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Abstract
Large language models (LLM) have emerged as
a powerful tool for AI, with the key ability of in-
context learning (ICL), where they can perform
well on unseen tasks based on a brief series of task
examples without necessitating any adjustments
to the model parameters. One recent interesting
mysterious observation is that models of different
scales may have different ICL behaviors: larger
models tend to be more sensitive to noise in the
test context. This work studies this observation
theoretically aiming to improve the understanding
of LLM and ICL. We analyze two stylized set-
tings: (1) linear regression with one-layer single-
head linear transformers and (2) parity classifica-
tion with two-layer multiple attention heads trans-
formers (non-linear data and non-linear model).
In both settings, we give closed-form optimal so-
lutions and find that smaller models emphasize
important hidden features while larger ones cover
more hidden features; thus, smaller models are
more robust to noise while larger ones are more
easily distracted, leading to different ICL behav-
iors. This sheds light on where transformers pay
attention to and how that affects ICL. Prelimi-
nary experimental results on large base and chat
models provide positive support for our analysis.

1. Introduction
As large language models (LLM), e.g., ChatGPT (OpenAI,
2022) and GPT4 (OpenAI, 2023), are transforming AI devel-
opment with potentially profound impact on our societies,
it is critical to understand their mechanism for safe and
efficient deployment. An important emergent ability (Wei
et al., 2022b; An et al., 2023), which makes LLM success-
ful, is in-context learning (ICL), where models are given
a few exemplars of input–label pairs as part of the prompt
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before evaluating some new input. More specifically, ICL is
a few-shot (Brown et al., 2020) evaluation method without
updating parameters in LLM. Surprisingly, people find that,
through ICL, LLM can perform well on tasks that have never
been seen before, even without any finetuning. It means
LLM can adapt to wide-ranging downstream tasks under
efficient sample and computation complexity. The mecha-
nism of ICL is different from traditional machine learning,
such as supervised learning and unsupervised learning. For
example, in neural networks, learning usually occurs in gra-
dient updates, whereas there is only a forward inference
in ICL and no gradient updates. Several recent works, try-
ing to answer why LLM can learn in-context, argue that
LLM secretly performs or simulates gradient descent as
meta-optimizers with just a forward pass during ICL empir-
ically (Dai et al., 2022; Von Oswald et al., 2023; Malladi
et al., 2023) and theoretically (Zhang et al., 2023b; Ahn
et al., 2023; Mahankali et al., 2023; Cheng et al., 2023; Bai
et al., 2023; Huang et al., 2023; Li et al., 2023b; Guo et al.,
2024; Wu et al., 2024). Although some insights have been
obtained, the mechanism of ICL deserves further research
to gain a better understanding.

Recently, there have been some important and surprising
observations (Min et al., 2022; Pan et al., 2023; Wei et al.,
2023b; Shi et al., 2023a) that cannot be fully explained by
existing studies. In particular, Shi et al. (2023a) finds that
LLM is not robust during ICL and can be easily distracted
by an irrelevant context. Furthermore, Wei et al. (2023b)
shows that when we inject noise into the prompts, the larger
language models may have a worse ICL ability than the
small language models, and conjectures that the larger lan-
guage models may overfit into the prompts and forget the
prior knowledge from pretraining, while small models tend
to follow the prior knowledge. On the other hand, Min et al.
(2022); Pan et al. (2023) demonstrate that injecting noise
does not affect the in-context learning that much for smaller
models, which have a more strong pretraining knowledge
bias. To improve the understanding of the ICL mechanism,
to shed light on the properties and inner workings of LLMs,
and to inspire efficient and safe use of ICL, we are interested
in the following question:

Why do larger language models do in-context learning
differently?
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To answer this question, we study two settings: (1) one-
layer single-head linear self-attention network (Schlag et al.,
2021; Von Oswald et al., 2023; Akyurek et al., 2023; Ahn
et al., 2023; Zhang et al., 2023b; Mahankali et al., 2023;
Wu et al., 2024) pretrained on linear regression in-context
tasks (Garg et al., 2022; Raventos et al., 2023; Von Oswald
et al., 2023; Akyurek et al., 2023; Bai et al., 2023; Ma-
hankali et al., 2023; Zhang et al., 2023b; Ahn et al., 2023;
Li et al., 2023c; Huang et al., 2023; Wu et al., 2024), with
rank constraint on the attention weight matrices for studying
the effect of the model scale; (2) two-layer multiple-head
transformers (Li et al., 2023b) pretrained on sparse parity
classification in-context tasks, comparing small or large
head numbers for studying the effect of the model scale. In
both settings, we give the closed-form optimal solutions.
We show that smaller models emphasize important hidden
features while larger models cover more features, e.g., less
important features or noisy features. Then, we show that
smaller models are more robust to label noise and input
noise during evaluation, while larger models may easily
be distracted by such noises, so larger models may have a
worse ICL ability than smaller ones.

We also conduct in-context learning experiments on five
prevalent NLP tasks utilizing various sizes of the Llama
model families (Touvron et al., 2023a;b), whose results are
consistent with previous work (Min et al., 2022; Pan et al.,
2023; Wei et al., 2023b) and our analysis.

Our contributions and novelty over existing work:

• We formalize new stylized theoretical settings for
studying ICL and the scaling effect of LLM. See Sec-
tion 4 for linear regression and Section 5 for parity.

• We characterize the optimal solutions for both settings
(Theorem 4.1 and Theorem 5.1).

• The characterizations of the optimal elucidate differ-
ent attention paid to different hidden features, which
then leads to the different ICL behavior (Theorem 4.2,
Theorem 4.3, Theorem 5.2).

• We further provide empirical evidence on large base
and chat models corroborating our theoretical analysis
(Figure 1, Figure 2).

Note that previous ICL analysis paper may only focus on
(1) the approximation power of transformers (Garg et al.,
2022; Panigrahi et al., 2023; Guo et al., 2024; Bai et al.,
2023; Cheng et al., 2023), e.g., constructing a transformer
by hands which can do ICL, or (2) considering one-layer
single-head linear self-attention network learning ICL on
linear regression (Von Oswald et al., 2023; Akyurek et al.,
2023; Mahankali et al., 2023; Zhang et al., 2023b; Ahn et al.,
2023; Wu et al., 2024), and may not focus on the robustness

analysis or explain the different behaviors. In this work,
(1) we extend the linear model linear data analysis to the
non-linear model and non-linear data setting, i.e., two-layer
multiple-head transformers leaning ICL on sparse parity
classification and (2) we have a rigorous behavior difference
analysis under two settings, which explains the empirical
observations and provides more insights into the effect of
attention mechanism in ICL.

2. Related Work
Large language model. Transformer-based (Vaswani et al.,
2017) neural networks have rapidly emerged as the primary
machine learning architecture for tasks in natural language
processing. Pretrained transformers with billions of parame-
ters on broad and varied datasets are called large language
models (LLM) or foundation models (Bommasani et al.,
2021), e.g., BERT (Devlin et al., 2019), PaLM (Chowdhery
et al., 2022), Llama(Touvron et al., 2023a), ChatGPT (Ope-
nAI, 2022), GPT4 (OpenAI, 2023) and so on. LLM has
shown powerful general intelligence (Bubeck et al., 2023)
in various downstream tasks. To better use the LLM for a
specific downstream task, there are many adaptation meth-
ods, such as adaptor (Hu et al., 2022; Zhang et al., 2023c;
Gao et al., 2023; Shi et al., 2023b), calibration (Zhao et al.,
2021; Zhou et al., 2023a), multitask finetuning (Gao et al.,
2021b; Xu et al., 2023; Von Oswald et al., 2023; Xu et al.,
2024b), prompt tuning (Gao et al., 2021a; Lester et al.,
2021), instruction tuning (Li & Liang, 2021; Chung et al.,
2022; Mishra et al., 2022), symbol tuning (Wei et al., 2023a),
black-box tuning (Sun et al., 2022), chain-of-thoughts (Wei
et al., 2022c; Khattab et al., 2022; Yao et al., 2023; Zheng
et al., 2024), scratchpad (Nye et al., 2021), reinforcement
learning from human feedback (RLHF) (Ouyang et al.,
2022) and many so on.

In-context learning. One important emergent ability (Wei
et al., 2022b) from LLM is in-context learning (ICL) (Brown
et al., 2020). Specifically, when presented with a brief series
of input-output pairings (known as a prompt) related to a
certain task, they can generate predictions for test scenar-
ios without necessitating any adjustments to the model’s
parameters. ICL is widely used in broad scenarios, e.g.,
reasoning (Zhou et al., 2022), negotiation (Fu et al., 2023),
self-correction (Pourreza & Rafiei, 2023), machine transla-
tion (Agrawal et al., 2022) and so on. Many works trying to
improve the ICL and zero-shot ability of LLM (Min et al.,
2021; Wang et al., 2022; Wei et al., 2022a; Iyer et al., 2022).
There is a line of insightful works to study the mechanism
of transformer learning (Geva et al., 2021; Xie et al., 2022;
Garg et al., 2022; Jelassi et al., 2022; Arora & Goyal, 2023;
Li et al., 2023a;d; Allen-Zhu & Li, 2023; Luo et al., 2023;
Tian et al., 2023a;b; Zhou et al., 2023b; Bietti et al., 2023;
Xu et al., 2024a; Gu et al., 2024a;b;c;d;e) and in-context
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learning (Dai et al., 2022; Mahankali et al., 2023; Raventos
et al., 2023; Bai et al., 2023; Ahn et al., 2023; Von Oswald
et al., 2023; Pan et al., 2023; Li et al., 2023b;c;e; Akyurek
et al., 2023; Zhang et al., 2023a;b; Huang et al., 2023; Cheng
et al., 2023; Wibisono & Wang, 2023; Wu et al., 2024; Guo
et al., 2024; Reddy, 2024) empirically and theoretically. On
the basis of these works, our analysis takes a step forward
to show the ICL behavior difference under different scales
of language models.

3. Preliminary
Notations. We denote [n] := {1, 2, . . . , n}. For a positive
semidefinite matrix A, we denote ∥x∥2A := x⊤Ax as the
norm induced by a positive definite matrix A. We denote
∥ · ∥F as the Frobenius norm. diag() function will map a
vector to a diagonal matrix or map a matrix to a vector with
its diagonal terms.

In-context learning. We follow the setup and notation of
the problem in Zhang et al. (2023b); Mahankali et al. (2023);
Ahn et al. (2023); Huang et al. (2023); Wu et al. (2024). In
the pretraining stage of ICL, the model is pretrained on
prompts. A prompt from a task τ is formed by N examples
(xτ,1, yτ,1), . . . , (xτ,N , yτ,N ) and a query token xτ,q for
prediction, where for any i ∈ [N ] we have yτ,i ∈ R and
xτ,i,xτ,q ∈ Rd. The embedding matrix Eτ , the label vector
yτ , and the input matrix Xτ are defined as:

Eτ :=

(
xτ,1 xτ,2 . . . xτ,N xτ,q

yτ,1 yτ,2 . . . yτ,N 0

)
∈ R(d+1)×(N+1),

yτ :=[yτ,1, . . . , yτ,N ]⊤ ∈ RN , yτ,q ∈ R,
Xτ :=[xτ,1, . . . ,xτ,N ]⊤ ∈ RN×d, xτ,q ∈ Rd.

Given prompts represented as Eτ ’s and the corresponding
true labels yτ,q’s, the pretraining aims to find a model whose
output on Eτ matches yτ,q . After pretraining, the evaluation
stage applies the model to a new test prompt (potentially
from a different task) and compares the model output to the
true label on the query token.

Note that our pretraining stage is also called learning to
learn in-context (Min et al., 2021) or in-context training
warmup (Dong et al., 2022) in existing work. Learning to
learn in-context is the first step to understanding the mecha-
nism of ICL in LLM following previous works (Raventos
et al., 2023; Zhou et al., 2023b; Zhang et al., 2023b; Ma-
hankali et al., 2023; Ahn et al., 2023; Huang et al., 2023; Li
et al., 2023b; Wu et al., 2024).

Linear self-attention networks. The linear self-attention
network has been widely studied (Schlag et al., 2021;
Von Oswald et al., 2023; Akyurek et al., 2023; Ahn et al.,
2023; Zhang et al., 2023b; Mahankali et al., 2023; Wu et al.,
2024; Ahn et al., 2024), and will be used as the learning
model or a component of the model in our two theoretical

settings. It is defined as:

fLSA,θ(E) =

[
E+WPV E · E

⊤WKQE

ρ

]
, (1)

where θ = (WPV ,WKQ), E ∈ R(d+1)×(N+1) is the em-
bedding matrix of the input prompt, and ρ is a normalization
factor set to be the length of examples, i.e., ρ = N during
pretraining. Similar to existing work, for simplicity, we
have merged the projection and value matrices into WPV ,
and merged the key and query matrices into WKQ, and
have a residual connection in our LSA network. The pre-
diction of the network for the query token xτ,q will be the
bottom right entry of the matrix output, i.e., the entry at lo-
cation (d+ 1), (N + 1), while other entries are not relevant
to our study and thus are ignored. So only part of the model
parameters are relevant. To see this, let us denote

WPV =

(
WPV

11 wPV
12

(wPV
21 )⊤ wPV

22

)
∈ R(d+1)×(d+1),

WKQ =

(
WKQ

11 wKQ
12

(wKQ
21 )⊤ wKQ

22

)
∈ R(d+1)×(d+1),

where WPV
11 ,WKQ

11 ∈ Rd×d; wPV
12 ,wPV

21 ,wKQ
12 ,wKQ

21 ∈
Rd; and wPV

22 , wKQ
22 ∈ R. Then the prediction is:

ŷτ,q =fLSA,θ(E)(d+1),(N+1) (2)

=
(
(wPV

21 )⊤ wPV
22

)(EE⊤

ρ

)(
WKQ

11

(wKQ
21 )⊤

)
xτ,q.

4. Linear Regression
In this section, we consider the linear regression task for in-
context learning which is widely studied empirically (Garg
et al., 2022; Raventos et al., 2023; Von Oswald et al., 2023;
Akyurek et al., 2023; Bai et al., 2023) and theoretically (Ma-
hankali et al., 2023; Zhang et al., 2023b; Ahn et al., 2023;
Li et al., 2023c; Huang et al., 2023; Wu et al., 2024).

Data and task. For each task τ , we assume for any i ∈ [N ]

tokens xτ,i,xτ,q
i.i.d.∼ N (0,Λ), where Λ is the covariance

matrix. We also assume a d-dimension task weight wτ
i.i.d.∼

N (0, Id×d) and the labels are given by yτ,i = ⟨wτ ,xτ,i⟩
and yτ,q = ⟨wτ ,xτ,q⟩.

Model and loss. We study a one-layer single-head linear
self-attention transformer (LSA) defined in Equation (1)
and we use ŷτ,q := fLSA,θ(E)(d+1),(N+1) as the prediction.
We consider the mean square error (MSE) loss so that the
empirical risk over B independent prompts is defined as

L̂(fθ) :=
1

2B

B∑
τ=1

(ŷτ,q − ⟨wτ ,xτ,q⟩)2 .

Measure model scale by rank. We first introduce a lemma
from previous work that simplifies the MSE and justifies our
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measurement of the model scale. For notation simplicity,
we denote U = WKQ

11 , u = wPV
22 .

Lemma 4.1 (Lemma A.1 in Zhang et al. (2023b)). Let
Γ :=

(
1 + 1

N

)
Λ + 1

N tr(Λ)Id×d ∈ Rd×d. Let

L(fLSA,θ) = lim
B→∞

L̂(fLSA,θ)

=
1

2
Ewτ ,xτ,1,...,xτ,N ,xτ,q

[
(ŷτ,q − ⟨wτ ,xτ,q⟩)2

]
,

ℓ̃(U, u) = tr

[
1

2
u2ΓΛUΛU⊤ − uΛ2U⊤

]
,

we have L(fLSA,θ) = ℓ̃(U, u) + C, where C is a constant
independent with θ.

Lemma 4.1 tells us that the loss only depends on uU. If we
consider non-zero u, w.l.o.g, letting u = 1, then we can see
that the loss only depends on U ∈ Rd×d,

L(fLSA,θ) = tr

[
1

2
ΓΛUΛU⊤ − Λ2U⊤

]
.

Note that U = WKQ
11 , then it is natural to measure the

size of the model by rank of U. Recall that we merge the
key matrix and the query matrix in attention together, i.e.,
WKQ = (WK)⊤WQ. Thus, a low-rank U is equivalent
to the constraint WK ,WQ ∈ Rr×d where r ≪ d. The
low-rank key and query matrix are practical and have been
widely studied (Hu et al., 2022; Chen et al., 2021; Bhojana-
palli et al., 2020; Fan et al., 2021; Dass et al., 2023; Shi
et al., 2023c). Therefore, we use r = rank(U) to measure
the scale of the model, i.e., larger r representing larger mod-
els. To study the behavior difference under different model
scale, we will analyze U under different rank constraints.

4.1. Low Rank Optimal Solution

Since the token covariance matrix Λ is positive semidefi-
nite symmetric, we have eigendecomposition Λ = QDQ⊤,
where Q is an orthonormal matrix containing eigenvec-
tors of Λ and D is a sorted diagonal matrix with non-
negative entries containing eigenvalues of Λ, denoting as
D = diag([λ1, . . . , λd]), where λ1 ≥ · · · ≥ λd ≥ 0. Then,
we have the following theorem.

Theorem 4.1 (Optimal rank-r solution for regression).
Recall the loss function ℓ̃ in Lemma 4.1. Let

U∗, u∗ = argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u).

Then U∗ = cQV∗Q⊤, u = 1
c , where c is any nonzero

constant, and V∗ = diag([v∗1 , . . . , v
∗
d]) satisfies for any

i ≤ r, v∗i = N
(N+1)λi+tr(D) and for any i > r, v∗i = 0.

Proof sketch of Theorem 4.1. We defer the full proof to Ap-
pendix B.1. The proof idea is that we can decompose the
loss function into different ranks, so we can keep the direc-
tion by their sorted “variance”, i.e.,

argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u) =

d∑
i=1

Tiλ
2
i

(
v∗i − 1

Ti

)2

,

where Ti =
(
1 + 1

N

)
λi +

tr(D)
N . We have that v∗i ≥ 0

for any i ∈ [d] and if v∗i > 0, we have v∗i = 1
Ti

. Denote

g(x) = x2

(
1

(1+ 1
N )x+ tr(D)

N

)
. We get the conclusion by

g(x) is an increasing function on [0,∞).

Theorem 4.1 gives the closed-form optimal rank-r solution
of one-layer single-head linear self-attention transformer
learning linear regression ICL tasks. Let fLSA,θ denote the
optimal rank-r solution corresponding to the U∗, u∗ above.
In detail, the optimal rank-r solution fLSA,θ satisfies

W∗PV =

(
0d×d 0d
0⊤d u

)
,W∗KQ =

(
U∗ 0d
0⊤d 0

)
. (3)

What hidden features does the model pay attention to?
Theorem 4.1 shows that the optimal rank-r solution indeed
is the truncated version of the optimal full-rank solution,
keeping only the most important feature directions (i.e.,
the first r eigenvectors of the token covariance matrix). In
detail, (1) for the optimal full-rank solution, we have for
any i ∈ [d], v∗i = N

(N+1)λi+tr(D) ; (2) for the optimal rank-r
solution, we have for any i ≤ r, v∗i = N

(N+1)λi+tr(D) and
for any i > r, v∗i = 0. That is, the small rank-r model
keeps only the first r eigenvectors (viewed as hidden feature
directions) and does not cover the others, while larger ranks
cover more hidden features, and the large full rank model
covers all features.

Recall that the prediction depends on U∗xτ,q =
cQV∗Q⊤xτ,q; see Equation (2) and (3). So the optimal
rank-r model only uses the components on the first r eigen-
vector directions to do the prediction in evaluations. When
there is noise distributed in all directions, a smaller model
can ignore noise and signals along less important directions
but still keep the most important directions. Then it can be
less sensitive to the noise, as empirically observed. This
insight is formalized in the next subsection.

4.2. Behavior Difference

We now formalize our insight into the behavior difference
based on our analysis on the optimal solutions. We consider
the evaluation prompt to have M examples (may not be
equal to the number of examples N during pretraining for
a general evaluation setting), and assume noise in labels to
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facilitate the study of the behavior difference (our results
can be applied to the noiseless case by considering noise
level σ = 0). Formally, the evaluation prompt is:

Ê :=

(
x1 x2 . . . xM xq

y1 y2 . . . yM 0

)
∈ R(d+1)×(M+1)

=

(
x1 . . . xM xq

⟨w,x1⟩+ ϵ1 . . . ⟨w,xM ⟩+ ϵM 0

)
,

where w is the weight for the evaluation task, and for any
i ∈ [M ], the label noise ϵi

i.i.d.∼ N (0, σ2).

Recall Q are eigenvectors of Λ, i.e., Λ = QDQ⊤ and
D = diag([λ1, . . . , λd]). In practice, we can view the large
variance part of x (top r directions in Q) as a useful signal
(like words “positive”, “negative”), and the small variance
part (bottom d− r directions in Q) as the less important or
useless information (like words “even”, “just”).

Based on such intuition, we can decompose the evaluation
task weight w accordingly: w = Q(s+ξ), where the r-dim
truncated vector s ∈ Rd has si = 0 for any r < i ≤ d, and
the residual vector ξ ∈ Rd has ξi = 0 for any 1 ≤ i ≤ r.
The following theorem (proved in Appendix B.2) quantifies
the evaluation loss at different model scales r which can
explain the scale’s effect.

Theorem 4.2 (Behavior difference for regression). Let
w = Q(s+ ξ) ∈ Rd where s, ξ ∈ Rd are truncated and
residual vectors defined above. The optimal rank-r
solution fLSA,θ in Theorem 4.1 satisfies:

L(fLSA,θ; Ê)

:=Ex1,ϵ1,...,xM ,ϵM ,xq

(
fLSA,θ(Ê)− ⟨w,xq⟩

)2
=

1

M
∥s∥2(V∗)2D3 +

1

M

(
∥s+ ξ∥2D + σ2

)
tr
(
(V∗)2D2

)
+ ∥ξ∥2D +

∑
i∈[r]

s2iλi (λiv
∗
i − 1)

2
.

Implications. If N is large enough with Nλr ≫ tr(D)
(which is practical as we usually pretrain networks on long
text), then

L(fLSA,θ; Ê)≈∥ξ∥2D +
1

M

(
(r + 1)∥s∥2D + r∥ξ∥2D + rσ2

)
.

The first term ∥ξ∥2D is due to the residual features not cov-
ered by the network, so it decreases for larger r and becomes
0 for full-rank r = d. The second term 1

M (·) is significant
since we typically have limited examples in evaluation, e.g.,
M = 16 ≪ N . Within it, (r + 1)∥s∥2D corresponds to the
first r directions, and rσ2 corresponds to the label noise.
These increase for larger r. So there is a trade-off between
the two error terms when scaling up the model: for larger

r the first term decreases while the second term increases.
This depends on whether more signals are covered or more
noise is kept when increasing the rank r.

To further illustrate the insights, we consider the special
case when the model already covers all useful signals in the
evaluation task: w = Qs, i.e., the label only depends on
the top r features (like “positive”, “negative” tokens). Our
above analysis implies that a larger model will cover more
useless features and keep more noise, and thus will have
worse performance. This is formalized in the following
theorem (proved in Appendix B.2).

Theorem 4.3 (Behavior difference for regression, special
case). Let 0 ≤ r ≤ r′ ≤ d and w = Qs where s is r-dim
truncated vector. Denote the optimal rank-r solution as
f1 and the optimal rank-r′ solution as f2. Then,

L(f2; Ê)− L(f1; Ê)

=
1

M

(
∥s∥2D + σ2

) r′∑
i=r+1

(
Nλi

(N + 1)λi + tr(D)

)2
 .

Implications. By Theorem 4.3, in this case,

L(f2; Ê)− L(f1; Ê) ≈ r′ − r

M
∥s∥2D︸ ︷︷ ︸

input noise

+
r′ − r

M
σ2︸ ︷︷ ︸

label noise

.

We can decompose the above equation to input noise and
label noise, and we know that ∥s∥2D + σ2 only depends on
the intrinsic property of evaluation data and is independent
of the model size. When we have a larger model (larger r′),
we will have a larger evaluation loss gap between the large
and small models. It means larger language models may
be easily affected by the label noise and input noise and
may have worse in-context learning ability, while smaller
models may be more robust to these noises as they only
emphasize important signals. Moreover, if we increase the
label noise scale σ2 on purpose, the larger models will be
more sensitive to the injected label noise. This is consistent
with the observation in Wei et al. (2023b); Shi et al. (2023a)
and our experimental results in Section 6.

5. Sparse Parity Classification
We further consider a more sophisticated setting with non-
linear data which necessitates nonlinear models. Viewing
sentences as generated from various kinds of thoughts and
knowledge that can be represented as vectors in some hid-
den feature space, we consider the classic data model of
dictionary learning or sparse coding, which has been widely
used for text and images (Olshausen & Field, 1997; Vinje
& Gallant, 2000; Blei et al., 2003). Furthermore, beyond
linear separability, we assume the labels are given by the

5



Why Larger Language Models Do In-context Learning Differently?

(d, 2)-sparse parity on the hidden feature vector, which is the
high-dimensional generalization of the classic XOR prob-
lem. Parities are a canonical family of highly non-linear
learning problems and recently have been used in many re-
cent studies on neural network learning (Daniely & Malach,
2020; Barak et al., 2022; Shi et al., 2022; 2023d).

Data and task. Let X = Rd be the input space, and
Y = {±1} be the label space. Suppose G ∈ Rd×d is
an unknown dictionary with d columns that can be regarded
as features; for simplicity, assume G is orthonormal. Let
ϕ ∈ {±1}d be a hidden vector that indicates the presence
of each feature. The data are generated as follows: for each
task τ , generate two task indices tτ = (iτ , jτ ) which deter-
mines a distribution Tτ ; then for this task, draw examples
by ϕ ∼ Tτ , and setting x = Gϕ (i.e., dictionary learning
data), y = ϕiτϕjτ (i.e., XOR labels).

We now specify how to generate tτ and ϕ. As some of
the hidden features are more important than others, we let
A = [k] denote a subset of size k corresponding to the
important features. We denote the important task set as
S1 := A × A \ {(l, l) : l ∈ A} and less important task
set as S2 := [d] × [d] \ ({(l, l) : l ∈ [d]} ∪ S1). Then tτ
is drawn uniformly from S1 with probability 1 − pT , and
uniformly from S2 with probability pT , where pT ∈ [0, 1

2 )
is the less-important task rate. For the distribution of ϕ,
we assume ϕ[d]\{iτ ,jτ} is drawn uniformly from {±1}d−2,
and assume ϕ{iτ ,jτ} has good correlation (measured by a
parameter γ ∈ (0, 1

4 )) with the label to facilitate learning.
Independently, we have

Pr[(ϕiτ , ϕjτ ) = (1, 1)] = 1/4 + γ,

Pr[(ϕiτ , ϕjτ ) = (1,−1)] = 1/4,

Pr[(ϕiτ , ϕjτ ) = (−1, 1)] = 1/4,

Pr[(ϕiτ , ϕjτ ) = (−1,−1)] = 1/4− γ.

Note that without correlation (γ = 0), it is well-known
sparse parities will be hard to learn, so we consider γ > 0.

Model. Following Wu et al. (2024), we consider the reduced
linear self-attention fLSA,θ(X,y,xq) = y⊤X

N WKQxq

(which is a reduced version of Equation (1)), and also denote
WKQ as W for simplicity. It is used as the neuron in our
two-layer multiple-head transformers:

g(X,y,xq) =
∑
i∈[m]

aiσ

[
y⊤X

N
W(i)xq

]
,

where σ is ReLU activation, a = [a1, . . . ,am]⊤ ∈
[−1, 1]m, W(i) ∈ Rd×d and m is the number of attention
heads. Denote its parameters as θ = (a,W(1), . . . ,W(m)).

This model is more complicated as it uses non-linear activa-
tion, and also has two layers with multiple heads.

Measure model scale by head number. We use the at-
tention head number m to measure the model scale, as a
larger m means the transformer can learn more attention
patterns. We consider hinge loss ℓ(z) = max(0, 1− z), and
the population loss with weight-decay regularization:

Lλ(g) =E [ℓ (yq · g(X,y,xq))] + λ

∑
i∈[m]

∥W(i)∥2F

 .

Suppose N → ∞ and let the optimal solution of Lλ(g) be

g∗ = argmin
g

lim
λ→0+

Lλ(g).

5.1. Optimal Solution

We first introduce some notations to describe the optimal.
Let bin(·) be the integer to binary function, e.g., bin(6) =
110. Let digit(z, i) denote the digit at the i-th position
(from right to left) of z, e.g., digit(01000, 4) = 1. We
are now ready to characterize the optimal solution (proved
in Appendix C.1).

Theorem 5.1 (Optimal solution for parity). Consider
k = 2ν1 , d = 2ν2 , and let g∗1 and g∗2 denote the optimal
solutions for m = 2(ν1 + 1) and m = 2(ν2 + 1),
respectively.
When 0 < pT <

1
4−γ

d(d−1)
2 ( 1

4+γ)+ 1
4−γ

, g∗1 neurons are a

subset of g∗2 neurons. Specifically, for any i ∈ [2(ν2 + 1)],
let V∗,(i) be diagonal matrix and

• For any i ∈ [ν2] and iτ ∈ [d], let a∗i = −1 and
V

∗,(i)
iτ ,iτ

= (2 digit(bin(iτ − 1), i)− 1)/(4γ).

• For i = ν2 + 1 and any iτ ∈ [d], let a∗i = +1 and
V

∗,(i)
iτ ,iτ

= −νj/(4γ) for g∗j .

• For i ∈ [2(ν2 + 1)] \ [ν2 + 1], let a∗i = a∗i−ν2−1 and
V∗,(i) = −V∗,(i−ν2−1).

Let W∗,(i) = GV∗,(i)G⊤. Up to permutations, g∗2 has
neurons (a∗,W∗,(1), . . . ,W∗,(m)) and g∗1 has the
{1, . . . , ν1, ν2 + 1, ν2 + 2 . . . , ν2 + ν1 + 1, 2ν2 + 2}-th
neurons of g∗2 .

Proof sketch of Theorem 5.1. The proof is challenging as
the non-linear model and non-linear data. We defer the full
proof to Appendix C.1. The high-level intuition is transfer-
ring the optimal solution to patterns covering problems. For
small pT , the model will “prefer” to cover all patterns in
S1 first. When the model becomes larger, by checking the
sufficient and necessary conditions, it will continually learn
to cover non-important features. Thus, the smaller model
will mainly focus on important features, while the larger
model will focus on all features.

6
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Example for Theorem 5.1. When ν2 = 3, the optimal has
a1 = a2 = a3 = −1, a4 = +1 and,

V(1) = 1/4γ · diag([−1,+1,−1,+1,−1,+1,−1,+1])

V(2) = 1/4γ · diag([−1,−1,+1,+1,−1,−1,+1,+1])

V(3) = 1/4γ · diag([−1,−1,−1,−1,+1,+1,+1,+1])

V(4) = 3/4γ · diag([−1,−1,−1,−1,−1,−1,−1,−1])

and V(i+4) = −V(i),ai+4 = ai for i ∈ [4].

On the other hand, the optimal g∗1 for ν1 = 1 has the
{1, 4, 5, 8}-th neurons of g∗2 .

By carefully checking, we can see that the neurons in g∗1
(i.e., the {1, 4, 5, 8}-th neurons of g∗2) are used for parity
classification task from S1, i.e, label determined by the first
k = 2ν1 = 2 dimensions. With the other neurons (i.e.,
the {2, 3, 6, 7}-th neurons of g∗2), g∗2 can further do parity
classification on the task from S2, label determined by any
two dimensions other than the first two dimensions.

What hidden features does the model pay attention to?
Theorem 5.1 gives the closed-form optimal solution of two-
layer multiple-head transformers learning sparse-parity ICL
tasks. It shows the optimal solution of the smaller model
indeed is a sub-model of the larger optimal model. In detail,
the smaller model will mainly learn all important features,
while the larger model will learn more features. This again
shows a trade-off when increasing the model scale: larger
models can learn more hidden features which can be ben-
eficial if these features are relevant to the label, but also
potentially keep more noise which is harmful.

5.2. Behavior Difference

Similar to Theorem 4.3, to illustrate our insights, we will
consider a setting where the smaller model learns useful fea-
tures for the evaluation task while the larger model covers
extra features. That is, for evaluation, we uniformly draw
a task tτ = (iτ , jτ ) from S1, and then draw M samples to
form the evaluation prompt in the same way as during pre-
training. To present our theorem (proved in Appendix C.2
using Theorem 5.1), we introduce some notations. Let

D1 =
[
diag(V∗,(1)), . . . ,diag(V∗,(ν1)),diag(V∗,(ν2+1)),

. . . ,diag(V∗,(ν2+ν1+1)),diag(V∗,(2ν2+2))
]
∈ Rd×2(ν1+1)

D2 =
[
diag(V∗,(1)), . . . ,diag(V∗,(2ν2+2))

]
∈ Rd×2(ν2+1),

where for any i ∈ [2(ν2 + 1)], V∗,(i) is defined in Theo-
rem 5.1. Let ϕ̂τ,q ∈ Rd satisfy ϕ̂τ,q,iτ = ϕτ,q,iτ , ϕ̂τ,q,jτ =
ϕτ,q,jτ and all other entries being zero. For a matrix Z and
a vector v, let PZ denote the projection of v to the space of
Z, i.e., PZ(v) = Z(Z⊤Z)−1Z⊤v.

Theorem 5.2 (Behavior difference for parity). Assume the
same condition as Theorem 5.1. For j ∈ {1, 2}, Let θj
denote the parameters of g∗j . For l ∈ [M ], let ξl be

uniformly drawn from {±1}d, and Ξ =
∑

l∈[M] ξl

M . Then,
for any δ ∈ (0, 1), with probability at least 1− δ over the
randomness of test data, we have

g∗j (Xτ ,yτ ,xτ,q) = h(θj , 2γϕ̂τ,q + PDj
(Ξ)) + ϵj

:=
∑
i∈[m]

a∗i σ

[
diag

(
V∗,(i)

)⊤ (
2γϕ̂τ,q + PDj

(Ξ)
)]

+ϵj

where ϵj = O
(√

νj

M log 1
δ

)
and we have

• 2γϕ̂τ,q is the signal useful for prediction: 0 =

ℓ(yq · h(θ1, 2γϕ̂τ,q)) = ℓ(yq · h(θ2, 2γϕ̂τ,q)).

• PD1
(Ξ)) and PD2

(Ξ)) is noise not related to labels,

and E[∥PD1
(Ξ))∥2

2]

E[∥PD2
(Ξ))∥2

2]
= ν1+1

ν2+1 .

Implications. Theorem 5.2 shows that during evaluation,
we can decompose the input into two parts: signal and noise.
Both the larger model and smaller model can capture the
signal part well. However, the smaller model has a much
smaller influence from noise than the larger model, i.e., the
ratio is ν1+1

ν2+1 . The reason is that smaller models emphasize
important hidden features while larger ones cover more
hidden features, and thus, smaller models are more robust
to noise while larger ones are easily distracted, leading to
different ICL behaviors. This again sheds light on where
transformers pay attention to and how that affects ICL.

Remark 5.1. Here, we provide a detailed intuition about
Theorem 5.2. Ξ is the input noise. When we only care
about the noise part, we can rewrite the smaller model
as g1 = h(θ1, PD1(Ξ)), and the larger model as g2 =
h(θ2, PD2(Ξ)), where they share the same h function.
Our conclusion says that E[∥PD1

(Ξ)∥22]/E[∥PD2
(Ξ)∥22] =

(ν1+1)/(ν2+1), which means the smaller model’s “effect”
input noise is smaller than the larger model’s “effect” input
noise. Although their original input noise is the same, as the
smaller model only focuses on limited features, the smaller
model will ignore part of the noise, and the “effect” input
noise is small. However, the larger model is the opposite.

6. Experiments
Brilliant recent work (Wei et al., 2023b) runs intensive and
thorough experiments to show that larger language models
do in-context learning differently. Following their idea,
we conduct similar experiments on binary classification
datasets, which is consistent with our problem setting in the
parity case, to support our theory statements.
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Figure 1. Larger models are easier to be affected by noise (flipped labels) and override pretrained biases than smaller models for different
datasets and model families (chat/with instruct turning). Accuracy is calculated over 1000 evaluation prompts per dataset and over 5 runs
with different random seeds for each evaluation, using M = 16 in-context exemplars.
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Figure 2. Larger models are easier to be affected by noise (flipped labels) and override pretrained biases than smaller models for different
datasets and model families (original/without instruct turning). Accuracy is calculated over 1000 evaluation prompts per dataset and over
5 runs with different random seeds for each evaluation, using M = 16 in-context exemplars.

Experimental setup. Following the experimental protocols
in Wei et al. (2023b); Min et al. (2022), we conduct experi-
ments on five prevalent NLP tasks, leveraging datasets from
GLUE (Wang et al., 2018) tasks and Subj (Conneau & Kiela,
2018). Our experiments utilize various sizes of the Llama
model families (Touvron et al., 2023a;b): 3B, 7B, 13B, 70B.
We follow the prior work on in-context learning (Wei et al.,
2023b) and use M = 16 in-context exemplars. We aim to
assess the models’ ability to use inherent semantic biases
from pretraining when facing in-context examples. As part
of this experiment, we introduce noise by inverting an esca-
lating percentage of in-context example labels. To illustrate,
a 100% label inversion for the SST-2 dataset implies that
every “positive” exemplar is now labeled “negative”. Note
that while we manipulate the in-context example labels, the
evaluation sample labels remain consistent. We use the
same templates as (Min et al., 2021), a sample evaluation
for SST-2 when M = 2:

sentence: show us a good time
The answer is positive.

sentence: as dumb and cheesy
The answer is negative.

sentence: it ’s a charming and often
affecting journey
The answer is

6.1. Behavior Difference

Figure 1 shows the result of model performance (chat/with
instruct turning) across all datasets with respect to the pro-
portion of labels that are flipped. When 0% label flips, we
observe that larger language models have better in-context

8
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Figure 3. The magnitude of attention between the labels and input
sentences in Llama 2-13b and 70b on 100 evaluation prompts;
see the main text for the details. x-axis: indices of the prompts.
y-axis: the norm of the last row of attention maps in the final layer.
Correct: original label; wrong: flipped label; relevant: original
input sentence; irrelevant: irrelevant sentence from other datasets.
The results show that larger models focus on both sentences, while
smaller models only focus on relevant sentences.

abilities. On the other hand, the performance decrease fac-
ing noise is more significant for larger models. As the per-
centage of label alterations increases, which can be viewed
as increasing label noise σ2, the performance of small mod-
els remains flat and seldom is worse than random guess-
ing while large models are easily affected by the noise, as
predicted by our analysis. These results indicate that large
models can override their pretraining biases in-context input-
label correlations, while small models may not and are more
robust to noise. This observation aligns with the findings in
Wei et al. (2023b) and our analysis.

We can see a similar or even stronger phenomenon in Fig-
ure 2: larger models are more easily affected by noise
(flipped labels) and override pretrained biases than smaller
models for the original/without instruct turning version (see
the “Average” sub-figure). On the one hand, we conclude
that both large base models and large chat models suffer
from ICL robustness issues. On the other hand, this is also
consistent with recent work suggesting that instruction tun-
ing will impair LLM’s in-context learning capability.

6.2. Ablation Study

To further verify our analysis, we provide an ablation study.
We concatenate an irrelevant sentence from GSM-IC (Shi
et al., 2023a) to an input-label pair sentence from SST-2
in GLUE dataset. We use “correct” to denote the origi-
nal label and “wrong” to denote the flipped label. Then,
we measure the magnitude of correlation between label-
input, by computing the norm of the last row of attention

maps across all heads in the final layer. We do this be-
tween “correct”/“wrong” labels and the original/irrelevant
inserted sentences. Figure 3 shows the results on 100 evalu-
ation prompts; for example, the subfigure Correct+Relevant
shows the correlation magnitude between the “correct” label
and the original input sentence in each prompt. The results
show that the small model Llama 2-13b mainly focuses on
the relevant part (original input) and may ignore the irrele-
vant sentence, while the large model Llama 2-70b focuses
on both sentences. This well aligns with our analysis.

7. More Discussions about Noise
There are three kinds of noise covered in our analysis:

Pretraining noise. We can see it as toxic or harmful pre-
training data on the website (noisy training data). The model
will learn these features and patterns. It is covered by ξ in
the linear regression case and S2 in the parity case.

Input noise during inference. We can see it as natural noise
as the user’s wrong spelling or biased sampling. It is a finite
sampling error as x drawn from the Gaussian distribution
for the linear regression case and a finite sampling error as
x drawn from a uniform distribution for the parity case.

Label noise during inference. We can see it as adversarial
examples, or misleading instructions, e.g., deliberately let-
ting a model generate a wrong fact conclusion or harmful
solution, e.g., poison making. It is σ in the linear regression
case and S2 in the parity case.

For pretraining noise, it will induce the model to learn noisy
or harmful features. During inference, for input noise and
label noise, the larger model will pay additional attention to
these noisy or harmful features in the input and label pair,
i.e., y · x, so that the input and label noise may cause a large
perturbation in the final results. If there is no pretraining
noise, then the larger model will have as good robustness
as the smaller model. Also, if there is no input and label
noise, the larger model will have as good robustness as the
smaller model. The robustness gap only happens when both
pretraining noise and inference noise exist simultaneously.

8. Conclusion
In this work, we answered our research question: why do
larger language models do in-context learning differently?
Our theoretical study showed that smaller models empha-
size important hidden features while larger ones cover more
hidden features, and thus the former are more robust to noise
while the latter are more easily distracted, leading to dif-
ferent behaviors during in-context learning. Our empirical
results provided positive support for the theoretical analysis.
Our findings can help improve understanding of LLMs and
ICL, and better training and application of these models.
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Appendix

A. Limitations
We study and understand an interesting phenomenon of in-context learning: smaller models are more robust to noise, while
larger ones are more easily distracted, leading to different ICL behaviors. Although we study two stylized settings and give
the closed-form solution, our analysis cannot extend to real Transformers easily due to the high non-convex function and
complicated design of multiple-layer Transformers. Also, our work does not study optimization trajectory, which we leave
as future work. On the other hand, we use simple binary classification real-world datasets to verify our analysis, which still
has a gap for the practical user using the LLM scenario.

B. Deferred Proof for Linear Regression
B.1. Proof of Theorem 4.1

Here, we provide the proof of Theorem 4.1.
Theorem 4.1 (Optimal rank-r solution for regression). Recall the loss function ℓ̃ in Lemma 4.1. Let

U∗, u∗ = argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u).

Then U∗ = cQV∗Q⊤, u = 1
c , where c is any nonzero constant, and V∗ = diag([v∗1 , . . . , v

∗
d]) satisfies for any i ≤ r, v∗i =

N
(N+1)λi+tr(D) and for any i > r, v∗i = 0.

Proof of Theorem 4.1. Note that,

argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u) = argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u)− min
U∈Rd×d,u∈R

ℓ̃(U, u)

= argmin
U∈Rd×d,rank(U)≤r,u∈R

(
ℓ̃(U, u)− min

U∈Rd×d,u∈R
ℓ̃(U, u)

)
.

Thus, we may consider Equation (7) in Lemma B.1 only. On the other hand, we have

Γ =

(
1 +

1

N

)
Λ +

1

N
tr(Λ)Id×d

=

(
1 +

1

N

)
QDQ⊤ +

1

N
tr(D)QId×dQ

⊤

=Q

((
1 +

1

N

)
D+

1

N
tr(D)Id×d

)
Q⊤.

We denote D′ =
(
1 + 1

N

)
D+ 1

N tr(D)Id×d. We can see Λ
1
2 = QD

1
2Q⊤, Γ

1
2 = QD′ 1

2Q⊤, and Γ−1 = QD′−1
Q⊤. We

denote V = uQ⊤UQ. Since Γ and Λ are commutable and the Frobenius norm (F -norm) of a matrix does not change after
multiplying it by an orthonormal matrix, we have Equation (7) as

ℓ̃(U, u)− min
U∈Rd×d,u∈R

ℓ̃(U, u) =
1

2

∥∥∥Γ 1
2

(
uΛ

1
2UΛ

1
2 − ΛΓ−1

)∥∥∥2
F

=
1

2

∥∥∥Γ 1
2Λ

1
2

(
uU− Γ−1

)
Λ

1
2

∥∥∥2
F

=
1

2

∥∥∥D′ 1
2D

1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F
.

As WKQ is a matrix whose rank is at most r, we have V is also at most rank r. Then, we denote V∗ =

argminV∈Rd×d,rank(V)≤r

∥∥∥D′ 1
2D

1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F

. We can see that V∗ is a diagonal matrix. Denote D′ =
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diag([λ′
1, . . . , λ

′
d]) and V∗ = diag([v∗1 , . . . , v

∗
d]). Then, we have∥∥∥D′ 1

2D
1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F

(4)

=

d∑
i=1

(
λ′
i

1
2λi

(
v∗i − 1

λ′
i

))2

(5)

=

d∑
i=1

((
1 +

1

N

)
λi +

tr(D)

N

)
λ2
i

(
v∗i − 1(

1 + 1
N

)
λi +

tr(D)
N

)2

. (6)

As V∗ is the minimum rank r solution, we have that v∗i ≥ 0 for any i ∈ [d] and if v∗i > 0, we have v∗i = 1

(1+ 1
N )λi+

tr(D)
N

.

Denote g(x) =
((

1 + 1
N

)
x+ tr(D)

N

)
x2

(
1

(1+ 1
N )x+ tr(D)

N

)2

= x2

(
1

(1+ 1
N )x+ tr(D)

N

)
. It is easy to see that g(x) is an

increasing function on [0,∞). Now, we use contradiction to show that V∗ only has non-zero entries in the first r diagonal
entries. Suppose i > r, such that v∗i > 0, then we must have j ≤ r such that v∗j = 0 as V∗ is a rank r solution. We find that
if we set v∗i = 0, v∗j = 1

(1+ 1
N )λj+

tr(D)
N

and all other values remain the same, Equation (6) will strictly decrease as g(x) is

an increasing function on [0,∞). Thus, here is a contradiction. We finish the proof by V∗ = uQ⊤U∗Q.

B.2. Behavior Difference

Theorem 4.2 (Behavior difference for regression). Let w = Q(s + ξ) ∈ Rd where s, ξ ∈ Rd are truncated and residual
vectors defined above. The optimal rank-r solution fLSA,θ in Theorem 4.1 satisfies:

L(fLSA,θ; Ê)

:=Ex1,ϵ1,...,xM ,ϵM ,xq

(
fLSA,θ(Ê)− ⟨w,xq⟩

)2
=

1

M
∥s∥2(V∗)2D3 +

1

M

(
∥s+ ξ∥2D + σ2

)
tr
(
(V∗)2D2

)
+ ∥ξ∥2D +

∑
i∈[r]

s2iλi (λiv
∗
i − 1)

2
.

Proof of Theorem 4.2. By Theorem 4.1, w.l.o.g, letting c = 1, the optimal rank-r solution fLSA,θ satisfies θ =
(WPV ,WKQ), and

W∗PV =

(
0d×d 0d
0⊤d 1

)
,W∗KQ =

(
U∗ 0d
0⊤d 0

)
,

where U∗ = QV∗Q⊤.

We can see that U∗ and Λ commute. Denote Λ̂ := 1
M

∑M
i=1 xix

⊤
i . Note that we have

ŷq =fLSA,θ(Ê)
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Then, we have

Ex1,ϵ1,...,xM ,ϵM ,xq
(ŷq − ⟨w,xq⟩)2

=Ex1,ϵ1,...,xM ,ϵM ,xq

(
w⊤Λ̂U∗xq +

1

M

M∑
i=1

ϵix
⊤
i U

∗xq −w⊤xq

)2

=E
[(

w⊤Λ̂U∗xq −w⊤xq

)2]
︸ ︷︷ ︸

(I)

+E

( 1

M

M∑
i=1

ϵix
⊤
i U

∗xq

)2


︸ ︷︷ ︸
(II)

,

where the last equality is due to i.i.d. of ϵi. We see that the label noise can only have an effect in the second term. For the
term (I) we have,

(I) =E
[(

w⊤Λ̂U∗xq −w⊤ΛU∗xq +w⊤ΛU∗xq −w⊤xq

)2]
=E

[(
w⊤Λ̂U∗xq −w⊤ΛU∗xq

)2]
︸ ︷︷ ︸

(III)

+E
[(
w⊤ΛU∗xq −w⊤xq

)2]︸ ︷︷ ︸
(IV)

,

where the last equality is due to E[Λ̂] = Λ and Λ̂ is independent with xq. Note the fact that U∗ and Λ commute. For the
(III) term, we have

(III) =E
[
E
[(

w⊤Λ̂U∗xq

)2
+
(
w⊤ΛU∗xq

)2 − 2
(
w⊤Λ̂U∗xq

) (
w⊤ΛU∗xq

)]∣∣∣∣xq

]
=E

[(
w⊤Λ̂U∗xq

)2
−
(
w⊤ΛU∗xq

)2]
.

By the property of trace, we have,

(III) =E
[
tr
(
Λ̂ww⊤Λ̂(U∗)2Λ

)]
− ∥w∥2(U∗)2Λ3

=E

[
1

M2
tr

((
M∑
i=1

xix
⊤
i

)
ww⊤

(
M∑
i=1

xix
⊤
i

)
(U∗)2Λ

)]
− ∥w∥2(U∗)2Λ3

=E
[
M − 1

M
tr
(
Λww⊤Λ(U∗)2Λ

)
+

1

M
tr
(
x1x

⊤
1 ww⊤x1x

⊤
1 (U

∗)2Λ
)]

− ∥w∥2(U∗)2Λ3

=− 1

M
∥w∥2(U∗)2Λ3 +

1

M
E
[
tr
(
x1x

⊤
1 ww⊤x1x

⊤
1 (U

∗)2Λ
)]

=− 1

M
∥w∥2(U∗)2Λ3 +

1

M
E
[
tr
((
∥w∥2ΛΛ + 2Λw⊤wΛ

)
(U∗)2Λ

)]
=

1

M
∥w∥2(U∗)2Λ3 +

1

M
∥w∥2Λ tr

(
(U∗)2Λ2

)
,

where the third last equality is by Lemma B.2. Furthermore, injecting w = Q(s+ ξ), as ξ⊤V∗ is a zero vector, we have

(III) =
1

M
∥s+ ξ∥2(V∗)2D3 +

1

M
∥s+ ξ∥2D tr

(
(V∗)2D2

)
=

1

M
∥s∥2(V∗)2D3 +

1

M
∥s+ ξ∥2D tr

(
(V∗)2D2

)
.
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Similarly, for the term (IV), we have

(IV) =E
[(
(s+ ξ)⊤Q⊤ΛU∗xq − (s+ ξ)⊤Q⊤xq

)2]
=E

[(
s⊤DV∗Q⊤xq − s⊤Q⊤xq − ξ⊤Q⊤xq

)2]
=s⊤(V∗)2D3s+ s⊤Ds+ ξ⊤Dξ − 2s⊤V∗D2s

=ξ⊤Dξ +
∑
i∈[r]

s2iλi

(
λ2
i (v

∗
i )

2 − 2λiv
∗
i + 1

)
=∥ξ∥2D +

∑
i∈[r]

s2iλi (λiv
∗
i − 1)

2
,

where the third equality is due to s⊤Aξ = 0 for any diagonal matrix A ∈ Rd×d.

Now, we analyze the label noise term. By U∗ and Λ being commutable, for the term (II), we have

(II) =
σ2

M2
E

( M∑
i=1

x⊤
i U

∗xq

)2


=
σ2

M2
E

tr
( M∑

i=1

xi

)⊤

U∗ΛU∗

(
M∑
i=1

xi

)
=
σ2

M
E
[
tr
(
x⊤
1 U

∗ΛU∗x1

)]
=
σ2

M
tr
(
(V∗)2D2

)
,

where all cross terms vanish in the second equality. We conclude by combining four terms.

Theorem 4.3 (Behavior difference for regression, special case). Let 0 ≤ r ≤ r′ ≤ d and w = Qs where s is r-dim truncated
vector. Denote the optimal rank-r solution as f1 and the optimal rank-r′ solution as f2. Then,

L(f2; Ê)− L(f1; Ê)

=
1

M

(
∥s∥2D + σ2

) r′∑
i=r+1

(
Nλi

(N + 1)λi + tr(D)

)2
 .

Proof of Theorem 4.3. Let V∗ = diag([v∗1 , . . . , v
∗
d]) satisfying for any i ≤ r, v∗i = N

(N+1)λi+tr(D) and for any i > r, v∗i =

0. Let V′∗ = diag([v′
∗
1, . . . , v

′∗
d]) be satisfied for any i ≤ r′, v′

∗
i = N

(N+1)λi+tr(D) and for any i > r′, v′
∗
i = 0. Note that

V∗ is a truncated diagonal matrix of V′∗. By Theorem 4.1 and Theorem 4.2, we have

L(f2; Ê)− L(f1; Ê) =

 1

M
∥s∥2(V′∗)2D3 +

1

M

(
∥s∥2D + σ2

)
tr
(
(V′∗)2D2

)
+
∑
i∈[r′]

s2iλi

(
λiv

′∗
i − 1

)2
−

 1

M
∥s∥2(V∗)2D3 +

1

M

(
∥s∥2D + σ2

)
tr
(
(V∗)2D2

)
+
∑
i∈[r]

s2iλi (λiv
∗
i − 1)

2


=

1

M

(
∥s∥2D + σ2

) (
tr
(
(V′∗)2D2

)
− tr

(
(V∗)2D2

))
=

1

M

(
∥s∥2D + σ2

) r′∑
i=r+1

(
Nλi

(N + 1)λi + tr(D)

)2
 .
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B.3. Auxiliary Lemma

Lemma B.1 provides the structure of the quadratic form of our MSE loss.

Lemma B.1 (Corollary A.2 in Zhang et al. (2023b)). The loss function ℓ̃ in Lemma 4.1 satisfies

min
U∈Rd×d,u∈R

ℓ̃(U, u) = −1

2
tr[Λ2Γ−1],

where U = cΓ−1, u = 1
c for any non-zero constant c are minimum solution. We also have

ℓ̃(U, u)− min
U∈Rd×d,u∈R

ℓ̃(U, u) =
1

2

∥∥∥Γ 1
2

(
uΛ

1
2UΛ

1
2 − ΛΓ−1

)∥∥∥2
F
. (7)

Lemma B.2. Let x ∼ N (0,Λ), ϵ ∼ N (0, σ2) and y = ⟨w,x⟩+ ϵ, where w ∈ Rd is a fixed vector. Then we have

E
[
y2xx⊤] =σ2Λ + ∥w∥2ΛΛ + 2Λw⊤wΛ,

E(yx)E(yx)⊤ =Λ⊤ww⊤Λ,

E
[
(yx− E(yx))(yx− E(yx))⊤

]
=σ2Λ + ∥w∥2ΛΛ + Λw⊤wΛ.

Proof of Lemma B.2. As y is a zero mean Gaussian, by Isserlis’ theorem (Wick, 1950; Michalowicz et al., 2009), for any
i, j ∈ [d] we have

E[y2xixj ] =E[y2]E[xixj ] + 2E[yxi]E[yxj ]

=
(
σ2 +w⊤Λw

)
Λi,j + 2Λ⊤

i ww⊤Λj .

Thus, we have E
[
y2xx⊤] = (σ2 +w⊤Λw

)
Λ + 2Λw⊤wΛ. Similarly, we also have E(yx)E(yx)⊤ = Λ⊤ww⊤Λ. Thus,

we have

E
[
(yx− E(yx))(yx− E(yx))⊤

]
=E

[
y2xx⊤ − yxE(yx)⊤ − E(yx)yx⊤ + E(yx)E(yx)⊤

]
=E

[
y2xx⊤]− E(yx)E(yx)⊤

=
(
σ2 +w⊤Λw

)
Λ + Λw⊤wΛ.

C. Deferred Proof for Parity Classification
C.1. Proof of Theorem 5.1

Here, we provide the proof of Theorem 5.1.
Theorem 5.1 (Optimal solution for parity). Consider k = 2ν1 , d = 2ν2 , and let g∗1 and g∗2 denote the optimal solutions for
m = 2(ν1 + 1) and m = 2(ν2 + 1), respectively.

When 0 < pT <
1
4−γ

d(d−1)
2 ( 1

4+γ)+ 1
4−γ

, g∗1 neurons are a subset of g∗2 neurons. Specifically, for any i ∈ [2(ν2 + 1)], let V∗,(i)

be diagonal matrix and

• For any i ∈ [ν2] and iτ ∈ [d], let a∗i = −1 and V
∗,(i)
iτ ,iτ

= (2 digit(bin(iτ − 1), i)− 1)/(4γ).

• For i = ν2 + 1 and any iτ ∈ [d], let a∗i = +1 and V
∗,(i)
iτ ,iτ

= −νj/(4γ) for g∗j .

• For i ∈ [2(ν2 + 1)] \ [ν2 + 1], let a∗i = a∗i−ν2−1 and V∗,(i) = −V∗,(i−ν2−1).

Let W∗,(i) = GV∗,(i)G⊤. Up to permutations, g∗2 has neurons (a∗,W∗,(1), . . . ,W∗,(m)) and g∗1 has the {1, . . . , ν1, ν2 +
1, ν2 + 2 . . . , ν2 + ν1 + 1, 2ν2 + 2}-th neurons of g∗2 .

19



Why Larger Language Models Do In-context Learning Differently?

Proof of Theorem 5.1. Recall tτ = (iτ , jτ ). Let zτ ∈ Rd satisfy zτ,iτ = zτ,jτ = 2γ and all other entries are zero. Denote
V(i) = G⊤W(i)G. Notice that ∥W(i)∥2F = ∥V(i)∥2F . Thus, we denote V∗,(i) = G⊤W∗,(i)G. Then, we have

Eτ [ℓ (yτ,q · g(Xτ ,yτ ,xτ,q))]

=Eτ

ℓ
yτ,q

∑
i∈[m]

aiσ

[
y⊤
τ Xτ

N
W(i)xτ,q

]
=Eτ

ℓ
yτ,q

∑
i∈[m]

aiσ
[
z⊤τ V

(i)ϕτ,q

]
=Eτ

ℓ
yτ,q

∑
i∈[m]

aiσ
[
2γ(V

(i)
iτ ,:

+V
(i)
jτ ,:

)ϕτ,q

] .

We can see that for any i ∈ [m], |a∗i | = 1 and V
∗,(i)
j,l = 0 when j ̸= l. As ReLU is a homogeneous function, we have

Eτ [ℓ (yτ,q · g∗(Xτ ,yτ ,xτ,q))]

= (1− pT )E

ℓ
2γϕτ,q,iτϕτ,q,jτ

∑
i∈[m]

a∗i σ
[
V

∗,(i)
iτ ,iτ

ϕτ,q,iτ +V
∗,(i)
jτ ,jτ

ϕτ,q,jτ

]∣∣∣∣∣∣tτ ∈ S1


︸ ︷︷ ︸

(I)

+ pT E

ℓ
2γϕτ,q,iτϕτ,q,jτ

∑
i∈[m]

a∗i σ
[
V

∗,(i)
iτ ,iτ

ϕτ,q,iτ +V
∗,(i)
jτ ,jτ

ϕτ,q,jτ

]∣∣∣∣∣∣tτ ∈ S2


︸ ︷︷ ︸

(II)

.

We have

(I) =(1− pT ) ·

{
(
1

4
+ γ)E

ℓ
2γ

∑
i∈[m]

a∗i σ
[
V

∗,(i)
iτ ,iτ

+V
∗,(i)
jτ ,jτ

]∣∣∣∣∣∣tτ ∈ S1


+

1

4
E

ℓ
−2γ

∑
i∈[m]

a∗i σ
[
V

∗,(i)
iτ ,iτ

−V
∗,(i)
jτ ,jτ

]∣∣∣∣∣∣tτ ∈ S1


+ (

1

4
− γ)E

ℓ
2γ

∑
i∈[m]

a∗i σ
[
−V

∗,(i)
iτ ,iτ

−V
∗,(i)
jτ ,jτ

]∣∣∣∣∣∣tτ ∈ S1


+

1

4
E

ℓ
−2γ

∑
i∈[m]

a∗i σ
[
−V

∗,(i)
iτ ,iτ

+V
∗,(i)
jτ ,jτ

]∣∣∣∣∣∣tτ ∈ S1

}.
We can get a similar equation for (II).

We make some definitions to be used. We define a pattern as (z1, {(iτ , z2), (jτ , z3)}), where z1, z2, z3 ∈ {±1}. We
define a pattern is covered by a neuron means there exists i ∈ [m], such that a∗i = z1 and sign(V

∗,(i)
iτ ,iτ

) = z2 and

sign(V
∗,(i)
jτ ,jτ

) = z3. We define a neuron as being positive when its a∗i = +1 and being negative when its a∗i = −1. We
define a pattern as being positive if z1 = +1 and being negative if z1 = −1.

Then all terms in (I) and (II) can be written as:

αE

ℓ
2γz1

∑
i∈[m]

a∗i σ
[
z2V

∗,(i)
iτ ,iτ

+ z3V
∗,(i)
jτ ,jτ

] ,

20



Why Larger Language Models Do In-context Learning Differently?

where α is the scalar term. Note that there are total k(k−1)
2 × 4 patterns in (I) and

(
d(d−1)

2 − k(k−1)
2

)
× 4 patterns in (II).

The loss depends on the weighted sum of non-covered patterns. To have zero loss, we need all patterns to be covered by m
neurons, i.e., (a∗,V∗,(1), . . . ,V∗,(m)).

Note that one neuron at most cover d(d−1)
2 patterns. Also, by 0 < pT <

1
4−γ

d(d−1)
2 ( 1

4+γ)+ 1
4−γ

, we have

d(d− 1)

2
pT (

1

4
+ γ) < (1− pT )(

1

4
− γ),

which means the model will only cover all patterns in (I) before covering a pattern in (II) in purpose.

Now, we show that the minimum number of neurons to cover all patterns in (I) and (II) is 2(ν2 + 1).

First, we show that 2(ν2 + 1) neurons are enough to cover all patterns in (I) and (II). For i ∈ [ν2] and iτ ∈ [d],
V

(i)
iτ ,iτ

= (2 digit(bin(iτ − 1), i)− 1)/(4γ) and all non-diagonal entries in V(i) being zero and ai = −1. For i = ν2 + 1

and iτ ∈ [d], V(i)
iτ ,iτ

= −ν2/(4γ) and all non-diagonal entries in V(i) being zero and ai = +1. For i ∈ [2(ν2+1)]\ [ν2+1],
let V(i) = −V(i−ν2−1) and ai = ai−ν2−1.

We can check that this construction can cover all patterns in (I) and (II) and only needs 2(ν2 + 1) neurons. V(ν2+1) and
V(2(ν2+1)) cover all positive patterns. All other neurons cover all negative patterns. This is because bin(iτ ) and bin(jτ )
have at least one digit difference. If bin(iτ ) and bin(jτ ) are different in the i-th digit, then (−1, {(iτ ,−1), (jτ ,+1)}) and
(−1, {(iτ ,+1), (jτ ,−1)}) are covered by the i-th and i+ ν2 + 1-th neuron.

We can also check that the scalar 1
4γ and ν2

4γ is the optimal value. Note that

(1) For any negative patterns, the positive neurons will not have a cancellation effect on the negative neurons, i.e., when
yq = −1, the positive neurons will never activate.

(2) For each negative neuron, there exist some patterns that are uniquely covered by it.

(3) For any positive patterns, there are at most ν2 − 1 negative neurons that will have a cancellation effect on the positive
neurons, i.e., when yq = +1, these negative neurons will activate simultaneously. Also, we can check that there is a
positive pattern such that there are ν2 − 1 negative neurons that will have a cancellation effect.

(4) For two positive neurons, there exist some patterns that are uniquely covered by one of them.

Due to hinge loss, we can see that 1
4γ is tight for negative neurons as (1) and (2). Similarly, we can also see that ν2

4γ is tight
for positive neurons as (3) and (4).

Second, we prove that we need at least 2(ν2 + 1) neurons to cover all patterns in (I) and (II). We can see that we
need at least 2 positive neurons to cover all positive patterns. Then, we only need to show that 2ν2 − 1 neurons are not
enough to cover all negative patterns. We can prove that all negative patterns are covered equivalent to all numbers from
{0, 1, . . . , 2ν2 − 1} are encoded by

{(
V

(1)
i,i , . . . ,V

(ν2)
i,i

) ∣∣∣ i ∈ [k]
}

. Then 2ν2 − 1 is not enough to do so.

Therefore, the minimum number of neurons to cover all patterns in (I) and (II) is 2(ν2 + 1).

Thus, when m = 2(ν1 + 1), the optimal solution will cover all patterns in (I) but not all in (II). When m ≥ 2(ν2 + 1), the
optimal solution will cover all patterns in (I) and (II). We see that g∗1 neurons as the subset of g∗2 neurons, while the only
difference is that the scalar of positive neurons is ν1

4γ for g∗1 and ν2

4γ for g∗2 . Thus, we finished the proof.

C.2. Proof of Theorem 5.2

Here, we provide the proof of Theorem 5.2.
Theorem 5.2 (Behavior difference for parity). Assume the same condition as Theorem 5.1. For j ∈ {1, 2}, Let θj denote the

parameters of g∗j . For l ∈ [M ], let ξl be uniformly drawn from {±1}d, and Ξ =
∑

l∈[M] ξl

M . Then, for any δ ∈ (0, 1), with

21



Why Larger Language Models Do In-context Learning Differently?

probability at least 1− δ over the randomness of test data, we have

g∗j (Xτ ,yτ ,xτ,q) = h(θj , 2γϕ̂τ,q + PDj
(Ξ)) + ϵj

:=
∑
i∈[m]

a∗i σ

[
diag

(
V∗,(i)

)⊤ (
2γϕ̂τ,q + PDj

(Ξ)
)]

+ϵj

where ϵj = O
(√

νj

M log 1
δ

)
and we have

• 2γϕ̂τ,q is the signal useful for prediction: 0 = ℓ(yq · h(θ1, 2γϕ̂τ,q)) = ℓ(yq · h(θ2, 2γϕ̂τ,q)).

• PD1
(Ξ)) and PD2

(Ξ)) is noise not related to labels, and E[∥PD1
(Ξ))∥2

2]

E[∥PD2
(Ξ))∥2

2]
= ν1+1

ν2+1 .

Proof of Theorem 5.2. Let Φτ = [ϕτ,1, . . . , ϕτ,M ]⊤ ∈ RM×d. Recall tτ = (iτ , jτ ). Let zτ ∈ Rd satisfy zτ,iτ = zτ,jτ =
2γ and all other entries are zero. We see tτ as an index set and let rτ = [d] \ tτ . Then, we have

g∗2(Xτ ,yτ ,xτ,q)

=
∑
i∈[m]

a∗i σ

[
y⊤
τ Xτ

M
W∗,(i)xτ,q

]

=
∑
i∈[m]

a∗i σ

[
y⊤
τ Φ

τ

M
V∗,(i)ϕτ,q

]

=
∑
i∈[m]

a∗i σ

[
y⊤
τ Φ

τ
:,tτ

M
V

∗,(i)
tτ ,:

ϕτ,q,tτ +
y⊤
τ Φ

τ
:,rτ

M
V∗,(i)

rτ ,: ϕτ,q,rτ

]
.

Note that we can absorb the randomness of yτ ,Φ
τ
:,rτ , ϕτ,q,rτ together.

Let zi for i ∈ [n] uniformly draw from {−1,+1}. By Chernoff bound for binomial distribution (Lemma C.1), for any
0 < ϵ < 1, we have

Pr

(∣∣∣∣∣
∑

i∈[n] zi

n

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−ϵ2n

6

)
.

Thus, for any 0 < δ < 1, with probability at least 1− δ over the randomness of evaluation data, such that

∣∣∣Ξ⊤
tτ diag(V

∗,(i)
tτ ,tτ

)
∣∣∣ ≤ O

(√
1

M
log

1

δ

)
.
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Then, for any 0 < δ < 1, with probability at least 1− δ over the randomness of evaluation data, we have

g∗2(Xτ ,yτ ,xτ,q)

=
∑
i∈[m]

a∗i σ

[
y⊤
τ Φ

τ
:,tτ

M
V

∗,(i)
tτ ,:

ϕτ,q,tτ + Ξ⊤ diag(V∗,(i))− Ξ⊤
tτ diag(V

∗,(i)
tτ ,tτ

)

]

=
∑
i∈[m]

a∗i σ
[
z⊤τ V

∗,(i)
tτ ,:

ϕτ,q,tτ + Ξ⊤ diag(V∗,(i))− Ξ⊤
tτ diag(V

∗,(i)
tτ ,tτ

)
]

=
∑
i∈[m]

a∗i σ

[
2γ diag

(
V

∗,(i)
tτ ,tτ

)⊤
ϕτ,q,tτ + Ξ⊤ diag(V∗,(i))− Ξ⊤

tτ diag(V
∗,(i)
tτ ,tτ

)

]

=
∑
i∈[m]

a∗i σ

[
diag

(
V∗,(i)

)⊤ (
2γϕ̂τ,q + Ξ

)
− Ξ⊤

tτ diag(V
∗,(i)
tτ ,tτ

)

]

=
∑
i∈[m]

a∗i σ

[
diag

(
V∗,(i)

)⊤ (
2γϕ̂τ,q + Ξ

)
+O

(√
1

M
log

1

δ

)]

=
∑
i∈[m]

a∗i σ

[
diag

(
V∗,(i)

)⊤ (
2γϕ̂τ,q + PD2(Ξ)

)
+O

(√
1

M
log

1

δ

)]

= h(θ2, 2γϕ̂τ,q + PD2
(Ξ)) +O

(√
ν2
M

log
1

δ

)
.

Similarly, we have g∗1(Xτ ,yτ ,xτ,q) = h(θ1, 2γϕ̂τ,q + PD1(Ξ)) +O
(√

ν1

M log 1
δ

)
.

As tτ ∈ S1 and the number of (ϕiτ , ϕjτ ) being balanced as training, by careful checking, we can see that ℓ(yq ·
h(θ1, 2γϕ̂τ,q)) = ℓ(yq · h(θ2, 2γϕ̂τ,q)) = 0 and we have 2γϕ̂τ,q is the signal part.

On the other hand, we know that all the first half columns in D2 are orthogonal with each other, and the second half columns
in D2 are opposite to the first half columns. We have the same fact to D1. As Ξ is a symmetric noise distribution, we have
E[∥PD1

(Ξ))∥2
2]

E[∥PD2
(Ξ))∥2

2]
= ν1+1

ν2+1 and we have PD1(Ξ)) and PD2(Ξ)) is the noise part.

C.3. Auxiliary Lemma

Lemma C.1 (Chernoff bound for binomial distribution). Let Z ∼ Bin(n, p) and let µ = E[Z]. For any 0 < ϵ < 1, we have

Pr(|Z − µ| ≥ ϵµ) ≤ 2 exp

(
−ϵ2µ

3

)
.
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