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Abstract

Data collection is often difficult in critical fields such as medicine, physics, and
chemistry, yielding typically only small tabular datasets. However, classification
methods tend to struggle with these small datasets, leading to poor predictive
performance. Increasing the training set with additional synthetic data, similar to
data augmentation in images, is commonly believed to improve downstream tabular
classification performance. However, current tabular generative methods that learn
either the joint distribution p(x, y) or the class-conditional distribution p(x | y)
often overfit on small datasets, usually worsening classification performance
compared to using real data alone. To solve these challenges, we introduce
TabEBM, a novel class-conditional generative method using Energy-Based
Models (EBMs). Unlike existing tabular methods that use a shared model
to approximate all class-conditional densities, our key innovation is to create
distinct EBM generative models for each class, each modelling its class-specific
data distribution individually. This approach creates robust energy landscapes,
even in ambiguous class distributions. Our experiments show that TabEBM
generates synthetic data with higher utility than existing methods. When used
for data augmentation, our synthetic data consistently improves the classification
performance across diverse datasets of various sizes, especially small ones. Code
is available at https://github.com/andreimargeloiu/TabEBM.

1 Introduction

In scientific fields such as medicine, physics, and chemistry, collecting tabular data is often challenging
due to the experimental nature of data acquisition [4, 42, 3, 26, 61, 10]. Due to the small size
of such datasets [4, 38], training machine learning models that can aid in tasks such as disease
diagnosis [44, 31], material property prediction [29], and chemical compound classification [9], often
suffer from poor performance [60, 44, 31]. In the case of vision and language tasks, a standard
remedy to data scarcity is employing data augmentation techniques [58, 59, 48, 57]. However,
applying data augmentation to tabular data remains understudied, as tabular datasets are very diverse
and lack explicit symmetries [6], such as rotations or translations seen in images. Consequently,
existing tabular data augmentation methods often yield mixed results and can even degrade model
performance [43, 57, 40], hindering their widespread adoption.

Tabular augmentation typically involves training generative models to approximate either the joint
distribution p(x, y) [68, 18] or the class-conditional distribution p(x|y) [68, 34, 66, 39, 40]. A
key challenge of joint distribution methods is maintaining the original label distribution, as such
generators can fail to generate data for specific classes (see Appendix D for an example). On
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Figure 1: An overview of TabEBM. We learn distinct class-specific Energy-Based Models (EBMs)
Eblue(x) and Ered(x) exclusively on the points of their respective class. Each EBM approximates a
class-conditional distribution p(x|y). TabEBM allows synthetic data generation by sampling from
the estimated distributions for each class p(x|y = blue) and p(x|y = red).

the other hand, while class-conditional models learning p(x|y) preserve the stratification of the
original data, they often employ a shared model to represent all class-conditional densities. This,
however, can lead to overfitting, particularly in imbalanced datasets where the model may prioritise
more frequent classes [17], ignoring unique features needed for generating label-invariant samples.
Additionally, in datasets with limited data, this can lead to mode collapse [55, 56], where the model
does not effectively capture the diversity of each class [56], and thus tends to perform poorly in a
multi-class setting. We further provide an extended discussion on related work in Appendix A.

To address the challenges of class-conditional tabular generation, we introduce TabEBM (Figure 1),
a new method for tabular data augmentation utilising Energy-Based Models (EBMs). Our method
introduces two innovations: (i) Distinct class-specific models: TabEBM constructs a collection of
individual models – one for each class – which, by design, enables learning distinct marginal distri-
butions for the inputs associated with each class. This, in turn, enables performing data augmentation
while maintaining the original label distribution. (ii) Generative models: we build novel class-specific
generators that produce high-quality synthetic data even from extremely few samples. Specifically,
we create a surrogate binary classification task for each class and fit it with a pre-trained tabular
in-context classifier. We then convert the binary classifier into an EBM, a generative model, without
additional training. Using class-specific EBMs makes the energy landscape more robust to class
overlaps, compared to using a single shared EBM to approximate the class-conditional distribution.

2 TabEBM
Notation. We address classification problems with C classes, denoted by Y = {1, 2, . . . , C}. Let
{(x(i), yi)}Ni=1 represent a dataset of N samples, each being a D-dimensional vector x(i) ∈ RD, with
a corresponding label yi ∈ Y . For each class c ∈ Y , we define Xc = {x(i) | yi = c} as the subset of
samples labelled with class c. Let fθ(·) denote a classifier. The expression fθ(x)[y] represents the
(unnormalised) logit assigned to the class y for the input x.

2.1 Preliminaries on Energy-Based Models
An Energy-Based Model (EBM) [35] defines a probability density function pθ(x) through an energy
function E(x). Specifically, the model posits that p(x) ∝ e−E(x), where E(x) represents the
unnormalised negative log-density of the input x. An important observation is that energy-based
models can utilise the same model architectures as standard classification models [23]. Typically, the
logits fθ(x)[y] are reinterpreted to define an energy-based model for the joint distribution p(x, y).
Furthermore, the energy function for the marginal distribution p(x) is obtained by marginalising over
p(x, y), resulting in E(x) = −LogSumExpy′fθ(x)[y

′].

2.2 Distinct Class-Specific Energy-Based Models
TabEBM is a class-conditional generative model p(x|y) implemented using a set of EBMs,
{E1(x), E2(x), . . . , EC(x)}. Our approach assumes that the class-conditional density p(x|y = c) is
best modelled using its class-specific data Xc. Thus, for each class c, we construct a class-specific
EBM, Ec(x), using only the data from that class, Xc, such that p(x|y = c) ∝ exp(−Ec(x)).
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Model training (“Class-specific EBMs” in Figure 1). Building TabEBM requires training multiple
classifiers on a novel task and reinterpreting their logits. For each class c, we propose a surrogate
binary classification task to determine if a sample belongs to class c by comparing Xc against
a set of surrogate negative samples X neg

c . Specifically, we generate the negative samples at the
corners of a hypercube in RD. For each dimension d, the coordinates of a negative sample are either
αneg

distσd or −αneg
distσd, where αneg

dist is a fixed constant and σd is the standard deviation of dimension
d. In Appendix E.1, we provide a 2D example along with several ablations, demonstrating that the
placement of negative samples is critical for achieving an accurate energy function.

We create the combined dataset Dc for the surrogate binary classification task by labelling Xc as
1 and X neg

c as 0: Dc = (Xc ∪ X neg
c , {1}|Xc| ∪ {0}|X neg

c |). We then train a binary classifier f c
θ (·) on

Dc and use it to construct the class-specific energy Ec(x) for class c. To do this, we reinterpret the
logits {f c

θ (x)[0], f
c
θ (x)[1]} of the trained binary classifier as components of an approximated joint

distribution for the surrogate binary task. Next, we approximate pc(x) by marginalisation:
pc(x) = pc(x, 0) + pc(x, 1)

=
exp (log (exp(f c

θ (x)[0]) + exp(f c
θ (x)[1])))

Z
(Z is the normalisation constant)

→ Ec(x) = − log (exp(f c
θ (x)[0]) + exp(f c

θ (x)[1])) (TabEBM class-specific energy) (1)

For the binary classifier f c
θ (·) in the surrogate binary classification, we use TabPFN [27], a pre-trained

tabular in-context model. In this context, “training” the TabPFN classifier is analogous to the
K Nearest Neighbour algorithm, which simply performs inference based on the training data.

Data generation (“Class-specific sampling” in Figure 1). TabEBM generates data in two steps.
First, we sample a class c from the empirical distribution c ∼ p(y). Then, we sample a data point
x from the conditional distribution x ∼ p(x|y = c) approximated by the class-specific energy-based
model Ec(x), as outlined in Algorithm 1 (see Appendix B). We employ Stochastic Gradient Langevin
Dynamics (SGLD) [67] to perform this sampling. SGLD is an efficient method for high-dimensional
data, combining stochastic gradient descent with Langevin dynamics. The update rule for SGLD
at each iteration is xt+1 = xt − η

2∇E(xt) + ϵt, where ϵt ∼ N (0, ηI) is a Gaussian noise that
introduces randomness into the sampling process, enhancing the exploration of the distribution.
Appendix E.2 further shows that TabEBM is stable to hyperparameters for the sampling process.

3 Experiments: Can TabEBM improve predictors via data augmentation?
Datasets. We utilise eight open-source tabular datasets from OpenML [5] – across five domains:
Medicine, Chemistry, Engineering, Language and Economics. We further vary the degrees of data
availability (i.e., Nreal), leading up to 33 test cases. Appendix C.1 provides detailed descriptions.

Benchmark generators. We compare TabEBM against eight existing tabular data generation methods
of eight different categories: SMOTE [11], TVAE [68], CTGAN [68], NFLOW [18], TabDDPM [34],
ARF [66], GOGGLE [39] and TabPFGen [40]. Furthermore, we also include a “Baseline” model,
where only real data is used to train downstream predictors.

Downstream predictors. We select six representative downstream predictors, including three
standard baselines: Logistic Regression (LR) [13], KNN [21] and MLP [22]; two tree-based methods:
Random Forest (RF) [8] and XGBoost [12]; and a PFN method: TabPFN [27].

Data augmentation setup. For each dataset of N samples, we first split it into stratified train and
test sets. Then we subsample the full train set to simulate different levels of data availability and split
each subset into stratified training and validation sets with a ratio of 4:1. Given Nreal real samples,
we first train generators on the real training data and then generate Nsyn synthetic samples. For
training the downstream predictors, we expand the real training split by adding the synthetic samples.
The optimal Nsyn remains an open problem for tabular data [43, 57, 25]. To provide a head-to-head
comparison of the effect of data augmentation across subsample sizes, we perform data augmentation
with a large synthetic set (Nsyn = 500) across all test cases, and the synthetic data has the same
class distribution as the real training data. We provide detailed descriptions of data splitting in
Appendix C.2 and preprocessing in Appendix C.3.

Evaluation metric. We evaluate the effect of using synthetic data for data augmentation with
the balanced accuracy of downstream predictors. Typically, higher accuracy improvements (i.e.,
ACCGenerator − ACCBaseline > 0) demonstrate better utility of synthetic data for data augmentation.
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Table 1: Classification accuracy (%) aggregated over six downstream predictors, comparing data
augmentation on five real-world tabular datasets with varied real data availability (full results of eight
datasets are in Appendix E.3). We report the mean ± std balanced accuracy. We bold the highest
accuracy for each test case. Our method, TabEBM, consistently outperforms training on real data
alone, and achieves the best overall performance against Baseline and benchmark generators.

Datasets Nreal
Baseline

(Real data) SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen TabEBM

A
tm

os
t1

0
cl

as
se

s

protein

20 28.14±6.83 N/A 21.18±1.48 22.00±3.43 21.30±2.84 22.12±5.30 24.82±2.88 22.40±9.28 33.25±5.01 33.84±4.92
50 50.72±10.53 54.52±8.59 39.54±5.19 36.32±7.17 35.37±8.00 35.11±11.78 41.99±5.24 37.53±14.72 54.45±7.96 55.91±6.41

100 67.83±11.72 73.25±7.48 59.28±7.20 57.64±9.95 52.57±9.55 56.37±9.64 57.01±8.56 51.69±16.68 71.53±9.87 73.31±6.77
200 81.66±10.18 85.65±6.24 76.42±7.71 74.88±8.20 72.10±10.04 75.86±9.30 74.07±8.74 73.57±6.74 84.95±7.47 86.14±5.50
500 93.49±5.28 94.73±3.67 92.24±3.73 91.48±4.43 90.44±5.54 90.62±5.63 91.79±4.53 91.31±5.20 94.87±3.70 95.18±3.10

fourier

20 28.30±12.09 N/A 21.32±4.06 18.19±3.90 17.30±3.03 15.35±3.26 21.75±2.76 16.70±2.91 36.72±7.30 37.13±6.01
50 53.69±8.04 55.51±7.43 37.96±4.48 35.09±7.46 31.94±8.99 35.99±13.06 40.32±6.70 33.56±14.02 55.11±10.66 56.57±7.12

100 63.70±6.76 64.10±6.89 50.46±8.61 49.26±9.15 44.58±8.40 52.79±10.04 51.13±6.35 41.93±15.60 63.86±7.76 65.21±6.42
200 70.99±4.88 71.43±4.47 62.17±7.29 62.92±7.87 59.15±8.33 68.05±6.91 62.53±6.97 56.44±10.13 71.81±5.35 72.36±3.77
500 77.72±2.36 77.51±2.60 73.29±4.97 74.61±4.89 71.74±6.54 77.04±3.64 74.31±4.40 70.61±6.01 77.15±2.57 78.20±2.87

M
or

e
th

an
10

cl
as

se
s

energy
50 17.77±6.15 N/A 12.30±2.59 12.11±3.16 10.14±2.87 10.55±2.44 11.99±2.27 15.46±3.54 N/A 23.98±2.73

100 25.94±4.86 N/A 17.78±4.73 18.60±6.09 18.56±6.39 18.84±6.23 19.91±5.21 17.65±5.88 N/A 31.24±5.53
200 35.99±8.92 N/A 27.65±11.12 27.77±10.55 28.37±10.82 29.50±10.33 29.57±9.18 28.95±10.40 N/A 41.28±7.66

collins 100 11.44±2.77 N/A 8.38±1.52 8.11±1.00 7.93±1.40 12.67±2.16 7.53±1.10 9.21±2.35 N/A 13.07±2.51
200 15.74±3.73 17.45±3.46 12.08±3.03 11.37±1.20 10.74±1.72 15.39±3.37 10.71±1.37 14.30±3.42 N/A 17.03±3.20

texture

50 72.40±13.07 76.40±10.50 55.32±6.20 54.80±12.97 55.39±10.65 62.27±8.01 55.65±10.58 62.94±12.06 N/A 78.90±7.96
100 82.42±10.38 84.35±9.67 66.00±7.21 69.49±10.93 71.78±9.06 76.25±7.40 70.93±9.71 76.34±9.55 N/A 86.01±7.36
200 87.54±7.62 89.29±6.20 78.37±6.03 82.44±7.15 81.94±6.30 84.67±4.79 83.29±6.32 82.53±7.99 N/A 89.77±5.77
500 92.96±4.07 93.69±3.83 90.09±3.56 91.48±3.50 90.50±2.71 91.53±3.29 91.76±3.98 91.24±3.56 N/A 93.76±3.64
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Figure 2: Mean normalised balanced accuracy improvement (%) across different sample sizes
(Left) and across datasets with varying numbers of classes (Right). Positive values indicate that
the generator improves downstream classification performance. TabEBM generally outperforms
benchmark generators across varying sample sizes and number of classes.

▷ Finding 1: TabEBM effectively improves downstream performance across sample sizes, espe-
cially for very low-sample-size regimes. Table 1 and Figure 2 (Left) show that TabEBM is the
only generator that consistently improves downstream performance across sample sizes.
▷ Finding 2: TabEBM effectively improves downstream performance across the number of classes,
especially for more than ten classes. Figure 2 (Right) shows that TabEBM consistently outperforms
the Baseline with notable improvements when the number of classes increases.
▷ Finding 3: TabEBM is computationally efficient. In Appendix E.4, we further discuss the
trade-off between accuracy and the time needed for generating stratified synthetic data. The results
show that TabEBM is practical, as it achieves higher downstream accuracy with lower time costs.

Discussion. We attribute the performance degradation in benchmark generators to their reliance on a
single shared model to approximate all class-conditional densities. For instance, TabPFGen [40] lever-
ages pre-trained Prior-Data Fitted Networks (PFNs), however, it shares a generator across all classes,
which can lead to inaccurate density estimates (see examples in Appendix D). In contrast, TabEBM
focuses on approximating one class at a time, free from the noise of other classes. Appendix A
provides detailed discussions on the rationales of TabEBM’s model design.

4 Conclusion
We introduce TabEBM, a novel tabular data augmentation method that creates class-specific EBM
generators, learning the marginal distribution for each class separately. We also provide one of
the first comprehensive analyses of tabular data augmentation across various dataset sizes. Our
results demonstrate that TabEBM improves downstream performance through data augmentation on
real-world datasets, outperforming other benchmark generators.
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A Extended Related Work & Discussion

Section 3 shows that TabEBM efficiently generates high-quality data that can effectively improve
the downstream performance via data augmentation. In Table 2, we further provide a summary
of tabular data generative models analysed from three important perspectives: (i) Training: the
type of distribution that the generators learn (crucial for preserving the original training label
distribution), and the training costs associated with learning; (ii) Generation: do the generators
employ class-specific models (reflecting their capability to capture unique features essential for
label-invariant generation), and do models support stratified generation (crucial for effective data
augmentation); (iii) Practicability: the scalability of the generators with respect to the number
of classes (a common requirement in real-world multi-class tasks), and consistent downstream
performance improvement across different class sizes.

Generative Models for Tabular Data. The common paradigm for tabular data generation is to
adapt Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) [68, 50]. For
instance, TableGAN employs a convolutional neural network to optimise the label quality [50], and
TVAE is introduced in [68] as a variant of VAE for tabular data. However, these methods learn the joint
distribution and thus cannot preserve the stratification of the original data (Appendix D). CTGAN [68]
refines the generation to be class-conditional. The recent ARF [66] is an adversarial variant of random
forest for density estimation, and GOGGLE [39] enhances VAE by learning relational structure with a
Graph Neural Network (GNN). Some recent work focuses on generation with denoising diffusion mod-
els [34, 69, 32, 36]. For instance, TabDDPM [34] demonstrates that diffusion models can approximate
typical distributions of tabular data. Although these class-conditional models can preserve the label
distribution, they struggle to outperform Baseline and standard SMOTE in data augmentation [57, 40].

We attribute the performance degradation in current class-conditional models to their reliance on a
single shared model to approximate all class-conditional densities. For instance, another promising
generative approach uses pre-trained models like Prior-Data Fitted Networks (PFNs), and the recent
TabPFGen [40] adapts such models into one shared class-conditional generator. However, TabPFGen’s
shared generator can lead to inaccurate density estimates, particularly in high-noise and class-
imbalance situations (see examples in Appendix D). As noise increases, TabPFGen’s inferred densities
fluctuate significantly and diverge from the true data distributions. In contrast, TabEBM uses class-
specific EBMs to model each class’s marginal distributions, and the results in Appendix D reveal that
our design choice reduces the impact of noise and data imbalance. TabEBM focuses on approximating
and generating for one class at a time, remaining unaffected by noise from other classes. Overall, our
results demonstrate that TabEBM consistently improves performance across different datasets and
sample sizes, outperforming TabPFGen. Moreover, TabPFGen is limited in usability (e.g., it supports
only up to ten classes), while TabEBM scales to any number of classes.

In a broader context, some recent work attempts to adapt Large Language Models (LLMs) for tabular
data generation [19, 57, 7]. However, data contamination is an inherent issue with such LLM-based
models [15, 30, 14, 41]. As the pre-training data is not typically open-source, these models can have
unfair advantages in downstream tasks (i.e., the full real dataset, including the real test data, may
have been used for pre-training). Therefore, in this paper, we focus on models without support from
LLMs, thus avoiding potential biases from data contamination.

Table 2: Comparison of the properties between TabEBM and prior tabular generative methods.
TabEBM has novel design rationales of training-free class-specific models, and TabEBM is highly
practicable with wide applicability and consistent accuracy improvement.

Methods Category
Training Generation Practicability

Learned
distribution Training-free Class-specific

models
Stratified

generation
Unlimited

classes
ACC improve
(≤ 10 classes)

ACC improve
(> 10 classes)

SMOTE [11] Interpolation N/A " N/A " " % %

TVAE [68] VAE p(x, y) % % % " % %

CTGAN [68] GAN p(x | y) % % " " % %

NFLOW [18] Normal. Flows p(x, y) % % % " % %

TabDDPM [34] Diffusion p(x | y) % % " " % %

ARF [66] Random Forest p(x, y) % % % " % %

GOGGLE [39] GNN p(x | y) % % " " % %

TabPFGen [40] PFN p(x | y) " % " % " %

TabEBM (Ours) PFN p(x | y) " " " " " "
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Data Augmentation (DA) for Tabular Data. DA is an omnipresent technique in computer vision
and natural language processing [65, 59, 58, 48, 20, 1]. However, DA for tabular data remains
underexplored, and existing methods often perform poorly in real-world tasks, sometimes even
reducing performance [43]. Recent studies show that using the same transformations across all classes
leads to varied performance impacts [2, 33], indicating that data augmentation effects are class-specific
and suggesting that different classes may require distinct augmentations. Given the lack of symmetries
in tabular data, we believe this class-dependent effect is even more pronounced. Therefore, we propose
TabEBM as a class-specific generative model to produce tailored augmentations for each class.

Prior-fitted Networks (PFNs) for Tabular Data. Recent work proposes to approximate the posterior
predictive distribution with transformers [47, 27, 49, 62, 16]. PFNs can be adapted for various pur-
poses by pre-training the transformer with corresponding “prior data”, and then it can make in-context
predictions with unseen downstream data. For instance, TabPFN is a variant that is pre-trained on a
prior designed for tabular data [27]. We note that prior data is different to synthetic data in this paper.
Specifically, prior data refers to manually crafted fake data (e.g., y = 2x) with no real-world semantics.
In contrast, synthetic data from generators is expected to have the same semantics as real data. In-
spired by TabPFN’s success in small-size classification tasks, TabEBM converts TabPFN into multiple
EBMs that learn the marginal distribution for each class. The training-free nature of TabPFN enables
TabEBM to generate high-quality tabular data without introducing extra training costs. Additionally,
our class-specific design lets TabEBM surpass TabPFN’s limits and scale to more than ten classes.

Limitations and Future Work. TabEBM is a general method that relies on an underlying binary
classifier, and as such, its strengths and weaknesses are directly tied to this classifier. We used
TabPFN because it is a well-established open-source pre-trained model for tabular data. Therefore,
TabEBM inherits some of TabPFN’s limitations, particularly in scaling to a larger number of
features. TabEBM can handle datasets with over 1000 samples, overcoming TabPFN’s limitation,
as it processes one class at a time. Our results also show that TabEBM can handle categorical
data by encoding categorical features with leave-one-out target statistics. We stress that TabEBM
is compatible with any classifier that can be adapted into EBMs, as described in Section 2. As
foundational models for tabular data evolve [64], new models capable of handling more features
and samples are expected. Integrating them into TabEBM will enhance its ability to manage
high-dimensional datasets, increasing its versatility and utility.

B Pseudocode for TabEBM Sampling

Algorithm 1 TabEBM sampling from Class-Specific EBM Ec(x)

Input: Training data Xc for class c, step size αstep, noise scale αnoise, initial perturbation σstart, number of steps T
Output: Set of synthetic samples for class c

Initialise the surrogate binary classification task and train the model
1: Assign new labels to the samples Xc from class c, setting them to class 1
2: Generate a set of surrogate negative samples X neg

c and assign them class 0 labels
3: Train a binary classifier fc

θ on the dataset Dc = (Xc ∪ X neg
c , {1}|Xc| ∪ {0}|X

neg
c |)

Synthesise samples using Stochastic Gradient Langevin Dynamics (SGLD)
4: Initialise synthetic data points xsynth

0 by sampling from N (Xc, σ
2
startI)

5: for each iteration t = 0, 1, . . . , T − 1 do
6: Ec(x

synth
t ) = − log

(
exp(fc

θ (x
synth
t )[0]) + exp(fc

θ (x
synth
t )[1])

)
7: xsynth

t+1 = xsynth
t − αstep∇Ec(x

synth
t ) +N (0, α2

noiseI)
8: end for
9: return xsynth

T as the generated synthetic data for class c

C Reproducibility

C.1 Datasets

All eight datasets are publicly available on OpenML [5], and their details are listed in Table 3. To
ensure consistent stratified data-splitting across all datasets, we remove classes with fewer than 10 sam-
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ples. For example, the original “energy” dataset contains 14 classes with fewer than 10 samples, which
could result in a validation set lacking samples from these classes, leading to unstratified data splitting.

Table 3: Details of the eight real-world tabular datasets.
Dataset OpenML ID Not evaluated in

TabPFN [27] # Samples (N ) # Features (D) # Classes N/D
# Samples per class

(Min)
# Samples per class

(Max)

At most 10 classes

protein 40966 " 1,080 77 8 14.03 105 150
fourier 14 % 2,000 76 10 26.32 200 200
biodeg 1494 % 1,055 41 2 25.73 356 699
steel 1504 % 1,941 33 2 58.82 673 1,268
stock 841 " 950 9 2 105.56 462 488

More than 10 classes

energy 1472 " 698 9 23 77.56 10 74
collins 40971 " 970 19 26 51.05 17 80
texture 40499 " 5,500 40 11 137.5 500 500

C.2 Data Splitting

Dataset
𝑁

Oracle set (i.e., full train set)
𝑁oracle = 𝑁 − 𝑁test

Test set

𝑁test = min
𝑁
2 , 500

Subsets
𝑁real ∈ [20, 50, 100, 200, 500]

Training set
𝑁real	×	0.8

Validation set 
𝑁real	×	0.2

Generator

Downstream 
predictors

Synthetic data
500

⊕

Predictions

Figure 3: Data splitting strategies for data augmentation for all datasets.

C.3 Data Preprocessing

Following the procedures presented in prior work [45, 24], we perform preprocessing in two steps.
We first compute the required statistics with training data and then transform it. Firstly, we impute the
missing values with the mean value for numerical features and the most mode value for categorical
features. Secondly, we convert the categorical features into numerical features equal to Leave-one-out
Target Statistic [53, 46]. Next, we perform Z-score normalisation for each feature. Specifically,
we compute each feature’s mean and standard deviation in the training data and then transform the
training samples to have a mean of zero and a variance of one for each feature. Finally, we apply the
same transformation to the validation and test data before conducting evaluations.

C.4 Software and Computing Resources

Software implementation. (i) For generators: We implemented TabEBM using PyTorch 1.13 [51],
an open-source deep learning library with a BSD licence. We implemented SMOTE with Imbalanced-
learn [37], an open-source Python library for imbalanced datasets with an MIT licence. For other
benchmark generators, we used their open-source implementations in Synthcity [? ], a library for
generating and evaluating synthetic tabular data with an Apache-2.0 license. (ii) For downstream
predictors: We implemented TabPFN with its open-source implementation (https://github.com/
automl/TabPFN). We implemented the other five downstream predictors (i.e., Logistic Regression,
KNN, MLP, Random Forest and XGBoost) with their open-source implementation in scikit-learn [52],
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an open-source Python library under the 3-Clause BSD license. (iii) For result analysis and visual-
isation: All numerical plots and graphics have been generated using Matplotlib 3.7 [28], a Python-
based plotting library with a BSD licence. The model architecture was generated using draw.io
(https://github.com/jgraph/drawio), a free drawing software under Apache License 2.0.

We ensure the consistency and reproducibility of experimental results by implementing a uniform
pipeline using PyTorch Lightning, an open-source library under an Apache-2.0 licence. We further
fixed the random seeds for data loading and evaluation throughout the training and evaluation process.
This ensured that TabEBM and all benchmark models were trained and evaluated on the same set of
samples. We also attach our code to this submission and will release it under the MIT licence upon
publication. The experimental environment settings, including library dependencies, are specified in
the associated code for reference and reproduction purposes.

Computing Resources. We trained 140,000 models for evaluations (including over 35,000 of gen-
erators and over 10,500 for downstream predictors). All our experiments are run on a single machine
from an internal cluster with a GPU Nvidia Quadro RTX 8000 with 48GB memory and an Intel(R)
Xeon(R) Gold 5218 CPU with 16 cores (at 2.30GHz). The operating system was Ubuntu 20.4.4 LTS.

C.5 Implementation of Generators

TabEBM. In all our experiments, the surrogate binary classifier in TabEBM is a
pretrained in-context model, TabPFN [27], using the official model weights released
by the authors (https://github.com/automl/TabPFN/raw/main/tabpfn/models_diff/
prior_diff_real_checkpoint_n_0_epoch_42.cpkt). We use TabPFN with three ensembles.
We use four surrogate negative samples, X neg

c , positioned at αneg
dist = 5 standard deviations from zero,

in random corners of a hypercube in RD (as explained in Section 2.2), distant from any real data. In
Appendix E.1, we show that TabEBM is robust to the distribution of the negative samples.

We use SGLD [67] for sampling from TabEBM, where the starting points xsynth
0 are initialised

by adding Gaussian noise with zero mean and standard deviation σstart = 0.01 to a randomly
selected sample of the specific class, i.e., xsynth

0 ∼ N (Xc, σ
2
startI). For SGLD, we used the following

parameters: step size αstep = 0.1, noise scale αnoise = 0.01 and number of steps T = 200. We
found TabEBM to be robust to the SGLD settings (see Appendix E.2). We will release it as a public
open-source library available after publication.

TabPFGen. We re-implemented TabPFGen [40] by closely following the original paper since no
official implementation is available. As recommended in [40], the starting points are initialized by
adding Gaussian noise with zero mean and standard deviation of 0.01 to the training points.

SMOTE. We use the open-source implementation of SMOTE from Imbalanced-learn [37], and
the number neighbours k is set within the range of {1, 3, 5}. When applicable, we always set the
maximum value for nearest neighbours (i.e., k = 5). However, very low-sample-size datasets may
not contain sufficient samples for large k. For instance, the “fourier” dataset (Nreal = 20) only has
two samples per class. We set k = 1 to generate synthetic data with SMOTE in these cases.

For the other six benchmark generators, we use their open-source implementations in Synthcity [54].
Following prior studies [69, 63, 57, 40], we use the default settings for all generators.

C.6 Implementation of Downstream Predictors

We implemented TabPFN with its official implementation [27] and the other five downstream
predictors with the scikit-learn library [52]. Following prior studies [63, 57], we use the default
settings for all downstream predictors.
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D Limitations of Existing Generative Methods

We showcase three limitations of current generative models: (1) Figure 4 shows that models approxi-
mating the joint distribution p(x, y) may fail to preserve the stratification of the real data and even fail
to generate samples from specific classes. (2) Figure 5 evaluates the approximated class-conditional
distributions p(x | y) on data with increasing noise levels, and (3) Figure 6 evaluates the approximated
class-conditional distributions p(x | y) on data with increasing class imbalance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Class ID

0
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Real Data
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Figure 4: Comparison of class distribution between real data and synthetic data from TVAE. We first
train TVAE on the “energy-efficiency” dataset and then randomly generate 10,000 samples with it.
We highlight the classes where no synthetic samples are generated. TVAE fails to generate samples
for 4 of 23 classes, showing the impracticability to preserve stratification by generative methods that
learn joint distribution p(x, y).
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Real data TabPFGen inferred p(x|y=0) TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=0) TabEBM (ours) inferred p(x|y=1)
The approximated (unnormormalized) probability p(x | y). circles

(a) Noise level 0.1
Real data TabPFGen inferred p(x|y=0) TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=0) TabEBM (ours) inferred p(x|y=1)

The approximated (unnormormalized) probability p(x | y). circles

(b) Noise level 0.25
Real data TabPFGen inferred p(x|y=0) TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=0) TabEBM (ours) inferred p(x|y=1)

The approximated (unnormormalized) probability p(x | y). circles

(c) Noise level 0.5
Real data TabPFGen inferred p(x|y=0) TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=0) TabEBM (ours) inferred p(x|y=1)

The approximated (unnormormalized) probability p(x | y). circles

(d) Noise level 1
Real data TabPFGen inferred p(x|y=0) TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=0) TabEBM (ours) inferred p(x|y=1)

The approximated (unnormormalized) probability p(x | y). circles

(e) Noise level 2

Figure 5: Evaluating the approximated class-conditional distributions on data with increasing noise
levels. Darker blue indicates a higher assigned probability. TabPFGen uses a single shared energy-
based model to infer the class-conditional distribution p(x|y). As noise increases, TabPFGen’s
probability assignments vary significantly and end up assigning very high probabilities that are far
from the real data. For instance, the areas of assigned probability for p(x|y = 1) completely flip
when noise increases from 0.5 to 1. In contrast, our TabEBM uses class-specific energy models,
resulting in robust inferred conditionals. TabEBM performs well even under very high noise (see
p(x|y = 0) for noise level 2), while TabPFGen struggles.
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Real data TabPFGen inferred p(x|y=0) TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=0) TabEBM (ours) inferred p(x|y=1)

The approximated (unnormormalized) probability p(x | y). two_blobs

(a) Class ratio 150:150
Real data TabPFGen inferred p(x|y=0) TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=0) TabEBM (ours) inferred p(x|y=1)

The approximated (unnormormalized) probability p(x | y). two_blobs

(b) Class ratio 50:250
Real data TabPFGen inferred p(x|y=0) TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=0) TabEBM (ours) inferred p(x|y=1)

The approximated (unnormormalized) probability p(x | y). two_blobs

(c) Class ratio 25:275

Real data TabPFGen inferred p(x|y=0) TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=0) TabEBM (ours) inferred p(x|y=1)

The approximated (unnormormalized) probability p(x | y). two_blobs

(d) Class ratio 10:290

Figure 6: Evaluating the approximated class-conditional distributions on a toy dataset of 300 samples
with varying class imbalances. The two clusters maintain their positions. Darker blue indicates
a higher assigned probability. TabPFGen uses a single shared energy-based model to infer the
class-conditional distribution p(x|y). As class imbalance increases, TabPFGen starts assigning high
probability in areas far from the real data, for instance, in the case of p(x|y = 1) for class ratio
10:290. In contrast, our TabEBM fits class-specific energy models only on the class-wise data
Xc = {x(i) | yi = c}. This results in very robust inferred conditional distributions even under heavy
class imbalance (e.g., see that p(x|y = 1) remains relatively constant).
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E Extended Experimental Results

E.1 Ablations on the distribution of the surrogate negative samples

E.1.1 Example of negative samples in 2D plane

real samples c

negative samples neg
c

Figure 7: The class-specific energy function Ec(x) from the surrogate binary task, where the blue
region represents low energy (i.e., high data density). Placing the negative samples in a hypercube
distant from the data results in an accurate energy function.

E.1.2 Ablations on placing the negative samples

Real data for one class
(A) TabEBM with distant hypercube corners

labeled as "negative samples" (as proposed)

real samples c

negative samples neg
c

(B) TabEBM with 20% of real samples
labeled as "negative samples"

real samples c

negative samples neg
c

(C) TabEBM with half the real samples
labeled as "negative samples"

real samples c

negative samples neg
c

Energy E(x|y=0) of TabEBM on one class only

Figure 8: TabEBM energy Ec(x) for different choices of negative samples. The blue region represents
low energy, indicating high data density. In (A), TabEBM, with the proposed negative samples placed
in a hypercube far from the data, infers an accurate energy surface, resulting in generated data close
to the real points. In (B), labelling a random subset of the real data as negative samples leads to a
completely inaccurate energy surface. In (C), labelling half of the real points as negative samples
reduces density near the decision boundary, as TabPFN assigns low maximal logit due to the high
uncertainty. In conclusion, placing negative samples far from the real data results in a robust energy
surface.

Figure 8 shows TabEBM’s energy Ec(x) when varying the selection of the negative samples. TabEBM
infers an accurate energy surface with distant negative samples, and the energy surface becomes
inaccurate when negative samples resemble real samples. This occurs because TabPFN is uncertain
when points of different classes are close, affecting its logits magnitude and making them unsuitable
for density estimation.
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E.1.3 Varying the number of negative samples

We evaluate the impact of the ratio |X neg
c | : |Xc| between the negative samples X neg

c and the real sam-
ples |Xc|. We vary |X neg

c | while keeping |Xc| fixed, simulating both balanced and highly imbalanced
scenarios. The negative samples are placed in random corners of the hypercube (as described in
Section 2), at five standard deviations in each direction (i.e., αneg

dist = 5). To ensure reliable outcomes,
we maintained a consistent ratio across all classes, keeping the same proportion of negative samples
for each class.

Table 4 shows the results across six datasets with Nreal = 100 real samples, demonstrating that
TabEBM is robust to imbalances in the surrogate binary tasks. The column with |X neg

c | = 4 represents
the TabEBM results from the main paper, where four negative samples were placed in the corners (as
described in Section 2). There are negligible differences in performance, and TabEBM consistently
outperforms both the baseline and other generators (as shown in Table 1).

Table 4: Evaluating the impact of varying the ratio |X neg
c | : |Xc|. We show the test classification

accuracy performance (%) of TabEBM on data augmentation averaged over six datasets and ten
repeats. TabEBM shows consistent performance and outperforms the baseline, regardless of the
number of negative samples.

TabEBM Baseline
(Real data)

Ratio |X neg
c | : |Xc| 0.1 0.2 0.5 1 Fixed |X neg

c | = 4 -

biodeg 76.59±3.95 76.54±3.95 76.47±4.05 76.81±3.58 76.45±3.08 76.69±2.70
steel 92.71±7.46 92.60±7.45 92.79±7.50 92.63±7.59 92.71±7.57 86.87±12.4
stock 90.46±3.49 90.41±3.65 90.52±3.52 90.31±3.63 90.36±3.14 89.07±3.71
energy 31.20±6.22 31.20±6.22 30.89±5.83 30.90±6.09 31.24±5.53 25.94±4.86
collins 13.06±2.88 13.02±2.85 13.05±2.89 12.97±2.79 13.07±2.51 11.44±2.77
texture 85.91±6.92 85.91±6.92 85.94±6.76 86.26±6.72 86.01±7.36 82.42±10.38

Average accuracy 64.99 64.95 64.94 64.98 64.97 62.07

E.1.4 Varying the distance of the negative samples

We assess the effect of varying the distance of negative samples. We use TabEBM with four negative
samples positioned randomly at the corners of the hypercube, as outlined in Section 2 (this corresponds
to the experimental setup from the main paper). The distance of the negative samples, denoted as αneg

dist,
is varied. Table 5 demonstrates that TabEBM remains generally robust to changes in this distance,
with only small performance variations across different datasets. Importantly, using TabEBM for data
augmentation consistently improves performance by approximately 3% compared to the Baseline,
regardless of the distance used.

Table 5: Evaluating the impact of varying the distance of the negative samples αneg
dist across various

datasets. We show the test classification accuracy performance (%) of TabEBM on data augmentation
averaged over six datasets and ten repeats. TabEBM is robust, and optional tuning of the negative
samples could slightly improve performance.

TabEBM Baseline
(Real data)

Per-dimension distance αd

of the negative samples 0.1 0.2 0.5 1 2 5 -

biodeg 76.72±3.33 76.62±3.40 77.12±2.60 76.85±3.14 76.50±3.93 76.45±3.08 76.69±2.70
steel 93.97±5.76 93.46±6.24 93.00±6.92 92.60±7.31 92.68±7.38 92.71±7.57 86.87±12.4
stock 90.42±3.46 90.29±3.61 90.56±3.46 90.38±3.64 90.43±3.56 90.36±3.14 89.07±3.71
energy 31.73±6.21 31.42±6.08 31.86±6.12 32.53±5.96 31.65±6.06 31.24±5.53 25.94±4.86
collins 13.03±2.59 12.92±2.60 12.97±2.69 13.03±2.84 13.08±2.93 13.07±2.51 11.44±2.77
texture 85.62±7.41 85.58±7.49 85.50±7.65 85.05±8.21 85.20±7.95 86.01±7.36 82.42±10.38

Average accuracy 65.25 65.05 65.17 65.07 64.92 64.97 62.07
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E.2 Ablations on the sensitivity to the hyperparameters of SGLD sampling

We vary two key hyperparameters of SGLD on the “biodeg” binary dataset with Nreal = 100: the
step size αstep and the noise scale αnoise. Table 6 shows that TabEBM remains stable with respect
to these hyperparameters. Note that smaller values of αnoise are expected to perform better because
SGLD sampling adds noise at each iteration (see Line 7 in Algorithm 1), thus larger values of αnoise
will hinder convergence of the SGLD sampler.

Table 6: Test classification accuracy (%) of TabEBM (averaged over six downstream predictors)
with different SGLD settings. Increasing αnoise (added at each SGLD step) is expected to degrade
performance, as it causes the sampling to diverge further from the real data.

α
no

is
e αstep

0.1 0.3 0.5 1.0

0.01 76.45 77.09 77.04 76.58
0.02 76.86 76.96 76.77 76.26
0.05 75.93 75.89 75.94 75.70

E.3 Results on data augmentation

E.3.1 Aggregated results on eight OpenML datasets.

Table 7: Classification accuracy (%) aggregated over six downstream predictors, comparing data
augmentation on eight real-world tabular datasets with varied real data availability. We report the
mean ± std balanced accuracy and average accuracy rank across datasets. A higher rank implies
higher accuracy. Note that “N/A” denotes that a specific generator was not applicable, and the rank is
computed with the mean balanced accuracy of other methods. We bold the highest accuracy for each
dataset of different sample size. Our method, TabEBM, consistently outperforms training on real data
alone, and achieves the best overall performance against Baseline and benchmark generators.

Datasets Nreal
Baseline

(Real data) SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen TabEBM

A
tm

os
t1

0
cl

as
se

s

protein

20 28.14±6.83 N/A 21.18±1.48 22.00±3.43 21.30±2.84 22.12±5.30 24.82±2.88 22.40±9.28 33.25±5.01 33.84±4.92
50 50.72±10.53 54.52±8.59 39.54±5.19 36.32±7.17 35.37±8.00 35.11±11.78 41.99±5.24 37.53±14.72 54.45±7.96 55.91±6.41

100 67.83±11.72 73.25±7.48 59.28±7.20 57.64±9.95 52.57±9.55 56.37±9.64 57.01±8.56 51.69±16.68 71.53±9.87 73.31±6.77
200 81.66±10.18 85.65±6.24 76.42±7.71 74.88±8.20 72.10±10.04 75.86±9.30 74.07±8.74 73.57±6.74 84.95±7.47 86.14±5.50
500 93.49±5.28 94.73±3.67 92.24±3.73 91.48±4.43 90.44±5.54 90.62±5.63 91.79±4.53 91.31±5.20 94.87±3.70 95.18±3.10

fourier

20 28.30±12.09 N/A 21.32±4.06 18.19±3.90 17.30±3.03 15.35±3.26 21.75±2.76 16.70±2.91 36.72±7.30 37.13±6.01
50 53.69±8.04 55.51±7.43 37.96±4.48 35.09±7.46 31.94±8.99 35.99±13.06 40.32±6.70 33.56±14.02 55.11±10.66 56.57±7.12

100 63.70±6.76 64.10±6.89 50.46±8.61 49.26±9.15 44.58±8.40 52.79±10.04 51.13±6.35 41.93±15.60 63.86±7.76 65.21±6.42
200 70.99±4.88 71.43±4.47 62.17±7.29 62.92±7.87 59.15±8.33 68.05±6.91 62.53±6.97 56.44±10.13 71.81±5.35 72.36±3.77
500 77.72±2.36 77.51±2.60 73.29±4.97 74.61±4.89 71.74±6.54 77.04±3.64 74.31±4.40 70.61±6.01 77.15±2.57 78.20±2.87

biodeg

20 66.20±4.26 68.59±1.17 66.77±2.64 58.03±2.47 59.37±1.74 52.72±2.38 61.17±2.00 61.39±6.39 68.99±2.54 69.79±2.15
50 72.66±3.98 72.80±3.08 71.31±2.71 67.99±3.63 62.40±4.28 60.72±10.11 71.62±2.43 66.68±6.00 73.29±3.53 73.78±3.42

100 76.69±2.70 76.31±2.42 75.38±2.06 74.82±2.89 69.50±4.59 68.28±9.54 74.42±2.38 71.68±3.72 76.22±2.31 76.45±3.08
200 80.01±2.66 79.67±2.56 78.11±2.68 78.19±1.78 75.05±4.68 74.43±8.09 77.97±2.32 77.13±3.01 79.76±2.63 80.11±2.33
500 82.63±2.43 82.85±1.93 82.13±1.94 82.42±1.58 81.11±3.23 79.19±6.60 81.92±2.28 81.24±2.30 82.35±2.21 82.29±2.15

steel

20 57.51±4.58 58.32±3.27 57.99±3.06 56.61±1.70 53.89±1.73 55.74±6.02 54.24±2.08 53.04±2.36 63.21±5.86 63.27±5.45
50 75.06±10.43 65.63±4.00 64.18±3.95 63.70±6.10 58.90±6.39 65.85±14.84 61.72±3.39 56.72±3.47 78.67±11.79 80.50±8.67

100 86.87±12.49 74.61±5.99 70.12±5.76 69.89±5.58 65.67±9.10 76.01±17.54 67.33±5.15 60.56±5.37 90.58±9.50 92.71±7.57
200 92.90±9.14 81.97±4.12 78.73±5.06 78.36±6.98 75.90±9.57 85.45±15.03 78.65±6.70 68.20±5.30 95.56±5.85 96.29±4.64
500 97.52±3.76 92.44±4.46 92.47±3.66 92.42±4.76 88.20±8.36 96.34±4.67 90.41±5.35 84.23±10.90 98.14±2.67 98.47±2.15

stock

20 78.75±4.39 82.18±2.15 74.11±3.71 64.25±6.29 72.64±2.01 78.61±3.57 69.54±1.65 76.35±5.08 82.42±2.17 83.49±1.60
50 86.10±3.62 87.82±3.41 82.81±3.51 79.63±3.93 80.14±3.90 86.72±4.29 82.48±2.95 83.36±5.23 88.14±3.01 88.44±3.14

100 89.07±3.71 89.99±3.22 87.55±4.25 86.44±4.40 84.64±4.79 89.40±4.26 87.32±4.42 87.44±5.46 90.27±3.33 90.36±3.51
200 90.85±4.39 91.75±3.73 90.12±5.44 89.44±4.94 88.47±6.06 90.76±5.27 89.59±5.37 89.62±6.29 91.56±3.91 91.71±3.77

M
or

e
th

an
10

cl
as

se
s

energy
50 17.77±6.15 N/A 12.30±2.59 12.11±3.16 10.14±2.87 10.55±2.44 11.99±2.27 15.46±3.54 N/A 23.98±2.73

100 25.94±4.86 N/A 17.78±4.73 18.60±6.09 18.56±6.39 18.84±6.23 19.91±5.21 17.65±5.88 N/A 31.24±5.53
200 35.99±8.92 N/A 27.65±11.12 27.77±10.55 28.37±10.82 29.50±10.33 29.57±9.18 28.95±10.40 N/A 41.28±7.66

collins 100 11.44±2.77 N/A 8.38±1.52 8.11±1.00 7.93±1.40 12.67±2.16 7.53±1.10 9.21±2.35 N/A 13.07±2.51
200 15.74±3.73 17.45±3.46 12.08±3.03 11.37±1.20 10.74±1.72 15.39±3.37 10.71±1.37 14.30±3.42 N/A 17.03±3.20

texture

50 72.40±13.07 76.40±10.50 55.32±6.20 54.80±12.97 55.39±10.65 62.27±8.01 55.65±10.58 62.94±12.06 N/A 78.90±7.96
100 82.42±10.38 84.35±9.67 66.00±7.21 69.49±10.93 71.78±9.06 76.25±7.40 70.93±9.71 76.34±9.55 N/A 86.01±7.36
200 87.54±7.62 89.29±6.20 78.37±6.03 82.44±7.15 81.94±6.30 84.67±4.79 83.29±6.32 82.53±7.99 N/A 89.77±5.77
500 92.96±4.07 93.69±3.83 90.09±3.56 91.48±3.50 90.50±2.71 91.53±3.29 91.76±3.98 91.24±3.56 N/A 93.76±3.64

Average rank 3.30±1.02 3.03±1.25 6.79±1.80 7.48±1.50 8.94±0.70 6.39±2.41 6.94±1.50 7.76±2.03 3.15±1.27 1.21±0.74
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E.3.2 Predictor-wise results on eight OpenML datasets.

Table 8: Classification accuracy (%) of LR, comparing data augmentation on eight real-world tabular
datasets with varied real data availability. We report the mean ± std balanced accuracy and average
accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A” denotes that a
specific generator was not applicable or the downstream predictor failed to converge, and the rank is
computed with the mean balanced accuracy of other methods. We bold the highest accuracy for each
dataset of different sample size. TabEBM achieves the best overall performance against Baseline and
benchmark generators.

Datasets Nreal
Baseline

(Real data) SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen TabEBM

A
tm

os
t1

0
cl

as
se

s

protein

20 36.33±3.04 N/A 22.02±2.91 21.04±4.76 18.40±4.82 18.77±3.84 25.92±4.30 36.61±2.53 38.07±1.25 38.01±2.38
50 62.14±3.77 61.43±4.34 37.04±2.79 33.10±5.99 31.25±4.21 23.98±2.75 43.64±5.07 54.95±3.28 63.00±3.69 63.05±3.84

100 79.97±3.24 79.53±3.37 61.07±5.06 55.44±1.92 46.37±4.10 45.55±4.24 56.77±3.06 67.25±4.50 80.54±3.27 80.32±3.12
200 91.53±1.58 90.92±1.81 77.43±2.75 71.27±3.07 66.16±4.31 66.37±3.42 70.52±2.17 76.30±3.70 91.69±1.66 91.34±1.77
500 97.86±0.83 97.69±0.80 90.77±0.93 89.05±1.52 85.09±1.99 83.58±2.22 88.55±1.54 90.64±0.81 97.97±0.61 97.88±0.86

fourier

20 42.90±5.30 N/A 22.46±5.88 16.00±4.70 15.48±3.79 13.58±4.30 22.04±4.42 15.80±4.15 44.67±8.85 43.02±5.14
50 60.62±1.64 58.40±1.95 33.42±2.98 31.18±5.47 28.70±3.74 26.18±3.80 39.04±3.12 40.00±4.97 60.07±2.14 60.36±1.55

100 67.76±2.49 65.84±2.35 41.36±2.85 40.32±3.49 40.32±5.82 41.44±5.02 47.90±3.74 39.78±3.99 67.40±1.51 67.44±2.46
200 73.13±2.41 71.56±2.67 54.76±3.46 55.00±3.72 52.40±3.18 58.08±3.52 58.48±2.08 50.98±2.68 70.30±2.91 72.38±3.01
500 77.44±1.20 76.42±1.28 68.28±2.12 70.18±1.89 68.12±1.62 72.36±1.65 71.54±1.95 69.48±1.71 76.52±1.69 77.50±2.14

biodeg

20 71.34±5.63 70.10±5.49 70.16±5.75 58.17±8.00 58.05±9.91 49.99±5.88 62.61±6.45 69.47±6.00 70.76±3.95 71.24±4.85
50 76.35±2.88 75.69±3.03 73.63±2.64 67.44±3.83 62.87±7.30 49.44±2.63 74.44±2.77 71.75±5.27 75.68±2.31 76.41±2.93

100 78.91±1.40 78.39±1.53 77.09±2.80 74.89±2.54 68.62±5.21 55.61±3.56 75.62±2.77 72.45±3.31 77.92±2.41 78.34±2.18
200 82.00±1.47 81.42±1.39 80.07±1.82 78.56±3.43 72.35±1.72 59.06±4.65 78.03±1.95 73.73±2.09 81.24±1.71 81.43±1.78
500 83.83±0.57 83.74±0.90 81.69±0.82 82.12±1.17 78.06±2.13 66.86±5.43 81.47±0.93 77.98±1.27 83.43±0.82 83.10±0.98

steel

20 63.66±8.98 57.88±5.72 60.27±7.47 57.90±4.45 53.10±7.28 54.20±6.99 55.41±4.92 53.29±4.31 66.81±9.74 67.03±9.35
50 87.91±5.88 69.01±6.60 66.22±3.63 66.22±5.77 57.05±5.51 57.46±8.48 64.81±4.64 57.20±5.19 93.63±4.78 92.20±4.81

100 98.85±1.20 82.67±4.30 74.33±3.85 70.49±5.35 65.09±7.30 52.77±7.06 67.85±4.94 61.62±4.05 99.24±0.82 99.21±0.86
200 99.43±0.58 87.18±3.06 82.77±3.21 80.34±2.93 70.49±5.27 72.99±13.98 80.27±7.32 64.52±2.16 99.45±0.69 99.51±0.69
500 99.75±0.29 96.63±2.11 94.59±2.98 96.32±1.52 84.15±2.69 98.07±1.37 95.35±2.06 70.11±2.58 99.84±0.20 99.84±0.20

stock

20 77.99±4.40 80.45±3.98 74.21±6.36 59.20±12.69 72.50±7.92 72.09±9.75 69.04±6.25 80.59±3.59 79.54±4.46 80.39±3.42
50 80.68±2.65 81.49±2.95 76.41±3.95 72.95±2.17 75.41±6.00 78.44±4.40 76.91±2.36 75.49±5.31 82.37±3.20 82.21±2.60

100 82.11±1.11 83.86±1.97 79.85±2.79 78.47±2.71 76.99±3.49 80.82±3.57 78.89±2.36 77.65±2.60 83.67±1.60 83.52±1.76
200 82.18±0.81 84.29±1.19 79.24±2.82 79.86±2.42 76.49±1.37 80.21±2.13 78.87±2.46 76.91±1.04 83.75±1.53 84.17±1.42

M
or

e
th

an
10

cl
as

se
s

energy
50 22.22±2.36 N/A 10.11±2.20 9.58±3.15 7.70±1.83 8.20±2.01 10.51±1.28 17.10±5.03 N/A 21.66±1.54

100 24.00±2.30 N/A 13.80±2.23 13.01±1.71 12.14±1.87 10.79±3.19 15.65±2.40 14.45±2.90 N/A 28.10±2.19
200 29.37±2.63 N/A 16.39±2.68 16.56±3.58 16.78±3.15 18.11±1.71 20.10±2.48 20.92±2.79 N/A 34.38±2.60

collins 100 14.28±1.63 N/A 10.57±1.72 8.69±1.17 9.59±1.35 13.31±1.67 8.69±1.80 12.08±1.56 N/A 14.01±2.55
200 19.20±1.71 19.39±1.88 16.03±1.74 11.64±1.76 10.97±1.46 17.06±1.51 11.31±1.58 17.80±1.21 N/A 19.33±1.55

texture

50 86.56±2.96 86.93±2.77 55.01±5.77 42.17±6.36 44.63±5.41 60.07±10.11 44.46±6.63 77.68±4.33 N/A 88.54±2.88
100 94.07±1.70 93.87±1.82 65.36±4.49 60.07±6.81 60.76±5.18 73.16±5.11 64.69±4.79 84.13±1.97 N/A 94.38±1.24
200 96.65±1.24 96.53±1.33 75.91±5.58 80.02±5.13 77.07±3.89 86.24±3.62 85.90±2.78 85.94±2.88 N/A 96.53±1.27
500 98.03±0.36 98.05±0.23 91.87±0.93 92.93±1.78 90.01±1.80 93.92±0.81 94.83±0.89 91.72±1.49 N/A 97.75±0.42

Average rank 2.36±1.14 3.45±1.35 6.52±1.48 7.53±1.42 9.08±0.77 7.61±2.33 6.70±1.47 6.67±2.53 3.17±1.81 1.92±0.75
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Table 9: Classification accuracy (%) of KNN, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean ± std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample size. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Datasets Nreal
Baseline

(Real data) SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen TabEBM

A
tm

os
t1

0
cl

as
se

s

protein

20 21.34±2.93 N/A 21.78±2.06 21.18±4.22 21.30±1.90 22.00±2.70 22.69±3.86 16.99±3.45 35.78±4.46 35.76±4.37
50 36.41±4.33 55.24±3.81 35.85±2.50 36.13±4.24 35.40±4.27 36.77±4.06 36.84±4.05 31.02±4.11 53.38±3.53 53.49±3.30

100 50.17±3.11 70.11±2.82 51.97±2.84 50.61±3.15 50.62±3.27 50.63±3.55 50.36±3.44 44.70±2.22 67.99±2.43 68.27±2.51
200 65.84±2.78 80.43±2.44 65.52±2.96 66.05±2.74 66.14±2.42 67.50±2.57 66.52±3.16 63.92±3.26 79.94±2.26 80.55±2.02
500 85.63±1.41 90.92±1.42 87.08±1.86 85.77±1.43 85.51±1.50 86.47±1.40 85.87±1.63 85.64±1.94 91.32±1.09 91.67±1.11

fourier

20 18.06±3.30 N/A 26.56±4.92 24.88±3.66 19.80±3.77 19.30±3.53 23.42±3.45 18.78±2.17 41.08±6.56 42.78±5.83
50 48.00±2.47 60.38±1.67 39.86±3.73 46.82±3.52 43.56±3.45 49.54±2.78 42.98±2.80 28.12±2.75 59.50±1.99 58.54±1.86

100 58.36±3.26 66.96±2.47 48.44±4.14 53.94±3.47 53.50±2.54 60.80±4.28 52.74±3.15 35.70±2.40 63.88±2.53 65.08±2.47
200 68.60±2.55 71.90±2.02 59.66±3.31 66.54±2.75 65.16±2.71 70.22±2.26 64.52±2.44 51.24±7.29 70.32±1.94 71.08±1.87
500 76.90±1.30 77.64±1.07 73.20±1.68 76.22±1.62 75.72±1.40 78.88±1.58 76.54±0.77 63.66±2.49 74.30±1.51 75.35±1.34

biodeg

20 65.23±5.01 68.99±3.31 66.63±7.83 56.99±5.55 59.91±6.09 55.85±4.94 58.77±5.93 56.62±7.29 67.79±4.64 69.76±4.43
50 71.26±3.13 73.19±2.46 70.80±2.14 70.00±5.92 65.90±3.57 73.50±4.43 70.23±3.35 65.29±4.57 72.08±3.84 73.58±3.57

100 76.12±1.98 76.07±1.74 74.02±2.78 75.36±2.18 73.24±2.61 77.34±2.19 74.28±2.02 72.26±2.46 74.56±1.58 75.60±1.55
200 78.86±2.19 79.67±1.68 77.31±2.93 78.05±3.07 77.64±2.71 77.84±2.62 78.81±2.66 76.82±2.29 77.46±1.68 78.46±1.69
500 82.59±1.17 83.07±1.50 82.13±1.21 82.17±1.32 82.80±1.28 81.06±1.22 82.15±1.33 82.10±0.79 79.99±1.76 81.01±1.66

steel

20 56.40±4.48 63.95±3.14 59.45±8.27 57.04±5.05 54.59±5.81 65.46±6.10 56.97±5.43 52.90±3.76 70.68±3.87 69.31±4.02
50 73.95±4.76 70.24±3.44 67.60±4.10 68.77±2.85 67.00±4.58 85.14±8.76 64.02±3.71 57.54±2.34 82.09±3.09 80.47±3.48

100 84.70±5.57 77.46±3.67 71.87±2.98 72.94±4.62 77.09±2.63 94.05±3.84 72.62±5.21 61.08±1.93 87.77±3.13 87.67±3.22
200 90.44±2.80 82.46±1.43 80.83±2.65 82.73±3.88 85.49±3.59 98.99±0.75 83.38±2.67 69.12±2.56 92.01±1.73 92.06±1.48
500 94.99±1.09 89.97±0.88 91.34±1.69 92.42±1.36 93.37±1.13 99.71±0.21 92.02±2.03 80.79±1.93 95.08±1.30 95.50±1.49

stock

20 71.89±4.37 84.41±5.28 73.80±4.68 66.38±9.10 68.93±10.49 81.82±8.38 67.53±8.58 71.80±4.99 84.41±4.22 84.69±4.16
50 85.03±3.39 89.77±1.99 84.32±3.97 83.49±3.67 84.43±2.04 89.34±1.59 84.33±3.22 83.64±2.53 89.67±1.88 89.68±1.87

100 89.66±1.39 92.32±0.99 89.58±1.22 89.61±1.36 89.66±1.01 91.40±1.41 89.66±2.10 89.44±1.41 92.02±0.81 92.47±0.83
200 91.65±1.08 93.46±0.82 92.37±1.18 91.55±1.19 91.43±1.34 92.92±1.00 91.14±1.58 91.53±1.05 93.15±0.72 93.62±1.14

M
or

e
th
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10

cl
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se
s

energy
50 10.85±1.76 N/A 10.64±2.36 8.22±2.03 8.83±1.53 8.92±2.51 9.14±1.95 11.86±2.33 N/A 25.36±2.27

100 18.60±1.83 N/A 13.71±1.66 15.81±1.50 14.67±1.55 16.18±1.75 15.71±2.79 17.64±2.68 N/A 29.82±2.74
200 26.45±1.49 N/A 20.71±1.02 21.71±3.23 23.40±2.15 23.95±2.94 23.09±2.56 27.35±2.28 N/A 35.93±2.85

collins 100 10.59±1.48 N/A 7.58±0.74 7.95±1.12 7.55±1.32 14.24±1.48 7.42±1.17 8.79±0.93 N/A 15.16±1.92
200 15.84±1.74 19.81±1.73 9.79±1.14 11.21±1.45 12.24±1.65 16.30±1.54 10.96±1.43 12.86±1.50 N/A 18.05±1.65

texture

50 62.96±2.49 78.80±2.75 55.51±3.69 61.86±4.48 62.08±3.17 61.91±2.24 62.67±2.29 56.81±2.98 N/A 75.57±2.67
100 77.16±1.25 86.15±2.62 69.54±2.66 76.53±2.22 76.85±1.56 77.77±1.80 76.70±2.05 72.64±1.81 N/A 84.83±1.67
200 85.34±1.18 89.07±1.74 81.70±1.32 85.46±1.28 84.62±1.09 85.94±1.35 85.11±1.20 84.72±0.80 N/A 89.48±2.01
500 91.40±1.60 93.14±1.28 89.88±1.44 91.40±1.55 91.34±1.60 92.31±1.60 91.46±1.51 91.91±1.63 N/A 93.46±0.66

Average rank 5.15±2.06 2.70±1.97 7.67±2.10 7.03±1.55 7.27±1.68 4.12±2.34 6.82±1.76 8.42±2.33 3.67±1.96 2.15±1.75
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Table 10: Classification accuracy (%) of MLP, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean ± std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample size. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Datasets Nreal
Baseline

(Real data) SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen TabEBM

A
tm

os
t1

0
cl

as
se

s

protein

20 35.12±2.59 N/A 21.89±3.62 26.95±4.13 24.56±5.06 27.30±3.23 27.96±4.51 27.09±3.47 36.19±2.84 36.26±2.65
50 58.11±4.13 57.24±4.60 40.77±3.59 43.04±5.43 44.78±3.92 49.43±2.51 46.84±5.08 44.78±2.67 58.62±4.41 58.75±4.48

100 76.82±3.33 76.78±3.10 62.00±3.21 64.14±3.19 63.24±4.05 69.20±2.75 65.08±2.67 62.45±3.22 77.84±3.49 77.63±3.69
200 89.53±2.34 90.28±2.13 80.28±3.49 81.94±2.56 81.85±2.46 85.48±2.07 82.57±2.19 78.04±2.66 90.74±2.13 90.48±2.06
500 98.23±0.91 98.25±0.78 95.08±1.34 95.74±0.95 96.15±1.09 96.01±0.86 96.50±0.87 96.23±1.67 98.52±0.80 98.50±0.70

fourier

20 33.66±3.92 N/A 23.20±5.54 17.08±2.75 19.40±4.03 18.32±3.82 23.26±4.21 19.64±2.40 37.00±2.85 35.02±3.77
50 53.72±1.67 53.02±1.96 37.16±3.08 37.60±4.52 35.14±2.44 40.90±2.80 42.82±2.83 32.66±5.19 55.40±2.23 55.34±1.40

100 62.78±1.60 61.44±2.74 43.68±3.15 48.80±2.66 46.18±3.96 56.52±5.04 52.50±2.66 37.74±2.99 63.00±1.95 63.54±1.83
200 70.18±1.85 70.06±2.10 58.90±2.56 62.36±2.86 58.40±2.53 70.08±1.90 62.14±2.00 50.92±5.13 71.49±1.41 71.36±1.36
500 77.94±1.65 77.18±1.35 72.14±1.79 74.30±1.65 71.38±1.54 77.78±1.26 74.32±1.56 67.28±2.91 78.34±1.72 79.30±0.99

biodeg

20 71.31±5.13 68.84±5.95 66.64±8.27 62.11±4.95 62.61±6.78 52.96±4.22 62.06±3.69 65.81±7.24 72.04±5.12 72.09±4.81
50 76.73±3.16 74.97±2.51 72.02±4.74 71.83±3.17 67.86±6.02 69.92±4.83 74.03±3.05 71.01±2.78 77.17±2.93 77.11±3.20

100 79.13±1.91 78.20±1.68 76.78±2.79 77.85±2.73 76.01±2.88 76.74±3.62 76.08±2.39 76.24±2.45 78.23±2.29 79.08±2.03
200 82.39±1.48 81.70±1.22 80.43±2.02 79.96±2.35 79.92±1.55 80.51±1.26 79.59±1.72 80.34±1.93 81.74±1.36 82.24±1.54
500 84.50±0.61 84.50±0.81 83.78±1.51 83.67±0.81 84.13±1.20 84.09±0.84 83.76±1.27 82.97±1.21 84.37±0.48 84.14±0.59

steel

20 62.35±6.30 60.34±5.73 61.63±8.82 59.09±4.25 56.99±7.13 60.67±9.18 55.23±3.92 55.78±3.01 64.49±6.03 64.22±5.89
50 79.65±5.53 68.18±3.16 69.01±3.48 70.30±4.77 66.96±5.12 84.04±8.03 64.79±4.07 58.95±1.66 82.72±6.02 82.15±5.78

100 92.18±2.93 78.44±3.67 76.37±3.06 76.92±3.63 76.50±3.18 95.83±1.90 71.85±3.20 67.35±2.51 95.16±3.13 95.41±3.23
200 97.31±1.63 83.93±1.83 82.42±2.75 84.70±2.54 84.06±4.46 98.75±0.68 79.66±3.26 78.36±3.86 98.83±0.80 98.84±0.67
500 99.78±0.30 91.37±2.26 93.08±1.82 94.82±1.54 93.99±1.83 99.47±0.44 90.34±2.19 96.06±1.03 99.81±0.24 99.81±0.24

stock

20 83.56±3.89 83.62±4.06 77.25±5.02 69.90±9.27 72.85±7.77 80.60±5.73 69.30±6.76 83.34±3.38 83.81±3.92 83.89±4.05
50 89.57±2.01 89.71±2.21 82.62±3.49 79.35±2.71 81.52±1.99 88.48±2.18 83.36±2.30 88.38±2.41 90.23±2.02 90.38±2.17

100 90.63±0.83 91.17±0.83 88.37±2.40 86.60±3.27 83.19±3.77 90.65±1.39 88.64±1.15 91.61±0.70 91.70±1.17 91.75±0.97
200 91.25±0.74 92.58±0.91 91.27±0.95 90.34±1.60 89.32±2.45 92.19±0.78 90.37±1.32 91.89±1.32 92.91±0.62 92.47±0.63

M
or

e
th

an
10

cl
as

se
s

energy
50 24.79±1.76 N/A 12.51±2.89 12.61±3.45 8.43±2.11 10.91±2.11 12.45±1.87 20.42±4.41 N/A 24.04±1.39

100 26.86±1.51 N/A 16.20±2.12 15.78±2.50 15.70±2.44 17.75±3.18 18.16±2.46 20.72±2.99 N/A 29.30±2.32
200 33.36±2.98 N/A 22.30±2.44 23.00±4.24 23.53±1.84 26.12±1.78 26.28±3.03 33.03±3.38 N/A 41.27±2.93

collins 100 14.16±1.31 N/A 9.24±1.71 9.16±1.57 9.04±1.79 14.03±1.24 8.59±1.84 10.81±1.68 N/A 14.07±1.58
200 19.35±1.24 19.06±1.49 14.62±2.00 13.17±0.94 12.38±1.56 18.63±1.56 12.48±1.91 17.65±1.76 N/A 19.53±1.44

texture

50 84.50±2.81 84.12±3.02 62.92±4.09 67.69±5.49 61.99±3.58 69.69±4.62 64.45±7.84 69.68±3.53 N/A 85.51±2.89
100 91.50±1.34 91.57±1.59 74.53±3.39 79.96±4.37 80.36±4.58 85.42±2.74 80.23±2.18 85.59±1.49 N/A 92.17±1.31
200 93.81±1.35 94.18±1.26 86.57±2.33 90.68±1.55 88.97±2.12 90.10±2.26 89.14±1.85 91.66±1.43 N/A 94.35±1.57
500 96.55±0.63 97.21±0.40 94.66±1.17 96.27±0.74 94.34±1.36 94.72±0.61 95.83±1.03 96.49±0.48 N/A 97.13±0.53

Average rank 3.00±1.32 4.06±1.62 7.82±1.63 7.48±1.50 8.45±1.33 5.55±2.14 7.48±1.72 6.82±2.57 2.67±1.69 1.67±0.74
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Table 11: Classification accuracy (%) of RF, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean ± std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample size. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Datasets Nreal
Baseline

(Real data) SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen TabEBM

A
tm

os
t1

0
cl

as
se

s

protein

20 28.52±2.19 N/A 22.74±4.23 24.94±5.15 24.61±2.46 29.62±4.06 27.69±3.73 25.76±1.62 32.04±2.40 34.19±2.21
50 53.40±3.26 55.69±2.61 46.95±3.13 43.91±4.98 43.28±4.07 47.93±4.49 44.48±3.35 47.25±4.81 54.29±2.57 56.85±2.49

100 68.13±3.19 72.89±2.60 63.24±1.78 61.19±2.10 59.64±3.48 65.19±3.22 60.05±2.88 65.05±3.00 71.47±3.61 72.57±2.50
200 80.34±2.35 83.60±2.71 78.51±2.58 75.84±1.61 76.84±2.35 78.74±2.24 75.61±2.90 79.44±2.73 83.36±2.40 84.30±1.97
500 93.01±1.12 93.82±0.67 92.86±1.66 91.37±1.25 93.00±1.08 92.93±0.97 92.38±0.90 92.95±0.92 94.49±1.16 93.94±1.23

fourier

20 35.10±4.56 N/A 19.06±3.91 17.52±2.84 20.78±2.54 16.98±2.31 23.78±3.12 19.00±2.93 34.88±5.93 38.60±5.66
50 64.10±3.80 64.76±4.00 37.20±3.35 32.82±4.56 37.78±3.11 51.76±3.50 47.22±4.35 53.86±3.61 66.92±3.05 66.26±3.16

100 73.86±3.06 73.78±3.22 64.40±2.51 60.82±3.71 51.64±4.16 66.14±1.91 58.62±3.73 68.16±3.12 73.13±2.70 74.84±3.10
200 78.54±2.15 79.18±1.92 74.86±1.60 74.26±2.20 69.36±2.61 76.42±1.95 72.88±1.22 76.64±1.99 82.20±0.85 79.18±2.08
500 81.84±1.01 82.14±1.49 81.02±1.59 81.18±1.43 80.08±1.62 81.26±1.40 80.28±1.54 80.62±1.52 81.45±1.45 83.40±1.24

biodeg

20 61.11±7.87 68.38±5.90 65.44±8.89 56.29±7.96 58.19±6.60 52.90±4.74 62.33±6.14 63.52±7.29 67.15±5.74 67.82±5.13
50 68.38±4.82 70.64±3.44 71.77±2.99 66.78±4.89 61.39±4.94 63.98±3.65 68.78±5.22 70.34±3.39 71.38±3.60 72.12±3.29

100 73.19±2.46 75.36±2.56 74.98±2.58 72.68±2.98 69.62±3.53 73.11±2.39 72.16±2.58 74.22±2.32 75.85±1.56 75.65±1.53
200 77.85±2.72 78.86±1.97 76.42±2.25 76.68±2.77 73.43±3.01 76.16±2.00 75.79±2.49 77.42±2.24 79.68±1.74 79.22±1.70
500 81.42±0.73 82.03±1.02 81.88±0.87 81.71±1.54 80.50±1.21 81.43±1.26 81.34±1.58 81.94±0.85 82.38±1.35 82.10±1.31

steel

20 52.77±1.60 56.16±4.50 57.23±3.97 54.65±3.40 53.75±3.49 51.70±1.66 54.09±4.36 55.50±2.97 57.04±3.07 57.41±2.67
50 59.75±3.11 62.12±2.46 60.65±1.96 58.09±1.75 54.69±2.44 58.14±4.21 57.67±2.52 60.34±2.90 65.07±3.11 67.74±3.36

100 64.97±2.05 69.08±3.62 64.46±4.17 61.62±1.98 58.43±2.46 60.53±3.64 62.71±3.43 63.07±2.23 73.28±3.39 79.63±3.41
200 75.45±3.26 74.71±3.79 71.45±2.18 68.52±3.80 62.15±2.80 68.10±3.59 67.61±1.81 67.36±1.63 85.12±4.44 88.85±5.10
500 90.93±2.83 85.37±2.36 85.63±3.14 84.51±3.22 76.12±2.70 89.19±3.20 81.44±2.64 80.35±3.54 94.35±1.34 95.90±1.06

stock

20 79.47±5.83 81.99±4.49 77.94±5.21 72.53±7.16 73.20±9.98 80.99±7.01 72.57±8.76 78.10±5.91 83.96±5.57 84.73±3.46
50 87.57±2.60 89.69±1.99 86.62±3.44 83.75±4.32 84.28±2.98 88.69±2.11 84.92±2.09 88.65±2.55 89.35±2.18 89.99±2.63

100 91.44±1.59 91.47±2.16 91.07±2.08 89.82±2.69 89.33±1.92 91.33±2.07 90.48±2.38 92.00±2.36 92.07±1.22 92.17±1.24
200 93.52±0.80 93.94±1.09 93.35±1.05 92.62±1.02 92.77±1.25 93.65±1.08 93.08±0.53 93.87±1.25 93.65±1.02 93.67±1.07

M
or
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energy
50 18.96±1.40 N/A 16.63±2.27 15.66±2.43 14.81±3.16 14.49±1.26 15.05±3.06 15.58±3.26 N/A 27.74±3.71

100 30.85±2.19 N/A 24.59±2.27 28.59±2.63 27.59±2.86 27.23±2.39 27.99±2.18 25.43±2.46 N/A 41.03±2.24
200 45.80±2.32 N/A 42.10±2.57 41.69±3.84 44.41±2.51 44.58±1.37 41.33±3.90 44.64±2.54 N/A 53.87±2.81

collins 100 10.41±1.61 N/A 6.75±0.69 8.23±1.76 7.34±1.46 12.84±1.61 6.73±1.36 8.43±0.94 N/A 13.35±1.49
200 13.75±1.12 17.56±1.79 10.51±1.41 11.00±1.37 9.85±1.38 15.15±1.22 9.90±0.72 13.40±1.09 N/A 16.51±1.53

texture

50 71.27±1.99 71.17±3.89 57.41±3.33 62.78±4.21 65.24±4.52 69.45±2.15 62.93±4.84 64.33±3.57 N/A 75.79±3.07
100 80.40±2.45 80.38±2.67 65.63±4.21 75.38±3.99 77.67±2.62 79.31±1.88 75.98±2.56 77.30±2.44 N/A 82.30±2.21
200 84.00±1.56 85.12±3.07 76.98±2.25 84.44±2.41 85.30±1.96 84.00±1.20 83.70±2.05 80.02±1.60 N/A 85.92±2.18
500 89.43±0.80 90.17±1.25 88.97±1.44 90.00±1.66 89.99±1.06 90.17±1.32 91.01±1.32 88.98±1.26 N/A 90.77±1.10

Average rank 4.36±1.95 3.02±1.14 6.88±2.25 7.82±1.61 8.45±1.95 6.12±2.23 7.85±1.77 6.00±1.75 3.12±1.75 1.38±0.57
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Table 12: Classification accuracy (%) of XGBoost, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean ± std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample size. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Datasets Nreal
Baseline

(Real data) SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen TabEBM

A
tm

os
t1

0
cl

as
se

s

protein

20 19.70±6.33 N/A 19.44±4.11 17.32±2.75 18.11±3.07 16.15±3.80 20.71±5.24 17.40±4.89 24.00±3.64 24.18±3.05
50 39.01±4.92 37.68±5.40 33.07±4.18 24.38±3.45 23.09±4.55 30.87±5.70 34.13±6.45 33.62±3.67 39.78±6.03 44.46±4.97

100 57.59±3.69 60.16±5.75 49.23±5.51 43.33±7.92 37.69±5.96 48.36±4.08 43.97±5.45 47.00±3.29 53.74±7.94 62.77±5.85
200 74.05±2.92 76.90±4.96 69.71±4.28 67.46±4.39 58.29±7.96 69.68±4.23 63.69±6.32 66.09±4.78 73.19±6.06 79.25±3.83
500 88.89±1.71 90.02±1.51 90.10±1.80 89.37±1.81 86.03±2.31 87.29±2.08 90.05±2.70 85.04±2.07 89.66±1.17 91.81±1.44

fourier

20 10.00±0.00 N/A 14.64±3.13 13.58±2.57 13.82±4.14 11.72±4.19 16.38±3.86 12.34±3.59 23.50±1.56 26.78±4.82
50 42.10±6.19 43.40±5.22 34.32±3.98 24.68±6.47 17.66±4.64 24.82±6.35 27.74±5.86 35.42±7.51 35.60±3.11 45.08±6.47

100 54.84±2.78 52.92±5.69 48.22±3.28 36.90±5.15 30.36±3.94 42.46±4.13 40.28±3.41 48.78±4.36 49.80±1.98 54.94±5.72
200 63.88±3.35 65.34±3.57 58.36±3.27 53.20±5.26 46.96±4.58 61.40±4.12 52.10±3.32 56.66±2.67 66.60±4.24 67.68±3.19
500 74.56±1.97 74.18±2.10 68.28±2.82 67.98±2.07 61.24±2.35 72.78±2.54 67.50±2.57 68.28±3.43 N/A 76.25±3.18

biodeg

20 62.95±7.95 66.51±5.84 62.72±5.69 55.24±6.28 59.20±7.83 54.65±5.56 62.78±5.98 61.09±10.49 65.52±6.08 66.64±6.71
50 67.96±3.45 67.69±4.42 66.22±5.70 61.64±6.73 60.72±5.73 57.48±8.28 69.48±5.35 65.93±4.98 67.76±4.90 67.90±3.27

100 73.88±2.55 72.05±4.75 72.11±3.17 70.41±3.60 66.02±6.25 69.35±4.66 71.11±3.88 69.03±4.33 72.58±2.91 71.05±5.70
200 76.38±4.85 74.98±3.15 73.93±3.29 75.68±4.15 67.82±3.91 72.58±5.07 74.74±2.24 73.84±3.82 75.85±1.80 76.74±2.44
500 78.45±3.37 79.38±1.99 78.88±3.42 80.15±1.87 76.72±3.44 77.10±2.96 78.14±2.65 78.83±2.21 79.40±1.49 78.80±3.76

steel

20 53.12±5.62 55.64±4.76 53.32±7.25 55.36±6.24 52.38±3.55 52.44±4.08 51.34±4.15 50.74±2.53 55.43±5.57 55.78±4.53
50 66.73±9.11 60.79±5.52 59.51±4.15 54.82±4.23 54.79±4.69 59.71±6.94 57.66±5.19 55.89±4.50 63.78±7.20 74.18±13.67

100 83.17±9.36 66.95±6.51 61.72±6.80 65.12±3.02 60.56±4.37 72.02±12.47 59.67±4.77 59.04±4.76 90.52±7.47 96.55±2.66
200 95.94±2.73 81.21±5.01 73.14±5.45 70.64±10.67 70.26±9.25 74.50±23.57 74.57±9.36 65.41±6.70 99.14±1.19 99.54±0.62
500 99.95±0.10 97.04±2.14 95.27±2.88 89.46±6.88 83.25±8.10 91.72±15.34 87.59±6.72 79.54±15.29 100.00±0.00 100.00±0.00

stock

20 76.42±4.34 78.92±5.21 67.46±13.93 60.56±9.69 73.36±9.57 77.45±9.80 69.15±9.35 70.88±8.52 79.82±4.52 83.44±3.74
50 83.71±3.40 86.23±2.54 84.65±4.44 79.31±6.58 76.27±3.89 85.70±3.96 81.61±1.97 84.98±4.44 87.28±3.65 88.21±3.31

100 88.19±3.04 89.01±2.07 85.66±6.01 84.68±2.87 82.50±3.73 90.07±3.41 86.09±4.08 84.67±7.29 90.01±3.46 89.66±3.28
200 92.32±1.35 92.26±2.33 90.94±1.98 89.01±2.53 88.92±2.67 91.36±3.79 91.04±1.46 91.42±2.66 91.72±2.77 92.17±1.51

M
or

e
th

an
10

cl
as

se
s

energy
50 12.05±2.42 N/A 11.60±3.83 14.47±5.32 10.95±4.68 10.21±5.11 12.81±2.51 12.34±3.55 N/A 21.07±3.99

100 29.37±1.72 N/A 20.61±5.39 19.81±4.52 22.71±6.15 22.27±2.12 22.02±3.54 10.01±3.40 N/A 27.93±4.16
200 44.96±3.31 N/A 36.73±6.03 35.92±8.45 33.71±6.54 34.73±5.89 37.06±5.26 18.81±7.27 N/A 40.95±5.59

collins 100 7.77±2.21 N/A 7.76±0.95 6.52±1.16 6.11±1.09 8.95±1.90 6.21±1.14 5.96±1.07 N/A 8.73±1.64
200 10.58±2.57 11.46±2.11 9.43±2.20 9.84±1.56 8.26±1.75 9.80±1.96 8.90±0.83 9.79±0.80 N/A 11.72±1.34

texture

50 56.72±6.12 60.99±4.35 45.76±6.50 39.50±6.46 43.02±6.12 50.22±6.28 43.71±5.98 46.21±7.95 N/A 69.11±3.27
100 68.96±2.59 69.77±4.63 54.95±5.99 55.52±7.80 63.23±4.80 65.59±3.62 57.04±6.59 62.06±6.11 N/A 76.35±2.64
200 77.91±1.98 81.55±2.22 70.70±4.40 71.60±4.19 73.76±5.69 77.06±2.17 72.56±4.09 70.31±6.55 N/A 82.59±2.15
500 89.37±1.11 89.87±1.24 85.06±2.40 86.80±2.25 86.83±1.89 86.52±1.66 85.70±2.75 87.07±2.43 N/A 89.69±1.10

Average rank 3.64±2.09 3.45±1.48 6.32±1.86 7.33±2.19 8.64±1.82 6.30±2.44 6.64±2.18 7.62±1.84 3.44±1.54 1.62±1.29
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Table 13: Classification accuracy (%) of TabPFN, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean ± std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample size. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Datasets Nreal
Baseline

(Real data) SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen TabEBM

A
tm

os
t1

0
cl

as
se

s

protein

20 27.80±4.37 N/A 19.21±3.80 20.58±4.63 20.80±4.34 18.89±4.37 23.97±3.05 10.55±1.61 33.42±5.95 34.63±5.78
50 55.24±3.46 59.85±3.87 43.58±6.20 37.37±8.01 34.42±6.65 21.70±7.43 46.02±2.60 13.54±4.22 57.63±2.82 58.88±3.99

100 74.31±3.49 80.05±3.16 68.15±5.54 71.10±2.55 57.89±6.13 59.28±8.23 65.84±3.03 23.69±10.40 77.60±4.03 78.26±3.75
200 88.67±1.53 91.79±1.42 87.05±2.85 86.69±2.85 83.29±2.42 87.39±2.95 85.49±2.49 77.63±6.11 90.77±1.37 90.94±1.46
500 97.31±0.69 97.69±0.77 97.51±0.85 97.58±0.85 96.89±0.62 97.44±0.85 97.40±0.60 97.35±0.61 97.24±0.80 97.28±0.62

fourier

20 30.06±6.85 N/A 22.00±4.62 20.10±4.31 14.52±3.96 12.22±2.40 21.64±5.91 14.64±3.94 N/A 36.56±4.96
50 53.62±4.71 53.08±3.34 45.82±4.29 37.46±5.82 28.78±2.78 22.74±5.11 42.14±3.09 11.30±1.50 53.15±3.50 53.82±3.92

100 64.62±4.14 63.66±3.92 56.68±3.02 54.78±2.80 45.50±4.50 49.36±8.51 54.74±2.78 21.40±4.29 65.95±3.49 65.40±3.61
200 71.62±2.59 70.56±3.61 66.48±3.82 66.14±4.02 62.64±2.60 72.12±2.64 65.04±3.20 52.18±7.35 69.93±3.91 72.48±3.08
500 77.66±1.61 77.50±1.08 76.80±1.34 77.82±1.24 73.90±1.76 79.16±2.05 75.70±2.11 74.36±2.53 77.30±0.42 77.40±1.28

biodeg

20 65.26±8.01 68.72±4.50 69.02±5.37 59.39±6.25 58.28±8.30 50.00±0.00 58.45±8.16 51.80±4.07 70.68±4.94 71.18±5.25
50 75.27±2.63 74.65±3.28 73.44±4.02 70.21±3.61 55.68±9.27 50.00±0.00 72.74±3.74 55.75±7.45 75.69±2.44 75.56±3.22

100 78.92±1.98 77.78±2.65 77.27±3.15 77.71±1.81 63.50±10.77 57.50±6.27 77.25±1.66 65.87±6.72 78.15±1.45 79.00±1.99
200 82.59±1.84 81.42±1.27 80.48±1.82 80.19±2.48 79.16±2.49 80.45±1.48 80.88±1.68 80.66±1.49 82.56±1.68 82.58±1.90
500 85.00±0.70 84.37±0.75 84.40±0.68 84.67±0.98 84.45±0.91 84.58±0.70 84.68±1.06 83.66±0.67 84.56±0.98 84.55±0.92

steel

20 56.77±4.17 55.95±4.30 56.03±4.37 55.62±4.80 52.52±4.64 50.00±0.00 52.39±3.13 50.05±0.17 64.80±5.66 65.87±6.14
50 82.34±8.38 63.42±3.93 62.08±2.69 63.98±4.08 52.92±4.72 50.64±2.01 61.32±4.55 50.36±1.09 84.70±7.84 86.30±6.73

100 97.37±1.37 73.06±4.46 71.96±5.40 72.23±4.15 56.34±6.30 80.87±20.44 69.29±5.70 51.18±3.24 97.49±1.21 97.81±1.49
200 98.84±0.70 82.32±2.88 81.78±3.36 83.24±2.68 82.92±6.21 99.35±0.70 86.40±4.22 64.42±11.35 98.80±0.73 98.96±0.71
500 99.74±0.29 94.27±2.39 94.93±1.89 96.98±1.34 98.32±1.19 99.88±0.15 95.70±1.50 98.56±0.52 99.77±0.30 99.74±0.29

stock

20 83.18±4.37 83.69±3.10 74.01±5.09 56.92±16.52 74.99±6.60 78.73±12.25 69.64±6.88 73.40±4.88 82.95±4.44 83.81±4.94
50 90.01±2.07 90.01±2.43 82.27±4.30 78.91±4.14 78.94±8.78 89.68±1.92 83.72±2.50 79.00±6.87 89.95±2.08 90.15±1.76

100 92.39±1.06 92.09±1.45 90.75±2.20 89.43±3.29 86.16±3.83 92.12±1.16 90.17±1.92 89.30±1.33 92.12±1.12 92.57±1.27
200 94.16±0.92 93.99±0.70 93.57±1.10 93.28±1.59 91.92±2.00 94.22±1.10 93.05±1.35 92.07±1.76 94.17±0.89 94.16±1.07

Average rank 3.08±1.22 4.23±2.32 6.12±1.57 6.29±2.07 8.42±1.32 6.12±3.38 6.54±1.61 8.83±1.46 3.12±1.80 2.23±1.83
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E.4 Results on computation efficiency

Figure 9 shows the trade-off between accuracy and the time needed for generating stratified synthetic
data (for data augmentation). We measure the total duration of (i) training the model and (ii) generating
500 synthetic samples. The results show that TabEBM is practical, as it achieves higher downstream
accuracy with lower time costs.
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Figure 9: Median data augmentation time vs. mean normalised balanced accuracy. TabEBM
achieves higher downstream accuracy with lower computation costs. TabEBM typically operates
3-30 times faster than most benchmark generative models.
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