
Swarical: An Integrated Hierarchical Approach to Localizing
Flying Light Specks

ABSTRACT
Swarical, a Swarm-based hierarchical localization technique, en-

ables miniature drones, Flying Light Specks (FLSs), to accurately

and efficiently localize and illuminate complex 2D and 3D shapes.

Its accuracy depends on the physical hardware (sensors) of FLSs,

which are used to track neighboring FLSs in order to localize them-

selves. It uses the hardware specification to convert mesh files into

point clouds that enable a swarm of FLSs to localize at the highest

accuracy afforded by their hardware. Swarical considers a hetero-

geneous mix of FLSs with different orientations for their tracking

sensors, ensuring a line of sight between a localizing FLS and its an-

chor FLS. We present an implementation using Raspberry cameras

and ArUco markers. A comparison of Swarical with a state of the

art decentralized localization technique shows that it is as accurate

and more than 2x faster.

Click ISR, HC, and RSF for anonymized video links of a demon-

stration of Swarical’s localization techniques. See anonymized video

links for a comparison of SwarMer and Swarical.

ACM Reference Format:
. 2018. Swarical: An Integrated Hierarchical Approach to Localizing Flying

Light Specks. In Woodstock ’18: ACM Symposium on Neural Gaze Detection,
June 03–05, 2018, Woodstock, NY . ACM, New York, NY, USA, 9 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
AFlying Light Speck (FLS) is a drone configuredwith light sources [14].

A swarm of FLSs may illuminate complex 2D and 3D multimedia

shapes in a fixed volume, a 3D multimedia display [15]. Each FLS

is assigned a coordinate. A challenge is how cooperating FLSs may

illuminate 2D and 3D shapes. Use of GPS [26] is not an option

due to the lack of a line of sight to GPS satellites in an indoor set-

ting [3, 14]. An FLS may travel to its assigned coordinate using

Dead Reackoning [6]. This technique may employ a drone’s inertial

measurement unit (IMU) to approximate its location. IMUs of a

drone are known to be noisy, with the error in estimated location

increasing as a function of traveled distance [3, 6, 17, 22]. Figure 1

shows a palm tree with different degrees of dead reckoning error.

A localization framework may manipulate a design space con-

sisting of hardware, software, and data. Consider each in turn:

Hardware includes sensory devices mounted on an FLS. A frame-

work has a host of hardware choices ranging from Ultra Wide Band

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

(a) GT. (b) 𝜖 = 2°. (c) 𝜖 = 5°. (d) Swarical.

Figure 1: Palm tree with 725 FLSs. Ground truth (GT), dead
reckoning with two different degrees of error (𝜖 = 2° and 5°),
and Swarical using dead reckoning with 𝜖 = 5°.

(UWB) radios [10, 27, 28] to ultrasonic devices and cameras [20, 23–

25]. The software includes algorithms that implement a localization

technique. A framework may use the decentralized algorithm of

SwarMer [3] that is executed by FLSs. Data refers to a 3D shape

and its representation as a point cloud. An example of a 3D shape

file is a polygon mesh file. It is a collection of vertices, edges, and

faces that define a 3D shape. A framework may adjust the number

of FLSs used to illuminate the faces of a mesh file. With different

types of FLS hardware, the framework may use a mix of FLSs that

enhance the accuracy of localization, which enables a swarm of

drones to illuminate a shape with high accuracy.

In this paper, we present a Swarm-based hierarchical (Swarical)

framework to localize FLS. Swarical is an integrated approach that

considers hardware, software, and data to localize FLSs. It starts

by selecting the hardware that enables FLSs to localize. It uses the

specification of this hardware in combination with a mesh file to

compute the number of FLSs that should illuminate the shape. This

considers the range of sensors used to localize FLSs in combination

with the characteristics of a mesh file. Given a heterogeneous mix

of FLSs with different mountings of sensors (for a line of sight),

Swarical computes the right mix of FLSs to illuminate a shape. This

mix ensures a localizing FLS has a line of sight with its anchor FLS.

Contributions of this paper include:

• Swarical as a framework that considers hardware, software,

and characteristics of a mesh file (data) to compute a point

cloud for localization and illumination of a shape. (Sections 2

and 3.)

• Three test localization techniques with ISR emerging as the

superior technique, offering enhanced speed and accuracy

compared to its counterparts. (Section 4.)

• An implementation of Swarcial using cameras and ArUco

markers mounted on FLSs to track one another. (Section 5.)

• A comparison of Swarical with a state of the art decentralized

algorithm named SwarMer [3] shows Swarical is more than

2x faster and equally accurate. (Section 5.4.)

https://youtu.be/e4sqKunN_OY
https://youtu.be/iqWecu_70sY
https://youtu.be/lWsx6IyD2JY
https://youtu.be/5HDTE5PaCzI
https://youtu.be/pcOGS_4FRgk
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 2: The yellow cylinders of the architecture of [15]
are dispatchers that deploy FLSs. The Hub is comparable to
today’s servers and hosts the Orchestrator process.

• We open source our software implementations and its data

set at https://anonymized.

Relatedwork:The concept of 3D displays using FLS is presented

in [1–5, 8, 9, 14–16, 23, 31, 32]. The most relevant is SwarMer, a

decentralized localization technique that is fast and highly accurate.

A qualitative and quantiative comparison of SwarMer with Swarical

is presented in Section 5.4. Obtained results show Swarical is equally

accurate and more than 2x faster than SwarMer.

The rest of this paper is organized as follows. Section 2 provides

an overview of Swarical and establishes the terminology used in

this paper. While Section 3 introduces the planner component of

Swarical, Section 4 introduces several online decentralized local-

ization techniques. We introduce an implementation of Swarical in

Section 5 and compare it with SwarMer [3]. Brief conclusions are

presented in Section 6.

2 OVERVIEW AND TERMINOLOGY
This paper assumes the architecture of [1, 15], see Figure 2. It con-

sists of a hub and one or more dispatchers to deploy FLSs. The

Hub is a computer similar to today’s servers. It hosts an Orchestra-

tor process that executes the planner component of Swarical, see

Figure 4. The Orchestrator provides metadata to FLSs and deploys

them using one or more dispatchers. The FLSs travel to their as-

signed coordinates using Dead Reckoning. They localize relative to

one another to illuminate 2D and 3D shapes.

An FLS may be configured with various sensors that enable it

to localize relative to a neighboring FLS. Section 5.1 describes the

use of cameras and ArUco markers [13]. A localizing FLS uses its

camera to take a picture of its anchor FLS’s ArUco marker and

processes the picture to compute its relative pose to the anchor FLS.

A challenge is how to mount cameras and ArUco markers on FLSs

to ensure the camera of a localizing FLS has a line of sight with the

ArUco marker of its anchor FLS. We address this challenge using

a heterogeneous mix of FLSs with cameras mounted on their top,

side, or bottom. See Figure 3.

Swarical is a divide-and-conquer technique. It partitions a shape

into a collection of swarms. FLSs of a swarm localize relative to

(a) Top. (b) Side. (c) Bottom.

Figure 3: Three FLSs with different camera orientations/FoVs.

Figure 4: Swarical, a divide-and-conque framework.

one another. This is intra-swarm localization. A swarm also local-

izes relative to another swarm. This is inter-swarm localization,

stitching swarms together to illuminate a complex 2D/3D shape.

Swarical consists of two distinct steps, see Figure 4. A centralized

configuration planner and a decentralized localization process. The

former is an offline process executed by the Orchestrator. The latter

is an online technique executed by swarms of FLSs.

The input to the planner is a mesh file of a shape, the desired size

of a swarm (G), and the available mix of FLSs with the specification

of their sensors (e.g., range of a sensor). The planner processes the

mesh file to compute both the number of FLSs and their correct mix

to illuminate the shape using the specification of the localization

device. It constructs groups of FLSs that are in close proximity to

one another. The size of each group is approximately 𝐺 .

The planner constructs two types of trees, FLS-trees and a swarm-

tree. See Figure 5. An FLS-tree defines the anchor FLS for a localizing

FLS in a swarm. The swarm-tree identifies a primary FLS in a child

swarm that localizes relative to an anchor FLS in its parent swarm.

The root of the swarm-tree is an exception. Both trees guarantee a

localizing FLS has a line of sight with its anchor FLS.

When illuminating a shape, FLSs that constitute a swarm con-

tinuously localize relative to one another. The primary of a swarm

(except for the root) will localize relative to the identified anchor

FLS of its parent swarm. It computes a vector for its movement. Its

entire swarm, including the primary, moves along this vector.

Definition 1. A swarm consists of one or more FLSs. Members of
a swarm localize relative to one another continuously. A swarm-tree
identifies the parent-child relationships between swarms. Except for
the swarm that serves as the root of the tree structure, every swarm
has a parent swarm and one FLS 𝑓𝑃 designated as its primary. The
primary 𝑓𝑃 of a child swarm localizes relative to an anchor FLS of its
parent swarm, computing a vector

−→
𝑉 . 𝑓𝑃 and all FLSs that constitute

its swarm move along this vector
−→
𝑉 .

https://anonymized

Swarical: An Integrated Hierarchical Approach to Localizing Flying Light Specks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

The output of the planner may be a large volume of data. How-

ever, each FLS requires a small fraction of this output to cooperate

with the other FLSs by executing the decentralized localization

technique. (See Section 4.1 for details.) The Orchestrator provides

this information to the individual FLSs.

For a given shape, the Orchestrator may execute the planner

and store its output in a file. When a user requests the display of

the shape repeatedly, the Orchestrator may read the file to provide

each FLS with the required information [4]. The FLS localization

process is decentralized, fast, and continuous.

3 PLANNER
The planner consists of two sequential steps. First, it converts a

mesh file into an FLS point cloud using the limits of a tracking

device. Second, it fragments the resulting point cloud consisting

of 𝐹 FLSs into 𝑛𝐺 swarms. Each swarm consists of approximately

𝐺 FLSs. This step constructs one swarm-tree and 𝑛𝐺 FLS-trees,

𝑛𝐺 = ⌈ 𝐹
𝐺
⌉ swarms. Below, we describe the two steps in turn.

3.1 Step 1: Mesh File to FLS Illumination
FLSs must track one another to localize in order to illuminate a

mesh file. The limits of the FLS tracking device in combination

with the error tolerated by an application dictate the number of

FLSs used to illuminate a face. To illustrate, consider an application

that tolerates 5% error in the maximum difference between the

estimated truth and the ground truth, i.e., Hausdorff distance [18].

The application uses the minimum and maximum range ([𝑇𝑚𝑖𝑛-

𝑇𝑚𝑎𝑥]) of the tracking device that produces at most 5% error in

measured distances to compute the density of FLSs in a face. Below,

we present a general technique for computing this density. An

implementation of it in the context of visual tracking using fiducial

markers is presented in Section 5.

Consider a tracking device placed at the center of a spherical

shaped FLS with a radius of R. An application tolerates e% error

in the Hausdorff distance of an illumination. The planner identi-

fies the minimum and maximum [𝑇𝑚𝑖𝑛-𝑇𝑚𝑎𝑥] range of the track-

ing device with a percentage error less than or equal to e. As-

sume the radius R is less than or equal to 𝑇𝑚𝑎𝑥 , 𝑅 ≤ 𝑇𝑚𝑎𝑥 , the

planner computes the min/max density of FLSs in a unit of area:

𝐷𝑚𝑖𝑛 = 1

𝜋×𝑚𝑎𝑥 (𝑇𝑚𝑎𝑥 /2,𝑅)2 , 𝐷𝑚𝑎𝑥 = 1

𝜋×𝑚𝑎𝑥 (𝑇𝑚𝑖𝑛/2,𝑅)2 . By multi-

plying these by the area of a face, the planner estimates the mini-

mum and maximum number of FLSs required to illuminate the face

with e% error in Hausdorff distance.

There is extensive work on sampling a mesh file [29] to generate

a point cloud. Section 5.2 uses the Constrained Poisson-disk sam-

pling [11] by providing it with the number of FLSs computed using

the above discussion. It is possible to use other techniques [30].

3.2 Step 2: FLS-Tree and Swarm-Tree
The planner constructs swarms with different mixes of FLSs to facil-

itate intra and inter swarm localization. Given a group size𝐺 and 𝐹

FLSs, the planner constructs𝑛𝐺 groups using the k-Means [21] algo-

rithm, 𝑛𝐺 = 𝐹
𝐺
. Each resulting group will consist of approximately

G FLSs. A group corresponds to a swarm.

The planner constructs a swarm-tree on the 𝑛𝐺 swarms, identi-

fying one FLS of a swarm as its primary 𝑓𝑃 that localizes relative to

Figure 5: Swarm-tree and FLS-treewith the Chess Piece,𝐺=50.

the nearest anchor FLS in a parent swarm. The planner constructs

an FLS-tree on the 𝐺 FLSs in a swarm, establishing the localizing

and anchor relationship between the FLSs that constitute a swarm.

Figure 5 shows the FLS-tree and swarm-tree constructed on the

Chess Piece.

When constructing either the FLS-tree or the swarm-tree, the

objective of the planner is to satisfy two constraints. First, the

tracking device of a child FLS should have a line of sight with its

parent FLS. Second, the distance between the localizing FLS and its

anchor FLS respects the [𝑇𝑚𝑖𝑛 −𝑇𝑚𝑎𝑥] range of the tracking device.

To realize its objective, the planner uses the center of a swarm to

construct a minimum-spanning tree [7, 19] across the swarms. This

is the swarm-tree. Its vertices correspond to swarms of FLSs. The

weight of an edge between two swarms is the Euclidean distance

between the center of the swarms. The minimum spanning tree

connects all the swarms together without any cycles and with the

minimum possible total edge weight. The planner identifies the

vertex with the highest number of edges as the root of the swarm-

tree. It walks its children in a breadth first manner to establish

the parent-child relationship between swarms. With a parent-child

swarm, the planner selects an FLS from the parent swarm that is

closest to an FLS in the child swarm. The latter is the primary FLS of

the child swarm. It localizes relative to the anchor FLS identified in

the parent swarm. The planner uses the orientation of the primary

FLS in the point cloud to assign it one of the FLS types in Figure 3

with the objective of ensuring the primary has a line of sight to its

anchor.

Once the primary FLS of a swarm is identified, the planner com-

putes aminimum spanning tree for the FLSs that constitute a swarm.

This is the FLS-tree. Its vertices correspond to FLSs. The distance be-

tween two FLSs is computed using the Euclidean distance between

their coordinates. The minimum spanning tree connects all the

FLSs together without any cycles and with the minimum possible

total edge weight. The planner traverses this tree starting with the

primary in a breadth first manner. It establishes the line of sight

relationship from child to parent. The planner uses the orientation

of an FLS in the point cloud to assign the child FLS one of the FLS

types shown in Figure 3. In selecting the type, it ensures a localizing

(child) FLS has a line of sight with its anchor (parent) FLS.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

With both the swarm-tree and 𝑛𝐺 FLS-trees, the planner ensures

the distance between a localizing and anchor FLS is lower than

𝑇𝑚𝑎𝑥 . If their distance exceeds 𝑇𝑚𝑎𝑥 , the planner inserts dark FLSs

to reduce the distance. These FLSs may be used as hot standbys to

tolerate the failure of the illuminating FLSs [5].

4 CONTINUOUS LOCALIZATION
This section describes three localization techniques. All three as-

sume an Orchestrator that allocates the correct mix of FLSs per

output of the planner. The Orchestrator uses the FLS-trees and

the swarm-tree to assign each FLS a coordinate in the 3D volume

and provide it with its parent FLS and children FLSs. With an FLS

designated as the primary of a swarm, 𝑓𝑃 , the Orchestrator provides

the FLS with the identity of its anchor FLS in a different swarm (as

computed by the planner).

The key difference between the localization techniques is the

amount of concurrent movement by different FLSs in a swarm and

across the swarms. We start with a highly concurrent technique.

Subsequently, we describe two variants that limit the amount of

concurrent movement. Our experimental results show the second

technique, ISR, is faster and more accurate than the other two. It is

also more energy efficient by minimizing the total distance traveled

by FLSs.

Highly Concurrent, HC, allows the primary of a swarm (𝑓𝑃)

to localize relative to its anchor in the parent swarm while the

anchor is localizing itself. This means all swarms may localize at

the same time. Below, we describe how FLSs in a swarm localize

relative to one another, intra-swarm localization. Subsequently, we

describe how two swarms localize relative to one another, inter-

swarm localization.

Using the ground truth, an FLS knows its position and orientation

relative to its swarm members. The FLS-tree ensures a localizing

FLS has a line of sight with its anchor FLS. The root of the tree is

an exception. Consider localization for a child FLS and a root FLS

in turn.

A child FLS 𝑢 computes its pose relative to its parent 𝑣 , 𝑟𝑢𝑣
(𝑟𝑢𝑣 = −𝑟𝑣𝑢). It broadcasts 𝑟𝑢𝑣 to all its swarmmembers. A receiving

FLS constructs an intra-swarm tree to maintain this information

broadcasted by different FLSs. See the FLS-tree of Figure 5. An FLS

𝑖 computes a relative pose for each reachable
1
FLS within the tree

structure. This relative pose, denoted as 𝑅𝑖 𝑗 , is determined by the

sum of relative pose vectors 𝑟𝑢𝑣 along the path from FLS 𝑖 to FLS

𝑗 . To correct its position relative to these FLSs, FLS 𝑖 computes a

correction vector 𝑣𝑖 𝑗 , defined as (𝑃𝑖 − 𝑃 𝑗) − 𝑅𝑖 𝑗 , where 𝑃𝑖 and 𝑃 𝑗
represent the ground truth positions of FLSs 𝑖 and 𝑗 respectively.

This process is repeated for all reachable FLSs, resulting in a set

of correction vectors. FLS 𝑖 then moves along the average of these

vectors, computed as
1

𝑁

∑
𝑗∈𝑁𝑇

𝑣𝑖 𝑗 , where 𝑁𝑇 is the reachable FLSs

in the FLS-tree, including FLS 𝑖 . It is possible for an FLS to compute a

vector using only its parent FLS. This happens at the very beginning

prior to the FLS receiving a vector from other FLSs or when a swarm

consists of only 2 FLSs.

1
Reachable means there is a path between the FLS and other FLSs in the tree with

information about their relative pose. Either the Orchestrator may provide an FLS

with the FLS-tree, or the network transmission of an FLS may include its id and its

parent id to enable a receiving FLS to construct the FLS-tree.

Every time an FLS receives the relative pose from another FLS in

its swarm, it repeats the process to localize itself. Should an FLS not

receive information from its swarm members for 500 milliseconds,

it localizes, computes a vector, broadcasts its pose relative to its

parent to all its swarm members, and moves along the vector. An

FLS clears its tree structure after each inter-swarm localization.

The root FLS also receives relative measurements from its chil-

dren, grandchildren, great grand children, and other descendent

FLSs in the tree. It uses this information to compute its relative

pose to them. It computes a vector to correct its position relative

to each FLS. Next, it computes an average of these vectors. And,

moves along this average vector to localize.

An inter-swarm localization occurs once the length of the vector

computed by all members of a swarm is smaller than a pre-specified

threshold. Once the primary 𝑓𝑃 of a swarm detects this condition,

it localizes relative to its anchor in its parent swarm. The root

swarm is an exception as it has no primary and will not localize

relative to another swarm. 𝑓𝑃 uses its pose relative to its anchor to

compute a vector to correct its pose. Subsequently, 𝑓𝑝 and its entire

swarm moves along this vector. After this movement, the FLSs that

constitute the swarm clear their tree structure of the relative pose

information broadcasted by the FLSs in their swarm. Subsequently,

they repeat their intra-swarm localization.

HC prevents a swarm from performing inter-swarm localization

while its FLSs are localizing actively, i.e., their computed average

vector is greater than a pre-specified threshold. Removing this

requirement results in a variant with higher concurrency. It causes

FLSs that constitute a swarm to move away from their primary,

producing distorted shapes.

Inter-Swarm Rounds, ISR, limits the number of swarms that

localize at a time. It requires the anchor FLS of 𝑓𝑃 to be stationary

prior to 𝑓𝑃 localizing relative to it. It realizes this objective using

the swarm-tree as follows. Once the length of the correction vector

computed by an FLS in the root swarm that serves as an anchor for a

child swarm, the anchor informs its 𝑓𝑃 to localize. The 𝑓𝑃 waits until

its correction vector relative to its swarm members is smaller than

a pre-specified threshold. Subsequently, the 𝑓𝑃 localizes relative to

its parent’s anchor FLS, computes a vector, moves along this vector,

and requires its entire swarm to move along this vector. Next, the

anchor FLSs in the 𝑓𝑃 ’s swarm notify their children’s 𝑓𝑃 to localize

relative to them. This process continues until the children swarms

at the leaves of the tree localize.

ISR’s localization is continuous starting with the root swarm.

An anchor FLS in one swarm may send multiple notifications to

its 𝑓𝑃 to localize while the 𝑓𝑃 is waiting for its correction vector to

become smaller than the pre-specified threshold. In this case, the

𝑓𝑃 drops the repeated messages. It localizes once after its correction

vector is smaller than the pre-specified threshold.

The root swarm initiates the above process every time it receives

a relative pose from a swarm member that causes it to compute a

correction smaller than the pre-specified threshold. The concept of

a swarmmember localizing every 500 millisecond is present. Hence,

in the worst case scenario, the root swarm initiates localization

every 500 milliseconds.

Rounds across the Swarm-tree and FLS-trees, RSF, constrains
the number of concurrent localizations within a swarm. An FLS in

Swarical: An Integrated Hierarchical Approach to Localizing Flying Light Specks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

a swarm localizes relative to its anchor in rounds. These rounds are

initiated by the root of the FLS-tree.

RSF is continuous similar to the other techniques. Starting with

the root swarm of the swarm-tree, the root FLS of its FLS-tree

notifies each of its children FLSs to localize relative to it while it

remains stationary. Subsequently, each child FLS notifies each of its

children FLSs to localize relative to it while it remains stationary.

This process repeats continuously.

Except for the swarms that are at the leaves of the swarm tree, a

swarm has an anchor FLS for each of its children swarms. An 𝑓𝑃 of

these swarms localizes relative to their anchor. Once an anchor FLS

completes its localization, it notifies the 𝑓𝑃 to localize relative to

it. This causes the entire child swarm containing 𝑓𝑃 to move. Sub-

sequently, 𝑓𝑃 ’s children localize relative to it. This process repeats

continuously. The root swarm initiates the above process similar

to ISR.

4.1 Space Complexity
An FLS has a limited amount of memory. While the space complex-

ity of RSF is in the order of hundreds of bytes, the space complexity

of HC and ISR is in the order of kilobytes. Below, we present space

complexity of each technique and quantify it using our implemen-

tation of Section 5.

The amount of memory required from an FLS by RSF is O(M)

where M is the size of the metadata provided by the Orchestrator

(see the next graph for details). In addition to the metadata, HC

and ISR require an FLS to construct an in-memory data structure

representing the FLS-tree. This data structure consist of 𝐺 nodes

and𝐺−1 edges. Each node maintains the ground truths coordinates

(12 bytes) and the id of the FLS (4 bytes) that it represents. Each

edge has a parent id (4 bytes), child id (4 bytes), and a relative

pose. The latter is a 3D coordinate (12 bytes). Hence, the space

complexity of HC and ISR is O(M+G+G-1). In our implementation,

it is M+G×16+(G-1)×20 bytes.
The metadata provided by the Orchestrator and maintained by

each FLS includes its FLS id (4 bytes), a swarm-id (4 bytes), ground

truth coordinates (12 bytes), 1 parent id (4 bytes), and a list of

its 𝐶 children ids (C × 4 bytes). The FLS designated as primary

maintains the swarm-id of its anchor FLS (4 bytes). Each anchor

FLS in a swarm is provided with the identity of the primary that

localizes relative to it (4 bytes). The space complexity of M is O(𝜖+C)

where 𝜖 is a constant. In our implementation, 𝜖=32 bytes. Hence,

the required memory for M is 32+C×4 bytes. See Figure 12 for the
branching factors (𝐶) in our conducted experiments.

5 AN IMPLEMENTATION AND EVALUATION
This section describes an implementation of Swarical using Rasp-

berry cameras and ArUco markers. Section 5.1 presents a camera

and characterizes its accuracy in measuring post. Subsequently,

Sections 5.2 and 5.3 present results from Swarical’s planner and

localization techniques, respectively. Finally, we compare Swarical

with a state of the art decentralized localization technique named

SwarMer [3] in Section 5.4.

5.1 FLS Tracking: Calibration
To localize relative to its neighbors, an FLS must track them. The

ideal tracking mechanism should be:

• Accurate: An FLS should be able to measure its state relative

to a neighbor. The relative state includes relative position

and orientation. Ideally, the accuracy of the position should

be in millimeters. The error in a measured orientation should

be less than 1 degree in each dimension.

• Acceptable range: An FLS should be able to measure its state

relative to a neighbor that is a part a few centimeters up to

tens of centimeters.

• Fast with a high refresh rate: An FLS should be able to quan-

tify its relative state to a neighboring FLS in sub-milliseconds.

Moreover, it should be able to refresh this information quickly

at a frequency of 10 Hz.

• Robust: An FLS should be able to track a neighbor in an

indoor setting with different lighting. In a pitch-dark room,

an FLS should be able to track its neighbors.

Table 1: Raspberry camera module 3 NoIR specifications.

Lens

Resolution

FoV (°)

Min Focus Weight Price

(px) Range (g) (USD)

Regular 4608 × 2592 D 75, H 66, V 41 100 mm 3.2 $25

Wide 4608 × 2592 D 120, H 102, V 67 50 mm 3.2 $35

ArUco markers [13] with a Raspberry camera configured with

IR lighting satisfy the above requirements. The camera is small,

lightweight, and ready for use with a drone. It has a regular and a

wide lens with a minimum focus range of 5 and 10 cm, respectively.

(See Table 1.) It supports three different resolutions. Table 2 shows

these and our experimentally measured average camera delay and

processing time. The average camera delay is the elapsed time

from when the application requests a frame to the time the camera

provides the frame. Processing time is the time required to measure

position and orientation using Raspberry Pi 5. We designed our

software to capture an image once it is done processing the current

image. Hence, the reported accuracy is based on the latest image

available. We use the 720p frame resolution for the rest of this paper.

The maximum range of each camera for detecting a marker

depends on the size of the marker. Figure 6 shows the detection rate

with a 4.7 mm paper printed maker size. While the x-axis of this

figure is the distance between the camera and the marker, the y-

axis is the detection rate. It highlights the minimum focus range of

Table 1 with the detection rate becoming 100% at those minimums.

With the wide angle lens, the detection rate drops to zero with 300

Table 2: Camera’s frame rate and marker detection perfor-
mance with the regular/wide lens.

Resolution

Frames/ Avg Camera Avg Processing

Second Delay, milliseconds Time, milliseconds

480p 59.3/44.8 10/15 6/7

720p 46.9/44.4 3/8 18/14

1080p 21.1/26.0 8/8 39/29

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 6: Detection rate as a function of distance between
camera andmarker. The paper printedmarker size is 4.7mm.

Figure 7: Percentage error of distance measurement as a
function of distance between camera and marker. The paper
printed marker size is 4.7 mm.

mm. With this marker size, Figure 7 shows the percentage error

increases as a function of the distance
2
. The regular lens provides a

lower error as a function of longer distances when compared with

the wide lens.

Larger marker sizes reduce the error with both lenses. The wide

lens has a lower error when compared with the regular lens. See

Figure 8. In this figure, the x-axis is the marker size, and the y-axis is

the percentage error in the measured distance. The reported errors

are for measuring the minimum focus range of the two lenses, 5 and

10 cm, with wide and regular lenses, respectively. In general, paper

provides a higher percentage error when compared with LCD.

Figure 9 shows the error in roll, pitch, and yaw as a function of

paper printed marker size with the wide lens. The camera provides a

higher accuracy for the yaw (rotation around the axis perpendicular

to the marker) than the roll (rotation around the length) and the

pitch (rotation around the depth). This accuracy decreases with

marker sizes smaller than 3 mm.

In darkness, an FLS may use the camera with IR light to capture

an image of paper-printed markers for processing. In our exper-

iments, IR lighting in the dark does not impact the accuracy of

measurements and the detection rate.

5.2 Planner
We use the range of the Raspberry camera at [6,8] cm as it provides

the highest accuracy. With this range, the planner computes a point

cloud of 1855 FLSs for the skateboard. The mix of FLSs with a

2
With both lenses, we report the percentage error with distances smaller than the

advertised minimum as long as the camera detects the ArUco marker.

Figure 8: Percentage error of distancemeasurement as a func-
tion of marker size. The measured distance is 5 and 10 cm
for wide and regular lens, respectively.

Figure 9: Error of orientation measurements in degrees as a
function of marker size with wide lens and printed markers.

Figure 10: Distribution of swarm size, Skateboard, 𝐺=50.

camera mounted on their top, side, and bottom is 152, 1585, and

118, respectively. The percentage of each variant is 8.2%, 85.4%, and

6.4%, respectively. This mix ensures a localizing FLS has line of

sight with the ArUco marker of its anchor FLS. With all the shapes,

the percentage of FLSs with a camera mounted on their side is

significantly higher than the others.

Figure 10 shows the distribution of swarm size with the Skate-

board with𝐺=50. Swarical uses k-Means to construct swarms. This

clustering technique minimizes the eucledian distance between the

FLSs that constitute a swarm. However, it does not ensure swarms

of the size. As shown, the size of a swarm varies from 10 to 90. The

same is true with the other shapes. The topology of a shape dictates

the swarm sizes constructed by k-means.

Figure 11 shows the distribution of distance between localizing

and anchor FLSs within the swarms (FLS-trees) and across swarms

Swarical: An Integrated Hierarchical Approach to Localizing Flying Light Specks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 11: Distribution of distance between localizing and
anchor FLSs within a swarm (FLS-tree) and across swarms
(Swarm-tree), Skateboard.

Figure 12: Distribution of the number of localizing FLSs
(swarms) per anchor FLS, Skateboard.

(swarm-tree). This is for the skateboard with different group sizes,

𝐺 . In these experiments, the planner was configured to limit the

distance between a localizing and an anchor FLS to [6-8] cm. After

constructing the swarm-tree and FLS-trees for each value of𝐺 , it

inserted a total of 160, 132, 40, 23 and 18 dark FLSs for 𝐺=5, 10, 50,

150, and 200, respectively. Hence, the median is 6 and 7 cm for all

𝐺 values. There is no localizing-anchor pair with a distance smaller

than 6 cm. The variation in distance is greater for the swarm-tree

with smaller group sizes, 𝐺=5 and 10. This is because there is a

larger number of swarms. The inverse is observed with larger group

sizes, 𝐺=150 and 200, because there are fewer swarms.

Figure 12 shows the distribution of the branching factor for the

swarm-tree and the FLS-trees. This is the number of FLSs (swarms)

that localize relative to one anchor FLS (swarm). The median is one.

However, the outliers may be as high as 3 or 4. The minimum is

zero. These correspond to FLSs (swarms) that are the leaves of an

FLS-tree (swarm-tree).

5.3 Localization
All experiments reported in this section are conducted using a clus-

ter of 20 Amazon AWS servers, c6a.metal with 192 virtual cores.

Each core is used to emulate an FLS. We use Hausdorff Distance

(HD) [18] and Chamfer Distance (CD) [12] to compare the quality of

(a) Hausdorff Distance.

(b) Chamfer Distance.

Figure 13: A comparison of Localization techniques, Skate-
board, 𝐺 = 50. Click ISR, HC, and RSF anonymized video
links for a demonstration.

localizations provided by HC, ISR, and RSF. These mertics compare

the FLS coordinates obtained using a localization technique, i.e.,

the estimated truth 𝐸, with the FLS coordinates provided by the

Planner, i.e., the ground truth 𝑃 . HD quantifies the maximum error

in distance between 𝐸 and 𝑃 after applying a translation. CD quan-

tifies the average error between 𝐸 and 𝑃 . Both techniques require a

translation process because Swarical is a relative localization tech-

nique. Our implementation of the translation process computes the

center of 𝐸 and 𝑃 . It aligns their centers prior to measuring the

maximum/average error. A lower value is better with zero reflecting

a perfect match between 𝐸 and 𝑃 .

In general, HD ismore strict that CF because it uses themaximum

error. Both are useful in understanding the tradeoffs associated with

the alternative techniques.

Figure 13 compares HC, ISR and RSF with one another. The

x-axis is the elapsed time from when the dispatcher deploys the

first FLS. Once an FLS arrives at its assigned coordinate, it starts to

localize. We assume a 5° dead reckoning error. The y-axis shows the

HD and the CD
3
in Figure 13a and 13b, respectively. Both figures

are for the Skateboard with𝐺=50. Similar trends are observed with

the other shapes and values of 𝐺 .

Figure 13 shows ISR is superior to HC and RSF. It enhances both

HD and CD, providing illuminations that resemble those computed

by the Planner more accurately. RSF is significantly worse. It re-

quires an FLS to to compute its pose relative to another FLS (its

anchor). HC and ISR require an FLS to compute an average correc-

tion pose. This averaging minimizes HD and CD as a function of

time while RSF’s HD and CD remain elevated.

3
While CD is an averaging, it is possible for its computed value to be higher than HD.

It computes the average distance between point clouds A and B, then computes it again

by replacing A with B, for B and A, and then adds the two values [12]. See Equation:

Chamfer(𝐴, 𝐵) = 1

|𝐴|
∑

𝑎∈𝐴 min𝑏∈𝐵 ∥𝑎 − 𝑏 ∥2
2
+ 1

|𝐵 |
∑

𝑏∈𝐵 min𝑎∈𝐴 ∥𝑏 − 𝑎∥2
2
.

https://youtu.be/e4sqKunN_OY
https://youtu.be/iqWecu_70sY
https://youtu.be/lWsx6IyD2JY

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(a) Hausdorff Distance.

(b) Chamfer Distance.

Figure 14: Comparison of different swarm sizes (𝐺) with the
Skateboard and the ISR technique. Lower is better.

In all these experiments, RSF causes the FLSs to travel a longer

total distance when compared with ISR and HC. ISR reduces this

metric slightly lower thanHC. This slight improvement is consistent

throughout our experiments.

The select range of [6,8] cm corresponds to 0.9 to 1.2 mm error,

see Figure 7. However, in Figure 13, HD levels off at 18.9 mm. This is

20x higher. If we considered only two points then we would observe

the expected 0.9 to 1.2 mm error. However, with a point cloud, the

error compounds as FLSs localize to magnify the error.

Figure 14 shows the HD and CD of the Skateboard with ISR and

different swarm sizes (𝐺). Small swarm sizes (𝐺 ≤10) result in a

higher HD and CD, i.e., a larger difference between the FLS clouds

illuminated by ISR and the FLS cloud computed by the Swarical’s

planner. This is because they result in a larger number of swarms

that is unbalanced and deep, 43 with 𝐺=5 and 38 with
4 𝐺=10. The

swarms close to the leaves of the swarm-tree require a longer time

to localize because their anchor in a parent swarm has a higher

probability of changing its location. This change is due to both intra-

swarm and inter-swarm localization. An inter-swarm localization

of a primary moves the entire swarm including those FLSs that

serve as anchors for other swarms. These result in a high Hausdorff

and Chamfer distances.

5.4 A Comparison with SwarMer
SwarMer [3] is a decentralized localization framework for FLSs.

Individual FLSs localize relative to one another to form swarms.

4
Depth decreases to 12 with𝐺=50.

Figure 15: Comparison of Swarical with SwarMer for the
Skateboard. Click anonymized video links for a demonstra-
tion.

An FLS of one swarm localizes relative to an anchor FLS of an-

other swarm to merge with it, forming a larger swarm. This process

repeats, causing swarms to merge until there is one swarm. Subse-

quently, SwarMer thaws the final swarm into individual FLSs and

repeats the process again.

Both SwarMer and Swarical are continuous techniques that use

the concept of localizing and anchor FLSs. SwarMer constructs

its swarms in an online manner. Swarical is different because it

constructs its swarms in an offline manner. SwarMer’s swarms are

seeded with 1 FLS that merge to construct larger swarms, ultimately

growing into one swarm that includes all FLSs. Swarical’s swarms

are static. Swarical is an integrated approach that considers the

range of sensors mounted on an FLS to track another FLS. This is

reflected in its hierarchical swarm-tree and 𝑛𝐺 FLS-trees. These

concepts are absent from SwarMer.

Figure 15 shows the HD with SwarMer and Swarical for the

Skateboard. Swarical is configured with group size 50 (𝐺=50) and

the ISR technique. SwarMer does not consider the error associated

with the range of an FLS’s tracking device. Hence, we assumes the

tracking device is 100% accurate in measuring the pose of an FLS

with both techniques. These results show Swarcial localizes the

FLSs more than 2x faster than SwarMer. A similar observation is

made with CD.

Swarical is faster than SwarMer for two reasons. First, FLSs

exchange fewer messages. More specifically, SwarMer requires a

challenge phase for a localizing FLS to identify its anchor FLS. This

step is absent from Swarical; its Planner computes the localizing

and anchor FLSs in an offline manner. Second, FLSs move a shorter

distance with Swarical when compared with SwarMer. In the exper-

iments of Figures 15, on the average 8% less. The minimum distance

moved by FLSs with Swarical is 12% shorter than SwarMer.

6 CONCLUSIONS AND FUTURE RESEARCH
Swarical is a framework that considers the range of sensorsmounted

on FLSs to generate point clouds that enable FLSs to localize with a

high accuracy. In turn, this renders highly accurate illuminations.

The accuracy of Swarical is dictated by the sensor and its hardware

used to localize. Swarical ensures localizing FLSs have line of sight

with their anchors. We have simulation results showing Swarical

is as accurate with scaled-down versions of drones, cameras, and

ArUco markers. Our immediate research direction is to construct

these candidate FLSs.

https://youtu.be/pcOGS_4FRgk
https://youtu.be/5HDTE5PaCzI

Swarical: An Integrated Hierarchical Approach to Localizing Flying Light Specks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

REFERENCES
[1] Hamed Alimohammadzadeh, Rohit Bernard, Yang Chen, Trung Phan, Prashant

Singh, Shuqin Zhu, Heather Culbertson, and Shahram Ghandeharizadeh. 2023.

Dronevision: An Experimental 3D Testbed for Flying Light Specks. In The First
International Conference on Holodecks (Los Angeles, California) (Holodecks ’23).
Mitra LLC, Los Angeles, CA, USA, 1–9. https://doi.org/10.61981/ZFSH2301

[2] Hamed Alimohammadzadeh, Heather Culbertson, and Shahram Ghande-

harizadeh. 2023. An Evaluation of Decentralized Group Formation Techniques

for Flying Light Specks. In ACM Multimedia Asia (Taipei, Taiwan).
[3] Hamed Alimohammadzadeh and Shahram Ghandeharizadeh. 2023. SwarMer:

A Decentralized Localization Framework for Flying Light Specks. In The First
International Conference on Holodecks (Los Angeles, California) (Holodecks ’23).
Mitra LLC, Los Angeles, CA, USA, 10–22. https://doi.org/10.61981/ZFSH2302

[4] Hamed Alimohammadzadeh, Daryon Mehraban, and Shahram Ghandeharizadeh.

2023. Modeling Illumination Data with Flying Light Specks. In ACM Multimedia
Systems (Vancouver, Canada) (MMSys ’23). Association for Computing Machinery,

New York, NY, USA, 363–368. https://doi.org/10.1145/3587819.3592544

[5] Hamed Alimohammadzadeh, Shuqin Zhu, Jiadong Bai, and Shahram Ghande-

harizadeh. 2024. Reliability Groups with Standby Flying Light Specks. In ACM
Multimedia Systems (Bari, Italy).

[6] Martin Brossard, Axel Barrau, and Silvère Bonnabel. 2020. AI-IMU Dead-

Reckoning. IEEE Transactions on Intelligent Vehicles 5, 4 (2020), 585–595. https:

//doi.org/10.1109/TIV.2020.2980758

[7] Bernard Chazelle. 2000. The Soft Heap: An Approximate Priority Queue with

Optimal Error Rate. J. ACM 47, 6 (nov 2000), 1012–1027. https://doi.org/10.1145/

355541.355554

[8] Yang Chen, Hamed Alimohammadzadeh, Heather Culbertson, and Shahram

Ghandeharizadeh. 2023. Towards a Stable 3D Physical Human-Drone Inter-

action. In The First International Conference on Holodecks (Los Angeles, Cal-
ifornia) (Holodecks ’23). Mitra LLC, Los Angeles, CA, USA, 34–37. https:

//doi.org/10.61981/ZFSH2308

[9] Yang Chen, Hamed Alimohammadzadeh, Shahram Ghandeharizadeh, and

Heather Culbertson. 2024. Force-Feedback Through Touch-based Interactions

With A Nanocopter. In IEEE Symposium on Haptics (Long Beach, California)

(Haptics ’24). IEEE, Long Beach, CA, USA, 7.
[10] Pablo Corbalán, Gian Pietro Picco, and Sameera Palipana. 2019. Chorus: UWB

Concurrent Transmissions for GPS-like Passive Localization of Countless Targets.

In Proceedings of the 18th International Conference on Information Processing in
Sensor Networks (Montreal, Quebec, Canada) (IPSN ’19). Association for Comput-

ing Machinery, New York, NY, USA, 133–144. https://doi.org/10.1145/3302506.

3310395

[11] Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno. 2012. Efficient

and Flexible Sampling with Blue Noise Properties of Triangular Meshes. IEEE
Transactions on Visualization and Computer Graphics 18, 6 (2012), 914–924. https:

//doi.org/10.1109/TVCG.2012.34

[12] H. Fan, H. Su, and L. Guibas. 2017. A Point Set Generation Network for 3D Object

Reconstruction from a Single Image. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA,

2463–2471. https://doi.org/10.1109/CVPR.2017.264

[13] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez.

2014. Automatic generation and detection of highly reliable fiducial markers

under occlusion. Pattern Recognition 47, 6 (2014), 2280–2292. https://doi.org/10.

1016/j.patcog.2014.01.005

[14] Shahram Ghandeharizadeh. 2021. Holodeck: Immersive 3D Displays Using

Swarms of Flying Light Specks. In ACM Multimedia Asia (Gold Coast, Australia).

ACM Press, New York, NY, 1–7. https://doi.org/10.1145/3469877.3493698

[15] Shahram Ghandeharizadeh. 2022. Display of 3D Illuminations using Flying Light

Specks. In ACM Multimedia. ACM Press, New York, NY, 2996–3005.

[16] Shahram Ghandeharizadeh and Vincent Oria. 2023. Virtual Reality, Augmented

Reality, Mixed Reality, Holograms and Holodecks. In The First International

Conference on Holodecks (Los Angeles, California) (Holodecks ’23). Mitra LLC, Los

Angeles, CA, USA, 38–40. https://doi.org/10.61981/ZFSH2304

[17] Francisco Javier Gonzalez-Castano, Felipe Gil-Castineira, David Rodriguez-

Pereira, Jose Angel Regueiro-Janeiro, Silvia Garcia-Mendez, and David Candal-

Ventureira. 2020. Self-corrective sensor fusion for drone positioning in indoor

facilities. IEEE Access 9 (2020), 2415–2427.
[18] D.P. Huttenlocher, G.A. Klanderman, andW.J. Rucklidge. 1993. Comparing Images

Using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence 15, 9 (1993), 850–863. https://doi.org/10.1109/34.232073

[19] David R. Karger, Philip N. Klein, and Robert E. Tarjan. 1995. A Randomized

Linear-Time Algorithm to Find Minimum Spanning Trees. J. ACM 42, 2 (mar

1995), 321–328. https://doi.org/10.1145/201019.201022

[20] Alex Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay Kumar. 2013. To-

wards a Swarm of Agile Micro Quadrotors. Autonomous Robots 35 (11 2013),

573–7527. https://doi.org/10.1007/s10514-013-9349-9

[21] S. Lloyd. 1982. Least Squares Quantization in PCM. IEEE Transactions on Infor-
mation Theory 28, 2 (1982), 129–137. https://doi.org/10.1109/TIT.1982.1056489

[22] K Nirmal, AG Sreejith, Joice Mathew, Mayuresh Sarpotdar, Ambily Suresh, Ajin

Prakash, Margarita Safonova, and Jayant Murthy. 2016. Noise Modeling and

Analysis of an IMU-based Attitude Sensor: Improvement of Performance by

Filtering and Sensor Fusion. In Advances in optical and mechanical technologies
for telescopes and instrumentation II, Vol. 9912. SPIE, 2138–2147.

[23] Trung Phan, Hamed Alimohammadzadeh, Heather Culbertson, and Shahram

Ghandeharizadeh. 2023. An Evaluation of Three DistanceMeasurement Technolo-

gies for Flying Light Specks. In International Conference on Intelligent Metaverse
Technologies and Applications (iMETA2023) (Tartu, Estonia).

[24] James Preiss, Wolfgang Honig, Gaurav Sukhatme, and Nora Ayanian. 2017.

Crazyswarm: A Large Nano-Quadcopter Swarm. In IEEE International Conference
on Robotics and Automation (ICRA). 3299–3304. https://doi.org/10.1109/ICRA.

2017.7989376

[25] Robin Ritz, Mark W. Müller, Markus Hehn, and Raffaello D’Andrea. 2012. Co-

operative Quadrocopter Ball Throwing and Catching. In 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. 4972–4978. https:

//doi.org/10.1109/IROS.2012.6385963

[26] Nel Samama. 2008. Global Positioning: Technologies and Performance. https:

//doi.org/10.1002/9780470241912

[27] K. Siwiak. 2001. Ultra-wide Band Radio: Introducing a New Technology. In

IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat.
No.01CH37202), Vol. 2. 1088–1093 vol.2. https://doi.org/10.1109/VETECS.2001.

944546

[28] Janis Tiemann and Christian Wietfeld. 2017. Scalable and Precise Multi-UAV

Indoor Navigation using TDOA-based UWB Localization. In 2017 international
conference on indoor positioning and indoor navigation (IPIN). IEEE, 1–7.

[29] Zong-Sheng Wang, Jung Lee, Chang Geun Song, and Sun-Jeong Kim. 2020. Data-

Driven Point Sampling with Blue-noise Properties for Triangular Meshes. In

Proceedings of the 3rd International Conference on Computer Science and Software
Engineering (Beijing, China) (CSSE ’20). Association for Computing Machinery,

New York, NY, USA, 77–82. https://doi.org/10.1145/3403746.3403908

[30] Dong-Ming Yan, Jian-Wei Guo, Bin Wang, Xiao-Peng Zhang, and Peter Wonka.

2015. A Survey of Blue-Noise Sampling and Its Applications. Journal of Computer
Science and Technology 30, 3 (2015), 439–452.

[31] Nima Yazdani, Hamed Alimohammadzadeh, and Shahram Ghandeharizadeh.

2023. A Conceptual Model of Intelligent Multimedia Data Rendered using Flying

Light Specks. In The First International Conference on Holodecks (Los Angeles,
California) (Holodecks ’23). Mitra LLC, Los Angeles, CA, USA, 38–44. https:

//doi.org/10.61981/ZFSH2309

[32] Shuqin Zhu and Shahram Ghandeharizadeh. 2023. Flight Patterns for Swarms

of Drones. In The First International Conference on Holodecks (Los Angeles,

California) (Holodecks ’23). Mitra LLC, Los Angeles, CA, USA, 29–33. https:

//doi.org/10.61981/ZFSH2303

https://doi.org/10.61981/ZFSH2301
https://doi.org/10.61981/ZFSH2302
https://doi.org/10.1145/3587819.3592544
https://doi.org/10.1109/TIV.2020.2980758
https://doi.org/10.1109/TIV.2020.2980758
https://doi.org/10.1145/355541.355554
https://doi.org/10.1145/355541.355554
https://doi.org/10.61981/ZFSH2308
https://doi.org/10.61981/ZFSH2308
https://doi.org/10.1145/3302506.3310395
https://doi.org/10.1145/3302506.3310395
https://doi.org/10.1109/TVCG.2012.34
https://doi.org/10.1109/TVCG.2012.34
https://doi.org/10.1109/CVPR.2017.264
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1145/3469877.3493698
https://doi.org/10.61981/ZFSH2304
https://doi.org/10.1109/34.232073
https://doi.org/10.1145/201019.201022
https://doi.org/10.1007/s10514-013-9349-9
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1109/IROS.2012.6385963
https://doi.org/10.1109/IROS.2012.6385963
https://doi.org/10.1002/9780470241912
https://doi.org/10.1002/9780470241912
https://doi.org/10.1109/VETECS.2001.944546
https://doi.org/10.1109/VETECS.2001.944546
https://doi.org/10.1145/3403746.3403908
https://doi.org/10.61981/ZFSH2309
https://doi.org/10.61981/ZFSH2309
https://doi.org/10.61981/ZFSH2303
https://doi.org/10.61981/ZFSH2303

	Abstract
	1 Introduction
	2 Overview and Terminology
	3 Planner
	3.1 Step 1: Mesh File to FLS Illumination
	3.2 Step 2: FLS-Tree and Swarm-Tree

	4 Continuous Localization
	4.1 Space Complexity

	5 An Implementation and Evaluation
	5.1 FLS Tracking: Calibration
	5.2 Planner
	5.3 Localization
	5.4 A Comparison with SwarMer

	6 Conclusions and Future Research
	References

