© © N O O A~ W N =

20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36

Permissioned LLMs: Enforcing Access Control in
Large Language Models

Anonymous Author(s)
Affiliation
Address

email

Abstract

In enterprise settings, organizational data is segregated, siloed and carefully pro-
tected by elaborate access control frameworks. These access control structures can
completely break down if an LLM fine-tuned on the siloed data serves requests, for
downstream tasks, from individuals with disparate access privileges. We propose
Permissioned LLMs, a new class of LLMs that superimpose the organizational data
access control structures on query responses they generate. We formalize abstrac-
tions underpinning the means to determine whether access control enforcement
happens correctly over LLM query responses. Our formalism introduces the notion
of a relevant response that can be used to prove whether a PermLLM mechanism
has been implemented correctly. We also introduce a novel metric, called access
advantage, to empirically evaluate the efficacy of a PermLLM mechanism. We
introduce three novel PermLLM mechanisms that build on Parameter Efficient
Fine-Tuning to achieve the desired access control. We furthermore present two
instantiations of access advantage—(i) Domain Distinguishability Index (DDI) based
on Membership Inference Attacks, and (ii) Utility Gap Index (UGI) based on LLM
utility evaluation. We demonstrate the efficacy of our PermLLM mechanisms
through extensive experiments on five public datasets in addition to evaluating the
validity of DDI and UGI metrics for quantifying access control in LLMs.

1 Introduction

Large Language Models (LLMs) are being adopted in a vast range of applications across the entire
computing industry [21}48]]. The day may not be too far off when LLMs become the primary interface
to a large swath of computing and information extraction tasks. In this paper, we focus on enterprise
settings where LLMs are used to perform a wide variety of computing tasks using organization-wide
data. Using LLMs that have a wide purview over organizational data brings massive troves of
information and utility, including the ability to combine learnings from disparate information silos
of the organization, to the finger tips of individuals in the organization. However, making all the
learnings from organizational data available to any individual who can query the LLM becomes a
critical security challenge: Organizations have access control structures and hierarchies that tightly
control information flow to and from individuals within them. Information access via LLMs, if not
carefully controlled, risks undermining the existing access control structures and hierarchies.

As an example, consider government agencies using LLMs for a multitude of tasks. The data in
government agencies is typically segregated in multiple “clearance levels” and users can access just
the data they have access privileges for [30]. Any other agency data is inaccessible to the users. An
LLM trained on this agency-wide data can leak privileged information to unauthorized users, thus
breaking the agency’s access control framework that works on the raw data. Another example is that
of role-based access control [10} [11]: Consider a health clinic setting, where individuals performing
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different “roles” (doctors, nurses, technicians, administrative staff, patients, etc.) interact with an
LLM to perform many tasks. The roles of the users determine what part of the clinic-wide data they
should have access to. An LLM trained on the clinic-wide data can be easily tricked into leaking
information to unauthorized users.

Research proposals to build system prompts that instruct an LLM to control what information is
generated in the output can help curb some leakage of sensitive information to unauthorized users 8}
235). However, they do not achieve absolute security, and clever jailbreaking prompts [26}, 127} 134, 140]]
can be used to overrule these system prompts. A recent work proposes tagging LLM queries with
encrypted access credentials to authenticate users and block unauthorized queries [7]. This is a good
start, but it lacks the flexibility needed to enable access to disparate learnings from the LLM for
different users based on their access credentials. We discuss access control problems and solutions
for agentic systems and Retrieval Augmented Generation (RAG) systems [23] in[Appendix ]

This paper focuses on the access control problem for LLMs when they are tuned on data coming from
a multitude of data silos. The challenge here is to guarantee that users who do not have access to
specific data silos cannot retrieve information from those silos by sending carefully crafted queries to
the LLMs tuned on data from those silos. A recent work [[12] took an initial step in this direction, but
lacks the formal framework to evaluate the access control, and only explores one type of mechanism.

Contributions. In this paper, we comprehensively study the problem of access control in LLM
fine-tuning. More specifically: (i) We formalize the notion of access control mechanism in LLMs in
terms of the relevance of responses generated by an LLM to the raw data the users have access to.
We use the notion of security domains in our formalism. Our formalism of response relevance can
be used to prove correctness of access control mechanisms. We also propose a novel metric called
access advantage that helps us empirically quantify the effectiveness of an access control mechanism
on LLMs (§ 2). (ii) We present three new PermLLM fine-tuning mechanisms (see [Figure 1)), based
on Parameter Efficient Fine-Tuning (PEFT) [17./42] (§ 3). (iii) We introduce two novel instances of
our access advantage metric, Domain Distinguishability Index (DDI) and Utility Gap Index (UGI),
as tools to audit access control enforcement via an adversarial gaming setting (Appendix E)). (iv)
We empirically evaluate our access control mechanisms on two LLMs (Mistral-0.1-7B and Llama-
3.1-8B) using five different data sets: GPQA [33], RCV1 [22], SimpleQA [41], WMDP [24], and
PubMedQA [20] (Appendix G)). Our evaluation shows the effectiveness of our metrics in assessing
whether a proposed access control mechanism for LLMs is enforcing data protection correctly.

2 Formalizing Access Control in LLMs

Basic Setup and Notation. We define a security domain (henceforth called “domain” for brevity) as a
collection of data records that require identical credentials for access (e.g. files with the same group in
their access control lists). We consider settings where pretrained LLMs are fine-tuned over data from
different domains with an added constraint — responses to inference time queries will be generated
from learnings on data coming from just the domains the user has access to. This added constraint is
enforced via access control mechanisms that govern how the LLM uses data from different domains.

Consider a universe of n different domains S = (J]_, {s; }, and a training data set consisting of data
from these domains D = |J'_, Ds, ~ D;, (here Dy, is a data set sampled from data distribution
D,, of domain s;). Let fp be the LLM tuned using data set D. Let W be the set of fp’s parameters.
Model fine-tuning changes values of a subset of W. We say that a domain s; affects a subset of
parameters W,, C W if data from Dy, is used to change parameters W, during model fine-tuning
(unless stated otherw1se the terms “affect” and “affected” mean this relatlon between s; and WSL
in the rest of the paper). We define M as an access control mechanism that dictates the mapplng
of domain s; to parameters W, via the affects relation. We say that a LLM fine-tuned using data
set D is permissioned (PermLLM), denoted as f?, if it uses the access control mechanism M to
map its parameters W to a multitude of domains from S, where each domain s; affects parameters
Ws, € W. Operationally, during fine-tuning, M specifies which set of model parameters W,
are tuned for a given domain s; (see for more details). Similarly, during inference, M can
specify which set of model parameters should be used to answer a query based on the user’s access
credentials. We assume a setting where the PermLLM f3" resides in an enclosing system S that
authenticates users who send queries to fA!. S determines the user u’s access credentials cred,,
and calls authenticate (cred,) that takes user credentials cred, and maps them to a subset of
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domains S, that v can access. S, is maintained by S and is never exposed to user u. This process
ensures u cannot arbitrarily change S,,. Each of user u’s subsequent query ¢ to f7" is annotated with
S, by S§. M determines the model parameters W, used to generate a response rg, to g, where

Wsu = Usesu WQ'
2.1 Definitions

Definition 2.1 (Relevant Response). Given a PermLLM f51, a query q from user u, and the set S,
of domains u has access to, let r = fgl (q) be the response of fgl to query q. Response r is said to
be relevant to S, (i.e, r =rg, ) if f 1’;" uses parameters W, (in addition to any domain-agnostic
model parameters) to generate r.

We say that an access control mechanism M is correctly enforced on PermLLM fA* iff every
response r generated for every user u’s query ¢ is relevant to .S,,.

The above definition of relevant response helps us formally determine if a proposed access control
mechanism M is algorithmically correct. We however require an empirically quantifiable metric to
determine if the implementation (and the algorithm by extension) of M is correct. This is particularly
important for auditing. To that end, we propose a new metric called response relevance score,
relv(f$'(q), S.), which quantifies the information gained on data in the domain set .S,, by observing
responses to queries generated using model parameters Wg, affected by domains of S,,. relv is
expected to be higher when ¢ ~ Dg, (i.e., g is related to domain set S,,), compared to when ¢ o Dg,,.

We restrict the domain of relv to the real number interval [0, 1], where 1 is the best expected score
for relevance. relv itself can be represented by another empirical metric such as prediction accuracy,
or logits for the expected response. However, given that LLMs (and ML models in general) are
generalization engines, in practice we expect relv to be less than 1. This restriction can be effectively
addressed by measuring relv for domains that the user has access to and comparing it to relv for
domains that the user does not have access to. We call this the access advantage.

Definition 2.2 (Access Advantage). Given PermLLM f#! trained over data set D consisting of data

from domains S = \J_, {s;}, with access control mechanism M, a subset of domains S,, C S, f!
achieves a-access advantage w.r.t. .Sy, if-

]EqNDsu,SUQS;SuﬁSv:qb [Telv(f[/\)/l (q)7 Su) © relv(f.[AJA(Q)» Sv)] > o
where relv() is the response relevance score on the corresponding domain subset (S,, or S,), © is a
“difference” operator specific to the access control assessment method (e.g., subtraction), and « is an
advantage threshold that lies in the range [0,1].

The access advantage metric relies on the assumption that f7! performs significantly better on
domains user u has access to compared to domains u does not have access to. In other words,
f f‘,/l should have explicit segregation between the different domains, as dictated by M. We believe
access advantage is a critical metric for auditors to determine if an access control mechanism is
truly achieving the segregation of domains as intended. Hence it is in the auditor’s best interest to
ensure that S, N.S,, = ¢. Access advantage can diminish significantly when S,, N.S,, # ¢, leading to
incorrect conclusions about the efficacy of the access control mechanism.

The existing approaches to model fine-tuning fail to achieve this goal as the model is traditionally
trained on all the domains without any built-in domain segregation mechanism. To the best of our
knowledge, no prior work on LLM and privacy formally tackles this problem of access control through
explicit domain segregation. We next propose novel mechanisms to achieve domain segregation in

[§ 3and propose empirical metrics to evaluate the access control protocols in

Prior works on retrieval augmented generation (RAG) based LLM deployments do not explicitly
tackle the problem of measuring effectiveness of access control mechanisms formally or empirically.
Our formalism of relevant response and access advantage extends to RAG systems as well, closing
that gap in formalism and empirical evaluation of access control protocols. Detailed analysis of
conditions for formal correctness of access control in RAG systems appears in

2.2 Auditing Access Control

We consider a classic adversarial game between the system S enclosing the model f7* and the auditor
A. We give A the ability to choose domain access by emulating an end user, send arbitrary queries to
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Figure 1: We propose three types of PermLLM mechanisms. (a) Activate: that has one-to-one
mapping between the security domains and PEFT adapters. When a user queries the model, the
mechanism activates the relevant adapter(s). (b) Merge: merges subsets of relevant PEFT adapters
to serve the users that have access to multiple security domains. (c) Union: trains adapters on the
unions of various security domains, and at the inference phase the relevant PEFT adapter is activated
to serve a user query that requires access to multiple security domains.

the model via S and observe the responses. A can replay the game multiple times as different users
to conclude if the access control is correctly implemented.

Audit Game. The formal game between auditor .4 and system S is as follows:

1. Auditor A chooses domain set S, and emulates user u. A sends user credentials cred, and
query ¢ ~ Dg, to system S.

2. S verifies the user credential cred,, and sends back the model response f7(q) to A.

3. A chooses domain set S, such that S, NS, = ¢ and emulates user v. A sends user
credentials cred,, and the same query ¢ ~ Dg, to S.

4. S verifies the user credential cred,, and sends back the model response 7} (q) to A.

5. A concludes the access control mechanism is correctly implemented if the access advantage
relv(f5'(q), Su) © relv(f5'(q), So)| > a.

Note that the auditor .4 has superuser privileges to choose arbitrary domain access unlike an ordinary
user. This is by design to allow the auditor to evaluate the correctness of the claimed access control
while still following the protocol of querying the model as a benign user. Detailed instantiations of
this adversarial game for different suites of access advantage metrics are discussed in[Appendix D}

3 Permissioned LLM Mechanisms

We rely on Parameter Efficient Fine-Tuning (PEFT) [17,42] to obtain model parameter segregation
for domains. We focus on the LoORA PEFT adapter [17], however our mechanisms seamlessly apply to
other types of adapters [[16,/42]. The three mechanisms we describe ensure that domain data is steered
to train select LoORA adapters. Each domain has a unique identifier (domain Id). Our access control
mechanism builds a map between domains and LoRA adapters within the PermLLM’s metadata. The
map is used to steer all examples from a domain to the corresponding adapter/s for training. This

map is also used to steer queries to the correct LoRA adapters at inference timepicts our

three PermLLM mechanisms. More details on these mechanisms appears in

The careful mapping of domains (or groups of domains) to the correct LORA adapters, and steering
of training examples from domains to the corresponding LoRA adapters ensures precise parameter
segregation for domains. Our assumption that users cannot tamper with their access credentials at
inference time further aids the PermLLM’s enclosing system to determine the correct set of domains
corresponding to a query. The query steering that happens through the PermLLM using domain
IDs guarantees that all responses generated by the PermLLM are relevant to the user’s domains.
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Furthermore, the responses are not generated using LoRA adapters that were trained using data
from domains that the user does not have access to. Response relevance for all responses implies
correctness of our PermLLM access control mechanisms. Our proof appears in

4 Auditing Access Control in Permissioned LLLM Mechanisms

We now introduce two novel instantiations of our access advantage metric (Definition 2.2)—Domain
Distinguishability Index (DDI) and Utility Gap Index (UGI)—that quantify access control efficacy
independently of any particular system design. More details on these can be found in[Appendix E|

DDI quantifies access control in terms of effectiveness of Membership-Inference-Attacks (MIAs) to
distinguish security domains.

Definition 4.1 (Domain Distinguishability Index (DDI)). For a domain universe S consisting of n
security domains, let f;' denote the PermLLM trained on data D from all security domains with
access control mechanism M. For each ordered pair of domain sets (S; C S,S; C S) with no
overlap (i.e.,S; N S; = ¢), let 055 = O(fH(q)|S:, [5'(9)|S;); Vg ~ Ds, be the output of a
membership inference oracle O. For a given membership inference metric m(-), the DDI is defined
as: DDI(m) = Es,cs,s;cs [m(O(Si’SJ'))], where E is the expectation over all domain sets.

The UGI metric measures the drop in model utility on the target domain’s data when a different
domain’s adapter is activated in PermLLM instead of the target domain.

Definition 4.2 (Utility Gap Index (UGI)). Let U(-) be a chosen utility metric and for a domain set
pair (S; € S, S; C S) with no overlap (i.e.,S;NS; = ¢), UtilityGap*»5)(U) = |U (f¥(¢)|S:) —
U(f54(q)|S;)|;Yq ~ Ds,. The UGI aggregates utility gaps across all ordered domain set pairs:
Ay = Es,cs,s;cs [UtilityGap(S“Sj) (U)} where I is the expectation over all domain sets.

S Experimental Evaluation

For our experiments, we fine-tune Llama-3.1-8B and Mistral-0.1-7B pretrained models on five
datasets (WMDP [24], GPQA [33]], SimpleQA [41], RCV1 [22], and PubMedQA [20]) covering
multiple distinct security domains (henceforth called domains), where we fine-tune a separate LORA
adapter for each domain. Details about the model hyperparameters can be found in Appendix
We empirically evaluate the effectiveness of our access control mechanisms using a suite of metrics.
Here we consider the case where the user has access to only one domain. Due to space constraints,

we cover settings where the user has access to multiple domains in[Appendix G|

In Section[E] we proposed an adversarial audit framework for empirically assessing access control
in PermLLMs. We introduced two concrete instantiations of the general access advantage metric:
the Domain Distinguishability Index (DDI) and the Utility Gap Index (UGI) Ay . Although[§ 3]
gives formal guarantees—each response is computed solely from domains the user is authorized to
access—we measure access control enforcement strength with DDI and UGI (Ayy) to confirm that
the guarantees hold in practice, which is necessary to verify correctness of implementations.

Theoretically, Ay may reach 1.0, but empirically we observe much smaller—yet substantial—access
advantage gaps for four of the data sets (Figure 2)). These gaps are significantly impacted by domain
distributions and the strictness of the scoring metric. For example, SimpleQA exhibits the largest
UGTIs (up to Apjye ~=0.50 and A, .. ~0.50) because it has the highest number of distinct domains (10
in total). Moreover, we observe that Ay, and A,.. have the largest values as these metrics look for
verbatim pattern matches, thus requiring the model to memorize the nuances in the target domain. On
the other hand, Apjeqrt and Ape, look for approximate similarities, and hence are impacted by the
similarities across the domains. This suggests that the verbatim matching metrics, Ape,, and Agee,
are better model utility metrics for measuring access advantage compared to the similarity based
metrics Apjeyre and Ape,;. For large data sets like RCV1, all the metrics achieve similar values as
the model begins to generalize more. While these values are not close to 1, they still provide credence
to the fact that the domains are different and our access control protocol works as expected due to the
utility gaps. The access advantage threshold « is dependent on the type of utility metric: verbatim
matching metrics Apje,, and A, .. have higher threshold than similarity based metrics Apjey,-+ and
Apers. For Ay metric, a > 0.2 is sufficient to infer that access control is happening correctly.
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Figure 2: Utility Gap Index, Ay (mean + std) when user has access to one security domain.

PubMedQA is an exception where A values are close to zero; this is because the security domains
are artificially obtained via k-means and hence have the same underlying data distribution.

shows DDI values obtained from a suite of state-of-the-art MIAs. Across domain pairs, the
access advantage (distinguishability) scores approach o = 1.0, indicating that an external auditor
can almost perfectly identify the active domain (even when the domain distributions are similar as in
the case of PubMedQA). Hence, even when UGI values fall significantly below 1.0 because of model
generalization, the high DDI values show that access control in Activate still functions as intended.
This clearly suggests that DDI is the better method for PermLLM access control efficacy evaluation.

Table 1: DDI values with m € {AUC-ROC, TPR@ 1%FPR, TPR@5%FPR} for the different MIAs.
Mink++ is run with k = 10%. Entries are reported as mean =+ std across security domains.

MIA Llama-3.1-8B Mistral-0.1-7B
auc-roc tpr@1%fpr  tpr@5%fpr auc-roc tpr@1%fpr  tpr@5%fpr
o, Loss 0.99+0.01 0.934+0.10 096=£0.06 1.00£0.00 0.954+0.06 0.99+£0.01
a ZLIB 0984+0.03 0.77+0.31 0.85+£0.21 099+£0.02 0.85+0.25 0.92+0.14
2 Mink++ 1.00£0.00 0.994+0.01 1.004£0.00 1.00£0.00 1.0020.00 1.00=0.00
= Ref 099+0.01 093£0.10 096+£0.06 1.00+£0.00 0.95£0.08 0.98+0.03
Loss 0.97+0.05 0.814+0.26 094+£0.08 0.98+0.03 0.93+0.10 0.95+£0.07
g, ZLIB 0.95+0.04 0454+0.22 077£0.15 0.97+0.02 0.57+0.24 0.83+£0.13
% Mink++ 1.00£0.00 1.00£0.01 1.004+0.00 1.00£0.00 0.99+0.01 1.0040.00
Ref 1.00£0.00 0.97+0.04 0.99+0.01 1.00+£0.00 0.97+0.05 0.99=+0.02
< Loss 0984+0.03 0.81+034 090+£0.25 099+0.03 0.81+0.32 0.92+0.20
3 ZL1B 0.984+0.03 0.80+0.33 0.90+£0.23 0.99+0.03 0.80+0.33 0.91+0.20
g Mink++ 0.98+0.03 0.81+0.32 0.914+0.21 0.99+£0.03 0.82+0.31 0.924+0.21
& Ref 0.98+0.04 0.78+0.36 090£0.25 0.98+0.03 0.79+0.36 0.90+£0.24
Loss 0.99+0.01 0.864+0.21 097£0.06 0.99+0.02 0.854+0.24 0.96+0.09
S ZLIB 0934+0.07 0.71+026 0.81+£0.18 0944+0.08 0.73+0.28 0.83+0.19
2 Mink++ 1.00£0.00 0.97+£0.05 0.994+0.01 1.00£0.01 0.96+0.06 0.9940.02
Ref 0.99+0.01 0.77+0.28 0.99+£0.03 0.99+0.01 0.80£0.28 0.98+0.05
<  Loss 0.81 +0.07 0.16+0.11 0.36£0.15 0.95+0.03 0.51+0.21 0.75+£0.14
% ZLIB 0.77+0.07 0.10£0.05 030+£0.13 0.88=+0.05 0.32£0.17 0.57+£0.15
2  Mink++ 0.904+0.02 0.314+0.08 0.57+0.08 0.99+0.01 0.93+0.07 0.98+0.02
£  Ref 1.00£0.00 0.98+0.02 1.00£0.00 1.00£0.00 1.00=+0.00 1.00=£0.00

6 Conclusion

We presented a comprehensive treatment of the access control problem on fine-tuned LLMs that
includes novel formalism, empirical evaluation metrics, access control enforcement mechanisms,
and evaluation of the mechanisms as well as the proposed metrics. We formalized a new class of
LLMs called Permissioned LLMs (PermLLM) whose access control enforcement can be verified
both theoretically and empirically using the formal tools provided in our work. Further discussion on
limitations and related work appears in[Appendix J}
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A Formalizing Access Control for Retrieval Augmented Generation

For Retrieval Augmented Generation (RAG), we assume a pre-trained LLM f that is used in
applications without additional fine-tuning. Instead, we augment f with a retriever engine R to give
us a retrieval augmented LLM fg.

Each query ¢, to fg is accompanied by a context ¢, retrieved by R, that enhances fr’s response to
the query. Let R retrieve contexts from the context database C, i.e. ¢ € C. Furthermore, we have
C =Ui_, Cs, ~ Cs,, where each C, is a collection of contexts belonging to security domain s;.

For this discussion, we define M as an access control mechanism that dictates the mapping of every
Cs, C C' to the security domain s;. We say that a RAG system that uses contexts from the context
database C' is permissioned (PermRAG), if it uses retriever Ré/l, which in turn uses the access
control mechanism M to retrieve context ¢ € Cj, from a selected security domain s;. Intuitively,
given a security domain s;, R uses M to retrieve context ¢ € Cj,. One can trivially generalize this
definition of PermRAG to work with subsets of security domains instead of a singleton security
domain s;.

For PermRAG, we assume an identical enclosing system setting as in PermLLM (see [§ 2):
Given a user u the enclosing system determines u’s access credentials cred, and calls
authenticate (cred,) that takes user credentials cred, and maps them to a subset of secu-
rity domains S,, that v can access. User u cannot arbitrarily change S,,. Each of user u’s subsequent
query g to fr is annotated with S,,. The retriever R of f uses access control mechanism M to
retrieve a context ¢ € Cg,,.

Definition A.1 (Relevant Response for PermRAG). Given a PermRAG fr, with retriever R},
a query q from user u, and S,, the security domains u has access to, r = fr(q) is the response by
fr to query q. Response r is said to be relevant to Sy, (i.e. r = rg,) if retriever Ré" uses a context
c € Cg, to augment the query for r.

To empirically quantify response relevance, we can use the same response relevance score,
relv(fr(q), Sy) that quantifies the information gained on data in the security domains ¢’s user
u has access to (this is the same set of security domains that mapping M gives for u for the retriever
RM,ie.S,). Here Ré/l retrieves the query context ¢ € C' using mapping M; c is then augmented
to the query g. We restrict the domain of relv to the real number interval [0, 1], where 1 is the best
expected score for relevance. Similar to PermLLM, we define access advantage for PermRAG as
follows:
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Definition A.2 (Access Advantage for PermRAG). Given PermRAG fr that uses retriever Ré/‘
which in turn uses the context database C' containing data from domains S = \J!'_, {s;}, with access
control mechanism M, a subset of security domains S, C S, context ¢ € C' that is augmented to
query q, fr achieves a-access advantage w.r.t. Sy if:

Egops, ,5.C8:8.n8u = [r€lv(fR(q), Su) © relv(fr(q), Su)] = a

where relv() is the response relevance score on the corresponding security domain subset (S, or
Sy), © is a “difference” operator specific to the access control assessment method (e.g. subtraction),
and « is an advantage threshold that lies in the range [0,1].

B Permissioned LLM Mechanisms’ Details

One LoRA per Security Domain For our base mechanism called Activate, we assume that users
have access to at most one domain. [Figure T|(a) depicts our base mechanism that performs a simple
1-1 mapping between domains and LoRA adapters. We assume that the number of domains is known
beforehand, and use that knowledge to instantiate corresponding number of LoRA adapters. During
training, each minibatch is sampled from one domain, and the domain’s Id is used to select the LoRA
adapter to train. At inference time, a user’s query is annotated with the domain Id the user has access
to. This domain Id is used to activate the LoRA adapter for the corresponding domain.

Merging LoRA Adapters for Security Domain Groups In many application settings, users have
access to data from multiple domains. For queries coming from such users, our Activate enables all
corresponding LoRA adapters, whose activations are averaged at inference time. We however found
that activations from different LoRA adapters tend to disruptively interfere with each other resulting in
catastrophic performance degradation beyond two domains. We leave further refinement of activation
space steering [35] 45]] to future work. In our second mechanism, Merge (Figure I[b)), we adopt
the LoRA adapter merging strategy for users with access to multiple domains [38}, 143, 146, 50]]. We
experimented with several LoORA merging algorithms including TIES [43]] and DARE [46]], but
eventually favored the SVD approach [38] because of its better performance and stability in the
context of LoORA merging. We assume that the combination of domains that users may have access to
are known beforehand. Thus, after training LoRA adapters for individual domains, we can merge
them for those exact domain combinations. Correspondingly, our domain-LoRA adapter map is
updated with the domain IDs and the merged LoRA adapters. These new mappings are used at
inference time to activate the correct merged LoRA adapters. We found that adapter merging is more
robust to cross-adapter interference than activation merging.

Training a LoRA per Combination of Security Domains Although Merge is better than activation
space merging of multiple LoORA adapters, we observed that it also leads to model performance
degradation with increasing number of merged adapters. As a result, we explored another simple
alternative, Union, which trains a LoRA adapter on data from each unique combination of domains
users have access to. Union indeed delivers the best performance in all our mechanisms. However, it
comes at the cost of significantly greater tuning time compute — a domain can occur in numerous
combinations of domains (e.g. in[Figure Tfc), data D, gets used in the training set of all three LoORA
adapters). Furthermore, data sets containing large number of domains presents the added challenge
of an exponential blow up in domain combinations (at most 2"). However, we believe the number of
combinations present in a real-world setting will be much smaller than that upper bound.

C Formal Access Control Enforcement in PermLLM Mechanisms

We now present formal proofs for correct access control enforcement in our PermLLM mechanisms
presented in[§ 3} Activate, Merge, and Union.

Refreshing the formalism from[§ 2] we consider a universe of n different security domains S =
U7 {s:}. and a training data set consisting of data from these domains D = | J_, D, ~ D, (here
Dy, is a data set sampled from data distribution D;, of domain s;). Let fp be the LLM tuned using
data set D. Let W be the set of fp’s parameters. Model tuning changes values of a subset of W. Let
security domain s; affect, per the meaning of affect in[§ 2} a subset of parameters W, C W. Thus
data from Dy, is used to change parameters W, during model fine-tuning. Let M be the access
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control mechanism that dictates the mapping of security domain s; to parameters W, via the affects
relation.

Consider a set of LoRA adapters [17] I1, (2, ..., L. Each adapter [; comprises parameters W;,, such
that Wi, N Wy, = ¢,Vi # j. Let i be the adapter Id for adapter /;. Let I by the PermLLM that
uses mapping M of security domains to parameters during tuning and testing. Let 7! be the system
enclosing f! that performs the mapping from user credentials cred,, to sets of security domains S,
for each user u. We make two assumptions about F- M. (1) FM can correctly determine and maintain
the security domains S, a user u has access to; and (ii) S, remains opaque to the user and any other
adversary and as a result, cannot be tampered with by any user or adversary.

We assume that both fine-tuning and testing are mediated through ™. During fine-tuning, the
dataset D is passed to F. F™M extracts information about the security domains sy, .., s, covered
by D. For settings where users have access to multiple security domains, the list of security domain
combinations that users have access to is also passed on to ™. FM does the mapping between
security domain groups and LoRA adapters differently for each of our PermLLM mechanisms:

Activate F™ maps each security domain s; to a unique LoRA adapter /;. For fine-tuning of f3?,
minibatches sampled for each s; are routed to the corresponding LoRA adapter [;, the other
LoRA adapters are deactivated for the sampled mini-batch.

Merge Security domain-LoRA adapter mappings and fine-tuning of f#! proceeds identically to
that in Activate. However, after the fine-tuning is done, the security domain groups are used
to merged LoRA adapters. These new LoRA adapters are added to the set of LoRA adapters
in fA!. The mapping M is also updated with the new mappings between security domain
groups and LoRA adapters.

Union Datasets corresponding to the security domain groups are used to fine-tuning unique LoRA
adapters. M is also updated with these new security domain group-LoRA adapter mappings.

At the end of fine-tuning, M will have a mapping between each security domain group S, (for each
respective user u) and each LoRA adapter in mechanisms Merge and Union. More formally,

Lemma C.1. In Merge and Union, after fine-tuning, for every user w that has access to S,, C S, g,
where ls, is a LoRA adapter, S, affects parameters Wi, , and Wi is not affected by any other
security domains in S.

In case of Activate, S,, is used at inference time to activate the LoRA adapters [,, where s; € S,,.
More formally,

Lemma C.2. In Activate, after fine-tuning, for every user u that has access to S,, C S, Vs; € Sy, s;
affects parameters W, , and W, is not affected by any other security domain s; € Su, i # j, or

sp €S\ Sy

At inference time, user u sends query ¢ to FM. FM first determines u’s security domains S,,, and
then passes q and S, to f!, which then activates the LoRA adapter/s corresponding to S,,: lg,
in case of Merge and Union, and [,,, where s; € S, in case of Activate. Our assumptions about
accessibility of S, to the user or adversary ensure that the adversary cannot tamper with S, within
the scope of FM.

Theorem C.3. Given any query q from any user u, the response r = f4(q) is relevant to S,, for M
in Activate, Merge, or Union.

Proof. From Lemmas [Theorem C.1]and [Theorem C.2] through the fine-tuning process S,, affects
parameters Wy in Merge and Union, and parameters W,_ ,Vs; € S, in Activate. At inference time,
these same parameters (along with the pretrained model’s i)arameters) are used to generate response
r=f g"(q). By implication, the parameters affected by S, are used to generated . Hence r is
relevant to .Sy, i.e. 7 =rg, . O

Since the above response relevance condition applies for all responses r = f f)" (¢) on all queries g by
all users u, we say that Activate, Merge, and Union correctly enforce parameter separation and hence
correctly enforce access control for all users u.
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D Audit Games

We formalize black-box games that capture: (i) the distinguishability of security domain-specific
responses for DDI, and (ii) the utility disparity induced by access restrictions for UGI. Intuitively,
in these auditing games, we measure how effectively an external auditor can conclude if the access
control mechanism is correctly implemented by verifying if the correct domain adapter is activated
for a query. This effectiveness is directly correlated with the access advantage score for the target
security domain(s). Higher access advantage score denotes stronger access control enforcement. A
perfectly separated system provides the auditor with an access advantage score of 1.0.

We consider the same threat setting and auditor privileges for our adversarial games between auditor
A and system S enclosing the PermLLM fA! as described in

Game 1: Domain Distinguishability. This game assesses whether the auditor can effectively
conclude if the correct security domains were used based on the generated responses. The primary
motivation of this game is to measure the distinguishability of different security domains’ distributions.

1. Auditor A chooses security domain set S, and emulates user u. A sends user credentials
cred,, and query g ~ Dg, to system S. S verifies the user credential cred,, and sends back
the model response f5'(q) to A.

2. A chooses security domain set S, such that S, NS, = ¢ and emulates user v. A sends user
credentials cred,, and the same query ¢ ~ Dg, to S. S verifies the user credential cred,,
and sends back the model response f7'(q) to A.

3. A sends the models responses and domain information to membership inference oracle O
to obtain domain distinguishability score m(O(f#'(q)|Su, f5'(¢)|S,)), where m(-) is a
membership inference metric (e.g., AUC-ROC or TPR@1%FPR) in the [0,1] range.

4. A concludes the access control mechanism is correctly implemented if the domain distin-
guishability score m(O(f3'(q)|Su, 5(9)]S,)) > a.

Note that we can change the above game to distinguish members (¢ ~ Dg,) and non-members
(¢ ~ Dg,) for the target domain set .S,,, similar to prior MIA setups, which is what we do in our

experiments in

Game 2: Utility Gap Evaluation. The second game evaluates how distinctly the responses from
two different security domains impact the utility perceived by users. The rationale behind this game
is to confirm that enforced access controls result in meaningful variations in response quality.

1. Auditor A chooses security domain set S;,, and emulates user u. A sends user credentials
cred, and query g ~ Dg, to system S. S verifies the user credential cred,, and sends back
the model response f5'(q) to A.

2. A chooses security domain set S, such that S, NS, = ¢ and emulates user v. A sends user
credentials cred,, and the same query ¢ ~ Dg, to S. S verifies the user credential cred,,
and sends back the model response f7'(q) to A.

3. Given a utility function U(+) (e.g., BLEURT or task accuracy) that outputs values in [0,1]
range, A concludes the access control mechanism is correctly implemented if the utility gap

score [U(fA4(q)|S.) — U/ (@)]S.)] > a.

We aggregate the utility gaps from this game across all domain set pairs to obtain our UGI metric.

E Auditing Access Control in Permissioned LLLM Mechanisms

We now introduce two novel instantiations of our access advantage metric (Definition 2.2)—Domain
Distinguishability Index (DDI) and Utility Gap Index (UGI)—that quantify access control efficacy
independently of any particular system design. We show how these metrics fit into the framework for
empirically assessing access control mechanisms in PermLLMs through adversarial audit games in
These metrics are in [0,1] range with higher values denoting better access control.
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E.1 Metric 1: Domain Distinguishability Index (DDI)

In traditional privacy evaluations, membership inference attacks (MIAs) leverage a sampled member
data set (from the target model’s training set) and a sampled non-member data set to assess privacy
leakage [18,137]: the more accurately an adversary separates and classifies samples as members or
non-members, the higher the privacy risk. Analogously, we adopt this MIA framework for access
control assessment to distinguish security domains. Specifically, for any security domain set .S,
the auditor holds samples from S;’s training data (member set) and samples from S;’s training data
(non-member set), where S; N S; = ¢. The auditor then evaluates how successfully it can distinguish
the member set from the non-member set when the PermLLM is activated for S;. This evaluation
occurs for all security domains, giving us an aggregate access advantage, which we call Domain
Distinguishability Index (DDI).

Definition E.1 (Domain Distinguishability Index (DDI)). For a domain universe S consisting of n
security domains, let f' denote the PermLLM trained on data D from all security domains with
access control mechanism M. For each ordered pair of domain sets (S; C S,S; C S) with no
overlap (i.e.,S; N S; = ¢), let 055 = O(f54(q)|Ss, f5'(9)|S;); Vg ~ Ds, be the output of a
membership inference oracle O. For a given membership inference metric m(-), the DDI is defined
as: DDI(m) = Es;cs,s;cs [m(O(Si’Sf))], where E is the expectation over all domain sets.

We also report the standard deviation of m(O(Si o )) across all domain set pairs to capture variability.
By DDI can be viewed as an access advantage metric, where the response relevance score relv
for S; on query ¢, relv(f#*(q), S;), is a binary value on whether the membership inference oracle
O’s output is above a membership threshold. The difference operator © is the MIA method specific
composition of response relevance for all the samples in the member and non-member sets.

We use AUC-ROC and TPR@ (low)FPR, as instantiations of DDI, where higher scores indicate
stronger enforcement, as S;-specific responses become more distinguishable. See Appendices [L.1]
and [[.2|for details on MIA evaluation metrics and an overview of existing MIAs against LLMs.

A higher DDI indicates more robust separation between security domains. In our evaluations, we
employ state-of-the-art MIAs for LLMs, including Loss [44], Zlib [5)], Mink [36], Mink++ [47],
Reference [5] attacks.

E.2 Metric 2: Utility Gap Index (UGI)

The UGI metric measures the drop in model utility on the target domain’s data when a different
domain’s adapter is activated in PermLLM instead of the target domain.

Definition E.2 (Utility Gap Index (UGI)). Let U(-) be a chosen utility metric and for a domain set
pair (S; € S, S; CS) with no overlap (i.e.,S;NS; = ¢), UtilityGap %) (U) = |U(f4(q)|S:) —
U(fﬁ"(q)|5j)\; Vq ~ Dg,. The UGI aggregates utility gaps across all ordered domain set pairs:
Ay = Eg,cs,s;cs [UtilityGap(S"’S")(U)}, where [E is the expectation over all domain sets.

By[2.2] UGl is also an instantiation of the access advantage metric in which the relevance score for
security domain set S; on query ¢ is the utility value itself, relo( f'(q), S;) = U(f»"(¢)|S;), and
the operator © computes the absolute difference of those relevance scores across the sampled queries.

A larger UGI indicates that enforced access controls yield more pronounced—and thus more easily
perceivable—differences in response quality between security domains. As with DDI, we also report
the standard deviation across pairs to characterize variability. We evaluate the utility gaps w.r.t. Bleurt
Score (Apuert), Bert F1-Score (Apert), Sacrebleu Score (A, ) and Verbatim Accuracy (Ag..) for

our UGI metrics in More details on these metrics can be found in Appendix

F Detailed Experiment Setup

F.1 Models
For our instantiation of PermLLM, we fine-tune Llama-3.1-8B[15]] and Mistral-0.1-7B[19]) pretrained

models on four datasets covering multiple distinct security domains (henceforth called domains),
where we fine-tune a separate LoRA adapter for each domain. To compare our PermLLM, we train
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Table 2: Data Set Details. Generalization Loss Gap (i.e., gap between model’s loss on training and
test sets) for all models are reported after fine-tuning for 5 epochs on each data set.

Data Set Data Set Size Llama-3.1-8B Loss Gap Mistral-0.1-7B Loss Gap
(# Domains) Train Test FullFT LoRA PermLLM FullFT LoRA PermLLM
WMDP (3) 2936 732 1.96 0.52 1.15 1.36 0.65 1.07
GPQA (3) 360 88 2.51 1.06 1.04 1.58 0.61 1.09
SimpleQA (10) 4089 1018 291 0.96 1.49 1.87 0.90 1.25
RCVI1 (4) 45622 22811 4.07 0.35 0.83 2.48 0.37 0.74
PubMedQA (10) 200000 11269 3.53 0.07 0.36 2.56 0.07 0.35

two additional models with full fine-tuning and LoRA fine-tuning respectively on entire training data.
Note that these models are only used for utility baselines as they do not provide access control. For all
the LoRA adapters, we use 64 rank and 0.1 dropout. We use AdamW optimizer with 0.1 weight decay
to fine-tuned all the models for 5 epochs with 300 warmup steps, 2 batch size and 5 x 10~* learning
rate (except for Mistral-0.1-7B full fine-tuning that uses a learning rate of 5 x 10~°). We performed
grid search over multiple learning rates and warmup steps and found these values to give the best
results. For all our experiments, we use 8 H100 GPUs (with 80GB VRAM per GPU), 4 workers per
GPU, and 384 GB RAM. One epoch of fine-tuning took from few minutes (for our smallest data
set: GPQA) to a couple of hours (for our largest data set: RCV1). Mistral-0.1-7B is released under
Apache 2.0 license, and Llama-3.1-8B is released under Llama 3.1 Community License.

F.2 Data Sets

For our experiments, we require data sets that consist of multiple distinct domains and are possibly
not seen by the pretrained models. We use four different data sets, namely, WMDP [24], GPQA [33],
SimpleQA [41]], and RCV1 [22]. While the first three data sets were collected after the pretraining
cutoff dates for Llama-3.1-8B and Mistral-0.1-7B, RCV1 is an older data set and hence we do not
know if it was used in pretraining. However, we observe a high initial training loss on this data
set, thereby indicating that it was either not used in pretraining or was catastrophically forgotten by
the models, allowing for a gradual reduction in training loss during our fine-tuning (see [Figure 6)).
shows the data set details, along with the generalization gap (test loss - train loss) for different
approaches of fine-tuning the models on these data sets. See|Figure 3| [Figure 4] [Figure 5| [Figure 6]
and for complete training and test loss trajectories across different data sets.

WMDP. Weapons of Mass Destruction Proxy (WMDP) [24] is a data set consisting of multi-choice
question—answer pairs spanning three domains: biological weapons (bio), chemical weapons (chem)
and cyber-warfare weapons (cyber). We do 4:1 split of the data set to obtain training and test sets.
The training set consists of 2936 question—answer pairs where 1019 are from bio, 327 are from chem
and the remaining 1590 are from cyber. The test set size is 732 records, consisting of 254 bio, 81
chem and 397 cyber records. The largest record from this data set consists of 1934 tokens (tokenized
using Llama3 tokenizer). This data set is released under MIT License.

GPQA. Graduate-Level Google-Proof Q&A Benchmark (GPQA) [33]] data set consists of general
question—answer pairs from three domains: biology, chemistry and physics. We do 4:1 split of the
data set to obtain training and test sets. The training set consists of 360 question—answer pairs where
63 are from biology, 147 are from chemistry and the remaining 150 are from physics. The test set
size is 88 records, consisting of 15 biology, 36 chemistry and 37 physics records. The largest record
from this data set consists of 911 tokens (tokenized using Llama3 tokenizer). This data set is released
under MIT License.

SimpleQA. SimpleQA [41] is a factuality benchmark that measures the ability for language models
to answer short, fact-seeking questions. It consists of general question—answer pairs from ten domains:
art, geography, history, music, other, politics, science and technology, sports, tv shows, and video
games. We do 4:1 split of the data set to obtain training and test sets. The training set consists of
4089 question—answer pairs divided across all ten domains. The test set size is 1018 records spanning
across all ten domains. The largest record from this data set consists of 156 tokens (tokenized using
Llama3 tokenizer). This data set is released under MIT License.
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(a) Full Fine-Tuning 5 (b) LoRA Fine-Tuning (c) Prompt-Based 5 (d) PermLLM

Epochs Epochs Epochs Epochs
—— Llama-3.1-8B (Train) ---- Llama-3.1-8B (Eval) —— Mistral-0.1-7B (Train) ---- Mistral-0.1-7B (Eval)

Figure 3: Comparing model loss on WMDP data set.

(a) Full Fine-Tuning _(b) LoRA Fine-Tuning 5 (c) Prompt-Based 5 (d) PermLLM

5
4 4 44
34
2

0 . . . . 0 . - , . 0 . . , . 0 . - : .

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
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—— Llama-3.1-8B (Train) ---- Llama-3.1-8B (Eval) —— Mistral-0.1-7B (Train) ---- Mistral-0.1-7B (Eval)

Figure 4: Comparing model loss on GPQA data set.

RCV1. RCVI [22] is a benchmark dataset on text categorization. It is a collection of newswire
articles produced by Reuters between 1996 and 1997. It contains 804,414 manually labeled newswire
documents, broadly categorized with respect to three categories: industries, topics and regions. We
took a subset of this data set and created four non-overlapping domains using fopics: commercial
(CCAT), economic (ECAT), governance (GCAT), and mechanical (MCAT). We then did 2:1 split
of the subset to obtain training and test sets. The training set consists of 45622 question—answer
pairs where 23822 are from CCAT, 7460 are from GCAT, 3370 are from ECAT and the remaining
10970 are from MCAT. The test set size is 22811 records, consisting of 11911 CCAT, 3730 GCAT,
1685 ECAT, and 5485 MCAT records. The largest record from this data set consists of 1199 tokens
(tokenized using Llama3 tokenizer). This data set is released under CC BY 4.0 License.

PubMedQA. PubMedQA [20] contains approximately 200K medical articles formatted as (Context
+ Question + Answer). We encoded these articles using the GTE sentence encoder and applied k-
means clustering to the resulting embeddings to derive 10 non-overlapping security domains. While
clustering enforces semantic similarity within each domain and dissimilarity across domains, the
underlying data distribution remains the same, since all samples originate from the same dataset. The
largest record from this data set consists of 1614 tokens (tokenized using Llama3 tokenizer). This
data set is released under MIT License.

(a) Full Fine-Tuning 5 (b) LoRA Fine-Tuning (c) Prompt-Based 5 (d) PermLLM

Epochs Epochs Epochs Epochs

—— Llama-3.1-8B (Train) ---- Llama-3.1-8B (Eval) —— Mistral-0.1-7B (Train) ---- Mistral-0.1-7B (Eval)

Figure 5: Comparing model loss on SimpleQA data set.
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(a) Full Fine-Tuning (b) LoRA Fine-Tuning (c) Prompt-Based 5 (d) PermLLM
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—— Llama-3.1-8B (Train) ---- Llama-3.1-8B (Eval) —— Mistral-0.1-7B (Train) ---- Mistral-0.1-7B (Eval)

Figure 6: Comparing model loss on RCV1 data set.
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Figure 7: Comparing model loss on PubMedQA data set.

F.3 Model Utility Evaluation

We use four metrics to evaluate the utility of the model generations: Bleurt Score (bluert), Bert
F1-Score (bert), Sacrebleu Score (bleu) and Verbatim Accuracy (acc). These metrics measure how
similar the generated text is to the ground truth. bleurt and bert measure the semantic similarity, bleu
measures the fraction of common n-grams, and acc gives a binary decision of whether the generated
text verbatim matches the ground truth. All the metrics lie in a [0,1] range, where values close to 1
indicate high model utility.

We check the utility of Activate to determine if tuning different LoRA adapters for each security
domain leads to acceptable model utility. To that end, we show in [Table 3]the utility of Llama-3.1-8B
models fine-tuned on different data sets with the three approaches: full fine-tuning, LoRA fine-tuning
and our PermLLM. We do not report the bleu score for WMDP as it is a multi-choice question-
answering task where model only has to generate a single token. bleu requires generating at least
four tokens. Our approach achieves similar or better utility on the training set compared to the LoRA
approach. On the test set, our approach achieves similar utility to LORA for most of the data sets,
except for SimpleQA where LoRA performs better. This is because SimpleQA has more domains
(10 in total), thus each of our individual domain adapter sees only a fraction of data of what LoRA
approach’s adapter sees (given that SimpleQA is already a small data set). We expect the performance
of our domain-specific adapters to increase as the data set size increases. Full fine-tuning is highly
sensitive to training hyper-parameters, and as a result it either completely overfits on training set to
achieve high utility (e.g., on SimpleQA and RCV1), or it underfits and achieves low utility (e.g., on
WMDP and GPQA). We observe similar results for Mistral-0.1-7B models (see [Table 4).

G Detailed Experimental Evaluation

For our experiments, we fine-tune Llama-3.1-8B and Mistral-0.1-7B pretrained models on five
datasets covering multiple distinct security domains (henceforth called domains), where we fine-
tune a separate LoRA adapter for each domain. Details about the model hyperparameters can be
found in Appendix The data sets we use in our experiments are WMDP [24], GPQA [33]],
SimpleQA [41]], RCV1 [22], and PubMedQA [20]. shows the brief data set details. More
details on the data sets and generalization gaps can be found in Appendix Appendix
discusses the utility evaluation of all our models.
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Table 3: Utility comparison of Llama-3.1-8B models trained with different approaches. All reported
values are mean =+ std across domains.

Metric Full Fine-Tuning LoRA Fine-Tuning PermLLM
Train Test Train Test Train Test
E bleurt 0.744+0.06 0.74+0.06 0.90+0.08 0.85+0.08 0.924+0.08 0.82=+0.06
S bert 0.89+£0.03 0.894+0.03 0.96+0.03 0.94+0.03 0.974+0.03 0.93+0.03
Z  acc 0.26 £0.07 0.27+0.07 0.76£0.20 0.60+£0.20 0.84+0.22 0.49+0.15
bleu 0.26 £0.02 0.05+0.03 045+0.12 0.10£0.05 0.39+£0.20 0.10+£0.04
8 bleurt 0.534+0.05 0.39+0.05 0.64+0.09 0.46+0.07 0.624+0.11 0.47+0.07
% bert 0.67£0.06 0.59+0.05 0.77+£0.08 0.67+£0.05 0.75+£0.09 0.67+0.05
acc 0.24+0.06 0.02+0.03 0.32+£0.05 0.05+£0.05 0.31+£0.09 0.04+0.05
<  bleu 0.80+£0.06 0.34+£0.11 0.65+0.06 0.29+0.08 0.67+0.10 0.09+0.04
g bleurt 0.864+0.03 0.58+0.050 0.80+0.02 0.61+£0.02 0.824+0.04 0.53+0.04
E“ bert 0.96 £0.01 0.84+0.02 0.94+0.01 0.86+0.01 0.95+£0.02 0.82+0.03
A acc 0.68£0.10 0.204+0.12 0.52+0.07 0.17£0.07 0.554+0.13 0.02 4+ 0.02
bleu 0.75+£0.08 0.14+0.08 0.22+0.10 0.16£0.08 0.27+£0.10 0.16 £0.08
; bleurt 0.884+0.04 0.46+0.12 0.57+0.13 0.49£0.11 0.624+0.13 0.50+0.12
a bert 0.94+0.03 0.67+£0.09 0.75+£0.08 0.70£0.07 0.78£0.08 0.70+£0.08
acc 0.78+0.06 0.16+£0.10 0.27+0.14 0.17£0.10 0.31+£0.15 0.18£0.10
< bleu 0.71£0.05 0.07+£0.01 0.09+£0.01 0.09+£0.01 0.10£0.02 0.09+0.01
% bleurt 0.774+0.03 0.38+0.01 0.40+0.01 0.40£0.01 0.424+0.01 0.40+0.02
_% bert 0.90£0.02 0.64+0.02 0.68+0.01 0.68+£0.01 0.69+0.02 0.67+0.02
£ acc - - - - - -
1.00 1.00 1.00 1.00
0.75 A 0.75 0.75 0.75
3 — ~__ | 5 & g — — |
5 0.50 20.501 30.501 5 0.50 A
< g [ <
0.25 1~ 0254 0.251 0.25 T~
0.00 . - 0.00 . . 0.00 — : 0.00 . .
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# Active Domains # Active Domains # Active Domains # Active Domains
—— Activate Merge —— Union

Figure 8: Utility Gap Index, Ay (mean £ std) for Mistral-0.1-7B models fine-tuned on SimpleQA
when user has access to multiple security domains.

G.1 Evaluating Access Control

Our approach achieves comparable model utility to existing approaches of fine-tuning (see discussion
in[§ F3), in addition to providing access control. Here we will empirically evaluate the effectiveness
of our access control using a suite of metrics. In[§ 5] we covered the case where the user has access
to only one domain. Now we consider the case where the user has access to multiple domains. For
comparison, we also include an evaluation of a prompt-based access control baseline in
but find it to be ineffective.

G.1.1 Multiple Active Domains

As discussed earlier in[§ 3] we explore three methods of combining knowledge from multiple domains
the user has access to: (a) activating all the domain-specific LoORA modules (Activate), (b) merging the
LoRA modules (Merge), and (c) training separate LoRA modules on the union of domains and using
those for inference (Union). [Table 6]reports the UGI (Ayy) for these approaches when the user has
access to two domains for all the data sets. We note that WMDP and GPQA have only three security
domains, and hence activating any two domains always lead to overlap when calculating A as per
2] For these data sets, we calculate Ay on the non-overlapping data. Activate is computationally
inexpensive but suffers from considerable utility loss when compared to the previous case of single
domain. This is due to the high interference across the multiple domains in the activation space,
which is a known issue in the multi-task learning literature [49} 39, |31]]. The utility loss suppresses
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Table 4: Utility comparison of Mistral-0.1-7B models trained with different approaches. All reported
values are mean =+ std across domains.

Metric Full Fine-Tuning LoRA Fine-Tuning PermLLM
Train Test Train Test Train Test

a bleurt 0.95+0.01 0.824+0.03 0.96+£0.02 0.87+0.03 0.96+0.01 0.86=+0.03
S bert 0.98+£0.01 0.92+£0.02 0.99+0.01 0.94+£0.02 0.99+0.01 0.94+0.02
=2 acc 0.88+0.04 0.46+0.14 0.92+0.07 0.60+0.09 0.93+0.04 0.58+0.11

bleu 0.46 +0.03 0.06+0.05 0.35+0.08 0.11+£0.07 0.55+0.18 0.134+0.06
8 bleurt 0.65+0.04 0.424+0.08 0.59+0.09 0.47+0.06 0.67+0.09 0.47+0.08
% bert 0.75+0.05 0.624+0.07 0.73+0.08 0.68+0.05 0.79+0.08 0.6640.09

acc 0.38+0.04 0.04+0.05 0.24+0.04 0.054+0.06 0.404+0.09 0.08+0.02
< bleu 0.944+0.02 0.36£0.11 0.73+£0.06 0.344+0.09 0.70£0.13 0.10+0.04
g bleurt 0.94+0.01 0.60+0.04 0.84+0.03 0.62+0.03 0.83+0.06 0.52+0.04
E“ bert 0.994+0.01 0.85£0.02 0.96+0.01 0.87+0.01 0.95+£0.03 0.82+0.03
& acc 0.91+£0.04 0.23+£0.12 0.62+£0.08 0.20£0.10 0.60+£0.16 0.03+0.02

bleu 0.924+0.06 0.174+£0.09 0.28+0.13 0.20£0.10 0.37+0.14 0.194+0.09
S bleurt 0.934£0.02 04840.12 0.6040.13 0.514+0.12 0.664+0.12 0.5040.12
a bert 0.98 +£0.02 0.69+£0.08 0.78+0.09 0.714+0.08 0.81+£0.08 0.71+0.08

cc 0.924+0.03 0.194+0.11 0.31+0.15 0.20£0.11 0.38+0.17 0.194+0.10
< bleu 0.75+0.04 0.08+£0.01 0.09+£0.01 0.08+£0.01 0.11+£0.02 0.08+0.01
% bleurt 0.80+0.03 0.39+0.01 0.41+0.01 0.414+0.01 0.43+0.02 0.41+0.01
_% bert 0.92+0.01 0.65+0.02 0.69+0.01 0.68+£0.02 0.70+£0.02 0.68+0.01
£  acc - - - - - -

Table 5: Data Set Details.
WMDP GPQA SimpleQA RCV1 PubMedQA

Data Set Size (Train / Test) 2936/732 360/88 4089/1018 45622/22811 200000/ 11269
Number of Security Domains 3 3 10 4 10

the absolute Ay in our experiments. As can be seen in Merge reduces the cross-domain
interference, but still suffers from utility loss. Interestingly Merge achieves even lower Ay than
Activate when combining two domains, as shown in Although it quickly outperforms
Activate when the user has access to more than two domains, the utility loss due to model merging
interference [38] 43| 46| 50] also results in progressive degradation of A (see [Figure 9). Union
retains Ay even beyond four domains, and hence is the best choice when combining knowledge
from several domains. But this comes at the cost of more training-time computation since new
domain-specific modules have to be trained for the union of domains, and there could be potential
combinatorial blow-up of the number of such combinations. As with the single active domain case,
we observe close to zero utility gap on PubMedQA as the domains share the same data distribution.
We observe similar results for Mistral-0.1-7B model (see[Figure 8|in the appendix).

The DDI results for a two-domain setting appear in (Llama-3.1-8B) and [Table 8| (Mistral-0.1-
7B). As we can see from these tables, we achieve high DDI values (e.g., close to « = 1.0 for auc-roc).

1.00 1.00 1.00 1.00
0.75 4 0.751 0.751 0.751
£ .
3 —_\/ 3 £ S e
3 0.50 A 2 0.501 £0.504 % 0.50
< g g i
—_— |
0.25 1~ 0.254 0.254 0.254
0.00 ; - 0.00 ; . 0.00 ——= . 0.00 ; .
2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
# Active Domains # Active Domains # Active Domains # Active Domains
—— Activate Merge —— Union

Figure 9: Utility Gap Index, Ay (mean =+ std) for Llama-3.1-8B models fine-tuned on SimpleQA
when user has access to multiple security domains.
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Table 6: Utility Gap Index (Ay ) for models with different approaches of combining domains when
user has access to two domains. All reported values are mean =+ std across domains.

Metric Llama-3.1-8B Mistral-0.1-7B
Activate Merge Union Activate Merge Union

E Aplewrt 0.09£0.01 0.07+£0.02 0.11£0.02 0.10£0.02 0.08+0.03 0.14+£0.03
S Apert 0.05+0.01 0.03£0.01 0.06+0.01 0.05+0.01 0.04£0.02 0.07=+0.02
2z Agec 0.27£0.07 021£0.09 034£0.11 032£0.04 0.25+0.07 0.49+0.09

Aplen 0.15£0.06 0.11£0.06 0.51£0.07 024£0.10 0.17£0.10 0.62+0.02
8 Apjewrs 0.104£0.02 0.06+0.02 0.26£0.03 0.14£0.06 0.10+0.04 0.324+0.02
% Apert 0.07£0.02 0.04£0.03 0.18£0.02 0.11£0.04 0.08+0.03 0.214+0.02

Aace 0.09£0.04 0.05£0.02 0.31£0.08 0.16+0.07 0.08+0.07 0.5140.04
< Aplen 0.26£0.09 023£0.09 0.61£0.03 030£0.13 0.25+0.04 0.61+0.08
g Apleurs 0.16+£0.05 0.124+0.04 0.32+£0.04 0.19£0.05 0.14+0.02 0.33+0.05
g* Apert 0.07£0.03 0.05£0.02 0.14£0.02 0.08£0.03 0.06+0.01 0.1440.03
o Aace 0.20+£0.07 0.18£0.07 0.59+£0.05 0.27+0.09 0.21£0.03 0.62+0.09

Apleny 0.05£0.03 0.04£0.02 0.16+0.09 0.04£0.02 0.01+£0.03 0.1940.10
> Apiewrt  0.11£0.01 0.07+0.03 0.224+0.08 0.08+0.01 0.03+0.04 0.22+0.08
g Apert 0.08£0.01 0.06+£0.02 0.16+0.04 0.06+0.01 0.03+0.05 0.1840.06

Agee 0.03£0.01 0.04£0.04 024£0.14 0.02£0.02 0.01£0.03 0.26=+0.15
< Apleu 0.01+0.00 0.00£0.00 0.01+£0.00 0.01£0.00 0.00£0.00 0.01+0.01
% Apiewrs 0.014+0.00 0.00+£0.00 0.01£0.00 0.01£0.00 0.00£0.00 0.0140.01
= Dpert 0.01+£0.00 0.00£0.00 0.01+£0.00 0.01+0.00 0.00=£0.00 0.01+0.00
=
g - - - - - -

acc

Table 7: DDI values for models (with base model Llama-3.1-8B) with different approaches of
combining domains when user has access to two domains. All reported values are mean =+ std across
domains

MIA Activate Merge Union
auc-roc tpr@1%fpr tpr@5%fpr ‘ auc-roc tpr@1%fpr tpr@5%fpr ‘ auc-roc tpr@1%fpr tpr@5%fpr
Loss 0.98+£0.02 0.77+£0.22 0.87+0.13 | 0.934+£0.05 0.53+£0.25 0.67+0.21 | 0.994+0.02 0.90+£0.14 0.94 £0.09
E ZLIB 0.92 +0.08 0.60 + 0.27 0.67 +0.28 0.86 + 0.09 0.38 +0.21 0.50 + 0.26 0.97 +0.05 0.77 £ 0.31 0.80 +0.28
= Mink 0.99 + 0.01 0.88 + 0.08 0.93 +0.04 0.96 + 0.02 0.65 +0.19 0.78 £ 0.12 1.00 £ 0.00 0.94 + 0.08 0.99 +0.01
= Mink++ 0.90 + 0.05 0.62 +0.21 0.71+0.16 0.94 +0.04 0.65 + 0.21 0.80 £0.15 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
Ref 1.00 £ 0.00 0.98 +0.02 0.99 +0.01 0.99 + 0.00 0.81 +0.05 0.91 £ 0.02 1.00 £ 0.00 0.98 £+ 0.02 1.00 £ 0.00
Loss 0.99+0.01 0.81£0.09 0.93%+0.05 | 0.93+0.02 0.38+£0.14 0.72+0.03 | 1.00+£0.00 0.97£0.04 0.99 £ 0.01
< ZLIB 0.90+£0.06 0.38£0.26 0.63+0.22 | 0.82+0.07 0.26£0.17 0.44+0.16 | 0.994+£0.01 0.79+£0.30 0.96 £ 0.05
£ Mink 0.99+£0.01 0.92+£0.11 0.97+0.04 | 0.96+0.01 0.69+0.07 0.80+0.07 | 1.00+0.00 1.00£0.00 1.00 =% 0.00
G} Mink++ 0.95 + 0.06 0.82+0.10 0.85+0.13 0.97 £ 0.03 0.75+0.13 0.88 +0.10 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
Ref 1.00 £ 0.00 0.99 +0.01 0.99 + 0.01 0.99 + 0.01 0.87 +£0.12 0.93 £ 0.09 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
« Loss 0.96 + 0.03 0.42 +0.32 0.73 +0.26 0.95 £ 0.03 0.47 +£0.28 0.74 +£0.21 0.97 £+ 0.04 0.62 £ 0.38 0.83 +0.29
o ZLIB 0.94+0.04 0.35+£0.28 0.66+0.23 | 0.93+0.04 0.41+£0.24 0.67+0.17 | 0.97+0.04 0.61+£0.38 0.82+0.29
£ Mink 0.94+0.06 0.41+£0.33 0.68+0.27 | 0.94+0.03 0.47+£0.22 0.71£0.18 | 0.98+0.03 0.57+£0.38 0.84+0.25
E  Mink++ | 0.85+0.10 0.25+0.19 0.57+0.16 | 0.92+0.03 0.34+0.16 0.62+0.13 | 0.97+0.03 0.57+0.37 0.85+£0.24
@ Ref 0.96+£0.03 0.37£0.35 0.73+0.30 | 0.96+0.04 0.43+£0.40 0.69+0.35 | 0.97+£0.04 0.58+£0.42 0.79+0.31
Loss 0.96 + 0.02 0.40 + 0.09 0.76 + 0.15 0.90 + 0.01 0.24 +0.05 0.52+0.07 0.98 + 0.00 0.55 £+ 0.23 0.94 +0.01
— ZLIB 0.82 4+ 0.02 0.27 £ 0.07 0.46 + 0.06 0.72 +0.02 0.11 +£0.03 0.28 +£0.03 0.90 + 0.05 0.52+0.20 0.67 +0.13
E) Mink 0.97 +0.02 0.60 £+ 0.14 0.87 +0.08 0.92 +0.02 0.29 + 0.04 0.65 £ 0.08 0.99 + 0.00 0.80 £ 0.08 0.97 +£0.01
~ Mink++ 0.80 +£0.13 0.32+0.19 0.49 +0.24 0.84 £ 0.07 0.28 +0.22 0.52+0.19 0.99 £+ 0.00 0.90 £ 0.05 0.98 + 0.00
Ref 0.97+0.01 0.50£0.09 0.86+0.09 | 0.95+0.00 0.26£0.07 0.63+0.05 | 0.98+0.01 0.50+£0.31 0.95=+0.02

In other words, an auditor can almost perfectly identify which domain is in effect, even when the
corresponding utility gap (A ) is far below 1.0 (Figure 9). Union consistently attains the highest DDI,
followed by Activate and then Merge mirroring the trend observed with Ay. Union’s superiority
however comes at the cost of greater tuning-time computation. Union’s near-perfect distinguishability
mirrors the effect of model performance (with increasing domains) on Ay (see[Figure 9). Crucially,
the high DDI values confirm that even when A drops due to model generalization or degradation due
to activation space or parameter interference, access control remains uncompromised; DDI therefore
provides the more sensitive indicator of enforcement efficacy.

H Prompt-Based Access Control

Recent works [8 25] have proposed enforcing some form of access control in system prompts,
however we note that they do not provide absolute access control and are vulnerable to jailbreaking
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Table 8: DDI values for models (with base model Mistral-0.1-7B) with different approaches of
combining domains when user has access to two domains. All reported values are mean =+ std across
domains.

MIA Activate Merge Union
auc-roc tpr@ 1%fpr tpr@5%fpr ‘ auc-roc tpr@ 1%fpr tpr@5%fpr ‘ auc-roc tpr@ 1%fpr tpr@5%fpr
Loss 0.99+£0.02 0.85+£0.21 0.92+0.11 | 0.954+0.04 0.62+£0.21 0.73+0.19 | 0.994+0.01 0.93+£0.10 0.96 £ 0.06
E ZL1B 0.93+£0.09 0.69+0.30 0.74+0.30 | 0.87+0.09 0.47+£0.26 0.58+0.29 | 0.98+0.03 0.83+£0.23 0.88+0.16
= Mink 0.99 +0.01 0.89 +0.14 0.95 + 0.07 0.96 £ 0.03 0.73+£0.11 0.83+£0.12 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
= Mink++ 0.96 + 0.02 0.77 £ 0.04 0.86 &+ 0.04 0.94 +0.03 0.58 + 0.03 0.80 £0.05 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
Ref 1.00 £ 0.00 1.00 + 0.00 1.00 £ 0.00 0.99 + 0.00 0.86 4+ 0.09 0.96 + 0.02 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
Loss 0.99+0.01 0.83£0.18 0.95+0.06 | 0.96+0.04 0.55+0.24 0.87+0.06 | 1.00+0.00 0.97+£0.04 0.98£0.02
< ZLIB 0.93+0.08 0.50+£0.35 0.74+0.32 | 0.86+0.09 0.33+£0.23 0.56 +£0.21 | 0.99+0.01 0.88+0.17 0.97 £0.04
g Mink 1.00£0.00 0.94+0.07 0.984+0.02 | 0.98£0.02 0.74+0.14 0.874+0.12 | 1.00£0.00 1.00£0.00 1.00 = 0.00
O  Mink++ | 0.98£0.02 0.80+0.14 0.924+0.06 | 0.98+£0.01 0.75+0.13 0.8940.07 | 1.00£0.00 1.00£0.00 1.00 = 0.00
Ref 1.00 £0.00 1.004+0.00 1.00+£0.00 | 0.99+0.02 0.844+0.23 0.97+£0.04 | 1.00£0.00 0.974+0.04 1.00+0.00
« Loss 0.97 +0.03 0.58 + 0.33 0.82 +0.27 0.96 + 0.02 0.49 +0.24 0.79+0.17 0.97 + 0.04 0.50 + 0.42 0.76 + 0.31
o ZLIB 0.97 +0.03 0.51 +0.32 0.78 +£0.28 0.95 + 0.03 0.44 +0.23 0.72+£0.19 0.97 + 0.04 0.51 £+ 0.42 0.75+0.31
% Mink 0.97 +£0.03 0.51+0.34 0.83 +0.24 0.96 + 0.02 0.49 +0.24 0.77+£0.18 0.97 £ 0.04 0.51 +£0.41 0.79 £ 0.27
E Mink++ | 0.92+0.04 0.46+0.21 0.68+0.21 | 0.93+0.05 0.45+0.28 0.73+0.19 | 0.97+0.04 0.50+£0.41 0.76 £ 0.29
@ Ref 0.98+0.03 0.65+0.39 0.86+0.27 | 0.98+0.03 0.64+£0.34 0.85+0.25 | 0.96+0.04 0.48+0.43 0.73+0.34
Loss 0.93+£0.04 0.39+£0.23 0.62+0.23 | 0.85+0.01 0.14+£0.03 0.35+0.02 | 0.98+0.01 0.53+£0.22 0.92+0.01
— ZLIB 0.82 4+ 0.05 0.30+£0.10 0.50 + 0.08 0.69 £ 0.03 0.10 + 0.04 0.26 £ 0.06 0.90 + 0.05 0.48 £0.23 0.67+0.14
B Mink 0.93 + 0.05 0.44+0.24 0.68 + 0.23 0.85 £ 0.02 0.16 + 0.03 0.40 £ 0.04 0.99 + 0.00 0.73£0.12 0.97 £0.01
~ Mink++ 0.69 + 0.25 0.27 £ 0.20 0.45 +0.33 0.70 £ 0.16 0.18 +0.13 0.35+0.21 0.99 + 0.00 0.89 £+ 0.03 0.98 + 0.00
Ref 0.96 + 0.02 0.35+0.12 0.71 +£0.18 0.94 +0.01 0.15 + 0.05 0.52 £ 0.08 0.98 + 0.00 0.45+£0.25 0.97 £ 0.00
1.0
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Figure 10: Utility Gap Index, Ay (mean + std) for prompt-based access control baseline when user
has access to one security domain.

prompts. Regardless, we implement prompt-based access control as a baseline where each query is
tagged with a prompt prefix (e.g., “use domain 1) and the rest of the fine-tuning pipeline is similar to
LoRA fine-tuning. We add the relevant prompt prefixes during both model fine-tuning and inference.
The models fine-tuned with prompt-based access control achieve similar training and test loss to that
of LoRA fine-tuning across all the data sets, as shown in|Figure 3| [Figure 4} [Figure 5| [Figure 6| and
IFigure 7} However, this baseline fails to provide any meaningful access control, even when a user has
access to only one security domain as shown in[Figure 10|and [Table 9] As shown in the figure and
table, the utility gap index is close to zero and DDI scores are close to random guessing across all the
data sets for both Llama and Mistral models fine-tuned with prompt-based access control. The reason
is that the prompt prefix for different domains only differ in one or two tokens and hence the model
tends to ignore this difference and continues generating responses even for domains the user has no
access to. Exploring different prompt structures might lead to better access control but is beyond the
scope of this work. We observe a similar trend when the user has access to multiple security domains

as shown in for SimpleQA data set.

1.00 1.00 1.00 1.00
0.75 4 0.751 0.751 0.7514
£ .
ﬂ:J 3 < 8
3 0.50 2 0.501 £0.504 % 0.50
< g g i
0.251 0.251 0.254 0.254
0.00 T ] 0.00 +— T T — 0.00 T T 0.00 — — T
2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
# Active Domains # Active Domains # Active Domains # Active Domains
—— Llama-3.1-8B Mistral-0.1-7B

Figure 11: Utility Gap Index, Ay (mean =+ std) for prompt-based access control baseline on different
models fine-tuned on SimpleQA when user has access to multiple security domains.
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Table 9: DDI values for prompt-based access control baseline when user has access to one security
domain.

MIA Llama-3.1-8B Mistral-0.1-7B
auc-roc tpr@ 1%fpr tpr@5%fpr ‘ auc-roc tpr@ 1%fpr tpr@5%fpr
Loss 0.53+0.02 0.024+0.01 0.06+£0.01 | 0.54+0.02 0.024+0.01 0.07 + 0.02
E ZLIB 0.52 +0.01 0.01 +£0.01 0.06 £0.01 | 0.52+£0.01 0.01+0.01 0.06=£0.01
s Mink 0.53£0.03 0.02+£0.02 0.08+0.03 | 0.534+0.01 0.024+0.01 0.06 £0.01
= Mink++ | 0.55+£0.06 0.02+0.03 0.08+0.05 | 0.52+0.03 0.01£0.00 0.05=+£0.01
Ref 0.53£0.02 0.02+£0.01 0.06=+0.00 | 0.53+0.01 0.01+0.01 0.06=£0.01
Loss 0.55+0.02 0.02£0.00 0.06+0.10 | 0.564+0.03 0.03£0.01 0.1240.04
< ZLIB 0.54+0.02 0.024+0.00 0.07£0.01 | 0.54+0.02 0.03£0.01 0.08 + 0.02
g Mink 0.57+0.05 0.02£0.01 0.12+0.02 | 0.59+0.07 0.05+£0.06 0.13+0.07
&) Mink++ | 0.54+£0.10 0.05+0.06 0.124+0.08 | 0.55+0.12 0.06 £0.06 0.12+0.09
Ref 0.57+£0.02 0.04+0.02 0.134+0.05 | 0.56+0.03 0.03£0.02 0.13+£0.07
« Loss 0.53+0.25 0.08+0.14 0.16+0.20 | 0.554+0.22 0.09+£0.15 0.16 & 0.20
o ZLIB 0.52+£0.16 0.04+£0.05 0.094+0.09 | 0.53+0.14 0.03£0.03 0.09+£0.08
% Mink 0.524+0.28 0.09+0.15 0.17+0.22 | 0.554+0.22 0.09+£0.15 0.17+0.20
g Mink++ | 0.50+£0.43 0.314+0.40 0.36£0.43 | 0.52+0.35 0.224+0.33 0.28+£0.35
@ Ref 0.53+£0.22 0.03+0.03 0.114+0.12 | 0.544+0.15 0.04£0.06 0.09 £ 0.09
Loss 0.50£0.02 0.01+£0.00 0.054+0.01 | 0.50+0.01 0.01£0.00 0.05=+£0.00
— ZLIB 0.50£0.01 0.01+£0.00 0.0540.02 | 0.50+0.00 0.01£0.00 0.05=£0.00
5 Mink 0.50£0.04 0.01£0.00 0.05+0.01 | 0.50+0.01 0.01+0.02 0.05=£0.01
& Mink++ | 0.50 £0.05 0.014+0.01 0.05+£0.01 | 0.50+0.04 0.014+0.00 0.05+£0.01
Ref 0.50 + 0.01 0.01 £0.01 0.05£0.01 | 0.50+0.01 0.014+0.00 00.5+0.00

I MIAs against LLMs

In Section[E] we defined the Domain Distinguishability Index (DDI) as the average success rate of
an adversary playing the Domain Distinguishability game over all domain set pairs. That game is
implemented with membership inference attacks (MIAs) [44}15, 29,136, 47]: the auditor compares a
member set drawn from the active domain’s training data with a non-member set drawn from some
other domain, and tries to tell them apart. The better this separation, the larger the DDI. Here, in
this section, we expand on the MIA toolbox that underpins DDI—detailing evaluation metrics and
the specific attacks we deploy against LLMs. More generally, an MIA for an LLM f assigns a
membership score A(x, f) to a candidate text x. Thresholding this score at ¢ declares 2 a member (if
A(z, f)>¢) or anon-member (if A(x, f) <e).

I.1 Metrics

We employ two complementary metrics to quantify the success of our membership inference attacks,
as used by prior MIA works [18L |6, [28]]:

(1) Attack ROC curves: The Receiver Operating Characteristic (ROC) curve illustrates the trade-
off between the True Positive Rate (TPR) and the False Positive Rate (FPR) for the attacks. The FPR
measures the proportion of non-member samples that are incorrectly classified as members, while the
TPR represents the proportion of member samples that are correctly identified as members. We report
the Area Under the ROC Curve (AUC-ROC) as an aggregate metric to assess the overall success of
the attacks. AUC-ROC is a threshold-independent metric, and it shows the probability that a positive
instance (member) has higher score than a negative instance (non-member).

(2) Attack TPR at low FPR: This metric is crucial for determining the effectiveness of an attack
at confidently identifying members of the training dataset without falsely classifying non-members as
members. We focus on low FPR thresholds, specifically 1%, and 5%. For instance, the TPR at an
FPR of 1% is calculated by setting the detection threshold so that only 1% of non-member samples
are predicted as members.
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.2 Existing MIAs

LOSS [44]: The LOSS method utilizes the loss value of model f(.) for the given text = as the
membership score; a lower loss suggests that the text was seen during training, so A(z, f) = £(f, z).

Ref [S]: Calculating membership scores based solely on loss values often results in high false
negative rates. To improve this, a difficulty calibration method can be employed to account for
the intrinsic complexity of z. For example, repetitive or common phrases typically yield low loss
values. One method of calibrating this input complexity is by using another LLM, Ref(.), assumed
to be trained on a similar data distribution. The membership score is then defined as the difference
in loss values between the target and reference models, A(z, f) = 4(x, f) — £(z, Ref). In our
evaluations, we used the base models (i.e., Llama-3.1-8B and Mistral-0.1-7B) before any fine-tuning
as the reference models.

Z1ib [S]: Another method to calibrate the difficulty of a sample is by using its zlib compression

size, where more complex sentences have higher compression sizes. The membership score is then

calculated by normalizing the loss value by the zlib compression size, A(z, f) = f](li(i ; .

Min-K [36]]: This attack hypothesizes that non-member samples often have more tokens assigned
lower likelihoods. Tt first calculates the likelihood of each token as Min-K%;oken (%) = log p(z¢|z <),
for each token x; given the prefix x ;. The membership score is then calculated by averaging over
the lowest K% of tokens with lower likelihood, A(x, f) = m >z, emin—iop Min-K%ioen (21).

Min-K++ [47]: This method improves on Min-K by utilizing the insight that maximum likelihood
training optimizes the Hessian trace of likelihood over the training data. It calculates a normalized

Ox

score for each token x; given the prefix x; as Min-K%-++ken (1) = , where

<t
iz, is the mean log probability of the next token across the vocabulary, and o, _, is the standard

deviation. The membership score is then aggregated by averaging the scores of the lowest K % tokens,
1 .
A(l‘, f) = Tmin-k%++| ZL emin—k% Min-K%-++oken (‘xt)

J Conclusion and Discussion

We presented a comprehensive treatment of the access control problem on fine-tuned LLMs that
includes novel formalism, empirical evaluation metrics, access control enforcement mechanisms,
and evaluation of the mechanisms as well as the proposed metrics. We formalized a new class of
LLMs called Permissioned LLMs (PermLLM) whose access control enforcement can be verified both
theoretically and empirically using the formal tools provided in our work.

Limitations. Our approach does not support deep hierarchy of domains with arbitrary overlaps.
Another issue we observe is with the scalability beyond a handful of domains. This either leads to
severe degradation of utility (as in the case of Activate) or it becomes compute-intensive (for Union).
We leave this exploration for future work. We also note some limitations in the experiments that
we do not expect to change our key claims. First, we only run one model fine-tuning per parameter
setting due to the computation overhead. Second, we do not perform an ablation study on the LoRA
rank on fine-tuning. Our preliminary experiments with different ranks suggested limited impact on
model utility, so we stick to the default value. For our formalism in[§ 2] we assume that adversaries
do not tamper with their credentials or domain access, otherwise they can gain arbitrary domain
information. This is enforced by the enclosing system via authentication.

Related Work. Access control problems in agentic systems can manifest in interesting ways, such as
context hijacking [2]], and may require further constraining the purview of individual agent contexts.
Retrieval Augmented Generation (RAG) systems [23}[32}|51]] are also susceptible to the access control
problem. However, the access control needs to be enforced in the information retrieval engine of
the system [4}[14]] and is beyond our work’s scope (although we do provide a formalism for access
control in RAG-based systems in[Appendix A).

One may draw some parallels between our formalism of response relevance and access advantage
metric with prior works on indistinguishability |13, 9, [13] in security and privacy. The mechanisms
in this lineage of works are singularly focused on eliminating distinguishability between the effects of
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different data on computations. In contrast, PermLLM’s objective is to maximize domain separation,
which implies maximization of distinguishability — the more pronounced the distinguishability, the
more effective is the PermLLM mechanism.

Broader Impacts. We do not foresee any negative societal impact of our work. Our work aims
to bolster the security and privacy of individual’s data by enforcing strict access control, such that
only people with prior authorization can get access to the information. Our work is applicable to
healthcare, finance, and more broadly, enterprise / governance applications that deal with sensitive
data of individuals.
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