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Abstract

Several studies have explored various advan-001
tages of multilingual pre-trained models (such002
as multilingual BERT) in capturing shared lin-003
guistic knowledge. However, less attention004
has been paid to their limitations. In this pa-005
per, we investigate the multilingual BERT for006
two known issues of the monolingual models:007
anisotropic embedding space and outliers. We008
show that, unlike its monolingual counterpart,009
the multilingual model exhibits no outlier di-010
mension in its representations while it has a011
highly anisotropic space. Furthermore, our ex-012
perimental results demonstrate that increasing013
the isotropy of multilingual space can signifi-014
cantly improve its representation power and per-015
formance, similarly to what had been observed016
for monolingual CWRs. Our analysis indicates017
that, although the degenerated directions vary018
in different languages, they encode similar lin-019
guistic knowledge, suggesting a shared linguis-020
tic space among languages.021

1 Introduction022

The multilingual BERT model (Devlin et al., 2019,023

mBERT), pre-trained on 104 languages with no024

supervision, has shown impressive ability in captur-025

ing linguistic knowledge across different languages026

(Pires et al., 2019). Many studies have explored the027

encoded knowledge in multilingual CWRs using028

probing tasks and under zero-shot setting (Wu and029

Dredze, 2019; K et al., 2020; Chi et al., 2020). Fol-030

lowing the probing studies, in this paper, we inves-031

tigate the multilingual embedding space of BERT,032

focusing on its geometry in terms of isotropy. Pre-033

vious research has shown that many pre-trained034

models, such as GPT-2 (Radford et al., 2019),035

BERT, and RoBERTa (Liu et al., 2019) have de-036

generated embedding spaces that downgrade their037

semantic expressiveness (Ethayarajh, 2019; Cai038

et al., 2021; Rajaee and Pilehvar, 2021). Several039

proposals have been put forward to overcome this040

challenge (Gao et al., 2019; Zhang et al., 2020).041

Figure 1: Degenerated (left) and isotropic (right) embed-
ding spaces for Arabic plotted using PCA. Frequency-
based distribution can be easily detected in the space
(lighter colors indicate higher frequency). See Appendix
A for more languages.

However, to our knowledge, no study has so far 042

been conducted on the degeneration problem in the 043

multilingual embedding space. 044

Using two well-known metrics, we evaluate 045

isotropy in the mBERT embedding space for four 046

different languages: English, Arabic, Spanish, and 047

Turkish. We find that the representation spaces are 048

massively anisotropic in all these languages. Ex- 049

tending our study to other structural properties of 050

multilingual space, we investigate outliers, specific 051

dimensions with consistently high values, in mul- 052

tilingual CWRs (Kovaleva et al., 2021). Our find- 053

ings reveal that, as opposed to pre-trained BERT, 054

the multilingual space does not involve any ma- 055

jor outliers. This indicates that the suggestion of 056

Luo et al. (2021) on the role of positional embed- 057

dings on the emergence of outliers may not be 058

valid. Furthermore, we study the outliers’ effects 059

on similarity-based metrics (e.g., cosine similarity) 060

using multilingual CWRs. We show that, unlike 061

monolingual CWRs where a few dimensions domi- 062

nate the cosine similarity metric (Timkey and van 063

Schijndel, 2021a), all dimensions of multilingual 064

representations have almost a uniform contribution 065

to such metrics. Moreover, our analysis reveals 066

that word frequency plays an important role in the 067

distribution of the multilingual embedding space: 068

words with similar frequencies create distinct local 069

regions in the embedding space. 070
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In analyzing multilingual space, we take a fur-071

ther step toward making the space isotropic. By072

applying a cluster-based isotropy enhancement073

method (Rajaee and Pilehvar, 2021), we demon-074

strate that increasing isotropy of multilingual em-075

bedding space can result in significant performance076

improvements on downstream tasks. Our frequency077

analysis and the remarkable performance improve-078

ment in the zero-shot setting denote that the feature079

space of mBERT has a similar structure across dif-080

ferent languages.081

2 Background082

The representation degeneration problem in LMs083

has been attracted lots of attention in recent years.084

Several regularizer-based methods have been pro-085

posed to make the space isotropic by adding an ex-086

tra constraint to the pre-trained loss function (Gao087

et al., 2019; Zhang et al., 2020; Wang et al., 2020).088

Because of the re-training cost, other light ap-089

proaches have been presented as a post-processing090

step (Li et al., 2020; Rajaee and Pilehvar, 2021)).091

While analyzing the isotropy of embedding space is092

a well-studied area in English space, there are lim-093

ited related studies on the multilingual embedding094

space. In this line, Vulić et al. (2020) investigated095

the structural similarity of different language em-096

bedding spaces by evaluating their isomorphism.097

Xu and Koehn (2021) showed the positive effect098

of isotropic space on isomorphism degree. High099

isomorphism between spaces can improve the per-100

formance of cross-lingual alignment algorithms.101

However, a focused study on the isotropy of multi-102

lingual embedding space has not been conducted.103

In this work, we provide more insights on the mul-104

tilingual embeddings anisotropic distribution and105

their notable differences to the English counterpart.106

2.1 Isotropy107

Geometrically, in an anisotropic space, embeddings108

occupy a narrow cone. This brings about an over-109

estimation of the similarity between embeddings110

(Gao et al., 2019). As a result, anisotropic distribu-111

tion reduces the effectiveness of similarity-based112

metrics. To quantify isotropy, we utilize two well-113

known metrics based on cosine similarity and prin-114

cipal components (PCs).115

Cosine Similarity. Ethayarajh (2019) used co-116

sine similarity between random embeddings as117

an approximation of isotropy in the space. As118

mentioned before, random embeddings with an119

mBERT

BERT Arabic English Spanish Turkish

ICos(W) 0.38 0.35 0.34 0.36 0.34
IPC(W) 2.6E-06 8.9E-5 2.6E-06 3.3E-05 2.1E-5

Table 1: The isotropy of BERT and mBERT on multi-
lingual STS, reporting based on ICos(W) and IPC(W).

isotropic distribution have near-zero cosine similar- 120

ities. The metric can be formulated as follows: 121

ICos(W) =
1

N

N∑
i=1,xi ̸=yi

Cos(xi, yi) (1) 122

where xi ∈ X, yi ∈ Y , X and Y are the sets 123

of randomly sampled embeddings, and W is the 124

embedding matrix. N is the number of sampled 125

pairs that is set to 1000 in our experiments. Lower 126

ICos(W) values indicate higher isotropy. 127

Principal Components. Mu and Viswanath 128

(2018) proposed a metric based on principal com- 129

ponents (PCs), approximated as follows: 130

IPC(W) ≈ minu∈UF (u)

maxu∈UF (u)
, F (u) =

M∑
i=1

exp(uTwi) (2) 131

where wi is the ith word embedding, M is the num- 132

ber of all representations in the space, U is the 133

set of eigenvectors of the embedding matrix, and 134

F (u) is the partition function described in Equation 135

2. Arora et al. (2016) proved that F (u) could be 136

approximated using a constant for isotropic embed- 137

ding spaces. Therefore, IPC(W) would be close 138

to one in an isotropic embedding space. 139

3 Analysis 140

For all our experiments, we opted for the multilin- 141

gual BERT model (mBERT) which has a 12-layer 142

transformer-based architecture similar to English 143

BERT-base, and the representations are obtained 144

from the last layer. As our evaluation benchmark, 145

we experimented with the multilingual and cross- 146

lingual Semantic Textual Similarity (Cer et al., 147

2017, STS) that involves instances from Arabic, 148

English, Spanish, and Turkish (appendix B). 149

In the first place, we assess the isotropy defined 150

as a desirable property in multilingual space and in- 151

vestigate outliers introduced as an influential factor 152

on isotropy. We also expand our study to rouge di- 153

mensions disrupting similarity-based metrics used 154

in measuring isotropy. Lastly, we analyze word 155

frequency bias, another destructive feature, in mul- 156

tilingual embedding space. 157
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Figure 2: The average representation in English BERT
(top) and mBERT (bottom). The shaded area denotes
3σ. While an outlier has emerged in the former, we do
not see any major outliers in the multilingual space.

ICos(W) First Second Third

BERT 0.38 0.191 0.011 0.004

English 0.34 0.032 0.030 0.021
Arabic 0.35 0.040 0.022 0.020
Spanish 0.36 0.040 0.027 0.023
Turkish 0.34 0.059 0.035 0.028

Table 2: The contribution of top-three dimensions to the
expected cosine similarity (ICos(W)).

3.1 Probing isotropy158

As the first step, we quantify the isotropy of the159

mBERT and BERT embedding spaces using the160

two metrics. For mBERT, we separately assess the161

isotropy of each language in the embedding space.162

The results in Table 1 reveal that the anisotropy is-163

sue exists for mBERT’s space as well as the mono-164

lingual BERT model. Aligned with the numerical165

results, the illustration of multilingual CWRs in the166

left column of Figure 1 gives us a clear perspective167

of the degenerated distribution in space.168

3.2 Outlier Dimensions169

Kovaleva et al. (2021) have found that pre-trained170

LMs exhibit consistent outliers, peculiar dimen-171

sions with large values, in their contextual repre-172

sentations across all layers. Through several ex-173

periments, they have demonstrated that disabling174

these outliers can notably impair the performance175

of pre-trained and fine-tuned LMs. These rogue176

dimensions can easily make the models vulnerable177

to adversarial attacks. Luo et al. (2021) showed178

that removing positional embeddings disappears 179

the outliers, concluding that the positional informa- 180

tion is responsible for the emergence of outliers. 181

We checked for rogue dimensions by averaging 182

over all representations on the multilingual STS 183

dataset. Results are shown in Figure 2. On top, the 184

outlier dimension with respect to the standard devi- 185

ation of the mean representation (σ) can be easily 186

seen in the original BERT. However, interestingly, 187

multilingual BERT exhibits no major outliers in its 188

embedding space across different languages. It can 189

be concluded that, in contrary to the suggestion of 190

Luo et al. (2021), positional embeddings cannot 191

be responsible for outliers, given that both multi- 192

and mono-lingual spaces are constructed using the 193

same training procedure involving positional en- 194

codings. We leave further investigation of outliers 195

in contextual embedding space to future work. 196

3.3 Sensitivity to Rogue Dimensions 197

As we discussed before, cosine similarity is a 198

widely used metric to measure the degree of 199

isotropy in embedding space. Employing a 200

dimension-based similarity, Timkey and van Schi- 201

jndel (2021b) have shown that only a few di- 202

mensions dominate the high cosine similarity be- 203

tween arbitrary representations in pre-trained LMs 204

(e.g., BERT, RoBERTa, and XLNET). Therefore, 205

anisotropy in such models is determined by a 206

small fraction of dimensions (hence, not a global 207

property of the space). Following their approach, 208

we compute the contribution of the ith dimen- 209

sion in the cosine similarity of two embeddings: 210

CCi = xiyi/∥x∥∥y∥. We compute the average 211

cosine similarity, ICos(W), by randomly sampling 212

1000 token pairs and report the average contribu- 213

tion of the top-three dimensions to the average co- 214

sine similarity. 215

Unlike the monolingual BERT, in which one 216

dimension dominates the cosine similarity, multi- 217

lingual BERT has no rogue dimensions, Table 2. 218

Hence, the anisotropic structure of the multilingual 219

space cannot be attributed to certain dimensions. 220

3.4 Word frequency Bias 221

It has been shown that frequency plays an impor- 222

tant role in the distribution of CWRs. Frequency- 223

similar words make distinct local regions in the 224

embedding space (Gao et al., 2019), with high- 225

frequency and rare words being around the cen- 226

ter and far from the origin, respectively (Li et al., 227

2020). Frequency-based distribution is a factor 228
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Ar-Ar Ar-En Es-Es Es-En Es-En-WMT Tr-En En-En

Baseline 51.76 (8E-5) 10.61 (1E-4) 64.15 (3E-5) 31.26 (5E-4) 11.39 (1E-4) 17.78 (1E-4) 60.82 (2E-6)

Individual 64.26 (0.60) 23.10 (0.57) 70.88 (0.54) 46.23 (0.50) 13.47 (0.50) 25.59 (0.55) 71.99 (0.54)
Zero-shot 52.76 (6E-5) 19.36 (0.04) 65.69 (8E-4) 43.82 (0.09) 13.68 (8E-3) 19.89 (0.03) -

Table 3: STS performance (Spearman correlation percentage) on multi- and cross-lingual datasets using mBERT.
Isotropy is reported based on IPC(W) in parentheses. Applying the cluster-based method can improve the
performance on the multi- and cross-lingual datasets in both Individual and Zero-shot settings.

that hampers the expressiveness of the embedding229

space. So, it is essential to investigate frequency230

bias in the multilingual embedding space.231

Figure 1 shows the distribution of word represen-232

tations per word frequency.1 As can be observed on233

the left, multilingual CWRs are biased toward their234

frequency, where words with similar frequencies235

create clustered regions. A similar pattern can be236

observed for the English BERT CWRs (Rajaee and237

Pilehvar, 2021), with the only difference that in238

mBERT, low-frequency words are distributed near239

the origin and frequent words are far from it.240

3.5 Isotropy Enhancement241

Making the embedding space isotropic has theo-242

retical and empirical benefits (Gao et al., 2019).243

Several approaches have been proposed to improve244

isotropy in monolingual CWRs. Some requires a re-245

training of the model with additional objectives to246

address the degeneration problem (Gao et al., 2019;247

Zhang et al., 2020), whereas others are applied as248

a light post-processing (Mu and Viswanath, 2018).249

To investigate the effect of isotropy enhancement250

for the multilingual embedding space, we opted251

for the cluster-based approach of Rajaee and Pile-252

hvar (2021) which is a recent example from the253

latter category. The proposed method splits the254

space into several clusters and discards dominant255

directions for each cluster. The approach also al-256

lows us to investigate the similarity of the clustered257

structure of the embedding space across different258

languages under a zero-shot setting. More details259

on this method can be found in Appendix D.260

We run our experiments in Individual and Zero-261

shot settings. In the former one, we perform ex-262

periments individually on each language by clus-263

tering the corresponding space and applying the264

isotropy enhancement approach. The goal is to see265

whether increasing isotropy leads to performance266

improvement in the multilingual space and how the267

1We used the wordfreq library (https://pypi.org/
project/wordfreq/). See Appendix C.

amount of improvement differs across cross- and 268

multilingual tracks. In the zero-shot scenario, we 269

are interested in evaluating the shared structural 270

properties among languages, specifically, the sim- 271

ilarity of the encoded linguistic knowledge in the 272

dominant directions of different languages. To this 273

end, we obtain clusters, their means and dominant 274

directions on the English dataset and leverage these 275

for isotropy enhancement in other languages. 276

The reported results in Table 3 show that in- 277

creasing the isotropy in the multilingual embed- 278

ding space can enhance the performance in all 279

tracks (multi- and cross-lingual). The improve- 280

ment could be attributed to the potential of the 281

applied method in adjusting embeddings’ distribu- 282

tion based on semantic. The visualization of the 283

embedding space after isotropy enhancement, Fig- 284

ure 1 (right), clearly reveals that the frequency bias 285

is faded after this process. Moreover, the results of 286

the zero-shot setting suggest that the encoded infor- 287

mation in dominant directions is similar across the 288

languages because the improvement is compatible 289

with the setting in which the dominant directions 290

are obtained in each track individually. 291

4 Conclusion 292

In this paper, we provide comprehensive analy- 293

ses on the geometry of multilingual embedding 294

space through isotropy. We show that multilingual 295

embedding spaces are highly anisotropic, limiting 296

their semantic expressiveness. Our findings shed 297

light on the relation between anisotropy and out- 298

liers and demonstrate that despite its anisotropic 299

distribution, mBERT has no disruptive rouge di- 300

mensions. We also investigate the other limita- 301

tion of multilingual embeddings and show that they 302

have a biased structure towards word frequency, 303

and this distribution is similar across different lan- 304

guages. By applying a cluster-based method to 305

increase the isotropy, we improve the multilingual 306

CWRs performance on STS and address their fre- 307

quency bias. 308
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A Frequency-based Distribution446

Frequency-based distribution can negatively af-447

fect the expressiveness of space. Though it is a448

well-known bias in pre-trained LMs (e.g., BERT449

and GPT-2), it is not studied in a multilingual set-450

ting. As discussed in Section 3.4, we have studied451

frequency bias in mBERT and demonstrated that452

mBERT suffers frequency-based distribution in its453

space like pre-trained counterparts. The illustra-454

tion of this bias and the impact of the cluster-based455

approach on mitigating it can be found in Figure 3.456

B Multilingual STS Task457

Multi and cross-lingual Semantic Textual Similar-458

ity (STS) is the main task in our experiments. STS459

is a paired sentence task in which samples have460

been labeled by a score in the continuous range of461

0 (irrelevant) to 5 (most semantic similarity). In the462

multilingual tracks, in a pair, both sentences are in463

the same language, while sentences have different464

languages in the cross-lingual tracks. The reason465

behind choosing STS as the target task for our ex-466

periments is that Multilingual BERT has a pretty467

low performance on it.468

In our experiments, we take the average of all469

tokens in a sentence as the sentence representation470

and consider the cosine similarity of the sentence471

(a) English

(b) Spanish

Figure 3: Degenerated (left) and isotropic (right) em-
bedding spaces for the two languages. Frequency-based
distribution can be easily detected using two top PCs
in the space (lighter colors indicate higher frequency).
Eliminating top dominant directions not only makes the
embedding space isotropic, but also removes frequency
bias in multilingual CWRs.

representations in a sample as the semantic similar- 472

ity score. 473

C Wordfreq 474

We have employed Wordfreq library to investigate 475

word frequency bias in out experiments. This li- 476

brary obtains word frequency from the corpus con- 477

taining eight different domains in 36 languages. 478

Our target languages are in the large category 479

which means their word lists cover rare words ap- 480

pearing at least once per 100 million words. As a 481

result, the wordfreq could be a suitable tool for our 482

purpose. 483

D Cluster-based Isotropy Enhancement 484

We pick the cluster-based approach (Rajaee and 485

Pilehvar, 2021) to improve the isotropy in multilin- 486

gual embedding space. In this method, the embed- 487

dings are clustered using the k-means clustering 488

algorithm, and then dominant directions of every 489

cluster are nulled out independently. Dominant di- 490

rections have been calculated employing Principal 491

Component Analysis (PCA). The primary key in 492

this method is obtaining dominant principal com- 493

ponents (PCs) of clustered areas in the embedding 494

space separately, which makes this approach suit- 495

able for exploring the clustered structure of the 496

multilingual CWRs. 497
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We apply the cluster-based approach to multi498

and cross-lingual CWRs with two different settings,499

Individual and Zero-shot. The number of clusters500

and discarded dominant directions are chosen 7 and501

12, respectively.502
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