G
PQ

A

Loss 0.99 ± 0.01 0.81 ± 0.09 0.93 ± 0.05 0.93 ± 0.02 0.38 ± 0.14 0.72 ± 0.03 1.00 ± 0.00 0.97 ± 0.04 0.99 ± 0.01
ZLIB 0.90 ± 0.06 0.38 ± 0.26 0.63 ± 0.22 0.82 ± 0.07 0.26 ± 0.17 0.44 ± 0.16 0.99 ± 0.01 0.79 ± 0.30 0.96 ± 0.05
Mink 0.99 ± 0.01 0.92 ± 0.11 0.97 ± 0.04 0.96 ± 0.01 0.69 ± 0.07 0.80 ± 0.07 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Mink++ 0.95 ± 0.06 0.82 ± 0.10 0.85 ± 0.13 0.97 ± 0.03 0.75 ± 0.13 0.88 ± 0.10 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Ref 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.87 ± 0.12 0.93 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Si
m

pl
eQ

A

Loss 0.96 ± 0.03 0.42 ± 0.32 0.73 ± 0.26 0.95 ± 0.03 0.47 ± 0.28 0.74 ± 0.21 0.97 ± 0.04 0.62 ± 0.38 0.83 ± 0.29
ZLIB 0.94 ± 0.04 0.35 ± 0.28 0.66 ± 0.23 0.93 ± 0.04 0.41 ± 0.24 0.67 ± 0.17 0.97 ± 0.04 0.61 ± 0.38 0.82 ± 0.29
Mink 0.94 ± 0.06 0.41 ± 0.33 0.68 ± 0.27 0.94 ± 0.03 0.47 ± 0.22 0.71 ± 0.18 0.98 ± 0.03 0.57 ± 0.38 0.84 ± 0.25
Mink++ 0.85 ± 0.10 0.25 ± 0.19 0.57 ± 0.16 0.92 ± 0.03 0.34 ± 0.16 0.62 ± 0.13 0.97 ± 0.03 0.57 ± 0.37 0.85 ± 0.24
Ref 0.96 ± 0.03 0.37 ± 0.35 0.73 ± 0.30 0.96 ± 0.04 0.43 ± 0.40 0.69 ± 0.35 0.97 ± 0.04 0.58 ± 0.42 0.79 ± 0.31

R
C

V
1

Loss 0.96 ± 0.02 0.40 ± 0.09 0.76 ± 0.15 0.90 ± 0.01 0.24 ± 0.05 0.52 ± 0.07 0.98 ± 0.00 0.55 ± 0.23 0.94 ± 0.01
ZLIB 0.82 ± 0.02 0.27 ± 0.07 0.46 ± 0.06 0.72 ± 0.02 0.11 ± 0.03 0.28 ± 0.03 0.90 ± 0.05 0.52 ± 0.20 0.67 ± 0.13
Mink 0.97 ± 0.02 0.60 ± 0.14 0.87 ± 0.08 0.92 ± 0.02 0.29 ± 0.04 0.65 ± 0.08 0.99 ± 0.00 0.80 ± 0.08 0.97 ± 0.01
Mink++ 0.80 ± 0.13 0.32 ± 0.19 0.49 ± 0.24 0.84 ± 0.07 0.28 ± 0.22 0.52 ± 0.19 0.99 ± 0.00 0.90 ± 0.05 0.98 ± 0.00
Ref 0.97 ± 0.01 0.50 ± 0.09 0.86 ± 0.09 0.95 ± 0.00 0.26 ± 0.07 0.63 ± 0.05 0.98 ± 0.01 0.50 ± 0.31 0.95 ± 0.02

In other words, an auditor can almost perfectly identify which domain is in effect, even when the745

corresponding utility gap (∆U ) is far below 1.0 (Figure 9). Union consistently attains the highest DDI,746

followed by Activate and then Merge mirroring the trend observed with ∆U . Union’s superiority747

however comes at the cost of greater tuning-time computation. Union’s near-perfect distinguishability748

mirrors the effect of model performance (with increasing domains) on ∆U (see Figure 9). Crucially,749

the high DDI values confirm that even when ∆U drops due to model generalization or degradation due750

to activation space or parameter interference, access control remains uncompromised; DDI therefore751

provides the more sensitive indicator of enforcement efficacy.752

H Prompt-Based Access Control753

Recent works [8, 25] have proposed enforcing some form of access control in system prompts,754

however we note that they do not provide absolute access control and are vulnerable to jailbreaking755

20



Table 8: DDI values for models (with base model Mistral-0.1-7B) with different approaches of
combining domains when user has access to two domains. All reported values are mean± std across
domains.

MIA Activate Merge Union
auc-roc tpr@1%fpr tpr@5%fpr auc-roc tpr@1%fpr tpr@5%fpr auc-roc tpr@1%fpr tpr@5%fpr

W
M

D
P

Loss 0.99 ± 0.02 0.85 ± 0.21 0.92 ± 0.11 0.95 ± 0.04 0.62 ± 0.21 0.73 ± 0.19 0.99 ± 0.01 0.93 ± 0.10 0.96 ± 0.06
ZLIB 0.93 ± 0.09 0.69 ± 0.30 0.74 ± 0.30 0.87 ± 0.09 0.47 ± 0.26 0.58 ± 0.29 0.98 ± 0.03 0.83 ± 0.23 0.88 ± 0.16
Mink 0.99 ± 0.01 0.89 ± 0.14 0.95 ± 0.07 0.96 ± 0.03 0.73 ± 0.11 0.83 ± 0.12 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Mink++ 0.96 ± 0.02 0.77 ± 0.04 0.86 ± 0.04 0.94 ± 0.03 0.58 ± 0.03 0.80 ± 0.05 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Ref 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.86 ± 0.09 0.96 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

G
PQ

A

Loss 0.99 ± 0.01 0.83 ± 0.18 0.95 ± 0.06 0.96 ± 0.04 0.55 ± 0.24 0.87 ± 0.06 1.00 ± 0.00 0.97 ± 0.04 0.98 ± 0.02
ZLIB 0.93 ± 0.08 0.50 ± 0.35 0.74 ± 0.32 0.86 ± 0.09 0.33 ± 0.23 0.56 ± 0.21 0.99 ± 0.01 0.88 ± 0.17 0.97 ± 0.04
Mink 1.00 ± 0.00 0.94 ± 0.07 0.98 ± 0.02 0.98 ± 0.02 0.74 ± 0.14 0.87 ± 0.12 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Mink++ 0.98 ± 0.02 0.80 ± 0.14 0.92 ± 0.06 0.98 ± 0.01 0.75 ± 0.13 0.89 ± 0.07 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Ref 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 0.84 ± 0.23 0.97 ± 0.04 1.00 ± 0.00 0.97 ± 0.04 1.00 ± 0.00

Si
m

pl
eQ

A

Loss 0.97 ± 0.03 0.58 ± 0.33 0.82 ± 0.27 0.96 ± 0.02 0.49 ± 0.24 0.79 ± 0.17 0.97 ± 0.04 0.50 ± 0.42 0.76 ± 0.31
ZLIB 0.97 ± 0.03 0.51 ± 0.32 0.78 ± 0.28 0.95 ± 0.03 0.44 ± 0.23 0.72 ± 0.19 0.97 ± 0.04 0.51 ± 0.42 0.75 ± 0.31
Mink 0.97 ± 0.03 0.51 ± 0.34 0.83 ± 0.24 0.96 ± 0.02 0.49 ± 0.24 0.77 ± 0.18 0.97 ± 0.04 0.51 ± 0.41 0.79 ± 0.27
Mink++ 0.92 ± 0.04 0.46 ± 0.21 0.68 ± 0.21 0.93 ± 0.05 0.45 ± 0.28 0.73 ± 0.19 0.97 ± 0.04 0.50 ± 0.41 0.76 ± 0.29
Ref 0.98 ± 0.03 0.65 ± 0.39 0.86 ± 0.27 0.98 ± 0.03 0.64 ± 0.34 0.85 ± 0.25 0.96 ± 0.04 0.48 ± 0.43 0.73 ± 0.34

R
C

V
1

Loss 0.93 ± 0.04 0.39 ± 0.23 0.62 ± 0.23 0.85 ± 0.01 0.14 ± 0.03 0.35 ± 0.02 0.98 ± 0.01 0.53 ± 0.22 0.92 ± 0.01
ZLIB 0.82 ± 0.05 0.30 ± 0.10 0.50 ± 0.08 0.69 ± 0.03 0.10 ± 0.04 0.26 ± 0.06 0.90 ± 0.05 0.48 ± 0.23 0.67 ± 0.14
Mink 0.93 ± 0.05 0.44 ± 0.24 0.68 ± 0.23 0.85 ± 0.02 0.16 ± 0.03 0.40 ± 0.04 0.99 ± 0.00 0.73 ± 0.12 0.97 ± 0.01
Mink++ 0.69 ± 0.25 0.27 ± 0.20 0.45 ± 0.33 0.70 ± 0.16 0.18 ± 0.13 0.35 ± 0.21 0.99 ± 0.00 0.89 ± 0.03 0.98 ± 0.00
Ref 0.96 ± 0.02 0.35 ± 0.12 0.71 ± 0.18 0.94 ± 0.01 0.15 ± 0.05 0.52 ± 0.08 0.98 ± 0.00 0.45 ± 0.25 0.97 ± 0.00
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Figure 10: Utility Gap Index, ∆U (mean± std) for prompt-based access control baseline when user
has access to one security domain.

prompts. Regardless, we implement prompt-based access control as a baseline where each query is756

tagged with a prompt prefix (e.g., “use domain 1”) and the rest of the fine-tuning pipeline is similar to757

LoRA fine-tuning. We add the relevant prompt prefixes during both model fine-tuning and inference.758

The models fine-tuned with prompt-based access control achieve similar training and test loss to that759

of LoRA fine-tuning across all the data sets, as shown in Figure 3, Figure 4, Figure 5, Figure 6, and760

Figure 7. However, this baseline fails to provide any meaningful access control, even when a user has761

access to only one security domain as shown in Figure 10 and Table 9. As shown in the figure and762

table, the utility gap index is close to zero and DDI scores are close to random guessing across all the763

data sets for both Llama and Mistral models fine-tuned with prompt-based access control. The reason764

is that the prompt prefix for different domains only differ in one or two tokens and hence the model765

tends to ignore this difference and continues generating responses even for domains the user has no766

access to. Exploring different prompt structures might lead to better access control but is beyond the767

scope of this work. We observe a similar trend when the user has access to multiple security domains768

as shown in Figure 11 for SimpleQA data set.769
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Figure 11: Utility Gap Index, ∆U (mean±std) for prompt-based access control baseline on different
models fine-tuned on SimpleQA when user has access to multiple security domains.
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Table 9: DDI values for prompt-based access control baseline when user has access to one security
domain.

MIA Llama-3.1-8B Mistral-0.1-7B
auc-roc tpr@1%fpr tpr@5%fpr auc-roc tpr@1%fpr tpr@5%fpr

W
M

D
P

Loss 0.53 ± 0.02 0.02 ± 0.01 0.06 ± 0.01 0.54 ± 0.02 0.02 ± 0.01 0.07 ± 0.02
ZLIB 0.52 ± 0.01 0.01 ± 0.01 0.06 ± 0.01 0.52 ± 0.01 0.01 ± 0.01 0.06 ± 0.01
Mink 0.53 ± 0.03 0.02 ± 0.02 0.08 ± 0.03 0.53 ± 0.01 0.02 ± 0.01 0.06 ± 0.01
Mink++ 0.55 ± 0.06 0.02 ± 0.03 0.08 ± 0.05 0.52 ± 0.03 0.01 ± 0.00 0.05 ± 0.01
Ref 0.53 ± 0.02 0.02 ± 0.01 0.06 ± 0.00 0.53 ± 0.01 0.01 ± 0.01 0.06 ± 0.01

G
PQ

A

Loss 0.55 ± 0.02 0.02 ± 0.00 0.06 ± 0.10 0.56 ± 0.03 0.03 ± 0.01 0.12 ± 0.04
ZLIB 0.54 ± 0.02 0.02 ± 0.00 0.07 ± 0.01 0.54 ± 0.02 0.03 ± 0.01 0.08 ± 0.02
Mink 0.57 ± 0.05 0.02 ± 0.01 0.12 ± 0.02 0.59 ± 0.07 0.05 ± 0.06 0.13 ± 0.07
Mink++ 0.54 ± 0.10 0.05 ± 0.06 0.12 ± 0.08 0.55 ± 0.12 0.06 ± 0.06 0.12 ± 0.09
Ref 0.57 ± 0.02 0.04 ± 0.02 0.13 ± 0.05 0.56 ± 0.03 0.03 ± 0.02 0.13 ± 0.07

Si
m

pl
eQ

A

Loss 0.53 ± 0.25 0.08 ± 0.14 0.16 ± 0.20 0.55 ± 0.22 0.09 ± 0.15 0.16 ± 0.20
ZLIB 0.52 ± 0.16 0.04 ± 0.05 0.09 ± 0.09 0.53 ± 0.14 0.03 ± 0.03 0.09 ± 0.08
Mink 0.52 ± 0.28 0.09 ± 0.15 0.17 ± 0.22 0.55 ± 0.22 0.09 ± 0.15 0.17 ± 0.20
Mink++ 0.50 ± 0.43 0.31 ± 0.40 0.36 ± 0.43 0.52 ± 0.35 0.22 ± 0.33 0.28 ± 0.35
Ref 0.53 ± 0.22 0.03 ± 0.03 0.11 ± 0.12 0.54 ± 0.15 0.04 ± 0.06 0.09 ± 0.09

R
C

V
1

Loss 0.50 ± 0.02 0.01 ± 0.00 0.05 ± 0.01 0.50 ± 0.01 0.01 ± 0.00 0.05 ± 0.00
ZLIB 0.50 ± 0.01 0.01 ± 0.00 0.05 ± 0.02 0.50 ± 0.00 0.01 ± 0.00 0.05 ± 0.00
Mink 0.50 ± 0.04 0.01 ± 0.00 0.05 ± 0.01 0.50 ± 0.01 0.01 ± 0.02 0.05 ± 0.01
Mink++ 0.50 ± 0.05 0.01 ± 0.01 0.05 ± 0.01 0.50 ± 0.04 0.01 ± 0.00 0.05 ± 0.01
Ref 0.50 ± 0.01 0.01 ± 0.01 0.05 ± 0.01 0.50 ± 0.01 0.01 ± 0.00 00.5 ± 0.00

I MIAs against LLMs770

In Section E, we defined the Domain Distinguishability Index (DDI) as the average success rate of771

an adversary playing the Domain Distinguishability game over all domain set pairs. That game is772

implemented with membership inference attacks (MIAs) [44, 5, 29, 36, 47]: the auditor compares a773

member set drawn from the active domain’s training data with a non-member set drawn from some774

other domain, and tries to tell them apart. The better this separation, the larger the DDI. Here, in775

this section, we expand on the MIA toolbox that underpins DDI—detailing evaluation metrics and776

the specific attacks we deploy against LLMs. More generally, an MIA for an LLM f assigns a777

membership score A(x, f) to a candidate text x. Thresholding this score at ε declares x a member (if778

A(x, f)≥ε) or a non-member (if A(x, f)<ε).779

I.1 Metrics780

We employ two complementary metrics to quantify the success of our membership inference attacks,781

as used by prior MIA works [18, 6, 28]:782

(1) Attack ROC curves: The Receiver Operating Characteristic (ROC) curve illustrates the trade-783

off between the True Positive Rate (TPR) and the False Positive Rate (FPR) for the attacks. The FPR784

measures the proportion of non-member samples that are incorrectly classified as members, while the785

TPR represents the proportion of member samples that are correctly identified as members. We report786

the Area Under the ROC Curve (AUC-ROC) as an aggregate metric to assess the overall success of787

the attacks. AUC-ROC is a threshold-independent metric, and it shows the probability that a positive788

instance (member) has higher score than a negative instance (non-member).789

(2) Attack TPR at low FPR: This metric is crucial for determining the effectiveness of an attack790

at confidently identifying members of the training dataset without falsely classifying non-members as791

members. We focus on low FPR thresholds, specifically 1%, and 5%. For instance, the TPR at an792

FPR of 1% is calculated by setting the detection threshold so that only 1% of non-member samples793

are predicted as members.794
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I.2 Existing MIAs795

LOSS [44]: The LOSS method utilizes the loss value of model f(.) for the given text x as the796

membership score; a lower loss suggests that the text was seen during training, so A(x, f) = ℓ(f, x).797

Ref [5]: Calculating membership scores based solely on loss values often results in high false798

negative rates. To improve this, a difficulty calibration method can be employed to account for799

the intrinsic complexity of x. For example, repetitive or common phrases typically yield low loss800

values. One method of calibrating this input complexity is by using another LLM, Ref(.), assumed801

to be trained on a similar data distribution. The membership score is then defined as the difference802

in loss values between the target and reference models, A(x, f) = ℓ(x, f) − ℓ(x,Ref). In our803

evaluations, we used the base models (i.e., Llama-3.1-8B and Mistral-0.1-7B) before any fine-tuning804

as the reference models.805

Zlib [5]: Another method to calibrate the difficulty of a sample is by using its zlib compression806

size, where more complex sentences have higher compression sizes. The membership score is then807

calculated by normalizing the loss value by the zlib compression size, A(x, f) = ℓ(x,f)
zlib(x) .808

Min-K [36]: This attack hypothesizes that non-member samples often have more tokens assigned809

lower likelihoods. It first calculates the likelihood of each token as Min-K%token(xt) = log p(xt|x<t),810

for each token xt given the prefix x<t. The membership score is then calculated by averaging over811

the lowest K% of tokens with lower likelihood, A(x, f) = 1
|min-k%|

∑
xi∈min−k% Min-K%token(xt).812

Min-K++ [47]: This method improves on Min-K by utilizing the insight that maximum likelihood813

training optimizes the Hessian trace of likelihood over the training data. It calculates a normalized814

score for each token xt given the prefix x<t as Min-K%++token(xt) =
log p(xt|x<t)−µx<t

σx<t
, where815

µx<t
is the mean log probability of the next token across the vocabulary, and σx<t

is the standard816

deviation. The membership score is then aggregated by averaging the scores of the lowest K% tokens,817

A(x, f) = 1
|min-k%++|

∑
xi∈min−k% Min-K%++token(xt).818

J Conclusion and Discussion819

We presented a comprehensive treatment of the access control problem on fine-tuned LLMs that820

includes novel formalism, empirical evaluation metrics, access control enforcement mechanisms,821

and evaluation of the mechanisms as well as the proposed metrics. We formalized a new class of822

LLMs called Permissioned LLMs (PermLLM) whose access control enforcement can be verified both823

theoretically and empirically using the formal tools provided in our work.824

Limitations. Our approach does not support deep hierarchy of domains with arbitrary overlaps.825

Another issue we observe is with the scalability beyond a handful of domains. This either leads to826

severe degradation of utility (as in the case of Activate) or it becomes compute-intensive (for Union).827

We leave this exploration for future work. We also note some limitations in the experiments that828

we do not expect to change our key claims. First, we only run one model fine-tuning per parameter829

setting due to the computation overhead. Second, we do not perform an ablation study on the LoRA830

rank on fine-tuning. Our preliminary experiments with different ranks suggested limited impact on831

model utility, so we stick to the default value. For our formalism in § 2, we assume that adversaries832

do not tamper with their credentials or domain access, otherwise they can gain arbitrary domain833

information. This is enforced by the enclosing system via authentication.834

Related Work. Access control problems in agentic systems can manifest in interesting ways, such as835

context hijacking [2], and may require further constraining the purview of individual agent contexts.836

Retrieval Augmented Generation (RAG) systems [23, 32, 51] are also susceptible to the access control837

problem. However, the access control needs to be enforced in the information retrieval engine of838

the system [4, 14] and is beyond our work’s scope (although we do provide a formalism for access839

control in RAG-based systems in Appendix A).840

One may draw some parallels between our formalism of response relevance and access advantage841

metric with prior works on indistinguishability [1, 3, 9, 13] in security and privacy. The mechanisms842

in this lineage of works are singularly focused on eliminating distinguishability between the effects of843
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different data on computations. In contrast, PermLLM’s objective is to maximize domain separation,844

which implies maximization of distinguishability – the more pronounced the distinguishability, the845

more effective is the PermLLM mechanism.846

Broader Impacts. We do not foresee any negative societal impact of our work. Our work aims847

to bolster the security and privacy of individual’s data by enforcing strict access control, such that848

only people with prior authorization can get access to the information. Our work is applicable to849

healthcare, finance, and more broadly, enterprise / governance applications that deal with sensitive850

data of individuals.851
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