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Abstract

We introduce FragFM, a novel hierarchical framework via fragment-level dis-1

crete flow matching for efficient molecular graph generation. FragFM generates2

molecules at the fragment level, leveraging a coarse-to-fine autoencoder to recon-3

struct details at the atom level. Together with a stochastic fragment bag strategy4

to effectively handle an extensive fragment space, our framework enables more5

efficient and scalable molecular generation. We demonstrate that our fragment-6

based approach achieves better property control than the atom-based method and7

additional flexibility through conditioning the fragment bag. We also propose a8

Natural Product Generation benchmark (NPGen) to evaluate modern molecular9

graph generative models’ ability to generate natural product-like molecules. Since10

natural products are biologically prevalidated and differ from typical drug-like11

molecules, our benchmark provides a more challenging yet meaningful evaluation12

relevant to drug discovery. We conduct a FragFM comparative study against various13

models on diverse molecular generation benchmarks, including NPGen, demon-14

strating superior performance. The results highlight the potential of fragment-based15

generative modeling for large-scale, property-aware molecular design, paving the16

way for more efficient exploration of chemical space.17

1 Introduction18

Deep generative models are achieving remarkable success in modeling complex, structured data,19

with graph generation being a prominent application area [1, 2]. Among various applications, de20

novo molecular graph generation, which has the potential to accelerate drug and material discov-21

ery, is a particularly important. Recently, diffusion- and flow-based graph generative models have22

demonstrated the ability to generate molecular graphs [3–6].23

However, these models that are built on atom-based representation face significant scalability chal-24

lenges, particularly in generating large and complex molecules [7]. The quadratic growth of edges25

as the graph size increases results in computational inefficiencies. At the same time, the inherent26

sparsity of chemical bonds makes accurate edge prediction more complex, often leading to unrealistic27

molecular structures or invalid connectivity constraints [7, 8]. Moreover, graph neural networks strug-28

gle to capture topological features like rings, leading to deviations from chemically valid structures.29

Although various methods incorporate auxiliary features (e.g., spectral, ring, and valency information)30

to mitigate these issues, they do not fully resolve the sparsity and scalability bottlenecks [3].31

Fragment-based strategies, rooted in long-standing success in traditional drug discovery, offer an32

alternative [9–11]. By assembling molecules from chemically meaningful substructures, these ap-33

proaches enable a more efficient exploration of chemical space, preserve global structural coherence,34
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and provide finer control over molecular properties than atom-based methods [12–15]. Diffusion35

models also adopted the fragment-based approach, showing their potential in improving scalability36

and property control [16, 17]. However, the existing methods depend on a small fragment library or37

employ automated fragmentation procedures, leading to restricted chemical diversity and limiting the38

usage of domain knowledge.39

Here, we introduce FragFM, a novel hierarchical framework for molecular graph generation to40

address these challenges. FragFM first generates a fragment-level graph using discrete flow matching41

and then reconstructs it into an atom-level graph without information loss. To this end, we develop a42

novel stochastic fragment bag strategy that circumvents reliance on fixed fragment libraries, along43

with a coarse-to-fine autoencoder that ensures direct atom-level reconstruction from the generated44

fragment-level graph. Consequently, FragFM can efficiently explore the molecular space, avoiding45

the generation of chemically implausible molecules with an extensive fragment space at moderate46

computational cost.47

We extensively evaluate FragFM on standard molecule generation benchmarks [18, 19], where it con-48

sistently outperforms the previous graph generative models in various metrics. FragFM outperforms49

denoising-based models even with significantly fewer denoising steps. Our fragment-based approach50

enables more flexible property-guided molecular generation with fragment bag control over standard51

guidance strategies. Furthermore, we propose a new benchmark, NPGen, as the benchmarks mainly52

focus on small drug-like molecules and the performance of graph generative models has become53

saturated NPGen opens a new avenue for graph generative models specifically targeting natural54

products, which is crucial for drug discovery due to their bio-compatibility and structural novelty[20].55

Although inherent complexity is present in natural products, FragFM shows particularly strong56

performance on the new task, highlighting its strength in capturing high-level structural semantics for57

natural products.58

2 Related Works59

2.1 Molecular Graph Generative Models60

Modern molecular graph generative models can be classified into autoregressive and one-shot61

generation models. Autoregressive models generate graphs sequentially based on their node, generally62

an atom or fragment, and corresponding edge representations[12, 21–23]. Despite their performance,63

these models have an intrinsic issue in learning the permutation of nodes in the graph, which must64

be invariant for a given graph, often making them highly inefficient. Among one-shot models,65

there exists a model that directly generates molecular graphs [24]. Also, denoising models have66

recently become fundamental for generating molecular graphs by iteratively refining noisy graphs67

into structured molecular representations. Diffusion methods [25, 26], which have been successful in68

various domains, have been extended to graph structure data [2, 27], demonstrating the advantages69

of applying diffusion in graph generation. This approach was further extended by incorporating70

discrete stochastic processes [28], addressing the inherently discrete nature of molecular graphs [3].71

The discrete diffusion modeling is reformulated using the continuous-time Markov chain (CTMC)72

[5, 29, 30], allowing for more flexible and adaptive generative processes. More recently, flow-based73

models have been explored for generating molecular graphs. Continuous flow matching [31] has been74

applied to structured data [6], while discrete flow models [32, 33] have been extended to categorical75

data generation, with recent methods showing that they can also model molecular distributions as76

diffusion models[4, 34].77

2.2 Fragment-Based Molecule Generation78

Fragment-based molecular generative models construct new molecules by assembling existing molec-79

ular substructures, known as fragments. This strategy enhances chemical validity and synthesizability,80

facilitating the efficient exploration of novel molecular structures. Several works have employed81

fragment-based approaches within variational autoencoders (VAEs) by learning to assemble in a82

chemically meaningful way [35–37]. Also, Jin et al. [12] adopts a stepwise generation approach,83

constructing a coarse fragment-level graph before refining it into an atom-level molecule through84

substructure completion. The other strategies construct molecules sequentially assembling fragments,85

enabling better control over molecular properties during generation [13, 35].86
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Fragment-based approaches have also been explored in diffusion-based molecular graph generation.87

Levy and Rector-Brooks [16] proposed a method that utilizes a fixed set of frequently occurring88

fragments to generate drug-like molecules, ensuring chemical validity but limiting exploration beyond89

predefined structures. Since enumerating all possible fragment types is infeasible, the method operates90

solely within a fixed fragment vocabulary. In contrast, Chen et al. [17] proposed an alternative, dataset-91

dependent fragmentation strategy based on byte-pair encoding, which provides a more flexible92

molecular representation. However, this approach does not yet integrate chemically meaningful93

fragmentation methods [38, 39], which are inspired by chemical synthesis and functionality, limiting94

its ability to leverage domain-specific chemical priors.95

3 FragFM Framework96

We propose FragFM, a novel hierarchical framework that utilizes discrete flow matching at the97

fragment-level graph. As shown in the fig. 1, we propose two novel strategies: a coarse-to-fine98

autoencoder and a stochastic fragment bag strategy. The former compresses atom-level graphs99

into fragment-level graphs without any information loss using the latent variable, allowing us to100

utilize discrete flow matching (DFM) in the fragment-level graph. The latter ensures the model101

handles comprehensive fragment libraries and achieves generalizability to the fragment bag. Starting102

from fragment graph notation in section 3.1, we elaborate on the details of the conversion between103

fragment- and atom-level graphs in section 3.2, and then the training and generation procedures for104

fragment-level graph in sections 3.3 and 3.4..105
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Figure 1: Overview of FragFM. FragFM utilizes a hierarchical framework of coarse-to-fine autoen-
coder (section 3.2) and fragment-level graph flow matching (section 3.3). An input atom-level graph
(G) is initially decomposed via fragmentation rule. This is then processed by a coarse-to-fine encoder,
which compresses it into a joint representation X = (G, z) comprising a fragment-level graph G and
a latent vector z designed to capture fine-grained atomistic connectivity information not explicitly
present in G. During generation (section 3.4), neural network fθ selects the most probable fragment
from a fragment bag B, which is stochastically sampled subset of the full fragment bag F . FragFM
then employs two flow-matching processes: (i) a discrete flow generates the target fragment-level
graph G1 from an initial G0 (mask and uniform prior for node and edge, respectively), operating with
fragments from B; (ii) a continuous flow generates the target latent vector z1 from a Gaussian prior
N (0, 1) (from an initial z0). Finally, a coarse-to-fine decoder utilizes the generated pair (G1, z1) to
reconstruct the full atom-level molecular graph.

3.1 Fragment Graph Notation106

We represent a molecule at the atom level as a graph G = (V,E), where V is a set of atomic nodes,107

and E is the set of edges with associated features (i.e., bond types). The node v(k) ∈ V corresponds108

to an atom, while e(kl) ∈ E denotes a chemical bond between atoms v(k) and v(l). At the fragment109

level, we introduce a coarse-grained representation of the molecule as a graph G = (X , E). Here, each110

node x(i) ∈ X corresponds to a fragment, and each edge ε(ij) ∈ E represents whether two fragments111

are connected. Let F be the set of all possible fragments. Formally, fragment x(i) is an atom-level112

sub-graph of G. More specifically, {x(i)} = {(Vi,Ei)} are mutually disjoint sub-graphs, where113
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Vi ⊆ V and Ei ⊆ E, with Vi ∩Vj = ∅ for different fragment indices i and j. The coarse-grained114

edges ε(ij) ∈ {0, 1} are induced from E, meaning that two fragments x(i),x(j) ∈ X are connected115

if at least one bond exists between their corresponding atoms, i.e.,116

ε(ij) ∈ E if ∃ e(kl) ∈ E s.t v(k) ∈ Vi,v
(l) ∈ Vj . (1)

3.2 Molecular Graph Compression by Coarse-to-fine Autoencoder117

While a fragment-level graph (G) offers a higher-level abstraction of molecular structures, it also118

introduces ambiguity in reconstructing atomic connections. Specifically, a single fragment-level119

connectivity (E) can map to multiple distinct, valid atom-level configurations. To achieve accurate120

end-to-end molecular generation, it is therefore crucial to preserve atom-level connectivity (E) when121

forming the fragment-level representation. Drawing on a hierarchical generative framework [40–42],122

we employ a coarse-to-fine autoencoder. The encoder compresses an atom-level graph (G) into its123

fragment-level counterpart and, for each input molecule, outputs a single continuous latent vector z124

that encodes the committed connectivity details. With G and z the decoder predicts only the atom-125

level edges linking fragments that are adjacent in G, and we discretize its continuous outputs via the126

Blossom algorithm [43]. Additional implementation details are given in appendices A.1 and A.2.127

Encoder: G
enc−−→ (G, z),

Decoder: (G, z) dec−−→ Ĝ.

3.3 Flow Matching for Coarse Graph128

We aim to model the joint distribution over the fragment-level graph and its latent representation,129

X := (G, z), through the flow-matching after a continuous-time generative paradigm. Flow matching130

begins at a known prior at t=0 and follows a learned vector field that continuously transforms this131

prior into the target data distribution at t=1.132

In our coarse graph G, both nodes x ∈ X (fragment types) and edges ε ∈ E (fragment connectivities)133

are discrete categorical variables, for which we adopt DFM realized by a continuous time Markov134

chain (CTMC) [32]. The latent vector z is continuous, and thus we treat it with continuous flow135

matching [31]. This hybrid set-up allows us to evolve the discrete fragment graph and the continuous136

latent information jointly from a simple prior to the desired data distribution. In this section, we focus137

on the fragment type generation modeling, and modeling details for the latent vector and edge are138

described in appendix A.3.139

Discrete Flow Matching Following the original DFM formulation [32], we specify the node140

(fragments type) distribution at t=1 as p1(x) and define the x1-conditioned time marginal by a linear141

interpolation142

pt |1(xt | x1) = t δ(xt,x1) + (1−t) p0(xt), (2)

where p0 is a prior and δ(·, ·) is the Kronecker delta. We utilized a masked distribution proposed by143

Campbell et al. [32] as prior. They proposed a CTMC transition rate that realizes this marginal,144

Rt(x,y | x1) =
ReLU

(
∂tpt |1(y | x1)− ∂tpt |1(x | x1)

)
S pt |1(x | x1)

, ∀x ̸= y, (3)

with S the number of states for which pt|1(x | x1) > 0. A brief algebraic manipulation of the145

Kolmogorov forward equation yields the x1-unconditional generator146

Rt(x,y) = Ex1∼p1|t(·|x)
[
Rt(x,y | x1)

]
. (4)

from which we can sample trajectories {xt}t∈[0,1] directly. The only unknown quantity in eq. (4) is147

the posterior p1|t(x1 | xt), which we approximate with a neural network.148

Parameterization and Info-NCE Loss. Because realistic chemical spaces require a very large149

set of fragment types |F|, assembling the transition matrix in eq. (4) becomes computationally150

infeasible. We therefore detour the explicit expectation of eq. (4) by Monte-Carlo (MC) sampling,151

with introducing stochastic fragment bag strategy. Given the current noisy state Xt = (Gt, zt), we152
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first draw a subset B ⊂ F of size N and then sample a node x1 within that bag. As a result, the153

model needs to approximate the in-bag conditional posterior p(x1 | Xt,x1 ∈ B) rather than the154

unconditional one p1|t(x1 | Xt).155

Following the Info-NCE formulation [44], we construct the fragment bag and parameterize the density156

ratio p1|t(x1|Xt)/p1(x1) with a neural network fθ. For each training step we build a bag B that157

contains one positive fragment x+
1 ∼ p1|t(x1|Xt) and N−1 negative fragments x−

1 sampled i.i.d.158

from the marginal fragments library distribution p1(x). Applying the Info-NCE formulation, we can159

write the in-bag posterior as160

p1|t
(
x | Xt,B

)
=

1B(x)p1|t(x | Xt)/p1(x)∑
y∈B

p1|t(y | Xt)/p1(y)
, (5)

where 1B is an indicator function. We let the fθ(Xt,x) approximate the unknown density ratio161

p1|t(x|Xt)/p1(x), by optimizing θ with the standard Info-NCE loss:162

L(θ) = −EB

[
log

fθ(Xt,x
+)∑

y∈B fθ(Xt,y)

]
, (6)

which encourages the network to assign higher scores to the positive x+ within B while pushing163

down the negatives. Because the loss computes fθ for only x ∈ B, the computational cost scales with164

the bag size N rather than the full library |F|, making training process computationally tractable165

even when the fragment vocabulary is extremely large.166

3.4 Generation process167

In the sampling phase, we require a discretized forward kernel for nodes, edges, and the latent vector:168

pt+∆t|t(Xt+∆t | Xt) =
∏

i pt+∆t|t(x
(i)
t+∆t | Xt)

∏
ij pt+∆t|t(ε

(ij)
t+∆t | Xt) pt+∆t|t(zt+∆t | Xt).169

Despite the latent variable being modeled deterministically in the flow-matching framework, we keep170

the probabilistic notation because the latent trajectory is a limiting case of a diffusion bridge. Similar171

to Campbell et al. [32], we modeled each transition of nodes and edges as independent. In this section172

we will focus on the DFM process for nodes, while details of edges and latent vector will be provided173

in appendix A.3.174

In-bag transition kernel One step transition kernel pt+∆t|t can be obtained by direct Euler175

integration of the rate matrix from eq. (4), which entails an expectation of x1 over the full fragment176

set F . We here define an in-bag transition kernel, by replacing the expectation by restricting x1 to a177

randomly selected subset B.178

In the course of the sampling process, it is not possible to access p1|t to place a positive sample in179

B. Instead, following the conventional Info-NCE approaches, we construct B by drawing N i.i.d.180

fragments from the marginal p1, assuming that B is independent to the current state. Consequently181

the B conditioned x
(i)
1 -posterior is182

pθ1|t,B(x
(i)
1 | Xt,B) =

1B(x
(i)
1 )fθ(Xt,x

(i)
1 )∑

y∈B fθ(Xt,y)
.

The bag conditioned forward kernel for i-th node is then induced by the rate Rt(·, ·|B):183

pθt+∆t|t(x
(i)
t+∆t|Xt,B) := E

x
(i)
1 ∼pθ

1|t(·|Xt,B)

[
pt+∆t|t(x

(i)
t+∆t|Xt,x

(i)
1 )

]
, (7)

= E
x
(i)
1 ∼pθ

1|t(·|Xt,B)

[
δ(x

(i)
t ,x

(i)
t+∆t) +Rt(x

(i)
t ,x

(i)
t+∆t|x

(i)
1 )∆t

]
,

= δ(x
(i)
t ,x

(i)
t+∆t) + E

x
(i)
1 ∼pθ

1|t(·|Xt,B)

[
Rt(x

(i)
t ,x

(i)
t+∆t|x

(i)
1 )

]
︸ ︷︷ ︸

:=Rt(x
(i)
t ,x

(i)
t+∆t|B)

∆t.

Strictly speaking, averaging p1|t,B over B does not recover the kernel p1|t. It nevertheless provides a184

practical surrogate that converges to p1|t as the bag size N approaches the fragment-pool size |F|185
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[44]. When the Euler step size ∆t is small and the bag size N is moderately large, the discrepancy is186

negligible while the computational cost remains manageable. In practice, we replace the expectation187

with a MC estimation, sampling a single bag only once per Euler step.188

Conditional generation While generating valid molecules is essential, steering them toward the189

desired property is crucial for the practical application of molecular generative models. Direct190

conditioning via classifier-free guidance [45] offers strong control but tightly binds the generative191

network to specific properties and often requires retraining when new targets are introduced. Instead,192

we adopt classifier guidance, steering generation at sampling time with an external property predictor.193

This decouples the generator from any single conditioning signal and allows the predictor to be194

trained or updated independently [3, 46].195

We begin by defining a property c conditional forward kernel as,196

pt+∆t|t(Xt+∆t|Xt, c) ≈ EB|c[p(Xt+∆t|Xt,B, c)]. (8)

By Bayes’ rule, the in-bag transition kernel could be factorized into the unconditional kernel times a197

guidance ratio:198

p(Xt+∆t|Xt,B, c) = p(Xt+∆t|Xt,B)︸ ︷︷ ︸
eq. (7)

· p(c|Xt+∆t,Xt,B)
p(c|Xt,B)︸ ︷︷ ︸
Guidance ratio

. (9)

Following Vignac et al. [3], specifically for fragment type, we approximate the guidance term in199

fragment bag B with a noisy property regressor.200

To complete the conditional transition kernel in eq. (8), we need to average it on fragments bag201

conditioned by c. It is achieved by sampling B|c with re-weighting the selection probabilities of202

fragments during the bag sampling process, which is controlled by the guidance parameter λB. A203

detailed description of the conditional generative kernel and construction of the conditional bag204

p(B | c) is provided in appendix A.4.205

4 Natural Product Generation Benchmark206

We now introduce NPGen, a benchmark for molecular generative models through the lens of natural207

products (NPs), to address demands in both the drug discovery and machine learning communities.208

NPs are chemical compounds biologically synthesized by organisms, e.g., plants and bacteria. They209

serve as a valuable resource in drug discovery with unique structural features compared to typical210

synthetic compounds, often exhibiting more complex ring structures, a higher density of heteroatoms,211

and more oxygen-based functional groups, which contribute to properties like polarity and potent212

bio-activity [47, 48]. In essence, NPs occupy a biologically meaningful subset of chemical space.213

Their structures are often similar to endogenous metabolites, making them highly applicable as214

templates or direct sources for drugs [49, 50]. Thus, a substantial portion of small-molecule drugs are215

inspired by or derived from NPs, mimicking their structures or functionalities [51]. In this regard,216

generating novel molecules that reflect the structural characteristics and biological relevance of NPs217

represents a key direction in modern drug discovery.218

Although modern generative models have demonstrated strong performance on standard benchmarks219

such as MOSES [18] and GuacaMol [19], these benchmarks are insufficient to evaluate cutting-edge220

models with respect to the unique structural and biological characteristics of NPs, due to limitations221

in both the source of data and the metrics they offer. Indeed, the molecules in these datasets are222

predominantly small and structurally simple, and conventional evaluation metrics—Fréchet ChemNet223

Distance, scaffold overlap, and KL divergence over simple properties—are approaching saturation,224

limiting their ability to discriminate between state-of-the-art methods. To fill the critical gap between225

the current state of benchmarks and the rising need for a new benchmark with challenging, domain-226

specific alternative tasks [52], we introduce NPGen as a benchmark to generate and evaluate natural227

product-like molecules.228

The dataset for NPGen is constructed from the COCONUT database [53, 54], comprising compre-229

hensive NPs with a rigorous filtering process. Beyond standard metrics like Validity, Uniqueness, and230

Novelty, we focus on NP-specific characteristics for evaluation. To this end, we assess models with231

Kullback-Leibler (KL) divergence of distributions of NP-likeness scores [55] and the biosynthetic232
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pathways and structural classes predicted by NP-Classifier [56] between generated molecules against233

the test set. Furthermore, we select several representative baselines by classifying modern molecular234

graph generative approaches with two criteria: generation strategy (autoregressive, one-shot), and235

representation level (atom, fragment). Specifically, we adopt (1) an atom-based autoregressive model236

(GraphAF[23]), (2) fragment-based autoregressive models (JT-VAE[12], HierVAE[15]), and (3) an237

atom-based one-shot model (DiGress[3]). More details about the construction method and statistics238

of the dataset, training, and inference process for these baseline models are provided in appendix D,239

and their comparative results are presented in section 5.2.240

5 Results241

5.1 Standard Molecular Generation Benchmarks242

We evaluate FragFM on the MOSES [18] and GuacaMol [19] benchmarks, which focus on small243

drug-like molecule generation, using the same settings as prior work [3]. Molecular graph generative244

models can be categorized based on their generation strategy (i.e., autoregressive , one-shot) and245

representation level (i.e., atom, fragment). We compare FragFM against various models with different246

generation strategies and representation levels. Refer to appendix C for more details about metrics247

and baseline models.248

The table 1 represents the result of the MOSES benchmark. Note that we report the result with249

the scaffold-splitted test set, following the previous works[3–5, 29] In the MOSES benchmark,250

diffusion and flow based models typically underperform autoregressive methods on validity and251

Fréchet ChemNet Distance (FCD)[57]; by contrast, FragFM achieves nearly 100% validity—on252

par with the best autoregressive models—and attains an FCD of 0.58, outperforming all one-shot253

models by a large margin. Furthermore, its exceptionally low FCD and strong property-based metrics254

(MOSES Filters) make it the first one-shot model to surpass both JT-VAE and GraphINVENT. For255

other metrics, FragFM lags behind novelty compared to the others, while achieving the state-of-the-art256

performance in Filters and SNN. On the Scaf metric, FragFM underperforms when restricted to257

training-set fragments, due to the scaffold-split evaluation: if a test molecule’s scaffold isn’t present258

in the fragment bag, it cannot be generated. To prove this, we show the results when generating using259

the test-set fragment bags on tables 6 and 7. With those fragments, FragFM’s scaffold score rises260

markedly, demonstrating its ability to generalize to unseen fragments via the fragment embedding261

module. We further discuss the results on the GuacaMol benchmark in appendix E.1.262

Table 1: Molecule generation on MOSES benchmark. We use 25,000 generated molecules for
evaluation. The upper part comprises autoregressive methods, while the second part comprises one-
shot methods, including diffusion-based and flow-based methods. Results for FragFM are averaged
over three independent runs. The best performance is highlighted in bold, and the second-best is
underlined.

Model Rep. Level Valid ↑ Unique ↑ Novel ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set - 100.0 100.0 - 100.0 0.48 0.59 0.0

GraphINVENT [22] Atom 96.4 99.8 - 95.0 1.22 0.54 12.7
JT-VAE [12] Fragment 100.0 100.0 99.9 97.8 1.00 0.53 10.0

DiGress [3] Atom 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo [29] Atom 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh [5] Atom 90.5 100.0 96.4 97.2 1.44 0.51 15.9
Cometh-PC [5] Atom 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG [4] Atom 92.8 99.9 92.1 98.9 1.95 0.55 14.4

FragFM (ours) Fragment 99.8 100.0 87.1 99.1 0.58 0.56 10.9

5.2 Natural Product Molecule Generation Benchmark263

Next, we compare FragFM in our proposed Natural Product Generation benchmark (NPGen), against264

the baseline models introduced in section 4.265

Table 2 shows the overall benchmark results for molecular graph generative models including FragFM.266

FragFM demonstrates the best performance on functionality-driven metrics, which are specifically267
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tailored to assess the generation of natural products in the design of NPGen. This result highlights268

FragFM’s outstanding ability to capture the intricate structural features of natural product molecules,269

compared to the baseline models. It is worth noting that fragment-based representation generally270

leads to better performance in functionality-driven metrics than atom-based ones for autoregressive271

and one-shot generation strategies. This emphasizes the importance of fragments in molecular graph272

generation, providing a rigorous basis for the success of FragFM. We present visualizations of273

generated molecules for all baselines and discuss them in appendix F.3.274

Table 2: Molecule generation results on NPGen. We use 30,000 generated molecules for evaluation.
The upper part comprises autoregressive methods, while the second part comprises one-shot methods,
including diffusion-based and flow-based methods. The results are averaged over three runs. The best
performance is shown in bold, and the second-best is underlined.

Model Rep. Level Val. ↑ Unique. ↑ Novel ↑ NP Score
KL Div. ↓

NP Class KL Div. ↓ FCD ↓Pathway Superclass Class

Training set - 100.0 100.0 - 0.0006 0.0002 0.0028 0.0094 0.01

GraphAF [23] Atom 79.1 63.6 95.6 0.8546 0.9713 3.3907 6.6905 25.11
JT-VAE [12] Fragment 100.0 97.2 99.5 0.5437 0.1055 1.2895 2.5645 4.07
HierVAE [15] Fragment 100.0 81.5 97.7 0.3021 0.4230 0.5771 1.4073 8.95

DiGress [3] Atom 85.4 99.7 99.9 0.1957 0.0229 0.3370 1.0309 2.05

FragFM (ours) Fragment 98.0 99.0 95.4 0.0374 0.0196 0.1482 0.3570 1.34

5.3 Sampling Efficiency275

Iterative denoising in stochastic generative models inherently involves a tradeoff between sampling276

steps and quality; for higher quality, multiple denoising steps are required, resulting in prohibitively277

slow sampling.278

Figure 2 and table 8 shows MOSES benchmark results as we progressively reduce the number of279

denoising iterations across several diffusion- and flow-based generators. As expected, most models280

suffer significant validity, filters, and FCD drops at low sampling steps. In contrast, FragFM remains281

remarkably robust, achieving 95% validity and FCD under 1.0, outperforming atom-based models282

even when they use far more steps. This robustness arises from our fragment-level discrete flow283

matching, which reduces the per-step complexity of predicting individual atoms and bonds but284

operates on meaningful substructures. Additional sampling efficiency and runtime analyses are285

provided in appendix E.4.286

101 102 103

Sampling Steps

20

40

60

80

100

Va
lid

ity

101 102 103

Sampling Steps
0

2

4

6

8

FC
D

DiGress DeFog Cometh FragFM

Figure 2: Analysis of sampling steps across multiple denoising models. FragFM maintains higher
sampling quality than baseline atom-based denoising models as the number of sampling steps is
reduced, exhibiting significantly less performance degradation. Additional results are provided in
appendix E.4.

5.4 Conditional Generation287

To further asses FragFM’s conditional generation, we conducted conditional generation experiment288

using both classifier guidance (section 3.4) and fragment bag reweighting (appendix E.3), and289

compared against DiGress—an atom-based model with classifier guidance. Intrinsically, as guidance290

strength increases, generated molecules are driven closer to the target region, reducing mean absolute291

8



error (MAE) but increasing FCD due to distributional shift. We thus investigate the MAE-FCD plot,292

which shows that curves nearer the lower-left corner (low MAE and FCD) indicate a superior balance293

of property accuracy and generative fidelity. We evaluate simple properties (logP, number of rings,294

QED [58]) and more challenging docking scores for FA7, JAK2, PARP1. Additional experimental295

details are provided in appendix E.5 with an intuitive interpretation of the chemical aspect.296

As illustrated by the QED conditioning results (fig. 3), FragFM achieves a significantly more optimal297

performance curve, exhibiting lower FCD and MAE values across the explored trade-off. This298

enhanced performance extends to other fundamental molecular properties such as logP and number299

of rings (see appendix E.5 for more results). A compelling advantage of the fragment-based strategy300

employed by FragFM is its ability to maintain high molecular validity even under stringent property301

conditioning. Crucially, FragFM’s fragment-based strategy preserves high molecular validity even302

under aggressive conditioning. In the validity-MAE plots (figs. 11b and 12b), FragFM maintains303

its validity over 95% despite lower MAE, while the atom-based model often undergoes steep drops304

while increasing the level of guidance.305

Furthermore, we verify that the fragment-based approach possesses additional flexibility and better306

controlability with fragment bag conditioning by λB. This is particularly evident in the JAK2 docking307

score conditioning task (fig. 4), where FragFM outperforms its atom-based counterpart even without308

explicit fragment bag guidance (i.e., λB = 0). Subsequently, increasing λB consistently shifts309

FragFM’s curve towards a more optimal region, demonstrating that fragment bag reweighting also310

significantly enhances property control. Our approach thus aligns with and extends the long-standing311

success of fragment-based paradigms in medicinal chemistry [9, 59] and recent computational312

strategies [60], by providing a robust framework where the model learns to compose optimal fragments313

for targeted generation.314
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Figure 3: Property conditioning results for
QED. MAE-FCD curves for FragFM and DiGress
under QED conditioning on the MOSES dataset,
with different conditioning values color-coded.
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Figure 4: Effect of λB in conditioning.
MAE-FCD curves on the ZINC250K dataset
under JAK2 docking score conditioning to
-11.0 kcal/mol. Different λB is color-coded.

6 Conclusion315

In this paper, we have introduced FragFM, a novel hierarchical framework with fragment-level discrete316

flow matching followed by lossless reconstruction of the atom-level graph, for efficient molecular317

graph generation. To this end, we proposed a stochastic fragment bag strategy with a coarse-to-fine318

autoencoder to circumvent dependency on a limited fragment library cost-effectively. Standing on319

long-standing fragment-based strategies in chemistry, FragFM showed superior performance on320

the standard molecular generative benchmarks compared to the previous graph generative models.321

Additionally, applying classifier guidance at the fragment level and conditioning the fragment bag on322

the target property enables more precise control over diverse molecular properties. These significant323

improvements pave the way for a new frontier for fragment-based denoising approaches in molecular324

graph generation. Finally, to contribute to the growth of the molecular graph-generating domain, we325

developed a new benchmark for evaluating models of natural products, which is also crucial in drug326

discovery.327
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A Method Details519

A.1 Coarse-to-fine Autoencoder520

We adopted a KL-regularized autoencoder for coarse-to-fine graph conversion. First, each molecule521

is decomposed into fragments using the BRICS decomposition rules [38], producing a fragment-level522

graph G. During this fragmentation, connectivity information between atoms belonging to different523

fragments is discarded, i.e., the orientation of an antisymmetric fragment with respect to other524

fragments cannot be determined by the fragments alone. The fragment-level graph and the missing525

information, encoded in the latent variable z, are required to reconstruct the original atom-level graph.526

Formally, the encoding and decoding process is defined as:527

G = Fragmentation(G), (10)
z ∼ qθ = N (Encoder(G; θ), σ), (11)

Ê = Decoder(G, z; θ). (12)

The decoder reconstructs only those atom-level edges Ê corresponding to the fragment connectivity528

in the coarse representation. Ê is then used to reconstruct an atom-level graph G as explained in529

appendix A.2.530

We optimize the autoencoder using a reconstruction loss to ensure that the reconstructed graph faith-531

fully preserves the original molecular structure. Additionally, we introduce a small KL regularization532

term to the training loss for a latent variable to enforce a well-structured and unscaled latent space:533

LVAE(θ) = EG∼pdata

[
LCE

(
E, Ê(θ)

)
+ βDKL (qθ(z|G) ∥ p(z))

]
. (13)

We set a low regularization coefficient of β = 0.0001 to maintain high-fidelity reconstruction.534

A.2 Atom-level Reconstruction of Fragment-level Graph535

We utilize the Blossom algorithm [43] to determine the optimal matching in the atom-level con-536

nectivity given coarse-to-fine decoder output. The Blossom algorithm is an optimization technique537

used to find the maximum matching in general graphs by iteratively contracting and expanding538

odd-length cycles (blossoms) to identify augmenting paths efficiently. We leverage this algorithm in539

our framework to accurately reconstruct atom-level connectivity from fragment-level graphs, ensuring540

chemically valid molecular structures. The algorithm takes as input the matching nodes Vm, edges541

Em, and edge weights wij . Once the fragment-level graph and the probabilities of atom-level edges542

from the coarse-to-fine autoencoder are computed, we define Vm ⊆ V̂ as the set of junction atoms in543

fragment graphs, which are marked as * in fig. 1, and Em as the set of connections between junction544

atoms belonging to connected fragments.545

Formally, an edge ekl exists in Em if the corresponding atoms belong to different fragments that are546

connected in the fragment-level graph, expressed as:547

ekl ∈ Em if vk ∈ V̂i, vl ∈ V̂j , and εij ∈ E . (14)

The edge weightswij correspond to the predicted log probability of each connection obtained from the548

coarse-to-fine autoencoder. The Blossom algorithm is then applied to solve the maximum weighted549

matching problem, formulated as550

M∗ = argmaxM⊆Em

∑
(i,j)∈M

wij . (15)

Here, M∗ represents the optimal set of fragment-level connections that best reconstructs atom-level551

connectivity, maximizing the joint probability of the autoencoder prediction. Although the algorithm552

has an O(N3) complexity for N fragment junctions, its computational cost remains negligible in our553

case, as the number of fragment junctions is relatively small compared to the total number of atoms554

in a molecule.555
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A.3 Details of Flow Modeling556

A.3.1 Flow modeling for edge557

Let εij ∈ E := {0, 1} denote the absence (0) or presence (1) of an edge between the i-th and j-th558

fragments in the coarse graph. Because the edge state is binary, we adopt a uniform prior, p0(ε) = 1
2 .559

Following the discrete flow-matching (DFM) recipe, the ε1-conditioned time marginal is560

pt |1
(
εt | ε1

)
= t δ

(
εt, ε1

)
+ (1− t) p0(εt), t ∈ [0, 1]. (16)

The CTMC rate that realizes this marginal is561

Rt

(
ε, ε′ | ε1

)
=

ReLU
(
∂tpt |1(ε

′ | ε1)− ∂tpt |1(ε | ε1)
)

2 pt |1(ε | ε1)
, ∀ ε ̸= ε′, (17)

Rt(ε, ε
′) = Eε1∼p1 |t(·|ε)

[
Rt(ε, ε

′ | ε1)
]
. (18)

The posterior p1 |t(ε
(ij)
1 | Xt) is parameterized by a neural network ϕedge

θ (Xt)ij . We trained the562

model by minimizing the cross-entropy loss:563

Ledge =
∑
ij

EX1,Xt,t

[
−εij1 log ϕedge

θ (Xt)ij − (1− εij1 ) log
(
1− ϕedge

θ (Xt)ij

)]
. (19)

In the sampling phase, the neural network replaces the posterior in eq. (18). Because |E| = 2, the564

expectation above is computed exactly—no Monte-Carlo sampling is required. Thus, the forward565

kernel for i, j-th edge is as:566

pθt+∆t|t
(
ε
(i,j)
t+∆t | Xt

)
= δ

(
ε
(i,j)
t , ε

(i,j)
t+∆t

)
+Rϕ

t

(
ε
(i,j)
t , ε

(i,j)
t+∆t

)
∆t. (20)

A.3.2 Flow modeling for latent vector567

Let z ∈ Rd be the continuous latent vector attached to the fragment-level graph. We model its568

evolution with conditional flow matching (CFM [31]), which views generation as integrating an ODE569

whose time-dependent velocity field (VF) is learned from data. Specifically, we linearly change the570

mean and standard deviation µt(x) = tz1 and σt(z) = 1− t. The corresponding conditioned target571

VF is572

ut(zt|z1) =
z1 − zt
1− t

. (21)

Then, the trajectory for a prior sample (z0 ∼ N (0, I)) and a data sample (z1 ∼ p1(z)) under the573

target VF, i.e., the solution to dzt
dt = ut(zt|z1) with z0 is given by:574

zt = (1− t)z0 + tz1, t ∈ [0, 1]. (22)

We fit a neural vector field vθ(Xt) by minimizing the mean-squared error575

LCFM = EX1,Xt,t

[∥∥vθ(Xt)−
z1 − zt
1− t

∥∥2
2

]
. (23)

To generate a latent vector, we solve the ODE576

dẑt
dt

= vθ(Xt), (24)

forward from t = 0 to t = 1 with a deterministic solver. The resulting ẑ1 is then fed to the coarse-to-577

fine decoding network to obtain atom-level graph.578

CFM as a Limiting Case of a VE Diffusion Bridge Unlike diffusion models, which first define579

a reference process and then learn its drift, CFM directly prescribes the time-marginal distribution580

and optimizes the corresponding velocity fields that “point” toward a fixed data point. This raises581

a question: How can we treat CFM with the transition kernel pt+∆t|t(zt+∆t | zt) used in diffusion582

models?583
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A diffusion bridge is a reference diffusion process conditioned to hit a fixed end-point. Its SDE is584

dzt =
[
f(zt, t) + g2(t)∇zt logQ(zT | zt)

∣∣
zT=y

]
dt + g(t) dwt, (25)

where Q(zT | zt) is the unconditioned transition kernel of the reference process, f its drift, and g its585

diffusion coefficients.586

If the reference process is the variance-exploding (VE) diffusion dzt = g(t) dwt, Zhou et al. [61]587

show that (25) reduces to588

dzt =
dσ 2

t /dt

σ2
T − σ2

t

(zT − zt) dt + g(t) dwt. (26)

Setting T = 1 and σ2
t = c2t (constant c) gives589

dzt =
z1 − zt
1− t

dt + cdwt. (27)

Taking a limit of c→ 0 eliminates the stochastic term and leaves the deterministic drift590

dzt
dt

=
z1 − zt
1− t

, (28)

which is exactly the velocity field optimized by CFM, i.e., the VE diffusion bridge collapses to CFM.591

Given a coupling π(z0, z1), we can form a mixture bridge Π by averaging the pinned-down trajectories592

over π. According to Proposition 2 of Shi et al. [62], its Markov approximation M satisfies593

dzt = E1|t
[z1 − zt
1− t

]
dt + cdwt, with Mt = Πt ∀t. (29)

When c→ 0, the drift term above coincides with the averaged velocity field learned by CFM eq. (23),594

confirming that M recovers the CFM dynamics in the zero-noise limit.595

A.3.3 Training Details596

Our objective is to learn a generative diffusion on the coarse graph state1 by combining the node-type597

Info-NCE loss, the edge binary-cross-entropy loss, and the latent CFM loss into a single training598

objective.599

Sampling a training triple (X1,Xt, t).600

1. Data endpoint. Sample a atomistic graph G1 from the molecular dataset, and apply coarse-601

to-fine encoder to obtain X1 = (G1, z1).602

2. Time sampling. Sample a time t ∈ [0, 1] from uniform distribution.603

3. Forward noise. Independently transform each component to its noised counterpart:604

• Node. For every fragment indexed with i, sample x(i)
t ∼ pt |1(· | x

(i)
1 ) with the masked605

prior.606

• Edge. For each pair (i, j), draw ε
(ij)
t ∼ pt |1(· | ε

(ij)
1 ) using eq. (16).607

• Latent. Sample z0 ∼ N (0, I) and set zt = (1− t)z0 + tz1 as in eq. (22).608

4. Construct Xt. Collect the three noised components into Xt = (Gt, zt).609

Joint loss.

Lnode(θ;B) = − log
fθ(Xt, x1)∑
y∈B fθ(Xt, y)

, (6)

Ledge(θ) =
∑
i<j

[
− εij1 log ϕedge

θ (Xt)ij − (1− εij1 )log
(
1− ϕedge

θ (Xt)ij
)]
, (19)

Llatent(θ) =
∥∥vlatent

θ (Xt)− (z1 − z0)
∥∥2
2
. (23)

1Recall Xt =
(
Gt, zt

)
with Gt = ({x(i)

t }, {ε(ij)t }) —the node-type vector x(i)
t , binary edge matrix ε

(ij)
t ,

and latent vector zt ∈ Rd.
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We minimize the weighted sum610

Ltotal(θ;B) = Lnode(θ;B) + αedge Ledge(θ) + αlatent Llatent(θ), (30)

with αedge, αlatent>0. We fix αedge = 5.0 and αlatent = 1.0 for all of our experiments.611

A.4 Conditional Generation with Fragment Bag612

Guidance ratio modeling The guidance ratio in eq. (9) can be written by:613

p(c|Xt+∆t,Xt,B)
p(c|Xt,B)

=
p(c|Xt+∆t,B)
p(c|Xt,B)

,

=
p(c|Xt+∆t)p(B|c,Xt+∆t)/p(B|Xt+∆t)

p(c|Xt)p(B|c,Xt)/p(B|Xt)
.

The ratio p(B|c,Xt+∆t) p(B|Xt)
p(B|Xt+∆t) p(B|c,Xt)

is intractable, yet it involves the difference between two consecutive614

states Xt and Xt+∆t. Because an Euler step is very small, it can be assumed that the diffusion state615

evolves smoothly: Xt+∆t = Xt+O(∆t). If the bag-sampling distributions p(B | X) and p(B | c,X)616

vary continuously with X, a first-order Taylor expansion yields617

p(B | ·,Xt+∆t) = p(B | ·,Xt) +O(∆t), (31)

so the whole ratio is approximately 1, to be618

p(c|Xt+∆t,Xt,B)
p(c|Xt,B)

≈ p(c|Xt+∆t)

p(c|Xt)
. (32)

Following Vignac et al. [3], Nisonoff et al. [63], we can estimate the ratio via noisy predictor ĉ(Xt)619

with 1st order Taylor expansion, yielding620

log
p(c|Xt+∆t)

p(c|Xt)
≈ ⟨∇Xt

log p(c|Xt),Xt+∆t −Xt⟩,

≈
∑
i

⟨∇
x
(i)
t

log p(c|Xt),x
(i)
t+∆t⟩+

∑
ij

⟨∇
ε
(ij)
t

log p(c|Xt), ε
(ij)
t+∆t⟩

+ ⟨∇zt log p(c|Xt), zt+∆t − zt⟩+ C.

In practice, we estimate p(c|Xt) by Gaussian modeling with a time conditioned noisy classifier621

parameterized by ψ, N (c;µ(Xt, t;ψ), σ
2). Thus, the guidance term is written as:622

p(c|Xt+∆t)

p(c|Xt)
∝ exp(λX

∑
i

⟨∇
x
(i)
t
∥µ(Xt, t)− c∥2,x(i)

t+∆t⟩) (33)

× exp(λX
∑
ij

⟨∇
ε
(ij)
t

∥µ(Xt, t)− c∥2, ε(ij)t+∆t⟩)

× exp(λX⟨∇zt∥µ(Xt, t)− c∥2, zt+∆t − zt⟩),

where λX controls the strength of the guidance.623

The smoothness assumption we adopt is exactly the one adopted by earlier discrete-guidance methods624

[3, 63], our derivation remains consistent with the foundations laid out in those works.625

Conditional bag sampling To define B|c, we first recall the unconditional case. When no property626

is specified, a bag B = {x1, . . . ,xN} of size N is drawn without replacement from the the fragments627

vocabulary F with probability628

P
(
B
)
=

∏
x∈B

p
(
x
)

∑
S⊂F
|S|=N

∏
y∈S

p(y)
, (34)
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i.e., bags that contain high-frequency fragments under the marginal distribution p(x) are sampled629

more often. To steer this toward a desired property c, we replace each p(x) by its conditional630

counterpart p(x|c). Viewing a fragment as part of a molecule X, the condition can be written as the631

expected property value over all molecules that contain that fragment:
∑

x p(x|X, c)p(X|c).632

The resulting bag distribution becomes633

P
(
B | c

)
=

∏
x∈B

p
(
x | c

)
∑
S⊂F
|S|=N

∏
y∈S

p(y | c)
. (35)

Applying Bayes’ rule and dropping the constant factor p(c) gives634

p(x|c) ∝ p(x)p(c|x). (36)

In practice, we estimate p(c|x) as a gaussian distribution with a light neural regressor parameterized635

by ϕ,636

pϕ(c | x) = N
(
c; µ(x;ϕ), σ2

)
, pϕ(x | c) ∝ p(x) exp

(
−λB ∥µ(x;ϕ)− c∥2

)
, (37)

where µ(x, ϕ) is the predicted mean, σ2 is a fixed variance, and λB controls the strength of the637

property-guided bag selection.638

A.5 Detailed Balance639

The space of valid rate matrices extends beyond the original formulation of eq. (3); thus, alternative640

constructions can still satisfy the Kolmogorov equation. Campbell et al. [32] show that if a matrix641

RDB
t fulfils the detialed-balance identity:642

pt|1(xt | x1)RDB
t (xt, y | x1) = pt|1(y | x1)RDB

t (y, xt | x1), , (38)

then,643

Rη
t = R∗

t + ηRDB
t , η ∈ R+, (39)

remains a valid CTMC generator. A larger η injects extra stochasticity, opening additional state-644

transition pathways.645

Although several designs are possible, we follow Campbell et al. [32]. The only non-zero rates for646

fragment-type nodes are the transitions between a concrete type x1 and the mask state M:647

RDB
t (x,y|x1) = δ(x,x1)δ(y,M) + δ(x,M)δ(y,x1), (40)

where M denotes the masked type.648

For edges, whose states are binary εij ∈{0, 1}, we consider a flip rate ηedge and a matching backward649

rate that satisfies eq. (38) which leads to:650

RDB
t (ε, ε′ | ε1) = δ(ε, ε1) +

1 + t

1− t
δ(ε′, ε1). (41)

We set (ηnode, ηedge) = (20.0, 20.0) for MOSES, and (10.0, 2.0) for GuacaMol and NPGen datasets.651

B Parameterization and Hyperparameters652

B.1 Coarse-to-Fine Autoencoder653

Our coarse-to-fine autoencoder (eq. (10)) compresses the atom-level graph into a single latent vector654

z and then uses it, together with the fragment-level graph G, to reconstruct all atom–atom connections.655

The encoder, an MPNN [64], takes G and pools its node features into z. The decoder conditions on G656

and z to predict a distribution over every possible atom–atom edge between them for each pair of657

linked fragments. Internally, it propagates messages along original intra-fragment bonds and across658

all candidate inter-fragment edges, enabling the recovery of the complete atomistic structure from the659

coarse abstraction.660
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B.2 Fragment Embedder, Prediction Model, and Property Discriminator661

To parameterize the neural network fθ(Xt,x) in eq. (6), we jointly train two components: a fragment662

embedder and a Graph Transformer (GT). Figure 5 provides an overview.663

The fragment embedder, built on an MPNN backbone [64], maps each fragment to a fixed-dimensional664

embedding vector. Given a fragment-level graph Xt, we apply this shared embedder to every frag-665

ment node, producing a set of local structure embeddings. Multiple GT layers, then process these666

embeddings to capture inter-fragment interactions and global context. The GT layers were designed667

with the sample architecture and hyperparameters as prior atom-based diffusion- and flow-based668

molecule generative models [3–5, 29]. We directly predict the discrete fragment-graph edges E1 and669

the continuous latent vector z1 from the final GT output embeddings. To predict fragment types, we670

compute the inner product between each candidate fragment type embedding and its corresponding671

GT embedding to infer the scores of different fragments. We reuse the flow model’s architecture672

for property discrimination: We aggregate both the fragment-level embeddings and the GT’s global673

readout to produce fragment—and molecule-level property predictions.674

We train our flow model with AdamW optimizer, using (β1, β2) = (0.9, 0.999), a learning rate of675

5 × 10−4, and gradient-nrom clipping at 4.0. We employ the exponential moving average (EMA)676

scheme of Karras et al. [65] to stabilize training. Training is performed on a single NVIDIA A100677

GPU for 96 h on MOSES and GuacaMol and 144 h on NPGen, and we select the checkpoint with the678

lowest validation loss.679

B.3 Auxiliary Features680

Although graph neural networks exhibit inherent expressivity limitations [66], augmenting them with681

auxiliary features has proven effective at mitigating these shortcomings. For example, Vignac et al.682

[3] augments each noisy graph with cycle counts, spectral descriptors, and basic molecular properties683

(e.g., molecular weight, atom valence). More recently, relative random walk probabilities (RRWP)684

have emerged as a highly expressive yet efficient encoding [67]: by stacking the first K powers of the685

normalized adjacency matrix M = D−1A, RRWP constructs a k-step transition probabilities that686

capture rich topological information. Accordingly, we integrate RDKit-derived molecular descriptors687

into the fragment embedder and RRWP features into the graph transformer, enriching the model’s688

ability to capture complex molecular semantics.689
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Figure 5: Overview of the parameterization of the fragment embedder and prediction model,
i.e., fθ in fig. 1. (left) Each fragment in the fragment bag B is embedded by the fragment embedder,
while each node in the coarse graph is mapped to a fixed-size vector. We compute fθ(Xt,x) by
taking the inner product of the two embeddings. (right) The coarse-graph embedder first maps every
node to an embedding, producing a coarse graph whose nodes are single vectors; the resulting graph
is then passed through the graph-transformer layer.
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B.4 Noise Schedule690

Selecting an appropriate noise schedule can affect the performance of diffusion- and flow-based691

models [3–5]. Following Qin et al. [4], we adopt the polydec (polynomially decreasing) time distortion,692

which skews the initially uniform time distribution so that more steps are spent close to the data693

manifold. Concretely, a uniformly sampled u∼U [0, 1] is warped by f(t) = 2t− t2, mapping the694

endpoints f(0) = 0, f(1) = 1 while stretching the density toward small t. In our Euler discretisation,695

this concentrates integration steps where fine-grained denoising is most critical.696

C Details for Standard Molecular Generation Benchmarks697

C.1 Metrics698

We provide details of common metrics in both MOSES[18] and GuacaMol[19] benchmarks.699

Common Metrics. These metrics are fundamental for assessing the basic performance of molecular700

generative models. Note that V.U. and V.U.N. metrics are multiplied values of each metric, i.e., V.U.N.701

is computed by multiplying validity, uniqueness and novelty.702

• Validity (Valid): This metric measures the proportion of generated molecules that are703

chemically valid according to a set of rules, typically checked using tools like RDKit.704

A SMILES string is considered valid if it can be successfully parsed and represents a705

chemically sensible molecule (e.g., correct atom valencies, no impossible structures).706

• Uniqueness (Unique): This indicates the percentage of unique molecules among valid707

generated molecules. A high uniqueness score suggests the model is generating diverse708

structures rather than repeatedly producing the same few molecules.709

• Novelty (Novel): This metric quantifies the fraction of unique and valid generated molecules710

that are not present in the training dataset. It assesses the model’s ability to generate novel711

chemical molecules.712

MOSES Metrics. The MOSES benchmark focuses on distribution learning. Key metrics beyond the713

foundational ones include:714

• Filters: This refers to the percentage of valid, unique, and novel molecules that pass a set715

of medicinal chemistry filters (PAINS, MCF) and custom rules defined by the MOSES716

benchmark (e.g., specific ring sizes, element types), which are used in curating dataset of717

MOSES. This evaluates the drug-likeness or suitability of generated molecules according to718

predefined structural criteria.719

• Fréchet ChemNet Distance (FCD): FCD[57] measures the similarity between the distribu-720

tion of generated molecules and a reference (test) dataset based on latent representation of721

molecules using a pre-trained neural network (ChemNet). A lower FCD indicates that the722

generated distribution is closer to the reference distribution.723

• Similarity to Nearest Neighbor (SNN): This metric calculates the average Tanimoto724

similarity using Morgan fingerprints [68] between each generated molecule and its nearest725

neighbor in the reference (test) dataset. A higher SNN suggests that the generated molecules726

are similar in structure to known molecules in the target chemical space.727

• Scaffold Similarity (Scaf): This metric specifically assesses the diversity of molecular728

scaffolds. It calculates a cosine similarity between the vectors of the occurrence of Bemis–729

Murcko scaffolds [69] of the molecules in the reference (test) dataset and the generated730

ones. A higher score suggests generated scaffolds are similar to reference scaffolds.731

GuacaMol Metrics. GuacaMol provides benchmarks for distribution-learning and goal-directed732

generation. For its distribution-learning benchmark, which is utilized for our main results, the primary733

aggregated metrics are:734

• Kullback-Leibler Divergence (KL Div.) Score: This metric computes the KL divergence735

between the distributions of several physicochemical and topological properties of the736

generated molecules and the training set. These individual KL divergences (DKL) are then737
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combined into a single score, by averaging negative exponential of them (i.e., exp(−DKL))738

to reflect how well the model reproduces the overall property distributions. Due to the nature739

of calculation method, a score closer to 1 indicates better similarity.740

• Fréchet ChemNet Distance (FCD) Score: Similar to the MOSES FCD, GuacaMol also741

uses an FCD metric to compare the distributions of generated molecules and the training742

set. The only difference is that in GuacaMol, the raw FCD value (where lower is better) is743

transformed into a score where higher is better.744

C.2 Baselines745

Next, we briefly introduce baseline strategies that we compared FragFM in the main results. We746

focused on molecular graph generative models, which are categorized by autoregressive and one-shot747

generation models. Each model uses either atom- or fragment-level representation.748

GraphInvent [22] employs a graph neural network (GNN) approach for de novo molecular design.749

It first compute the trajectory of graph decomposition based on atom-level representation, and then750

trains a GNN to learn action of atom and bond addition on given subgraph of molecule. During751

inference stage, it builds molecules in atom-wise manner.752

JT-VAE [12] or Junction Tree Variational Autoencoder, generates molecular graphs in a two-step753

process. It first decodes a latent vector into a tree-structured scaffold representing molecular compo-754

nents (like rings and motifs) and then assembles these components into a complete molecular graph,755

ensuring chemical validity. Since it iteratively decide whether to add node during sampling process,756

we consider it as autoregressive model despite its use of VAE.757

MCTS [70] is a non-deep learning-based strategy that utilizes Monte-Carlo tree search for molecular758

graph generation. Using atom insertion or addition as action, it sequentially build molecules from a759

starting molecule.760

NAGVAE [24], non-autoregressive Graph Variational Autoencoder, is a VAE-based one-shot graph761

generation model utilizing compressed graph representation. It reconstructs the molecular graphs762

from latent vectors, aiming for scalability and capturing global graph structures.763

DiGress [3] is the first discrete diffusion model designed for graph generation. It operates by764

iteratively removing noise from both graph edges and node types, learning a reverse diffusion process765

to construct whole graphs from a noise distribution.766

DisCo [29] is a graph generation model that defines a forward diffusion process with continous-time767

Markov chain (CTMC). The model learns reverse generative process to denoise both the graph768

structure and its attributes simultaneously.769

Cometh [5] is a continuous-time discrete-state graph diffusion model. Similar to Disco, it formulates770

graph generation as reversing a CTMC defined on graphs, where the model learns the transition rates771

of this chain to generate new graph structures.772

DeFoG [4] is a generative framework that applies the principles of flow matching directly to discrete773

graph structures. After training via flow matching strategy, it utilizes CTMC for denoising process to774

generate graphs.775

D Details for Natural Product Generation Benchmark776

In this section, we further explain the dataset, baseline, and metrics of the proposed Natural Product777

Generation benchmark (NPGen).778

D.1 Dataset Construction779

To construct the NPGen dataset, we utilized the 2024/12/31 version of the COCONUT database780

[53, 54], which comprises 695,120 natural product-like molecules. Given that the original database781

contains compounds with transition metals—species that are rarely encountered in typical organic782

natural products—we applied a filtering procedure to retain only molecules compose exclusively783

of non-metal atoms: ‘B’, ‘C’, ‘N’, ‘O’, ‘F’, ‘Si’, ‘P’, ‘S’, ‘Cl’, ‘As’, ‘Se’, ‘Br’, ‘I’.784
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Additionally, to exclude arbitrarily large macromolecules, we retained only those molecules whose785

heavy-atom counts fell between 2 and 99.786

Furthermore, we only consider neutral molecules without salts, filtering charged molecules and787

molecules containing "." in their SMILES representation. After filtering, a total of 658,566 molecules788

were retained. The resulting dataset was randomly partitioned into training, validation, and test789

subsets using an 85:5:15 split under the assumption of i.i.d. sampling, yielding 526,852, 32,928, and790

98,786 molecules, respectively.791

D.2 Implementation Details for Baselines792

As explained in section 4, we selected a set of molecular graph generative models with two aspects,793

i.e., generation strategy (autoregressive and one-shot) and representation level (atom and fragment).794

We provide more details on the baseline models.795

GraphAF [23] is a flow-based autoregressive model for molecular graph generation that constructs796

molecules sequentially by adding atoms and their corresponding bonds. We used the authors’ official797

implementation from (https://github.com/DeepGraphLearning/GraphAF) with its default798

settings, extending only the preprocessing and generation steps to include atom types that the799

original implementation does not support ‘B’,‘As’,‘Si’,‘As’,‘Se’. During generation, the800

official implementation terminates sampling once 40 atoms are generated for each molecule; we801

modified this limit to 99 to match the NPGen benchmark’s maximum heavy-atom count.802

JT-VAE[12] is a fragment-based autoregressive variational autoencoder that generates molecules by803

building a junction tree of chemically meaningful substructures and then assembling the correspond-804

ing atom-level graph [12]. We used the authors’ official implementation (https://github.com/805

wengong-jin/icml18-jtnn) with the acceleration module (fast_molvae). Because the codebase806

relies on Python 2 and is incompatible with newer GPU drivers, we performed training and sam-807

pling on an NVIDIA GeForce RTX 2080 Ti. We performed a random hyperparameter search over808

hidden_dim and batch_size, and report the best results.809

HierVAE [15] builds on JT-VAE by introducing a hierarchical latent space and a scaffold-aware810

message-passing scheme to boost structural diversity and sampling fidelity. We used the authors’811

official implementation (https://github.com/wengong-jin/hgraph2graph), extending only812

the preprocessing step to include the ‘As’ atom type. By default, HierVAE employs a greedy motif-813

sampling strategy, which prioritizes top-scoring fragments and may bias the output distribution. We814

observed that this led to artifacts, only generating single carbon chains on the NPGen benchmark. To815

provide a fair comparison, we report the results of the alternative stochastic-sampling mode (enabled816

via a single option flag in the official implementation), without modifying the core codebase.817

DiGress [3] is an atom-based generative model that employs discrete diffusion. We run the authors’818

official implementation ( https://github.com/cvignac/DiGress ) with all default hyperparam-819

eters, adding the atom types ‘B’,‘As’ and their corresponding charges.820

D.3 Metrics821

As mentioned in the main text, we utilize two methods for distributional metrics: NP-likeness score822

[55] and NP Classifier [56]. Both strategies are developed by domain experts to effectively analyze823

the molecule through the lens of a natural product.824

NP-likeness score is developed to quantify the similarity of a given molecule to the structural space825

typically occupied by natural products. Since one of the major differences between natural products826

and synthetic molecules is structural features such as the number of aromatic rings, stereocenters, and827

distribution of nitrogen and oxygen atoms, the NP-likeness of a molecule is calculated as the sum828

of the contributions of its constituent fragments, where each fragment’s contribution is based on its829

frequency in natural product versus synthetic molecule databases. The high value of the NP-likeness830

score indicates that the probability of a molecule being an NP is high.831

NPClassifier is a deep learning-based tool specifically designed to classify NPs. It categorizes832

molecules at three hierarchical levels—Pathway (7 categories; e.g., Polyketides, Terpenoids),833

Superclass (70 categories, e.g., Macrolides, Diterpenoids), and Class (672 categories; e.g., Ery-834

thromycins, Kaurane diterpenoids)—reflecting the biosynthetic origins, broader chemical and chemo-835

22
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taxonomic properties, and specific structural families recognized by the NP research community. This836

multi-level system, built on an NP-specific ontology and trained on over 73,000 NPs using counted837

Morgan fingerprints, provides a classification based on knowledge of natural products, including their838

biosynthetic relationships and structural diversity.839

We employed Kullback-Leibler (KL) divergence as a metric for both methods. We compute KL840

divergence for NP-likeness score and NPClassifier differently, as they are continuous and discrete841

values, respectively. It is worth noting that NPClassifier often predicts ‘Unclassified’, which842

indicates a molecule is not included in any classes, along with multiple class results (e.g., ‘Peptide843

alkaloids, Tetramate alkaloids’ in Class). We treat all prediction results as another unique844

class, since molecules can have multiple structural features.845

D.4 Dataset Statistics846

We analyzed the distributions of several molecular properties to highlight NPGen’s distinctions from847

standard molecular generative benchmarks (MOSES and GuacaMol). These properties fell into two848

categories: (1) simple molecular descriptors, such as the number of atoms, molecular weight, and849

number of hydrogen bond acceptors and donors (fig. 6), and (2) functionality-related properties,850

including NP-likeness scores and NPClassifier prediction results (fig. 7). Consistent with the nature of851

NPs, which are generally larger and more complex than typical synthetic drug-like molecules, NPGen852

molecules are, on average, larger in terms of the number of atoms and molecular weight compared to853

those in MOSES and GuacaMol (figs. 6a and 6b). Furthermore, molecules in NPGen exhibit higher854

numbers of hydrogen bond acceptors and donors (see figs. 6c and 6d), reflecting another characteristic855

of NPs.856

The difference between benchmarks becomes more significant when examining functionality-related857

properties. NPClassifier predictions for Pathway (fig. 7a) indicate that NPGen molecules span a858

diverse range of NP categories. In contrast, molecules from MOSES and GuacaMol mostly fall859

into ‘Alkaloids’, which are non-peptidic nitrogenous organic compounds, or remain unclassified.860

Focusing on four selected Superclass categories for which NPClassifier had demonstrated high861

predictive performance (F1 score higher than 0.95 for categories with more than 500 compounds [56]),862

NPGen shows higher proportions of molecules in these specific categories. Conversely, molecules863

from the other benchmarks mostly fall into ‘Unclassified’, implying that they are dissimilar to864

NPs. The NP-likeness score further emphasizes this divergence (fig. 7c). In particular, NPGen’s865

distribution is largely shifted towards higher scores (average: 1.14) compared to MOSES (average:866

-1.67) and GuacaMol (average: -0.90), where a higher score indicates greater similarity to NPs.867

Additionally, we visualize the chemical space of existing benchmarks (MOSES, GuacaMol) and868

NPGen using UMAP [71] in fig. 8. While MOSES and GuacaMol occupy a largely overlapping869

region, NPGen extends into distinct areas, indicating coverage of different chemical subspaces.870

These statistical analyses demonstrate that NPGen has distinct features compared to existing molecular871

generative benchmarks, proving its suitability to serve as a unique molecular graph generative872

benchmark targeting NP-like chemical space.873
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Figure 6: Comparison of simple molecular property distributions among three benchmarks:
MOSES, GuacaMol, and NPGen. The number of molecules in each dataset is 1,936,962, 1,591,378,
and 658,565, respectively.
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Figure 7: Comparison of NP-likeness score and NPClassifier prediction results among three
benchmarks: MOSES, GuacaMol, and NPGen. The number of molecules in each dataset is
1,936,962, 1,591,378, and 658,565, respectively. Note that we also report the ratio of unclassified
entities of dataset in figs. 7a and 7b. A statistics of Class prediction results is not included since it has
687 classes and the ratio of each class is too small compared to ‘Unclassified’ class.
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Figure 8: UMAP visualization of MOSES, GuacaMol, and NPGen datasets. We randomly selected
5,000 molecules from each train dataset and applied UMAP to their ECFP fingerprints [72] (radius 2,
2048 bits). UMAP was run with its default settings with n_neighbors=15 and min_dist=0.1.
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D.5 Benchmark Results with Multiple Runs874

We provide the average and standard deviation results from three runs in NPGen for all baselines and875

FragFM in table 3.

Table 3: Molecule generation results on NPGen. We use a total of 30,000 molecules for evaluation.
The upper part comprises autoregressive methods, while the second part comprises one-shot methods,
including diffusion-based and flow-based methods. The results are averaged over three runs. The best
performance is shown in bold, and the second-best is underlined. The numbers with ± indicates the
standard deviation against each runs.

Model Val. ↑ Unique. ↑ Novel ↑ NP Score
KL Div. ↓

NP Class KL Div. ↓ FCD ↓Pathway Superclass Class

Training set 100.0 100.0 - 0.0006 0.0002 0.0028 0.0094 0.01

GraphAF [23] 79.1±0.1 63.6±0.2 95.6±0.0 0.8546±0.0095 0.9713±0.0055 3.3907±0.0730 6.6905±0.0905 25.11±0.08

JT-VAE [12] 100.0±0.0 97.2±0.1 99.5±0.0 0.5437±0.0188 0.1055±0.0019 1.2895±0.1243 2.5645±0.4557 4.07±0.02

HierVAE [15] 100.0±0.0 81.5±1.1 97.7±0.0 0.3021±0.0063 0.4230±0.0051 0.5771±0.0121 1.4073±0.0630 8.95±0.06

DiGress [3] 85.4±0.0 99.7±0.0 99.9±0.0 0.1957±0.0028 0.0229±0.0001 0.3370±0.0042 1.0309±0.0182 2.05±0.01

FragFM (ours) 98.0±0.0 99.0±0.0 95.4±0.1 0.0374±0.0001 0.0196±0.0008 0.1482±0.0026 0.3570±0.0006 1.34±0.01

876

E Additional Results877

E.1 GuacaMol Benchmark878

In the GuacaMol benchmark (table 4), similarly to MOSES, FragFM achieved the best performance879

among baseline diffusion and flow models in Val. and V.U. metric, with the state-of-the-art FCD880

score and close second in KL Div. score considering various molecular property distributions. These881

results emphasize the effectiveness of the fragment-based approach of FragFM in generating valid and882

chemically meaningful molecules. The visualization results of GuacaMol is shown in appendix F.2.883

Table 4: Molecule generation results on the GuacaMol benchmark. We use a total of 10,000
generated molecules for evaluation. All baselines except MCTS in this table is one-shot methods.
The results for FragFM are averaged over three independent runs. The best performance is shown in
bold, and the second-best is underlined.

Model Rep. Level Val. ↑ V.U. ↑ V.U.N. ↑ KL Div. ↑ FCD ↑
Training set - 100.0 100.0 - 99.9 92.8

MCTS [70] Atom 100.0 100.0 95.4 82.2 1.5

NAGVAE [24] Atom 92.9 88.7 88.7 38.4 0.9
DiGress [3] Atom 85.2 85.2 85.1 92.9 68.0
DisCo [29] Atom 86.6 86.6 86.5 92.6 59.7
Cometh [5] Atom 94.4 94.4 93.5 94.1 67.4
Cometh-PC [5] Atom 98.9 98.9 97.6 96.7 72.7
DeFoG [4] Atom 99.0 99.0 97.9 97.7 73.8

FragFM (ours) Fragment 99.7 99.3 95.0 97.4 85.8

E.2 Coarse-to-Fine Autoencoder884

We measure bond-level and whole-graph reconstruction accuracy to assess the fidelity of the coarse-to-885

fine autoencoder. As reported in table 5, bond accuracy exceeds 99% on both MOSES and GuacaMol,886

indicating almost perfect recovery of individual chemical bonds. Graph-level accuracy is similarly887

high, confirming that the overall connectivity patterns are faithfully preserved. Even in the structurally888

diverse and larger COCONUT dataset, the autoencoder maintains strong performance, with only a889

slight drop in accuracy, underscoring its robustness in handling complex molecular topologies.890
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Table 5: Coarse-to-fine autoencoder accuracy.

Benchmarks Train set accuracy Test set accuracy
Bond Graph Bond Graph

MOSES 99.99% 99.96% 99.99% 99.93%
GuacaMol 99.99% 99.43% 99.98% 99.42%
NPGen 99.98% 97.62% 99.71% 97.43%

E.3 Fragment Bag Generalization891

Tables 6 and 7 reports FragFM’s performance when sampling with fragment bags derived from892

the test-set molecules on both MOSES and GuacaMol. Recall that MOSES uses a scaffold-split893

evaluation—test scaffolds are deliberately excluded from training—so sampling with only training-894

set fragments limits the model’s ability to recover those unseen scaffolds, resulting in a depressed895

Scaf score. We re-ran the generation using fragment bags drawn from the test split to validate this.896

When provided with the test-set fragments, FragFM’s Scaf score increases dramatically, while all897

other metrics on MOSES and GuacaMol remain unchanged. This demonstrates that, leveraging its898

fragment embedding module, FragFM can generalize to novel fragments without compromising899

validity, uniqueness, or other quality measures.900

Table 6: Molecule generation with unseen fragment bag on MOSES dataset. We use a total of
25,000 generated molecules for evaluation. The results are averaged over three independent runs.

Model Rep. Level Valid ↑ Unique ↑ Novel ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set - 100.0 100.0 - 100.0 0.48 0.59 0.0

GraphINVENT [22] Atom 96.4 99.8 - 95.0 1.22 0.54 12.7
JT-VAE [12] Fragment 100.0 100.0 99.9 97.8 1.00 0.53 10.0

DiGress [3] Atom 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo [29] Atom 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh [5] Atom 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG [4] Atom 92.8 99.9 92.1 98.9 1.95 0.55 14.4

FragFM (train fragments) Fragment 99.8 100.0 87.1 99.1 0.58 0.56 10.9
FragFM (test fragments) Fragment 99.8 100.0 88.2 98.9 0.44 0.57 24.5

Table 7: Molecule generation with unseen fragment bag on GuacaMol dataset. We use a total of
10,000 generated molecules for evaluation. The results are averaged over three independent runs.

Model Rep. Level Val. ↑ V.U. ↑ V.U.N. ↑ KL Div. ↑ FCD ↑
Training set - 100.0 100.0 - 99.9 92.8

MCTS [70] Atom 100.0 100.0 95.4 82.2 1.5

NAGVAE [24] Atom 92.9 88.7 88.7 38.4 0.9
DiGress [3] Atom 85.2 85.2 85.1 92.9 68.0
DisCo [29] Atom 86.6 86.6 86.5 92.6 59.7
Cometh [5] Atom 98.9 98.9 97.6 96.7 72.7
DeFoG [4] Atom 99.0 99.0 97.9 97.7 73.8

FragFM (train fragments) Fragment 99.7 99.4 95.0 97.4 85.7
FragFM (test fragments) Fragment 99.8 99.4 97.4 97.6 85.7

E.4 Sampling Efficiency901

Diffusion- and flow-based models typically require multiple denoising iterations, resulting in slow902

sampling. Table 8 shows the performance of MOSES benchmark metrics of FragFM and baseline903

denoising based models with different denoising steps. For small sampling steps, FragFM outperforms904
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the baseline models with minimal degradation in metrics, especially at low step counts, by a wide905

margin. With only 10 sampling steps, FragFM achieves higher validity and a lower FCD than906

competing models running 500 steps.907

We also compare sampling time across different models in table 9. By operating both node- and908

edge-probability predictions, edge computations scale quadratically with graph size, making them909

the fastest approach among the compared models. Coupled with its robust performance at far fewer910

steps, FragFM could be further optimized with substantial speedups over atom-level methods with911

high generative quality.912

Table 8: Performance of denoising-based graph generative models on the MOSES dataset across
different sampling step counts. All the models are one-shot models. Results for DeFoG and Cometh
are taken from their original publications; DiGress (excluding the 500-step setting) were obtained
by retraining the model with the differing sampling steps from the official implementation. The best
performance is shown in bold for each sampling step.

Sampling steps Model Rep. Level Val. ↑ V.U. ↑ V.U.N. ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
- Training set - 100.0 100.0 - 100.0 0.48 0.59 0.0

10

DiGress Atom 6.3 6.3 6.3 66.4 9.40 0.38 7.4
Cometh Atom 26.1 26.1 26.0 59.9 7.88 0.36 8.9
DeFoG Atom - - - - - - -

FragFM Fragment 96.8 96.6 89.4 96.8 0.92 0.52 15.3

50

DiGress Atom 75.3 75.3 72.3 94.0 1.35 0.51 16.1
Cometh Atom 82.9 82.9 80.5 94.6 1.54 0.49 18.4
DeFoG Atom 83.9 83.8 81.2 96.5 1.87 0.59 14.4

FragFM Fragment 99.5 99.5 89.1 98.5 0.65 0.54 11.2

100

DiGress Atom 82.6 82.6 79.2 95.2 1.14 0.51 15.4
Cometh Atom 85.8 85.7 82.9 96.5 1.43 0.50 17.2
DeFoG Atom - - - - - - -

FragFM Fragment 99.7 99.7 88.5 98.8 0.62 0.55 11.6

300

DiGress Atom 85.3 85.3 81.1 96.5 1.11 0.52 13.5
Cometh Atom 86.9 86.9 83.8 97.1 1.44 0.51 17.8
DeFoG Atom - - - - - - -

FragFM Fragment 99.8 99.8 87.2 98.9 0.58 0.55 11.6

500

DiGress Atom 85.7 85.7 81.4 97.1 1.19 0.52 14.8
DiGress Atom 84.8 84.8 82.0 94.5 1.37 0.50 14.7
Cometh Atom 87.0 86.9 83.8 97.2 1.44 0.51 15.9
DeFoG Atom 92.8 92.7 85.4 98.9 1.95 0.55 14.4

FragFM Fragment 99.8 99.8 86.9 99.1 0.58 0.56 10.9

700

DiGress Atom 85.5 85.5 82.6 95.0 1.33 0.50 15.3
Cometh Atom 87.2 87.1 83.9 97.2 1.43 0.51 15.9
DeFoG Atom - - - - - - -

FragFM Fragment 99.9 99.9 86.9 99.1 0.61 0.56 10.8

1000

DiGress Atom 84.7 84.7 81.3 96.1 1.31 0.51 14.5
Cometh Atom 87.2 87.2 84.0 97.2 1.44 0.51 17.3
DeFoG Atom - - - - - - -

FragFM Fragment 99.8 99.8 86.6 99.1 0.62 0.56 12.9
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Table 9: Comparison of sampling time across different datasets and methods. Experiments were
conducted on a single NVIDIA GeForce RTX 3090 GPU and an Intel Xeon Gold 6234 CPU @
3.30GHz. *Results for DeFoG are taken from the original paper, where experiments were conducted
on an NVIDIA A100 GPU.

Sampling steps MOSES GuacaMol NPGen

Property
Min. nodes - 8 2 2
Max. nodes - 27 88 99
# Samples - 25000 10000 30000

Sampling Time (hour)

DiGress 500 3.0 - 36.0
DeFoG* 500 5.0 7.0 -
FragFM 500 0.9 1.3 7.0
FragFM 50 0.2 0.2 0.9

E.5 More Results on Conditional Generation913

For simple molecular properties (logP, QED, and number of rings), we perform conditional generation914

on the MOSES dataset using regressors trained on its training split. The detailed illustration of915

property distributions and corresponding targets is depicted in fig. 9. For protein-target conditioning,916

we perform conditioning on the ZINC250K dataset. The targets were selected from the DUD-E+917

virtual screening benchmark for our docking score experiments, following Yang et al. [73]. The918

established reliability of Smina[74], which is a forked version of AutoDock Vina[75], evidenced by919

its high AUROC for discriminating hits from decoys on DUD-E+, led us to use it as an oracle.920

Figure 10 depitcs the Smina docking score distributions for ZINC250K molecules against three921

targets (fa7, jak2, parp1). Since lower scores correspond to stronger predicted binding, we selected922

the conditioning value for each protein at the extreme left tail of its distribution (fa7: -10.0 kcal/mol,923

jak2: -11.0 kcal/mol, parp1: -12.0 kcal/mol), indicated by the vertical dashed lines in fig. 10 to focus924

generation to the most tightly binding candidiates.925

With the perspective of chemistry, the worse FCD and validity with conditions of DiGress shown in926

appendix E.5 highlights a critical challenge for atom-based approaches: satisfying targeted property927

constraints while ensuring chemical correctness, simultaneously. From a chemical perspective, this928

distinction can be attributed to the nature of the search space; atom-based approaches explore a929

vastly larger and less constrained space, where many cases can lead to chemically invalid structures,930

especially when generation is heavily biased by property objectives. Conversely, FragFM’s fragment-931

based construction inherently operates within a more chemically sound and constrained subspace932

by assembling pre-validated chemical motifs. These findings collectively emphasize the intrinsic933

advantages of employing fragments as semantically rich and structurally robust building blocks,934

particularly for achieving reliable and property-focused molecular generation.935

Moreover, the importance of the fragment bag’s composition, which is shown in the main text936

(fig. 4), is intuitive: it defines the accessible chemical space and, consequently, the possible range937

of achievable molecular properties (e.g., generating acyclic molecules is impossible if the fragment938

bag exclusively contains ring-based structures, among other structural constraints). Based on λB,939

FragFM automatically modulates fragment selection probabilities, inducing a drift in the fragment940

space to generate the chemically valid molecules satisfying the given objective. It enables the model941

to construct molecules with desired properties even if the initial general-purpose fragment bag is not942

perfectly tailored to a specific task, making our strategy a powerful and practically manageable tool943

for fine-grained control.944
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Figure 9: Distribution of molecular properties for the MOSES dataset. Vertical lines denote the
conditioning scores applied for each target protein.
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Figure 10: Distribution of SMINA docking scores for the ZINC250K dataset across different
target proteins. Vertical lines denote the conditioning scores applied for each target protein.
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Figure 11: Conditioning results on QED. MAE-FCD and MAE-validity curves for FragFM and
DiGress under QED conditioning on the MOSES dataset. Different conditioning values are color-
coded.
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Figure 12: Conditioning results on logP. MAE-FCD and MAE-validity curves for FragFM and
DiGress under logP conditioning on the MOSES dataset. Different conditioning values are color-
coded.
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Figure 13: Conditioning results on number of rings. MAE-FCD and MAE-validity curves for
FragFM and DiGress under number of rings conditioning on the MOSES dataset. Different condi-
tioning values are color-coded.
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Figure 14: Conditioning results on FA7 and PARP1. MAE-FCD curves for FragFM and DiGress
under FA7 and PARP1 docking score conditioning on the ZINC250K dataset. Different conditioning
values are color-coded.
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F Visualization945

F.1 Visualization of Fragments946

We visualize the top-50 frequent fragments from each dataset (MOSES, GucaMol, and NPGen).947

Figure 15: Top 50 common fragments extracted from the MOSES dataset. More frequently
occurring fragments are positioned toward the top left.

Figure 16: Top 50 common fragments extracted from the GuacaMol dataset. More frequently
occurring fragments are positioned toward the top left.
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Figure 17: Top 50 common fragments extracted from the NPGen dataset. More frequently
occurring fragments are positioned toward the top left.

F.2 Visualization of MOSES and GuacaMol Generated Molecules948

We visualize samples generated by FragFM on the MOSES and GuacaMol datasets in figs. 18 and 19.949

Figure 18: Molecules generated by FragFM on the MOSES benchmark. Molecules were randomly
selected for visualization.

Figure 19: Molecules generated by FragFM on the GuacaMol benchmark. We randomly select
molecules for visualization.
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F.3 Visualization and Discussion of Generated Molecules on NPGen950

For the NPGen task, we show generated molecules from FragFM alongside baseline models (GraphAF,951

JT-VAE, HierVAE, and Digress) in figs. 20 to 24. Although all visualized molecules are formally952

valid in terms of valency, atom-based generative models often introduce chemically implausible953

motifs-such as aziridine or eposide rings fused directly to aromatic systems, inducing severe angle954

strain [76]; anti-aromatic rings with 4n π-electrons (violating Hückel’s rule), resulting in high955

electronic instability [77]; and bonds between nonadjacent atoms in a ring system, causing extreme956

geometric distortion [78]. Fragment-based autoregressive models largely avoid these issues, yet they,957

too, exhibit limitations: JT-VAE tends to generate only small, homogeneous ring systems, while958

HierVAE is strongly biased toward long aliphatic chains and simple linear scaffolds. Consequently,959

these approaches show a distinct distribution of molecules from the trained dataset, matching the960

benchmark results in table 2.961

Figure 20: Valid molecules generated by FragFM on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.
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Figure 21: Valid molecules generated by GraphAF on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.
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Figure 22: Valid molecules generated by JT-VAE on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.
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Figure 23: Valid molecules generated by HierVAE on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.
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Figure 24: Valid molecules generated by Digress on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.
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Answer: [Yes]966
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Guidelines:968
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made in the paper.970
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NA answer to this question will not be perceived well by the reviewers.973

• The claims made should match theoretical and experimental results, and reflect how974

much the results can be expected to generalize to other settings.975

• It is fine to include aspirational goals as motivation as long as it is clear that these goals976

are not attained by the paper.977

2. Limitations978

Question: Does the paper discuss the limitations of the work performed by the authors?979

Answer: [Yes]980

Justification: We point out assumptions and approximations through out the methods section.981

Guidelines:982

• The answer NA means that the paper has no limitation while the answer No means that983

the paper has limitations, but those are not discussed in the paper.984

• The authors are encouraged to create a separate "Limitations" section in their paper.985

• The paper should point out any strong assumptions and how robust the results are to986

violations of these assumptions (e.g., independence assumptions, noiseless settings,987

model well-specification, asymptotic approximations only holding locally). The authors988

should reflect on how these assumptions might be violated in practice and what the989

implications would be.990

• The authors should reflect on the scope of the claims made, e.g., if the approach was991

only tested on a few datasets or with a few runs. In general, empirical results often992

depend on implicit assumptions, which should be articulated.993

• The authors should reflect on the factors that influence the performance of the approach.994

For example, a facial recognition algorithm may perform poorly when image resolution995
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address problems of privacy and fairness.1002

• While the authors might fear that complete honesty about limitations might be used by1003

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1004

limitations that aren’t acknowledged in the paper. The authors should use their best1005

judgment and recognize that individual actions in favor of transparency play an impor-1006

tant role in developing norms that preserve the integrity of the community. Reviewers1007

will be specifically instructed to not penalize honesty concerning limitations.1008

3. Theory assumptions and proofs1009

Question: For each theoretical result, does the paper provide the full set of assumptions and1010

a complete (and correct) proof?1011

Answer: [NA]1012
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Justification: We do not include theorems or propositions.1013

Guidelines:1014

• The answer NA means that the paper does not include theoretical results.1015

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1016

referenced.1017

• All assumptions should be clearly stated or referenced in the statement of any theorems.1018

• The proofs can either appear in the main paper or the supplemental material, but if1019

they appear in the supplemental material, the authors are encouraged to provide a short1020

proof sketch to provide intuition.1021

• Inversely, any informal proof provided in the core of the paper should be complemented1022

by formal proofs provided in appendix or supplemental material.1023

• Theorems and Lemmas that the proof relies upon should be properly referenced.1024

4. Experimental result reproducibility1025

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1026

perimental results of the paper to the extent that it affects the main claims and/or conclusions1027

of the paper (regardless of whether the code and data are provided or not)?1028

Answer: [Yes]1029

Justification: The paper reports all datasets, models, training hyperparameters, noise sched-1030

ules, guidance settings, and evaluation protocols in enough detail to let an independent1031

reader re-implement the experiments.1032

Guidelines:1033

• The answer NA means that the paper does not include experiments.1034

• If the paper includes experiments, a No answer to this question will not be perceived1035

well by the reviewers: Making the paper reproducible is important, regardless of1036

whether the code and data are provided or not.1037

• If the contribution is a dataset and/or model, the authors should describe the steps taken1038

to make their results reproducible or verifiable.1039

• Depending on the contribution, reproducibility can be accomplished in various ways.1040

For example, if the contribution is a novel architecture, describing the architecture fully1041

might suffice, or if the contribution is a specific model and empirical evaluation, it may1042

be necessary to either make it possible for others to replicate the model with the same1043

dataset, or provide access to the model. In general. releasing code and data is often1044

one good way to accomplish this, but reproducibility can also be provided via detailed1045

instructions for how to replicate the results, access to a hosted model (e.g., in the case1046

of a large language model), releasing of a model checkpoint, or other means that are1047

appropriate to the research performed.1048

• While NeurIPS does not require releasing code, the conference does require all submis-1049

sions to provide some reasonable avenue for reproducibility, which may depend on the1050

nature of the contribution. For example1051

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1052

to reproduce that algorithm.1053

(b) If the contribution is primarily a new model architecture, the paper should describe1054

the architecture clearly and fully.1055

(c) If the contribution is a new model (e.g., a large language model), then there should1056

either be a way to access this model for reproducing the results or a way to reproduce1057

the model (e.g., with an open-source dataset or instructions for how to construct1058

the dataset).1059

(d) We recognize that reproducibility may be tricky in some cases, in which case1060

authors are welcome to describe the particular way they provide for reproducibility.1061

In the case of closed-source models, it may be that access to the model is limited in1062

some way (e.g., to registered users), but it should be possible for other researchers1063

to have some path to reproducing or verifying the results.1064

5. Open access to data and code1065
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Question: Does the paper provide open access to the data and code, with sufficient instruc-1066

tions to faithfully reproduce the main experimental results, as described in supplemental1067

material?1068

Answer: [Yes]1069

Justification: All source code and data-download scripts are included in the supplementary1070

material, along with complete instructions and the raw experimental outputs needed to1071

reproduce the reported results.1072
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.1085

• The authors should provide scripts to reproduce all experimental results for the new1086
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• At submission time, to preserve anonymity, the authors should release anonymized1089

versions (if applicable).1090

• Providing as much information as possible in supplemental material (appended to the1091
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6. Experimental setting/details1093

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1094

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1095

results?1096

Answer: [Yes]1097

Justification: The paper details the data splits, all hyperparameters, their selection criteria,1098

and optimizer settings, providing sufficient information to understand and replicate the1099

reported results.1100
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• The answer NA means that the paper does not include experiments.1102

• The experimental setting should be presented in the core of the paper to a level of detail1103

that is necessary to appreciate the results and make sense of them.1104

• The full details can be provided either with the code, in appendix, or as supplemental1105

material.1106

7. Experiment statistical significance1107

Question: Does the paper report error bars suitably and correctly defined or other appropriate1108

information about the statistical significance of the experiments?1109

Answer: [Yes]1110

Justification: For NPGen, our proposed benchmark, we included all averaged results with1111

standard deviations. For the rest of benchmarks (MOSES, GuacaMol), we only report1112

three-run averaged results for our method since the previous methods did not report their1113

values.1114
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• The answer NA means that the paper does not include experiments.1116
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error rates).1133
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they were calculated and reference the corresponding figures or tables in the text.1135

8. Experiments compute resources1136

Question: For each experiment, does the paper provide sufficient information on the computer1137

resources (type of compute workers, memory, time of execution) needed to reproduce the1138

experiments?1139

Answer: [Yes]1140

Justification: Yes. We report the training time and sampling computational resources in1141

appendix B.21142

Guidelines:1143

• The answer NA means that the paper does not include experiments.1144

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1145

or cloud provider, including relevant memory and storage.1146

• The paper should provide the amount of compute required for each of the individual1147

experimental runs as well as estimate the total compute.1148

• The paper should disclose whether the full research project required more compute1149

than the experiments reported in the paper (e.g., preliminary or failed experiments that1150

didn’t make it into the paper).1151

9. Code of ethics1152

Question: Does the research conducted in the paper conform, in every respect, with the1153

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1154

Answer: [Yes]1155

Justification: We have checked NeurIPS Code of Ethics. Also, we anonymized the informa-1156

tion in the paper and codes.1157

Guidelines:1158

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1159

• If the authors answer No, they should explain the special circumstances that require a1160

deviation from the Code of Ethics.1161

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1162

eration due to laws or regulations in their jurisdiction).1163

10. Broader impacts1164
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societal impacts of the work performed?1166

Answer: [Yes]1167
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Justification: We propose a benchmark for natural product generation, which we expect to1168

positively impact all machine learning and drug discovery society. Since our method and1169

benchmark do not possess any potential of negative social impacts, we did not include it in1170

the paper.1171
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• The answer NA means that there is no societal impact of the work performed.1173
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11. Safeguards1195
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