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Abstract

Data collection is often difficult in critical fields such as medicine, physics, and
chemistry, yielding typically only small tabular datasets. However, classification
methods tend to struggle with these small datasets, leading to poor predictive
performance. Increasing the training set with additional synthetic data, similar to
data augmentation in images, is commonly believed to improve downstream tabular
classification performance. However, current tabular generative methods that learn
either the joint distribution p(x, y) or the class-conditional distribution p(x | y)
often overfit on small datasets, usually worsening classification performance
compared to using real data alone. To solve these challenges, we introduce
TabEBM, a novel class-conditional generative method using Energy-Based
Models (EBMs). Unlike existing tabular methods that use a shared model
to approximate all class-conditional densities, our key innovation is to create
distinct EBM generative models for each class, each modelling its class-specific
data distribution individually. This approach creates robust energy landscapes,
even in ambiguous class distributions. Our experiments show that TabEBM
generates synthetic data with higher utility than existing methods. When used
for data augmentation, our synthetic data consistently improves the classification
performance across diverse datasets of various sizes, especially small ones. Code
is available at https://github. com/andreimargeloiu/TabEBM.

1 Introduction

In scientific fields such as medicine, physics, and chemistry, collecting tabular data is often challenging
due to the experimental nature of data acquisition [4, 42, 3, 26, 61, 10]. Due to the small size
of such datasets [4, 38], training machine learning models that can aid in tasks such as disease
diagnosis [44, 31], material property prediction [29], and chemical compound classification [9], often
suffer from poor performance [60, 44, 31]. In the case of vision and language tasks, a standard
remedy to data scarcity is employing data augmentation techniques [58, 59, 48, 57]. However,
applying data augmentation to tabular data remains understudied, as tabular datasets are very diverse
and lack explicit symmetries [6], such as rotations or translations seen in images. Consequently,
existing tabular data augmentation methods often yield mixed results and can even degrade model
performance [43, 57, 40], hindering their widespread adoption.

Tabular augmentation typically involves training generative models to approximate either the joint
distribution p(x,y) [68, 18] or the class-conditional distribution p(x|y) [68, 34, 66, 39, 40]. A
key challenge of joint distribution methods is maintaining the original label distribution, as such
generators can fail to generate data for specific classes (see Appendix D for an example). On
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Figure 1: An overview of TabEBM. We learn distinct class-specific Energy-Based Models (EBMs)
By (x) and Eeq(x) exclusively on the points of their respective class. Each EBM approximates a
class-conditional distribution p(x|y). TabEBM allows synthetic data generation by sampling from
the estimated distributions for each class p(x|y = blue) and p(x|y = red).

the other hand, while class-conditional models learning p(x|y) preserve the stratification of the
original data, they often employ a shared model to represent all class-conditional densities. This,
however, can lead to overfitting, particularly in imbalanced datasets where the model may prioritise
more frequent classes [17], ignoring unique features needed for generating label-invariant samples.
Additionally, in datasets with limited data, this can lead to mode collapse [55, 56], where the model
does not effectively capture the diversity of each class [56], and thus tends to perform poorly in a
multi-class setting. We further provide an extended discussion on related work in Appendix A.

To address the challenges of class-conditional tabular generation, we introduce TabEBM (Figure 1),
a new method for tabular data augmentation utilising Energy-Based Models (EBMs). Our method
introduces two innovations: (i) Distinct class-specific models: TabEBM constructs a collection of
individual models — one for each class — which, by design, enables learning distinct marginal distri-
butions for the inputs associated with each class. This, in turn, enables performing data augmentation
while maintaining the original label distribution. (ii) Generative models: we build novel class-specific
generators that produce high-quality synthetic data even from extremely few samples. Specifically,
we create a surrogate binary classification task for each class and fit it with a pre-trained tabular
in-context classifier. We then convert the binary classifier into an EBM, a generative model, without
additional training. Using class-specific EBMs makes the energy landscape more robust to class
overlaps, compared to using a single shared EBM to approximate the class-conditional distribution.

2 TabEBM

Notation. We address classification problems with C' classes, denoted by YV = {1,2,...,C}. Let
{(x@,y;)}¥| represent a dataset of N samples, each being a D-dimensional vector x() € R, with
a corresponding label y; € ). For each class ¢ € ), we define X, = {x(?) | y; = ¢} as the subset of
samples labelled with class c. Let fy(-) denote a classifier. The expression fy(x)[y] represents the
(unnormalised) logit assigned to the class y for the input x.

2.1 Preliminaries on Energy-Based Models

An Energy-Based Model (EBM) [35] defines a probability density function pg(x) through an energy
function F(x). Specifically, the model posits that p(x) oc e~ ), where F(x) represents the
unnormalised negative log-density of the input x. An important observation is that energy-based
models can utilise the same model architectures as standard classification models [23]. Typically, the
logits fg(x)[y] are reinterpreted to define an energy-based model for the joint distribution p(x, y).
Furthermore, the energy function for the marginal distribution p(x) is obtained by marginalising over
p(x,y), resulting in £(x) = —LogSumExp,, fo(x)[y'].

2.2 Distinct Class-Specific Energy-Based Models

TabEBM is a class-conditional generative model p(x|y) implemented using a set of EBMs,
{F1(x), E2(x), ..., Ec(x)}. Our approach assumes that the class-conditional density p(x|y = ¢) is
best modelled using its class-specific data X,. Thus, for each class ¢, we construct a class-specific
EBM, E.(x), using only the data from that class, X, such that p(x|y = ¢) x exp(—FE.(x)).



Model training (‘‘Class-specific EBMs” in Figure 1). Building TabEBM requires training multiple
classifiers on a novel task and reinterpreting their logits. For each class ¢, we propose a surrogate
binary classification task to determine if a sample belongs to class ¢ by comparing &, against
a set of surrogate negative samples X;°®. Specifically, we generate the negative samples at the
corners of a hypercube in R”. For each dimension d, the coordinates of a negative sample are either
agisog or —ag o, where oy is a fixed constant and o4 is the standard deviation of dimension
d. In Appendix E.1, we provide a 2D example along with several ablations, demonstrating that the
placement of negative samples is critical for achieving an accurate energy function.

We create the combined dataset D, for the surrogate binary classification task by labelling X as
1 and X7 as 0: D, = (X, U AXZ®, {1}1¥l U {0}1¥e*). We then train a binary classifier f§(-) on
D. and use it to construct the class-specific energy E.(x) for class c. To do this, we reinterpret the
logits { f§(x)[0], f§(x)[1]} of the trained binary classifier as components of an approximated joint
distribution for the surrogate binary task. Next, we approximate p.(x) by marginalisation:
pc(X) = pc(X, O) + pc(X7 1)
1 5(x)[0 S (x)[1
= exp (log (exp(£5(x)[0]) + exp(f§(x)[1]))) (Z is the normalisation constant)

Z
— E.(x) = —log (exp(fg(x)[0]) + exp(fg(x)[1])) (TabEBM class-specific energy) (1)

For the binary classifier f§(-) in the surrogate binary classification, we use TabPFN [27], a pre-trained
tabular in-context model. In this context, “training” the TabPFN classifier is analogous to the
K Nearest Neighbour algorithm, which simply performs inference based on the training data.

Data generation (‘“‘Class-specific sampling” in Figure 1). TabEBM generates data in two steps.
First, we sample a class ¢ from the empirical distribution ¢ ~ p(y). Then, we sample a data point
x from the conditional distribution x ~ p(x|y = ¢) approximated by the class-specific energy-based
model F.(x), as outlined in Algorithm 1 (see Appendix B). We employ Stochastic Gradient Langevin
Dynamics (SGLD) [67] to perform this sampling. SGLD is an efficient method for high-dimensional
data, combining stochastic gradient descent with Langevin dynamics. The update rule for SGLD
at each iteration is x;11 = x; — 4 VE(X;) + €, where ¢; ~ N(0,7nI) is a Gaussian noise that
introduces randomness into the sampling process, enhancing the exploration of the distribution.
Appendix E.2 further shows that TabEBM is stable to hyperparameters for the sampling process.

3 Experiments: Can TabEBM improve predictors via data augmentation?

Datasets. We utilise eight open-source tabular datasets from OpenML [5] — across five domains:
Medicine, Chemistry, Engineering, Language and Economics. We further vary the degrees of data
availability (i.e., Vieq1), leading up to 33 test cases. Appendix C.1 provides detailed descriptions.

Benchmark generators. We compare TabEBM against eight existing tabular data generation methods
of eight different categories: SMOTE [11], TVAE [68], CTGAN [68], NFLOW [18], TabDDPM [34],
ARF [66], GOGGLE [39] and TabPFGen [40]. Furthermore, we also include a ‘“Baseline” model,
where only real data is used to train downstream predictors.

Downstream predictors. We select six representative downstream predictors, including three
standard baselines: Logistic Regression (LR) [13], KNN [21] and MLP [22]; two tree-based methods:
Random Forest (RF) [8] and XGBoost [12]; and a PFN method: TabPFN [27].

Data augmentation setup. For each dataset of N samples, we first split it into stratified train and
test sets. Then we subsample the full train set to simulate different levels of data availability and split
each subset into stratified training and validation sets with a ratio of 4:1. Given Ny, real samples,
we first train generators on the real training data and then generate Ny, synthetic samples. For
training the downstream predictors, we expand the real training split by adding the synthetic samples.
The optimal Vgy, remains an open problem for tabular data [43, 57, 25]. To provide a head-to-head
comparison of the effect of data augmentation across subsample sizes, we perform data augmentation
with a large synthetic set (Ngy, = 500) across all test cases, and the synthetic data has the same
class distribution as the real training data. We provide detailed descriptions of data splitting in
Appendix C.2 and preprocessing in Appendix C.3.

Evaluation metric. We evaluate the effect of using synthetic data for data augmentation with
the balanced accuracy of downstream predictors. Typically, higher accuracy improvements (i.e.,
ACCqenerator — ACCpaseline > 0) demonstrate better utility of synthetic data for data augmentation.



Table 1: Classification accuracy (%) aggregated over six downstream predictors, comparing data
augmentation on five real-world tabular datasets with varied real data availability (full results of eight
datasets are in Appendix E.3). We report the mean + std balanced accuracy. We bold the highest
accuracy for each test case. Our method, TabEBM, consistently outperforms training on real data
alone, and achieves the best overall performance against Baseline and benchmark generators.

Datasets Ny (RSSSZ::;‘; SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen | TabEBM
20| 28.141653 N/A 20184145 22001343 2030125 22.121530 24.821055 22401005 33.254is0; | 33.84240n

50| 507241053 | 54.524850 39.544s510 36324717 35374800 35.011i1178 41994504 37.5341470 54454706 | 55.910641

protein 100 | 67.831 1172 | 73251748 59284720 57.644995s 52574955 56.37496s 57.014gs6 51.6911668 71.5349387 |73.311677
200 | 81.66410.18 | 85.654624 76424771 T4.884820 721041004 75864030 74.074874 73571674 84.951747 | 8614155

500 | 93494508 | 94.734367 92244373 91484443 90441554 90.621563 91.791453 91314520 94.874370 | 95181310

20 | 28.30+12.00 N/A 21324406 18.194390 17301303 15354326 21.754276 16.704201  36.721730 | 37.13 1601

50| 53.694504 | 55.514743 37964448 35.09i746 31.941599 359911306 40.324670 33.5611402 55.1111066 | 56.5717.12

fourier 100 | 63.701676 | 64.104680 50.461561 49264915 44.581g40 52.79+1004 S1.134635 41.9311560 63.86+776 | 65.211642
200 | 70991488 | 71431447 62174720 62921787 59.151833 68.054601 62.531697 564411013 71.811s535 | 72.364377

500 | 77724036 | 77511260 73294497 74.611480 71741654 77.0d1368 74311440 70.61u601  77.151257 | 78204087

At most 10 classes

o 50| 17.77 1615 N/A 12304250 12114336 10144087 10.554244 11994027 15464354 N/A | 23.98.573
E energy 100 | 25.944 4356 N/A 17784475 18.601609 18.561630 18841623 1991452 17.654588 N/A | 31.24.553
% 200 | 35991592 N/A 27.6541112 27771055 283741082 29.5041033  29.571018 289541040 N/A | 41.28.7 66
2 collins 100 | 11.4445797 N/A 8.381 152 8.11+1.00 7931140 12671216 7.5311100 9.21423s N/A | 13.07 1251
g 200 | 15.744373 | 17454346 12.084305 11.374120 107441720 15394337 10714137 14304342 N/A | 17.034320
=
N 50| 72.4041307 | 764011050 55.324620 54.8011297 55.3911065 62274801 55.6511058 62.9441206 N/A | 7890796
S texture 100 | 824241038 | 84354967 60.004721 694911003 71781906 76.254740 70931971 76341955 N/A | 86.01.7 36
200 | 8754176 | 89291620 78371603 82.4di71s 81941630 84.674470 83.29:61 82.531700 N/A | 89.77 57
500 | 92964407 | 93.694383 90.094356 91.484350 90.504271 91.534329 91.764308 91.241356 N/A | 93.76.4364
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Figure 2: Mean normalised balanced accuracy improvement (%) across different sample sizes
(Left) and across datasets with varying numbers of classes (Right). Positive values indicate that
the generator improves downstream classification performance. TabEBM generally outperforms
benchmark generators across varying sample sizes and number of classes.

> Finding 1: TabEBM effectively improves downstream performance across sample sizes, espe-
cially for very low-sample-size regimes. Table 1 and Figure 2 (Left) show that TabEBM is the
only generator that consistently improves downstream performance across sample sizes.

> Finding 2: TabEBM effectively improves downstream performance across the number of classes,
especially for more than ten classes. Figure 2 (Right) shows that TabEBM consistently outperforms
the Baseline with notable improvements when the number of classes increases.

> Finding 3: TabEBM is computationally efficient. In Appendix E.4, we further discuss the
trade-off between accuracy and the time needed for generating stratified synthetic data. The results
show that TabEBM is practical, as it achieves higher downstream accuracy with lower time costs.

Discussion. We attribute the performance degradation in benchmark generators to their reliance on a
single shared model to approximate all class-conditional densities. For instance, TabPFGen [40] lever-
ages pre-trained Prior-Data Fitted Networks (PFNs), however, it shares a generator across all classes,
which can lead to inaccurate density estimates (see examples in Appendix D). In contrast, TabEBM
focuses on approximating one class at a time, free from the noise of other classes. Appendix A
provides detailed discussions on the rationales of TabEBM’s model design.

4 Conclusion

We introduce TabEBM, a novel tabular data augmentation method that creates class-specific EBM
generators, learning the marginal distribution for each class separately. We also provide one of
the first comprehensive analyses of tabular data augmentation across various dataset sizes. Our
results demonstrate that TabEBM improves downstream performance through data augmentation on
real-world datasets, outperforming other benchmark generators.
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Augmenting Small-size Tabular Data with
Class-Specific Energy-Based Models
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A Extended Related Work & Discussion

Section 3 shows that TabEBM efficiently generates high-quality data that can effectively improve
the downstream performance via data augmentation. In Table 2, we further provide a summary
of tabular data generative models analysed from three important perspectives: (i) Training: the
type of distribution that the generators learn (crucial for preserving the original training label
distribution), and the training costs associated with learning; (ii) Generation: do the generators
employ class-specific models (reflecting their capability to capture unique features essential for
label-invariant generation), and do models support stratified generation (crucial for effective data
augmentation); (iii) Practicability: the scalability of the generators with respect to the number
of classes (a common requirement in real-world multi-class tasks), and consistent downstream
performance improvement across different class sizes.

Generative Models for Tabular Data. The common paradigm for tabular data generation is to
adapt Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) [68, 50]. For
instance, TableGAN employs a convolutional neural network to optimise the label quality [50], and
TVAE is introduced in [68] as a variant of VAE for tabular data. However, these methods learn the joint
distribution and thus cannot preserve the stratification of the original data (Appendix D). CTGAN [68]
refines the generation to be class-conditional. The recent ARF [66] is an adversarial variant of random
forest for density estimation, and GOGGLE [39] enhances VAE by learning relational structure with a
Graph Neural Network (GNN). Some recent work focuses on generation with denoising diffusion mod-
els [34, 69, 32, 36]. For instance, TabDDPM [34] demonstrates that diffusion models can approximate
typical distributions of tabular data. Although these class-conditional models can preserve the label
distribution, they struggle to outperform Baseline and standard SMOTE in data augmentation [57, 40].

We attribute the performance degradation in current class-conditional models to their reliance on a
single shared model to approximate all class-conditional densities. For instance, another promising
generative approach uses pre-trained models like Prior-Data Fitted Networks (PFNs), and the recent
TabPFGen [40] adapts such models into one shared class-conditional generator. However, TabPFGen’s
shared generator can lead to inaccurate density estimates, particularly in high-noise and class-
imbalance situations (see examples in Appendix D). As noise increases, TabPFGen'’s inferred densities
fluctuate significantly and diverge from the true data distributions. In contrast, TabEBM uses class-
specific EBMs to model each class’s marginal distributions, and the results in Appendix D reveal that
our design choice reduces the impact of noise and data imbalance. TabEBM focuses on approximating
and generating for one class at a time, remaining unaffected by noise from other classes. Overall, our
results demonstrate that TabEBM consistently improves performance across different datasets and
sample sizes, outperforming TabPFGen. Moreover, TabPFGen is limited in usability (e.g., it supports
only up to ten classes), while TabEBM scales to any number of classes.

In a broader context, some recent work attempts to adapt Large Language Models (LLMs) for tabular
data generation [19, 57, 7]. However, data contamination is an inherent issue with such LLM-based
models [15, 30, 14, 41]. As the pre-training data is not typically open-source, these models can have
unfair advantages in downstream tasks (i.e., the full real dataset, including the real test data, may
have been used for pre-training). Therefore, in this paper, we focus on models without support from
LLMs, thus avoiding potential biases from data contamination.

Table 2: Comparison of the properties between TabEBM and prior tabular generative methods.
TabEBM has novel design rationales of training-free class-specific models, and TabEBM is highly
practicable with wide applicability and consistent accuracy improvement.

| Training | Generation | Practicability

Methods Category Learned .. . Class-specific ~ Stratified | Unlimited ACC improve ACC improve

distribution Training-free models generation classes (< 10 classes) (> 10 classes)
SMOTE [11] Interpolation N/A v N/A v 4 X X
TVAE [68] VAE p(x,y) X X X v X X
CTGAN [68] GAN p(x | y) X X v 4 X X
NFLOW [18] Normal. Flows |  p(x,y) X X X v X X
TabDDPM [34] Diffusion p(x | y) X X 4 v X X
AREF [66] Random Forest p(x,9) X X X 4 X X
GOGGLE [39] GNN (x| ) X X v v X X
TabPFGen [40] PFN p(x | ) v X v X 4 X
TabEBM (Ours) PEN | n(x|y) v 4 v | v v v
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Data Augmentation (DA) for Tabular Data. DA is an omnipresent technique in computer vision
and natural language processing [65, 59, 58, 48, 20, 1]. However, DA for tabular data remains
underexplored, and existing methods often perform poorly in real-world tasks, sometimes even
reducing performance [43]. Recent studies show that using the same transformations across all classes
leads to varied performance impacts [2, 33], indicating that data augmentation effects are class-specific
and suggesting that different classes may require distinct augmentations. Given the lack of symmetries
in tabular data, we believe this class-dependent effect is even more pronounced. Therefore, we propose
TabEBM as a class-specific generative model to produce tailored augmentations for each class.

Prior-fitted Networks (PFNs) for Tabular Data. Recent work proposes to approximate the posterior
predictive distribution with transformers [47, 27, 49, 62, 16]. PFNs can be adapted for various pur-
poses by pre-training the transformer with corresponding “prior data”, and then it can make in-context
predictions with unseen downstream data. For instance, TabPFN is a variant that is pre-trained on a
prior designed for tabular data [27]. We note that prior data is different to synthetic data in this paper.
Specifically, prior data refers to manually crafted fake data (e.g., y = 2x) with no real-world semantics.
In contrast, synthetic data from generators is expected to have the same semantics as real data. In-
spired by TabPFN’s success in small-size classification tasks, TabEBM converts TabPFN into multiple
EBMs that learn the marginal distribution for each class. The training-free nature of TabPFN enables
TabEBM to generate high-quality tabular data without introducing extra training costs. Additionally,
our class-specific design lets TabEBM surpass TabPFN’s limits and scale to more than ten classes.

Limitations and Future Work. TabEBM is a general method that relies on an underlying binary
classifier, and as such, its strengths and weaknesses are directly tied to this classifier. We used
TabPFN because it is a well-established open-source pre-trained model for tabular data. Therefore,
TabEBM inherits some of TabPFN’s limitations, particularly in scaling to a larger number of
features. TabEBM can handle datasets with over 1000 samples, overcoming TabPFN’s limitation,
as it processes one class at a time. Our results also show that TabEBM can handle categorical
data by encoding categorical features with leave-one-out target statistics. We stress that TabEBM
is compatible with any classifier that can be adapted into EBMs, as described in Section 2. As
foundational models for tabular data evolve [64], new models capable of handling more features
and samples are expected. Integrating them into TabEBM will enhance its ability to manage
high-dimensional datasets, increasing its versatility and utility.

B Pseudocode for TabEBM Sampling

Algorithm 1 TabEBM sampling from Class-Specific EBM FE.(x)

Input: Training data X for class c, step size asep, Noise scale unoise, initial perturbation o, number of steps 1"
Qutput: Set of synthetic samples for class ¢
Initialise the surrogate binary classification task and train the model

1: Assign new labels to the samples X, from class ¢, setting them to class 1

2: Generate a set of surrogate negative samples X7 and assign them class 0 labels

3: Train a binary classifier f§ on the dataset D, = (X, U X {1}1¥el U {0}/

Synthesise samples using Stochastic Gradient Langevin Dynamics (SGLD)
- Initialise synthetic data points x"" by sampling from N (Xe, 02, 1)
: for each iterationt = 0,1,...,7 — 1 do

Eo(x™) = — log (exp(£5 ("™")[0]) + exp(f5 (<™)[1]))

synth __ _ synth synth 2
Xt+1 =Xy - aSlePVEC(Xt ) + N(07 anoiseI)
: end for
: return Xs%"th as the generated synthetic data for class ¢

C Reproducibility

C.1 Datasets

All eight datasets are publicly available on OpenML [5], and their details are listed in Table 3. To
ensure consistent stratified data-splitting across all datasets, we remove classes with fewer than 10 sam-
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ples. For example, the original “energy” dataset contains 14 classes with fewer than 10 samples, which
could result in a validation set lacking samples from these classes, leading to unstratified data splitting.

Table 3: Details of the eight real-world tabular datasets.

# Samples per class  # Samples per class

Not evaluated in

Dataset OpenML ID # Samples (IN)  # Features (D) # Classes N/D

TabPEN [27] (Min) (Max)
At most 10 classes
protein 40966 v 1,080 77 8 14.03 105 150
fourier 14 X 2,000 76 10 2632 200 200
biodeg 1494 X 1,055 41 2 2573 356 699
steel 1504 X 1,941 33 2 58.82 673 1,268
stock 841 v 950 9 2 105.56 462 488
More than 10 classes
energy 1472 v 698 9 23 77.56 10 74
collins 40971 v 970 19 26 51.05 17 80
texture 40499 v 5,500 40 11 137.5 500 500
C.2 Data Splitting
Dataset
N
I
) 1
Oracle set (i.e., full train set) fest se]tv
Noracle = N = Ntest Ntest = min (E' 500)
Subsets

Nyeal € [20,50,100,200,500]

l—l—l

Training set Validation set Downstream A
" Predictions
Nyeq X 0.2 predictors

Nrea] X 0.8
|

v
[ Generator ]

l

Synthetic data
500

Figure 3: Data splitting strategies for data augmentation for all datasets.

C.3 Data Preprocessing

Following the procedures presented in prior work [45, 24], we perform preprocessing in two steps.
We first compute the required statistics with training data and then transform it. Firstly, we impute the
missing values with the mean value for numerical features and the most mode value for categorical
features. Secondly, we convert the categorical features into numerical features equal to Leave-one-out
Target Statistic [53, 46]. Next, we perform Z-score normalisation for each feature. Specifically,
we compute each feature’s mean and standard deviation in the training data and then transform the
training samples to have a mean of zero and a variance of one for each feature. Finally, we apply the
same transformation to the validation and test data before conducting evaluations.

C.4 Software and Computing Resources

Software implementation. (i) For generators: We implemented TabEBM using PyTorch 1.13 [51],
an open-source deep learning library with a BSD licence. We implemented SMOTE with Imbalanced-
learn [37], an open-source Python library for imbalanced datasets with an MIT licence. For other
benchmark generators, we used their open-source implementations in Synthcity [? ], a library for
generating and evaluating synthetic tabular data with an Apache-2.0 license. (ii) For downstream
predictors: We implemented TabPFN with its open-source implementation (https://github.com/
automl/TabPFN). We implemented the other five downstream predictors (i.e., Logistic Regression,
KNN, MLP, Random Forest and XGBoost) with their open-source implementation in scikit-learn [52],
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an open-source Python library under the 3-Clause BSD license. (iii) For result analysis and visual-
isation: All numerical plots and graphics have been generated using Matplotlib 3.7 [28], a Python-
based plotting library with a BSD licence. The model architecture was generated using draw.io
(https://github.com/jgraph/drawio), a free drawing software under Apache License 2.0.

We ensure the consistency and reproducibility of experimental results by implementing a uniform
pipeline using PyTorch Lightning, an open-source library under an Apache-2.0 licence. We further
fixed the random seeds for data loading and evaluation throughout the training and evaluation process.
This ensured that TabEBM and all benchmark models were trained and evaluated on the same set of
samples. We also attach our code to this submission and will release it under the MIT licence upon
publication. The experimental environment settings, including library dependencies, are specified in
the associated code for reference and reproduction purposes.

Computing Resources. We trained 140,000 models for evaluations (including over 35,000 of gen-
erators and over 10,500 for downstream predictors). All our experiments are run on a single machine
from an internal cluster with a GPU Nvidia Quadro RTX 8000 with 48GB memory and an Intel(R)
Xeon(R) Gold 5218 CPU with 16 cores (at 2.30GHz). The operating system was Ubuntu 20.4.4 LTS.

C.5 Implementation of Generators

TabEBM. In all our experiments, the surrogate binary classifier in TabEBM is a
pretrained in-context model, TabPFN [27], using the official model weights released
by the authors (https://github.com/automl/TabPFN/raw/main/tabpfn/models_diff/
prior_diff_real_checkpoint_n_O_epoch_42.cpkt). We use TabPFN with three ensembles.
We use four surrogate negative samples, Xc %, positioned at gy = 5 standard deviations from zero,
in random corners of a hypercube in R? (as explained in Section 2.2), distant from any real data. In

Appendix E.1, we show that TabEBM is robust to the distribution of the negative samples.

We use SGLD [67] for sampling from TabEBM, where the starting points x/"" are initialised

by adding Gaussian noise with zero mean and standard deviation og,¢ = 0.01 to a randomly
selected sample of the specific class, i.e., X" ~ N (X,, 52,,I). For SGLD, we used the following
parameters: step size agep = 0.1, noise scale anoise = 0.01 and number of steps T' = 200. We
found TabEBM to be robust to the SGLD settings (see Appendix E.2). We will release it as a public

open-source library available after publication.

TabPFGen. We re-implemented TabPFGen [40] by closely following the original paper since no
official implementation is available. As recommended in [40], the starting points are initialized by
adding Gaussian noise with zero mean and standard deviation of 0.01 to the training points.

SMOTE. We use the open-source implementation of SMOTE from Imbalanced-learn [37], and
the number neighbours k is set within the range of {1,3,5}. When applicable, we always set the
maximum value for nearest neighbours (i.e., £ = 5). However, very low-sample-size datasets may
not contain sufficient samples for large k. For instance, the “fourier” dataset (/Ve, = 20) only has
two samples per class. We set k = 1 to generate synthetic data with SMOTE in these cases.

For the other six benchmark generators, we use their open-source implementations in Synthcity [54].
Following prior studies [69, 63, 57, 40], we use the default settings for all generators.

C.6 Implementation of Downstream Predictors

We implemented TabPFN with its official implementation [27] and the other five downstream
predictors with the scikit-learn library [52]. Following prior studies [63, 57], we use the default
settings for all downstream predictors.
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D Limitations of Existing Generative Methods

We showcase three limitations of current generative models: (1) Figure 4 shows that models approxi-
mating the joint distribution p(x, y) may fail to preserve the stratification of the real data and even fail
to generate samples from specific classes. (2) Figure 5 evaluates the approximated class-conditional
distributions p(x | y) on data with increasing noise levels, and (3) Figure 6 evaluates the approximated
class-conditional distributions p(x | ) on data with increasing class imbalance.

Real Data

TVAE
204

—
v
L

Class Distribution (%)
5

3]
L

123456 7 8 910111213 141516 17 18 19 20 21 22 23

Class ID
Figure 4: Comparison of class distribution between real data and synthetic data from TVAE. We first
train TVAE on the “energy-efficiency” dataset and then randomly generate 10,000 samples with it.
We highlight the classes where no synthetic samples are generated. TVAE fails to generate samples
for 4 of 23 classes, showing the impracticability to preserve stratification by generative methods that
learn joint distribution p(x, ).
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Real data TabPFGen inferred p(x|y=0) TabPFGen inferred p(x|y=1)  TabEBM (ours) inferred p(x]y=0) TabEBM (ours) inferred p(x|y=1)

(a) Noise level 0.1

TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=1)

(b) Noise level 0.25

TabPFGen inferred p(x]y=1) TabEBM (ours) inferred p(x]y=0) TabEBM (ours) inferred p(x|y=1)

(c) Noise level 0.5

TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=1)

(d) Noise level 1

TabPFGen inferred p(x|y=1)

(e) Noise level 2

Figure 5: Evaluating the approximated class-conditional distributions on data with increasing noise
levels. Darker blue indicates a higher assigned probability. TabPFGen uses a single shared energy-
based model to infer the class-conditional distribution p(x|y). As noise increases, TabPFGen’s
probability assignments vary significantly and end up assigning very high probabilities that are far
from the real data. For instance, the areas of assigned probability for p(x|y = 1) completely flip
when noise increases from 0.5 to 1. In contrast, our TabEBM uses class-specific energy models,
resulting in robust inferred conditionals. TabEBM performs well even under very high noise (see
p(x]y = 0) for noise level 2), while TabPFGen struggles.
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Real data

TabPFGen inferred p(x]y=0)

TabPFGen inferred p(x]y=1)  TabEBM (ours) inferred p(x|y=0) TabEBM (ours) inferred p(x|y=1)

o+

TabPFGen inferred p(x|y=0)

(a) Class ratio 150:150

TabEBM (ours) inferred p(x]y=0)

TabPFGen inferred p(x|y=1)

TabPFGen inferred p(x]y=0)

(b) Class ratio 50:250

TabEBM (ours) inferred p(x]y=0)

TabEBM (ours) inferred p(x|y=1)

TabPFGen inferred p(x|y=1)

L8 o0,

Real data

TabPFGen inferred p(x]y=0)

(c) Class ratio 25:275

TabPFGen inferred p(x|y=1)

TabEBM (ours) inferred p(x|y=0)

TabEBM (ours) inferred p(x|y=1)

"

(d) Class ratio 10:290

Figure 6: Evaluating the approximated class-conditional distributions on a toy dataset of 300 samples
with varying class imbalances. The two clusters maintain their positions. Darker blue indicates
a higher assigned probability. TabPFGen uses a single shared energy-based model to infer the
class-conditional distribution p(x|y). As class imbalance increases, TabPFGen starts assigning high
probability in areas far from the real data, for instance, in the case of p(x|y = 1) for class ratio
10:290. In contrast, our TabEBM fits class-specific energy models only on the class-wise data
X, = {x | y; = c}. This results in very robust inferred conditional distributions even under heavy
class imbalance (e.g., see that p(x|y = 1) remains relatively constant).

16



E Extended Experimental Results

E.1 Ablations on the distribution of the surrogate negative samples

E.1.1 Example of negative samples in 2D plane

O real samples X,
Y @ negative samples 479 ©

Figure 7: The class-specific energy function E.(x) from the surrogate binary task, where the blue
region represents low energy (i.e., high data density). Placing the negative samples in a hypercube
distant from the data results in an accurate energy function.

E.1.2 Ablations on placing the negative samples

(A) TabEBM with distant hypercube corners (B) TabEBM with 20% of real samples (C) TabEBM with half the real samples
Real data for one class labeled as "negative samples" (as proposed) labeled as "negative samples" labeled as "negative samples"

- d
© real samples X,
® negative samples x7°9

o real samples X,
@ negative samples x7%9

© real samples X,
® negative samples x7%¢

Figure 8: TabEBM energy E.(z) for different choices of negative samples. The blue region represents
low energy, indicating high data density. In (A), TabEBM, with the proposed negative samples placed
in a hypercube far from the data, infers an accurate energy surface, resulting in generated data close
to the real points. In (B), labelling a random subset of the real data as negative samples leads to a
completely inaccurate energy surface. In (C), labelling half of the real points as negative samples
reduces density near the decision boundary, as TabPFN assigns low maximal logit due to the high
uncertainty. In conclusion, placing negative samples far from the real data results in a robust energy
surface.

Figure 8 shows TabEBM’s energy E.(x) when varying the selection of the negative samples. TAbEBM
infers an accurate energy surface with distant negative samples, and the energy surface becomes
inaccurate when negative samples resemble real samples. This occurs because TabPFN is uncertain
when points of different classes are close, affecting its logits magnitude and making them unsuitable
for density estimation.
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E.1.3 Varying the number of negative samples
We evaluate the impact of the ratio | X;°®| : | X,.| between the negative samples X © and the real sam-
ples | X.|. We vary | X7°¢| while keeping | X, | fixed, simulating both balanced and highly imbalanced
scenarios. The negative samples are placed in random corners of the hypercube (as described in
Section 2), at five standard deviations in each direction (i.e., agfsgt = 5). To ensure reliable outcomes,
we maintained a consistent ratio across all classes, keeping the same proportion of negative samples

for each class.

Table 4 shows the results across six datasets with N, = 100 real samples, demonstrating that
TabEBM is robust to imbalances in the surrogate binary tasks. The column with | X;“®| = 4 represents
the TabEBM results from the main paper, where four negative samples were placed in the corners (as
described in Section 2). There are negligible differences in performance, and TabEBM consistently
outperforms both the baseline and other generators (as shown in Table 1).

Table 4: Evaluating the impact of varying the ratio |X:%| : |X.|. We show the test classification
accuracy performance (%) of TabEBM on data augmentation averaged over six datasets and ten
repeats. TabEBM shows consistent performance and outperforms the baseline, regardless of the
number of negative samples.

Baseline

TabEBM (Real data)
Ratio | X" : | X,| 0.1 0.2 0.5 1 Fixed |X}| = 4 -
biodeg 76.59i3'95 76.54i3'95 76.47i4'05 76.81i3'58 76.45i3‘03 76.69i2‘70
steel 92~71i7.46 92.60i7'45 92-79i7.50 92.63i7'59 92~71i7.57 86.87i12‘4
stock 90.46i3'49 90-41i3.65 90-52i3.52 90-31i3.63 90.3613,14 89~07i3,71
energy 31-20i6.22 31-20i6.22 30893583 30-90i6.09 31~24i5.53 25~94’i4.86
collins 13.06i2_gg 1302:!:2.85 13-05:I:2.89 12-97:I:2.79 13-07j:2.51 11-44j:2.77
texture 85914690 85914690 8594.676¢ 86.2641672 86.011736 82.42 11038
Average accuracy 64.99 64.95 64.94 64.98 64.97 62.07

E.1.4 Varying the distance of the negative samples

We assess the effect of varying the distance of negative samples. We use TabEBM with four negative
samples positioned randomly at the corners of the hypercube, as outlined in Section 2 (this corresponds
to the experimental setup from the main paper). The distance of the negative samples, denoted as a5,
is varied. Table 5 demonstrates that TabEBM remains generally robust to changes in this distance,
with only small performance variations across different datasets. Importantly, using TabEBM for data
augmentation consistently improves performance by approximately 3% compared to the Baseline,

regardless of the distance used.

Table 5: Evaluating the impact of varying the distance of the negative samples a5 across various
datasets. We show the test classification accuracy performance (%) of TabEBM on data augmentation
averaged over six datasets and ten repeats. TabEBM is robust, and optional tuning of the negative

samples could slightly improve performance.

Baseline

TabEBM (Real data)
Per—dlmenm‘on distance oy 01 0.2 05 1 2 5 )
of the negative samples
biOng 76.72i3‘33 76.62i3.40 77-12i2A60 76.85i3.14 76.50i3‘93 76-45i3.08 76.69i2,70
steel 93~97i5.76 93'46i6.24 93-00i6,92 92.60i7.3] 92.68i7_38 92.71 +7.57 86.87i12,4
stock 9O~42i3.46 90.293:3_51 90.56;{:3_46 90.38i3_(,4 90~43i3.56 90.36;{:3_]4 89.07i3_7|
energy 31.734621 31421608 31.861612 32.5345096 31.651606 31244553 25.941486
collins 13~03i2,59 12-92i2.60 12~97i2A69 13‘03i2,g4 13.08i2‘93 13-07i2.51 11~44i2.77
texture 85.624741 85584749 85.5047¢5 85.054571 85204795 86.014735 82.4241038
Average accuracy 65.25 65.05 65.17 65.07 64.92 64.97 62.07
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E.2 Ablations on the sensitivity to the hyperparameters of SGLD sampling

We vary two key hyperparameters of SGLD on the “biodeg” binary dataset with N, = 100: the
step size ouep and the noise scale yoise. Table 6 shows that TabEBM remains stable with respect
to these hyperparameters. Note that smaller values of a5 are expected to perform better because
SGLD sampling adds noise at each iteration (see Line 7 in Algorithm 1), thus larger values of cpoise
will hinder convergence of the SGLD sampler.

Table 6: Test classification accuracy (%) of TabEBM (averaged over six downstream predictors)
with different SGLD settings. Increasing anise (added at each SGLD step) is expected to degrade
performance, as it causes the sampling to diverge further from the real data.

9 ‘ Qlstep

g | 01 ] 03 | 05 10
0.01 | 76.45 | 77.09 | 77.04 | 76.58
0.02 | 76.86 | 76.96 | 76.77 | 76.26
0.05 | 75.93 | 75.89 | 75.94 | 75.70

E.3 Results on data augmentation
E.3.1 Aggregated results on eight OpenML datasets.

Table 7: Classification accuracy (%) aggregated over six downstream predictors, comparing data
augmentation on eight real-world tabular datasets with varied real data availability. We report the
mean = std balanced accuracy and average accuracy rank across datasets. A higher rank implies
higher accuracy. Note that “N/A” denotes that a specific generator was not applicable, and the rank is
computed with the mean balanced accuracy of other methods. We bold the highest accuracy for each
dataset of different sample size. Our method, TabEBM, consistently outperforms training on real data

alone, and achieves the best overall performance against Baseline and benchmark generators.

Baseline

Datasets (Real data)

Nreal

SMOTE

TVAE

CTGAN

NFLOW

TabDDPM

ARF

GOGGLE

TabPFGen

TabEBM

20| 28.14.46383

50 | 50.72+10.53
100 | 67.83111.72
200 | 81.6610.18

500 | 93.49.45.8

protein

N/A
54.524¢59
73251748
85.6516.24
94.73 1367

21184148
39.5445.19
59.28.4720
76421771
92.241373

22.00+3.43
36.3247.17
57.6419.95
74.88 1820
91481443

21.304084
35.3745800
52.57 1955
72.10410.04
90.44 1554

22124530
351141178
56.37 1964
75.86+9.30
90.621563

24.82 1585
41994524
57.01 4556
T4.07 1574
91794453

22.404978
375311472
51.69 11668

73.57 1674

91314520

33.251501
54451796
71.531087
84954747
94.871370

33.84.492
55914641
73311677
86.145.50
95.18.4310

20 | 28.30+12.09
50| 53.69.15.04
100 | 63.7046.76
200 | 70.99.1485
500 | 77.724236

fourier

N/A
55511743
64.1046.89
71431447
77.51 4260

21.3244.06
37.96+448
50.461561
62.17 1729
73.294497

18.1943.00
35.09+7.46
49.26.19,15
62.921 747
74.611489

17304303
31.94 1599
44.58 1540
59.154533
71.74 1654

15.3543.26
35.99113.06
52.79+10.04

68.0516.91

77.04 1364

21.751276
40.324670
51134635
62.53 1697
74311440

16.7042.9;
33.5614.02
41.93 41560
56.44110.13

70.61 1601

36.7247.30
55.11 11066
63.86-776
71.81535
77155257

3713 601
56.5717.12
6521164
72.36.1377
78.20.1287

20| 66.20426
50| 72.66+398
100 | 76.69-,70
200 | 80.011266
500 | 82.631743

biodeg

At most 10 classes

68.5911.17
72.8043.08
76311242
79.67 1256
82.851, 03

66.77 1264
7131407
75.3842.06
78114268
82.131 104

58.031247
67.99+363
74.821289
78194178
82.424 158

59.374174
62404428
69.50+4.59
75.0544.68
81114323

52724238
60.72410.11
68.28-19.54
74.43 1500
79191660

61.17 1200
71624243
74424538
77.97 1232
81.924528

61.391639
66.68 1600
71.68137>
77134301
81.244530

68.9917 54
73294353
76.22153
79.76 1263
82.351921

69.79.15 15
73.78 1342
76.4513.08
80.11.1, 33
82294015

20| 57.51+458
50| 75.06410.43
100 | 86.87 11249
200 | 92904914
500 | 97.524376

steel

58.324327
65.6314.00
74.61 1599
81.97 1412
92441446

57.99+3.06
64.18.4 395
70.124576
78.73 4506
92.47 1366

56.61+170
63.706.10
69.89.1558
78.3616.98
92.42 4476

53.894173
58.90639
65.67 +9.10
75901957
88.204336

55.74 160
65.85 11484
76.01117.54
85.4511503

96.34 1467

54.24.45 08
61.724339
67.3315.5
78.65+6.70
90.41 4535

53.044536
56.724347
60.56.1537
68.204530
84.23 110,90

63.21 4556
78.67 11179
90.58.1950
95.5645385
98.14 41567

63.27 1545
80.50.567
02711757
96291464
98.47 1515

20| 78.754439
50| 86.104362
100 | 89.07137;
200 | 90.8514.39

stock

82184215
87.824341
89.99132
91751373

74114371
82.81 155,
87.551405
90.12.45.44

64.251629
79.63 4393
86.44 1440
89.44 1404

72.641501
80.1443.90
84.64.1479
88.47 1606

78.611357
86.721429
89.40.14.26
90.76.4527

69.54 1165
82484205
87324442
89.591537

76.354508
83.361523
87.44 1546
89.624629

82424517
88.144301
90.27 4333
91.5643.01

83.49.1 60
88.44. 3 14
90.36..3 51
91. 714377

50| 17.77+6.15
100 | 25.941 456
200 | 3599159

energy

N/A
N/A
N/A

12304259
17784473
27.65411.12

12.114316
18.6016.00
27.77 1055

10.141587
18.56.6.39
28.37 1052

10.5542.44
18.841623
29.50410.33

11.99.4297
19914521
29.57 1918

15464354
17.654538
289511040

N/A
N/A
N/A

23.98.1273
31.24 553
4128766

collins 00 ‘ 114477 ‘

1
200 | 15744373

N/A
17.4513 46

8381152
12.08.4303

8114100
11.37 4120

7.93 1140
10.741172

12.67 4216
15.394337

7534110
10.714137

9.214235
14.3043.42

N/A
N/A

13.07 1251
17.034320

50 | 724011307
100 | 824241038
200 | 87.54176
500 | 92.96.1407

texture

More than 10 classes

76.4010.50
84.351967
89.29.1620
93.69.1383

55324620
66.00+721
78.37+6.03
90.09+356

54.80412.97
69.49110.93
824475
91484350

55.39410.65
71.7849.06
81.94.639
90.504271

62.27 1501
76.2517.40
84.67 1479
91.534329

55.65110.58
70.93 1971
83.291632
91.76.43.08

629411206
76341955
82.5317.99
91.244356

N/A
N/A
N/A
N/A

78901796
86.01..73¢
89.77 1577
93.76.1364

Averagerank | 330410 |

3.031125

6.79+1.80

7484150

8.941070

6.391241

6941150

7764203

3154107 | 1211074
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E.3.2 Predictor-wise results on eight OpenML datasets.

Table 8: Classification accuracy (%) of LR, comparing data augmentation on eight real-world tabular
datasets with varied real data availability. We report the mean =+ std balanced accuracy and average
accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A” denotes that a
specific generator was not applicable or the downstream predictor failed to converge, and the rank is
computed with the mean balanced accuracy of other methods. We bold the highest accuracy for each
dataset of different sample size. TabEBM achieves the best overall performance against Baseline and
benchmark generators.

Datasets  Nyea (Rfssgil‘;‘ SMOTE TVAE  CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen | TabEBM
20 | 36331300 N/A 22021201 21.041476 1840145 18771381 2592443 36.61i2s3 38071105 | 38.011038

50 | 62.144377 | 61434434 37.041079 33104590 31.254421 23984275 43.641s507 54951328 63.004360 | 63.051384

protein 100 | 79974304 | 79.531337 61.074506 55444190 46371410 45.554424 56774306 67251450 80.541327 | 80.324312
200 | 91.534158 | 90.924151 77431275 71271307 66.164431 663741340 70.524517 76304370 91.694166 | 91.344177

500 | 97.861083 | 97.691080 90.771093 89.051150 85.09+199 83.584220 88.55i1s4 90.641081 97971061 | 97.8810s6

20 | 42.904530 N/A 22461555 16001470 15481370 13581430 22.04:44 15804415 4467155 | 43.0245.4
50 | 60.624164 | 58401105 33421005 31181547 28.70:374 2618135 39.04131 40.001497 60.07:014 | 60365155
fourier 100 | 67.761040 | 65841535 41361055 40321340 40324550 41444500 47.90.374 39781300 67.40115) | 67.44 1546
200 | 73031541 | 71561067 54761346 5500137 52404315 58.084352 58481205 50981565 70301001 | 72.384301
500 | 77444100 | 76425155 68281512 70.184150 68.124160 72364165 T1.541105 6948417 76524160 | 77.50.1014

20 | 71344563 | 70.101540 70.164575  58.171500 58.05:001 49.99i5gs 62611645 69471600 70.76130s | 71241485
50 | 76.354085 | 75.691305 73.631061 67441353 62871730 4944156 TAAdi,7 T1.75:s27 75.681031 | 76411003
biodeg 100 | 789114 | 78391153 77.094050 74.8940s54 68.621521 55.6lisss 75.620077 T245i331 77.924041 | 78341015
200 | 8200414 | 81421139 80.071150 78.561343 72.35i172  59.064465 78.03110s 73731200 8124117 | 8143417
500 | 83.831057 | 83741000 81.69:108r 82.12%117 78.06403 66.864s543 81471003 77981127 8343108 | 83.10.00s

20 | 63.664503 | 57.884570 60271747 57904445 53.104728 54204699 554141400 53294431 66.814074 | 67.03.1935

50 | 87914583 | 69.011660 66221363 66221577 57.054s51 57461545 64.81i46s 57204519 93.631475 | 92.204148;

steel 100 | 98.854120 | 82.675430 T4331s55 70494535 65090020 52772706 67855400 61621405 9924108 | 99211056
200 | 99.43410ss | 87.181306 82.771321 80344293 70491527 729911398 80.27473 64524216 99451069 | 99-511069

500 | 99.754029 | 96.631011 94.591008 96321150 84.154060 98.074137 95354506 70.1142s8 99.84.4020 | 99.84.1020

20 | 77.994440 | 804541308 74211636 59.20+1260 72.5047020  72.091975 69.041625 80.591350 79.541446 | 80.391342
50 | 80.684265 | 81494005 76.411395 72951517 75414600 78441440 76911236 75494531 82371320 | 82214060

At most 10 classes

SOCK 100 | 82014111 | 8386107 7985207 784712y 76.99:34 8082i35) 78.8912s 776560 83.67:ie0 | 8352417
200 | 82.18108: | 84291110 7924125 7986124 76494137  80.21a213 78874246 7691:i0s 83.75:is53 | 8417410

© 50 | 22.22455 N/A  10.114259 9.584315s 7704183 8204201 10.514128 17.104503 N/A | 21.664154
2 energy 100 | 24.00230 N/A 13801005 13014171 12145187 10794310 15.65:040 14455000 N/A | 2810519
3 200 | 29.371263 N/A 1639i76s 16561355 16782315 18.11x171 20.105045 20924279 N/A | 34382560
S olins 100 | 142816 N/A 1057170 8.69:117 9591135 133lie  8.69:150 12084156 N/A | 1401155
E 200 | 1920117 | 19395155 16031174 11641176 10975146  17.065151 11315155 17.80112 N/A | 1933155
§ 50| 86.561206 | 86.931277 55.014s77 42171636 44.631s541 60.0711001 44461663 77.6841433 N/A | 88.54 1,53
S toxure 100 | 9407ui70 | 938Thrm 65365 60.0716m 60.76ss5is  T316isu 6469i470 841341y N/A | 9438, 54
200 | 96.65112 | 96531133 75911555 80.024513 77.07i350 86.24136 85.90i275 85.9415gs N/A | 96.531 2

500 | 98.034036 | 98.054003 91.874003 92934175 90.0luis0  93.924081 94.834030 91724149 N/A | 97754042

Average rank | 2364104 | 3451135 6.52+148 7531142 9.081077  7.6linzz 6701147 6.674253 3071181 1924075
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Table 9: Classification accuracy (%) of KNN, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean =+ std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample size. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Baseline

Datasets Nieal (Real data) SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen | TabEBM
20 | 21.341903 N/A 21.784206 21.184420 21304190 22.004270 22.691386 16991345 35781446 | 35. 761437

50 | 36411433 | 55244381 35851250 36.131424 35404427 36771406 36.841405 31.024411 53.384353 | 53.494330

protein 100 | 50.17431; | 7001408 51.971084 50.614315  50.624327 50.631355 50364344 44.70422 67.994043 | 68.27 4251
200 | 65.841575 | 80431044 65.521506 66.051074 66.14154 67.501257 66521316 63.924326 79.944226 | 80.551500

500 | 85.634141 | 90921140 87.0841186 85771143 85514150 86471140 85874163 85.644104 91324009 | 9167411,

20 | 18.064330 N/A 265644090 24.881366 19.804377 19.304353 23424345 18781217 41.081¢56 | 42.781553

50 | 48.004047 | 603867 39.861373 46.8213s5p 43.564345 49.541573 42981080 28.124275 59.504199 | 58.54 1136

fourier 100 | 58.361326 | 66.96.1247 48441414 53941347 53504254 60.804428 52741315 35701240 63.884253 | 65.081247

§ 200 | 68.604255 | 71904000 59.664331 66.541275 65.164071 70224026 64521044 51.244729 70.324194 | 71.08.41 87
§ 500 | 76.90+130 | 77.641107 73.204168 76221162 75724140 78.881158 76541077 63.664249 74304151 | 75.354134
S 20 | 65.231501 | 68.994331 66.631783 56.991is5ss 59911600 55.8514904 58771593 56.621729 67791464 | 69.761 443
N 50 | 71.264313 | 73.194046 70.804214 70.0045092 65904357 73504443 70.234335 65294457 72.084384 | 73.58.4357
g biodeg 100 | 76.124108 | 76.07+174 74.021078 75364018 73241061 77341219 742841000 72.264246 74.564158 | 75.6041 55
- 200 | 78.8612.19 | 79.671168 77311003 78.054307 77.641071 77841060 78.81in66 76.821220 77464168 | 78.464 169
= 500 | 82.594117 | 83.071150 82134121 8217413  82.804128 81.06412 82151133 82104079 79.994176 | 81.014166
20 | 56401448 | 63.954314 59451827 57.044s505 54594581 65464610 56974543 52904376 70.681357 | 69.311402

50 | 73.954476 | 70.24 1344 67.601410 68771285 67.004458 85141576 64.02137; 57.541034 82.094309 | 80.47 1345

steel 100 | 84.704557 | 77.461367 T1.871208 729441462 77.091263 94051384 72.62455; 61.081103 87.774313 | 87.67432
200 | 90.44.55 | 82.464143 80.831065 82731383 85494350 98991075 83381267 609.124256 92.014173 | 92.0641 48

500 | 94.99:109 | 89.97 1088 91341160 92421136 93374103 99711021 92.021505 80.794103 95.084130 | 95.504149

20 | 71.89+437 | 84414528 73.801468 66.3819.10 68.9311049 81.82:833 67.531gs8 71.801499 8441442 | 84.691416

stock 50 | 85.034339 | 89.774199 84324397 83494367 84431004 89341150 8433432 83.641253 89.674183 | 89.6841 87

] 100 | 89.664139 | 92.321099 89.58112 89.611136 89.661101 91401141 89.664210 89.44114 92.024081 | 92471053
200 | 91.65+108 | 93464080 92374108 91554109 91434134 92924100 91144558 91534105 93.154072 | 93.6241 14

© 50 | 10.854176 N/A 10641236  8.221903 8.83 153 8.92455; 9141195 11.864233 N/A | 25.364257
§ energy 100 | 18.60+;83 N/A 13714166 15814150 14.674155 16184175 15714079 17.641068 N/A | 29.821,74
-,% 200 | 26.454149 N/A 20714100 21714323 23404055 23954004 23.094256 27351008 N/A | 35.93, 555
2 collins 100 | 10.594 48 N/A 758+074 7954112 755413 14244048 7424007 87910903 N/A | 15.164 9>
§ i 200 | 15844174 | 19811173 9791144 11214545 12244565 16304154 10964143 12.864150 N/A | 18.05465
E, 50 | 62.964049 | 78.804275 55514369 61.864448 62.084317 61911004 62.674229 56.814208 N/A | 75.57 1267
S oxure 100 | 77161105 | 8605100 6905hings 653 T685iiss T177sis 7670sa0s T264u1 N/A | 84.8341 ¢
200 | 85341118 | 89.071174 81701132 8546.128 84.621100 85944135 85.114120 84.721030 N/A | 894851

500 | 91404160 | 93.144128 89.884144 91404155 91344160 92314160 91464151 9191463 N/A | 93.46.0.66

Average rank | 5151206 | 2701197 7671210 7.0311s5 7274168 4121034 6824176 8421033 3.674196 | 2154175
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Table 10: Classification accuracy (%) of MLP, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean = std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample size. TAbEBM achieves the best overall performance
against Baseline and benchmark generators.

Datasets  Nieal (Rf:‘lsggt‘:g‘ SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen | TabEBM
20 | 35124250 N/A 2189136 2695:413 24.561505 27304323 27.961451 27.091347 36.19108s | 36.265265

50 | 58114413 | 57241460 40.771350 43.041s543 44.7813070 49431551 46841508 44.781267 58.621441 | 58.75144s8

protein 100 | 76.824333 | 76.784310 62.004321 64.141319 63.241405 69.204275 65.081267 6245132 77.841349 | 77.631369
200 | 89.531234 | 90.28.513 80.281349 81.941255 81.854046 85481207 82.574219 78.044266 90.744213 | 90.48.1006

500 | 98234001 | 98.251078 95.081134 95744005 96.154100 96.0140s6 96.50+087 96.234167 98.5240380 | 98.50+070

20 | 33.66430 N/A 23201554 17.084275 19401403 1832438 2326140 19.644040 37001085 | 35.02:57
50 | 53724167 | 53.024106 37.161308 37.601450 35.141045 40901250 42.8212g3 32661510 55404203 | 55345140
fourier 100 | 62781160 | 61441574 43.684315 48.801066 46.18:306 56521504 52.50i266 37741200 63.00:105 | 63.54) 3
200 | 70.1841g5 | 70.064210 58901256 62361285 58401253 70.084190 62.141200 50921513 71494141 | 71361136
500 | 77.944165 | 77184135 72141170 74301165 71381154 77784126 74321156 67281001 7834117 | 79.301090

20 | 71314513 | 68.841505 66.641527 62.114495 62.614678 52.964420 62.064360 65.814724 72.044512 | 7209445

50 | 76.734316 | 74971251 72.024474 71.831317 67.861602 69.921483 74.031305 71.014078 77074203 | 77114320

biodeg 100 | 79.13.+ 91 | 78204168 76.784279 77.854273 76.0l4288 76.741360 76.081239 76.241245 78.231229 | 79.081203
200 | 8239445 | 81.704122 80431202 79.964235 79924155 80.51i126 79.59+170 80344103 81744136 | 82.244 54

500 | 84.50.061 | 84.501081 83.781151 83.674081 84.134120 84.094084 83.764127 82974121 84374045 | 84.144050

20 | 62.35.4630 | 60.344573 61.631s50 59.09.1425 56991713 60.67i01s 55231300 55781301 6449603 | 64225550
50 | 79.65.4s53 | 68.184316 69.011345 70.301477 6696151, 84041503 64791407 58951165 82.721602 | 82.15157s
steel 100 | 92.18.1503 | 78444367 76371306 76921363 76.50i315 95.831100 71851320 6735155 95.1643,3 | 9541530
200 | 97314163 | 83934183 82424275 8470554 84.061445 98751068 79.661326 78.361385 98.831050 | 98.841067
500 | 99.78.1030 | 91.374226 93.08115 94.82:1ss 9399153 99471044 90341010 96061105 99.81:024 | 99.811024

20 | 83.564350 | 83.624406 77251502 69.901027 72.85i777 80.60i573 69301676 83341335 83.81130, | 83.89140s
50 | 89.57100; | 89711001 82.621340 79351071 81521100 88481015 83361230 88.384241 9023150, | 90.38:57

At most 10 classes

SOk 100 | 90631055 | 9117408 88371240 86605327 83.194377 9065413 88.64111s 9L6linr 9170447 | 91755007
200 | 91.254074 | 92.581001 91.274005 90341160 89.324045 92194078 90.37413 91.894130 92914062 | 92471063

© 50| 24.794176 N/A 12514580 12.614345 8434241 109140y 12454187 2042444 N/A | 24.044 39
% energy 100 | 268615, N/A 16201012 15784250 15701048 17754318 18.16124 20724209 N/A | 29.30125,
N 200 | 33.364208 N/A 22304244 23.004424 23534184 26124178 26284303 33.034333 N/A | 41.27 4503
2 collins 100 | 14.1643; N/A 924171 9164157 9.041179 14034124 8594184 1081468 N/A | 14.07 4158
S 200 | 19354904 | 19.064149 14.624000 13174094 12384156 18.634156 12.4841091 17.654176 N/A | 19.53.4 )44
E 50 | 84.50408; | 84124300 62924400 67.694549 61991358 69.6941460 64451784 69.681353 N/A | 85511559
S texture 100 | 91504134 | 91.574150 74534330 79961437 80361455 85424274 80231248 85.59:149 N/A | 921743
200 | 93.814535 | 94184126 86.574233 90.684155 889741012 90.104226 89.144185 91.664143 N/A | 9435, 57

500 | 96.554063 | 97.211040 94.664117 96274074 94341136 94724061 95.834103 96.494048 N/A | 97.13 4953

Average rank | 300413 | 4061160 7821165 7481150 845513 5554214 7481172 6824057 2674160 1674074
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Table 11: Classification accuracy (%) of RF, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean = std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample size. TAbEBM achieves the best overall performance
against Baseline and benchmark generators.

Datasets  Nyea (ReB;S§2$ SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen | TabEBM
20 | 28524019 N/A 22741425 24941515 24611045 29.021405 27691375 2576116 32041040 | 3419100

50 | 53401306 | 55.691061 46954313 43911408 43281407 47.931440 44481335 4725148 54.291r57 | 56.851040

protein 100 | 68.131310 | 72.891260 63241175 61194210 59.641345 65.19:32 60.05:1255 65.054300 71472361 | 72572250
200 | 80341235 | 83.601071 78.5linss 75.841161 76.841235 78741224 75.61ine0 79444273 83.361240 | 84.3011 97

500 | 93.01411 | 93.824067 92.861166 91.37x125 93.00410s 92931097 92381000 92.95:002 9449416 | 93.944 13

20 | 35.104456 N/A 19061301 1752108 20781250 1698123 23781312 19.001203 34881503 | 3860566

50 | 64.101550 | 64762400 37204335 32.821456 37781311 51761350 47224435 53.864561 66.921305 | 66.2623 16

fourier 100 | 73.861306 | 73784320 6440155 60.821371 51.64is16 66.14110 58.624373 68.161312 73.131270 | 74841310
g 200 | 78544015 | 79.184100 74861160 4261220 69364061 76421105 T2.88112 76.64x199 82201055 | 79.181208
g 500 | 81.84110; | 82.144140 81024150 81.18%143 80.08116r 81261140 80.28x1s55 80.624150 81.45414s | 83.40% 4
IS 20 | 6111475 | 68.384500 65441550 56291706 58194660 52901474 62334614 63.521720 67.154574 | 67.8245.3
N 50| 68.3814gr | 70.641345 71774000 66781450 61391405 63981365 6878152 70341330 71.381360 | 72121320
§ biodeg 100 | 73.19:045 | 75361056 7498125 72681005 6962135 Thllinzg 7216105 7422003 T585.is | 75.65:15
S 200 | 77.85527) | 78.864107 76421205 76.685277 73434301 76161000 75795049 77421224 79.68:174 | 79.2241 70
< 500 | 81424073 | 82.034102 81.881087 81.71xrss 80.50:121 81431156 81.3411ss 81941055 82.38x13s | 82.10115;
20 | 52771160 | 56.161450 57234307 54.65:340 53751340 51701166 54091436 55504207 57.041307 | 5741106

50 | 59754511 | 62124046 60.651105 58.091175 54.69404s 58.04142 57.67i252 60341200 65074311 | 67741336

steel 100 | 64.971505 | 69.08136) 64461417 61.62:105 58431245 60.53136s 62.71is4s 63.071223 73281330 | 79.631341
200 | 75451306 | 74.71u370 71454215 68.52:350 62.151250 08.101350 67.61c1s 67364163 85.12144s | 88.852510

500 | 90.931253 | 85374236 85.63431a 84.511320 76.121270 89.19:320 8144156 8035i35s 94.351134 | 95.90+ 06

20 | 79471ss3 | 81994440 7794150 72531716 73204005 80991701 72571576 78.101s0; 83.96.1ss7 | 84.73 4346

stock S0 | 87.571260 | 89.695100 86624344 8375143 84281205 88.69151; 84.921500 88.65i2s5 89.35121s | 89.99106

‘ 100 | 91441150 | 91471016 91074205 89.82:1260 89.331100 91331007 90482235 92.001035 92.071125 | 9217214
200 | 93524050 | 93945100 93351105 92.62:100 92771105 93.65:10s 93.08:053 93.87i105 93.65:100 | 93.671107

v 50 | 18.96+140 N/A 16631227 15661245 1481316 14494126 15051306 15.582326 N/A | 27744571
% energy 100 | 30.85:510 N/A 2459152 28591263 27591285 27231230 27.99:1215 25431246 N/A | 4103152
RS 200 | 45.80123 N/A 42104057 41.69135s 4441155 44.58413 41331500 44.6410s4 N/A | 53.87155)
S ofins 100 | 104146 N/A 6751060 8231176 7341145 1284116 6731135 8431004 N/A | 1335414
5 200 | 13755110 | 17565170 10514141 11001137 9851135 1505112 9901070 13404100 N/A | 1651453
s S0 | 7127c100 | 70171350 57414333 62781421 65241450 69451515 62931451 64331357 N/A | 75794307
S toxture 100 | 80401045 | 8038106 65.6314a1 7538i399 11670000 T93lursy 75981256 7730s2m N/A | 8230155,
200 | 84.004;56 | 85.124507 76981225 8444154 8530:106 84.00xi20 83.701205 80024160 N/A | 85921515

500 | 89431050 | 90.175105 88.97:14s 90.00:166 89.99:106 90.17113 9101ii3 88.984 2 N/A | 90774110
Averagerank | 4.36i105 | 3.02i11 6881205 7.82i16  845i10s 6024525 7.85i17 6004155 3124175 138405
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Table 12: Classification accuracy (%) of XGBoost, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean = std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample size. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Baseline

Datasets Nreal (Real data) ‘ SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen TabEBM
20 | 19.704633 N/A 19441411 17324075 18114307 16154350 20714504 17404450  24.004364 | 24184305

50 | 39.014402 | 37684540 33.074418 24381345 23.09:455 30.874s570 34134645 33.621367  39.784603 | 44461497

protein 100 | 57.594369 | 60.164575 49.231551 4333179 37.694s596 48.364408 43.971s45 47.001320 53744704 | 62774535
200 | 74.054002 | 76901496 609.714428 67461430 58291796 69.6814235 63.69163 66.09:1475  73.19:606 | 79251383

500 | 88.894171 | 90.024151  90.104130 89.371181 86.031231 87.294208 90.054270 85.041207  89.664117 | 91.81.;44

20 | 10.00+0.00 N/A  14.644313 13581057 13821414 11.724419 16384336 12341359  23.504156 | 26.78145>

50 | 42104619 | 4340452 343243935 24.681647 17.661460 24.821635 27.741s586 35424751 3560431 | 45.081647

fourier 100 | 54.844575 | 529241560 48224323 36.904is;s 30.36139s 42461413 40281341 48.781436 49.801193 | 549457

3 200 | 63.884335 | 65.341357 58364327 53204526 46.961458 61404412 5210433  56.664267  66.60+424 | 67.681319
é 500 | 74.561197 | 74184010 68.284280 67981007 61.241535 72784254 67.504257 68.281343 N/A | 76.25.33
S 20 | 62954795 | 66511584 62.724560 55241608 59201783 54.65is5s6 62.784s59s 61.0911049 65521608 | 66.64.67
; 50 | 67.961345 | 67.691442 66224570 61.641673 60.721573 57481828 69.484s535 65931498  67.761490 | 67.901327
§ biodeg 100 | 73.88.555 | 72.054475 72.114317 70414360 66.021625 69351466 71.114388 69.034433  72.584291 | 71.054570
< 200 | 76381485 | 74.984315  73.931320 75681415 67.821391 72.584s507 74741004 73844380 75.85i180 | 76741044
< 500 | 78454337 | 79384199 78.884340 80151187 76.721344 77.104296 78.144265 78834221  79.404149 | 7880137
20 | 53124560 | 55641476  53.324725 55364624 52381355 52444408 51344415 50744553 55434557 | 55781453

50| 66.731011 | 60.794550 59514415  54.824423 54794460 59.71469s 57.664s519 558941450  63.784720 | 741811367

steel 100 | 83.174936 | 66951651 61.724650 65124300 60.561437 72.0241047 59.671477 59.0441476  90.524747 | 96.551:66
200 | 95941573 | 81.214s501  73.144545 70.6411067 70261925 74.5040357 745741936 65414670 99.144109 | 99541062

500 | 99.951010 | 97.044014 95271055 894646585 83.25:510 917241534 87.591670 79.5441500 100.00£000 | 100.0010.00

20 | 76421434 | 78924501 674641303 60.561960 73.36:957 77451980 69.151935 70.881gs50  79.82145 | 83441374

stock 50 | 83.714340 | 86231054 84.654444 79311653 762713839 85.704396 81.614197 84981444 87284365 | 8821133
100 | 88.194304 | 89.014207 85.661601 84.681287 82.501373  90.071341 86.091408 84.671720  90.01i346 | 89.664328

200 | 9232135 | 92264033 90.941,05 89.0112s53 88921267 91.364379 91.041146 91424066 91.724077 | 9217415

© 50| 12.054242 N/A  11.604383 1447153 10951463 1021455 12.814051 12344355 N/A | 21.074399
; energy 100 | 29.37. 7> N/A  20.614s39  19.81a4sp 22711615 22274210 22.0243s54  10.011340 N/A | 27934416
g 200 | 44.96435 N/A 3673003 35924545 337lagss 347T3issy 3706152 1881470 N/A | 4095455
2 collins 100 7774221 N/A 7.7640.95 6524116 6.114109 8951190 6214514 5.9641.07 N/A 8.731164
E 200 | 10581057 | 11464011 9431050 9844156 8264175 9801196 8.9010s3  9.79+0s0 N/A | 11724134
; 50| 56724612 | 60991435 45764650 39.501646 43.021612 50224628 43714595  46.21470s N/A| 69114357
§ texture 100 | 68.964259 | 69.77 1463 54954599 55524780 63.231480 65.594360 57.041659 62.0646.11 N/A | 76.351564
200 | 77914108 | 81.55122 70701440 T1.601a10 73761560 77064017 72564400 70311655 N/A | 82.59.5,5

500 | 89.3741;1 | 89.871124 85.064240 86.801205 86.831180 86.524166 85.704275 87.071243 N/A | 89.69+1.10

Average rank | 3641000 | 3451148 6321136 7331519 8.64415 6.304244  6.641018 7.62+184 3445154 | 1621109
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Table 13: Classification accuracy (%) of TabPFN, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean = std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample size. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Baseline

Datasets Nreal (Real data) ‘ SMOTE TVAE CTGAN NFLOW TabDDPM ARF  GOGGLE TabPFGen | TabEBM
20 | 27.801457 NA 1921135 20581465 2080143 1889443 23974305 10551161 33421595 | 34631578

50 | 55241346 | 5985455 43581600 3737as0r 34424665 201701745 46024060 13.54442 57.63128 | 58.8810

protein 100 | 74311349 | 80.05:316 68.154554 71.104255 57.894613 59284823 05841303 23.6941040 77.60+403 | 78.264375
200 | 88.6741153 | 91791142 87.051085 86.691285 83.294242 87391295 85491049 T77.631611 90.77+137 | 90.94 1) 46

500 | 97314069 | 97.691077 97511085 97.584i085 96.891062 97441085 97401060 97.351061 97.241030 | 97.28 1062

20 | 30.0646385 N/A  22.004460 20104431 14524396 12224940 21.64159; 14.644304 N/A | 36.5614.96

50 | 53.62447 | 53.08.4334 45821409 37464580 28.784078 227415y 42144300  11.304550 53.154350 | 53.821302

fourier 100 | 64.624414 | 63.66139> 56.68.300 54.784080 45.501450 49.364g51 54744078 21404420 65.951349 | 65.40136

§ 200 | 71.624259 | 70.564361 66481380 66.144400  62.641260 72124064 65.044320 52.184735 69.931309; | 72.48.1308
32 500 | 77.664161 | 77501108 76.80x131 77824124 73904176 79164005 75701011 74364253 77.301042 | 77404108
N 20 | 65.264501 | 68.724450 69.0214537  59.394625  58.281530  50.001000 58.45ig16 S51.80+407 70.681494 | 71181505
; 50 | 75274063 | 74.654328 734414020 70214361  55.684927 50.001000 72.744374 55751745 75.694044 | 75.56132
S biodeg 100 | 78924198 | 77784065 77.271315 77711181 63.5011077  57.504627 77251166 65.871672 78.151145 | 79.004 99
- 200 | 82.59y1g4 | 81421127 80481150 80.19i248 79.161249 80451143 80.88+168 80.661149 82.561165 | 82.58 1100
=< 500 | 85.00.1070 | 84.371075 84401065 84.67100s 84451091 84.584070 84.684+106 83.661067 84.561008 | 84.551002
20 | 56.77 4417 | 559541430 56.031437 55624480 52.524464 50.004000 52394313  50.054017 64.804566 | 65.87 1614

50 | 82344535 | 63424303 62.084260 63.984408 52921470  50.641201 61324455  50.364100 84.7047384 | 86.301673

steel 100 | 97.374137 | 73.064446 71964549 72234415 56341630 80.8742044 09294570 51184304 97494121 | 97.814 49
200 | 98.841070 | 82324083 81.78433 83.244063 82924621 99.351070 86404420 644241135 98.801073 | 98.961071

500 | 99.744020 | 94271030 94934150 96981134 98324100 99.881015 95704150 98.561050 99.771030 | 99.74 1020

20 | 83.181437 | 83.694310 74.011s500 569211650 74991660 78.73+1225 69.641688 73.401485 82951444 | 83811404

stock 50 | 90.014007 | 90.014043 82271430 78914414 78944575 89.684100 83.724050 79.001687 89.951008 | 90154 76
100 | 92391106 | 92.094145 90.751220 89.431329 86.164383 92124516 90171500 89.304133 92124112 | 92.57 1127

200 | 94164092 | 93.991070 93.57+4110 93284150 91.924500 94224150 93.054135  92.074176 94.171080 | 94164107

Average rank 3.08412 | 423123 6124157 629407 842413 612433 654116 8.831146 3124180 | 2231183
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E.4 Results on computation efficiency

Figure 9 shows the trade-off between accuracy and the time needed for generating stratified synthetic
data (for data augmentation). We measure the total duration of (i) training the model and (ii) generating
500 synthetic samples. The results show that TabEBM is practical, as it achieves higher downstream
accuracy with lower time costs.
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Figure 9: Median data augmentation time vs. mean normalised balanced accuracy. TabEBM
achieves higher downstream accuracy with lower computation costs. TabEBM typically operates
3-30 times faster than most benchmark generative models.
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