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Abstract

Probabilistic regression is used in fields such as
healthcare, finance, energy, robotics and meteorol-
ogy. Although many works have dealt with prob-
abilistic regression, they have frequently done so
independently, often failing to compare against
each other. This paper reviews probabilistic re-
gression and aims at providing a unified overview
of the area. We experimentally compare diverse
approaches and observe that direct methods per-
form comparably to their sample-predicting coun-
terparts, while being simpler to train and cheaper
to infer with. We then introduce a taxonomy that
sheds light onto the design choices behind each
of the direct methods, suggesting new ones. The
main takeaway is that simple methods can serve
as strong baselines and should not be disregarded.

1. Introduction
Probabilistic regression is a field shared by various dis-
ciplines, such as finance (Timmermann, 2000), meteorol-
ogy (Ravuri et al., 2021; Bi et al., 2023; Wilks, 2011),
statistics (Gneiting & Katzfuss, 2014) and machine learn-
ing (Danelljan et al., 2020; Bishop & Nasrabadi, 2006).
Some of these disciplines developed probabilistic regression
independently and out of necessity, as they require reliable
estimations of the probabilities of all outcomes. Probabilis-
tic predictions (including forecasting) are also encountered
in healthcare (Jones & Spiegelhalter, 2012; Alkema et al.,
2007), energy (Zhang et al., 2014; Xu et al., 2022; Lauret
et al., 2024), hydrology (Krzysztofowicz, 2001), economics
(Timmermann, 2000), demographics (Raftery et al., 2012)
and computer vision (Gustafsson et al., 2020b) applications,
among others. As a consequence, works on probabilistic
regression are scattered throughout the scientific literature,
many times unaware of each other (e.g. (Han et al., 2022)
and (Gustafsson et al., 2022)). Furthermore, there is no
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consensus on baselines and different communities use dif-
ferent metrics. The aim of this review paper is to provide an
entry point for practitioners of deep probabilistic regression,
i.e., of probabilistic regression that leverages the powerful
representations obtained with deep networks.

The research question guiding our work is: “What is the
best probabilistic regression method?”. Naturally, good-
ness criteria should be defined, and the usual considerations
of performance, efficiency, ease of use, and scalability are
obviously of interest. Methods that mirror supervised learn-
ing, except for the chosen loss function, are particularly
attractive when considering efficiency, ease of use and scala-
bility. We call these methods direct methods. Unfortunately,
there are many direct methods, presented in individual dis-
connected papers, and largely ignored in past surveys on
probabilistic predictions. For readers already familiar to
probabilistic regression, the main contributions of this
work are (a) the collection and categorization of direct
methods under a unifying taxonomy and (b) the experi-
mental comparison against non direct methods.

We have also found that the literature contains many dif-
ferent yet related concepts (e.g. probabilistic regression,
forecasting, uncertainty estimation, calibration) and many
different metrics and evaluation tools. For instance, meteo-
rology and epidemiology make heavy use of the Continuous
Ranked Probability Score (CRPS) as a metric (Wilks, 2011;
Bracher et al., 2021), while in machine learning, the nega-
tive log-likelihood (NLL) is more commonly used (Bishop
& Nasrabadi, 2006). For readers new to probabilistic regres-
sion, we (c) provide an entry-point describing the main
concepts and standard evaluation practices in Section 3.

In a nutshell, this work provides a new taxonomy, summa-
rized in Table 1, that organizes and helps us understand
direct methods, which are cheap, scalable, and easy to use.
The taxonomy suggests new methods and avenues for im-
provement. It involves framing deep probabilistic regression
similarly to supervised learning, looking at the target loss
(either NLL or CRPS, presented later), at the fixed, learned
or predicted parameters, and at the Cumulative Distribu-
tion Function (CDF) they assume. We also provide a brief
introduction to probabilistic regression, including strictly
proper scoring rules, calibration considerations, and cate-
gorize methods into Bayesian, ensemble, generative, and
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direct. Approximations and differentiable formulations of
the CRPS are also reintroduced. Besides these conceptual
contributions, we run an extensive (8 datasets, 20 fold cross-
validation) apples-to-apples comparison between sampling
methods and direct methods. We show that direct meth-
ods are comparable to their sample-predicting counterparts.
This work aims to structure the field and provide strong,
lightweight baselines that accelerate the development of
effective deep probabilistic regressors across disciplines.

The paper is organized as follows: Section 2 introduces
related work, with a focus on ensemble, Bayesian, gener-
ative and direct methods. Section 3 provides background
on probabilistic regression and its evaluation via scoring
rules. Section 4 introduces and explains the most repre-
sentative direct methods found in the literature. The tax-
onomy presented in Section 5 organizes direct methods
according to their design choices and suggests new losses.
The most representative direct methods are compared to
sample-predicting approaches in the experiments of Sec-
tion 6. Finally, Section 7 concludes the work.

2. Related Work
Many works have reviewed probabilistic prediction meth-
ods in the past, often restricted to specific disciplines, for
instance meteorology (Wilks, 2011), epidemiology (Bracher
et al., 2021), or wind forecasting (Bazionis & Georgilakis,
2021). Some reviews have dealt with probabilistic predic-
tions in general, notably (Gneiting & Katzfuss, 2014). More
related to our work are reviews of probabilistic predictions
in a deep learning context (Tyralis & Papacharalampous,
2024; Abdar et al., 2021; Seligmann et al., 2024). Unfortu-
nately, they focus mostly on classification, ensembles and
Bayesian inference, and do not pay much attention to what
we call direct methods for regression, which are the focus
of this work.

Probabilistic regression is related to uncertainty estimation.
In fact, probabilistic regression is evaluated using strictly
proper scoring rules (SPSRs), similar to uncertainty estima-
tion (Gustafsson et al., 2020b). The main difference is in
intent: while probabilistic regression aims to provide proba-
bility estimates for every outcome, uncertainty estimation
is about detecting unreliable predictions. Probabilistic re-
gression is also related to calibration (Dheur & Taieb, 2023;
Minderer et al., 2021). Indeed, SPSRs automatically take
calibration into account, as they measure how close the pre-
dicted distribution is to the observed data distribution. All
else being equal, uncalibrated models get worse scores than
calibrated ones.

Ensemble methods have been used for a long time in me-
teorology (Richardson, 2000). They generate a probability
distribution from different point predictions, usually by com-

puting the empirical CDF. Ensembles implicitly assume that
the predictions are distributed similarly to the target vari-
able. However, this is not necessarily the case, for example,
in numerical weather prediction, small physically plausi-
ble perturbations of the initial conditions (Anderson, 1997)
are not always mapped through the simulation to the true
distribution of the outcomes, and statistical postprocessing
is frequently required (Gneiting & Katzfuss, 2014; Wilks,
2011). The principle of adding perturbations to the input
has been applied also in deep learning (Wen et al., 2020).
Ensembles of deep models (a.k.a. DeepEnsembles) were
originally introduced in (Lakshminarayanan et al., 2017).
Albeit old, DeepEnsembles perform the best when scaled
up (Gustafsson et al., 2020b; Seligmann et al., 2024). It is
worth noting that DeepEnsembles are simply a collection
of many direct methods, therefore all advances in direct
methods translate easily into ensembles.

Bayesian Methods model the distribution of the target vari-
able y conditioned on an input x by marginalizing the pa-
rameters w. In other words, Bayesian methods aim to use
the distribution p(w|D) of the model parameters w given
the data D. They compute

p(y|x,D) =

∫
p(y|x,w)p(w|D)dw, (1)

with the integral being approximated by Monte Carlo sam-
pling of wi ∼ p(w|D). However, sampling from p(w|D)
is unfeasible, and approximations are needed (Gustafsson
et al., 2020b). Equation 1 is known as the Bayesian Model
Average (BMA) (Wilson, 2020). It is worth noting that
DeepEnsembles can be seen as approximation of the BMA
(Wilson, 2020; Gustafsson et al., 2020b). A celebrated ex-
ample of Bayesian inference is Monte Carlo Dropout (MCD)
(Gal & Ghahramani, 2016) (refined in (Hron et al., 2018)),
which uses dropout at training and inference time. Bayesian
networks (Pearl, 2022) were also foundational, although
it is hard to make some new architectures bayesian (Cin-
quin, 2021). Probabilistic Backpropagation (PBP) is also
of interest (Hernández-Lobato & Adams, 2015). We experi-
mentally evaluated PBP and MCD which resulted in inferior
performance relative to most other approaches. On top of
that, Bayesian methods usually involve sampling, which
adds computational overhead at inference and is harder to
implement (Seligmann et al., 2024).

Generative models are related to ensembles and Bayesian
methods in that they also generate samples of the target
distribution. Some generative models are conditioned on a
latent variable ϵ, which is sampled at random during train-
ing and inference (Ravuri et al., 2021; Zhao et al., 2016).
Other two relevant works are GCDS (Zhou et al., 2023), an
extension of the GAN (Zhao et al., 2016), and CARD (Han
et al., 2022), which introduces diffusion for probabilistic
regression. Notably, CARD outperforms DeepEnsembles.
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Losses for Deep Probabilistic Regression

Table 1. Example characterization of representative direct methods for probabilistic regression under our taxonomy.

Name Reference Minimizes Implicit Predicts CDF

Canonical (Bishop, 1994; Nix & Weigend, 1994) NLL ✗ (µ, b) or (πk, µk, σk)
K
k=1 Laplace, Normal, MoG

Canonical (Dheur & Taieb, 2023) CRPS ✗ (πk, µk, σk)
K
k=1 Normal

CE (Stewart et al., 2023) NLL ✗ {τi = CDF(bi)}Bi=0 Piecewise-Linear

Pinball (Koenker & Bassett, 1978) ≈CRPS ✗ {bi : CDF(bi) = τi}B−1
i=1 Piecewise-Linear

IQN (Dabney et al., 2018a) ≈CRPS ✓ bτ for any τ F (y) = sup{τ : bτ ≤ y}
EBM (Gustafsson et al., 2020a; 2022) NLL ✓ f(y) for any y F (y) =

∫ y

−∞ f(y′)dy′

Direct methods do probabilistic prediction more simply,
mainly leveraging a loss function. Throughout the paper,
we describe the contributions of Hamilton et al.; Bishop
& Nasrabadi; Bishop; Nix & Weigend regarding NLL
minimization. We also experiment with regression-by-
classification approaches (Sønderby et al., 2020; Oord et al.,
2016), and show it makes theoretical sense as it is simply
another instance of proper scoring rule minimization. The
Pinball loss might be tracked back to (Koenker & Bassett,
1978) and it has been present in the literature ever since
(Steinwart & Christmann, 2011) and even improved upon
(Chung et al., 2021). To the best of our knowledge, the
CRPS as a deep learning loss was used in (Dheur & Taieb,
2023) for the Mixture Density Network (MDN) (Bishop,
1994) but never for piecewise-linear CDFs. The implicit
models of Implicit Quantile Network (IQN) (Dabney et al.,
2018a) and its density-estimation analog, Energy Based
Model (EBM) (Gustafsson et al., 2020a), is also included in
our review.

3. Background
We describe probabilistic regression in terms of an input
to the regressor x ∈ Rd, a continuous outcome variable
y ∈ R, and a predicted cumulative density function (CDF)
F (y|x) = P (Y ≤ y|x) or its derivative the probability
density function (PDF) f(y|x) (both conditioned on x). Un-
like deterministic regression, which outputs a single point
estimate ŷ = f(x), probabilistic regression seeks to predict
the true conditional distribution p(y|x) (Gustafsson et al.,
2020a). For problems with many variables (e.g. different lo-
cations in weather forecasting (Sønderby et al., 2020)), one
can predict multiple distributions (p(y1|x), . . . , p(yN |x))
for some input data x. This is different from modeling
the joint distribution p(y1, . . . , yN |x), which is seldom re-
quired and outside the scope of our work (see (Gustafsson
et al., 2020a) if multidimensional distributions are needed).
Obviously, one has no access to p(y|x), only to samples
{(x1, y1), . . . , (xN , yN )}, which one can use to evaluate
how well a probabilistic regression method performs.

Fortunately, there is consensus on how to evaluate proba-

bilistic predictions. While other metrics can be proposed,
the ones below provide a rather complete overview of how
probabilistic regression is evaluated in diverse scientific
disciplines, and are applicable to any method. Some met-
rics are classified as strictly proper scoring rules (SPSRs),
meaning that they are only minimized when the predicted
distribution exactly matches the true distribution of the
data (Gneiting & Raftery, 2007). It follows that the op-
timal solution is the same across these metrics (the true
distribution), but they provide different numerical values
and optimization landscapes. We comment on categorical
distributions in the Supplement D, and focus now on the
methodology for probabilistic regression tasks. The two
most widely used strictly proper scoring rules for regression
are the Continuous Ranked Probability Score (CRPS) and
the LogScore (LS), also known as negative-log-likelihood
(NLL) (Gneiting & Katzfuss, 2014). Although they are
known as “scores”, lower is better. In what follows, we
drop the conditioning on the input x for the sake of brevity
and generality.

The CRPS is defined as

CRPS(F, y) =
∫ ∞

−∞
(F (y′)− 1y≤y′)2dy′. (2)

The CRPS evaluates the entire predicted CDF, F (y), and
compares it with a step function centered at the observed
value. It is a strictly proper scoring rule (Matheson & Win-
kler, 1976). Sometimes, it is the only metric used to evaluate
probabilistic regression performance (Ravuri et al., 2021).
The most general way to compute the CRPS is numeri-
cally, but for specific distributions such as the ones given
by piecewise-linear CDFs, closed-form formulas can be de-
rived, which are exact and fast (Suplement F). The CRPS is
robust to estimation errors, and this makes it preferable in
some applications (Bracher et al., 2021).

The LogScore (LS) or Negative Log Likelihood (NLL) is
defined as

LogScore(f, y) = NLL(f, y) = − log(f(y)). (3)

This involves evaluating the predicted PDF f at the observed
value y. Like the CRPS, it is strictly proper, but unlike the
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CRPS, it presents the property of locality, i.e. the metric
does not depend in probabilities assigned to values other
than the observed (which means that bin contiguity is ig-
nored for histogram-like PDFs). It is also additive, meaning
that the LogScore of many predictions is the sum of the
individual LogScores (Benedetti, 2010). Moreover, the LS
is useful for classification tasks and is trivially differentiable.
The expected LS is equivalent to the Kullback–Leibler di-
vergence DKL(p∥f) up to the constant entropy of the true
distribution Ep(y)[− log p(y)]. The NLL diverges to infinity
if any observed outcome was assigned a zero probability,
which might or might not be desirable, depending on the
application.

Sharpness and calibration offer a holistic view of a
model’s performance. Sharpness refers to the concentra-
tion of predictive distributions and depends only on the
predictions. Higher sharpness is better, given that the model
is calibrated. Calibration refers to the alignment between
predicted probabilities and observed frequencies. A proba-
bilistic regression model is calibrated when the frequency of
the actual outcomes falling within a specified predictive in-
terval or quantile corresponds with the predicted frequency.
We define τi = F (yi|xi) = P (Y ≤ yi|xi). Computing
τi for each data pair (xi, yi) yields the collection of pairs
(yi, τi). These pairs serve as the basis for calculating cali-
bration metrics and generating insightful plots, as discussed
below.

A reliability diagram offers a visual method to assess the
calibration of probabilistic predictions. It leverages the Prob-
ability Integral Transform (PIT) theorem (Dodge, 2003),
which states that τ = F (Y ) should be uniformly distributed,
therefore their empirical CDF should be the identity func-
tion. The reliability diagram is defined as the scatter plot
of the pairs (τ(i), i/n) where τ(1) < τ(2) < · · · < τ(n) is
the ranking of the τs. Compared to the PIT histogram, the
reliability diagram looks less noisy.

Lastly, the Expected Calibration Error (ECE) provides
a quantitative measure of a model’s calibration by com-
puting the mean absolute deviation between the predicted
cumulative probabilities and the observed frequencies. For
cumulative probability predictions τi, the calibration error
is calculated as

ECE =
1

n

∑
i

∣∣∣∣∣∣τi − 1

n

∑
j

1τj≤τi

∣∣∣∣∣∣ , (4)

where n is the total number of observations. Graphically,
it is the mean absolute difference between the Reliability
Diagram curve and the identity function. The ECE offers a
concise metric that summarizes the overall calibration of the
model. However, it does not indicate with what probability
or how the model is miscalibrated.

4. Review of Differentiable Losses for
Probabilistic Regression

We now describe and present the menu of direct methods
using consistent vocabulary and notation, highlighting simi-
larities and ordering them by incremental complexity.

Direct methods for deep probabilistic regression mirror
traditional deep regression. We denote a neural network with
weights w and input x by g and call its outputs z = g(x,w).
Training a neural network for traditional regression involves
solving

w⋆ = argmin
w

1

N

∑
i

L(g(xi, w), yi), (5)

where (xi, yi) are input-target pairs and L is a loss func-
tion such as the Mean Squared Error (MSE) or the Mean
Absolute Error (MAE). Analogously, direct probabilistic
regression methods solve

w⋆ = argmin
w

1

N

∑
i

SPSR(fg(x,w), yi), (6)

where fz = fg(x,w) is a probability distribution explicitly
parametrized by1 z = g(x,w) and SPSR is a strictly proper
scoring rule. Here, z is a set of parameters that describe
the distribution, different models will yield different z. In
this case, the SPSR serves the role of optimization objective,
not of evaluation metric (if desired, it can be used as such
too). Equation 6 can be rewritten to consider a loss function
Lf (z, y) = SPSR(fz, y) that acts on the parameters z and
not on the distribution fz:

w⋆ = argmin
w

1

N

∑
i

Lf (g(x,w), yi), (7)

exactly matching traditional regression. The attractiveness
of direct methods is that most advances in traditional super-
vised learning translate directly to probabilistic regression.

4.1. Deterministic Predictions Seen as Probabilistic

Equations 5 and 7 are the same up to the choice of the loss
function, where Lf is related to some probability distribu-
tion f . But in fact, for the cases of the MSE and MAE,
the equations are exactly the same. Let f be a Gaussian
N (µ, σ), formally

p(y|x) = 1√
2πσ2

exp

(
−1

2σ2
||y − µ||2

)
. (8)

Its LogScore or NLL is

− log p(y|x) = 1

2

(
log 2πσ2 +

∥y − µ∥2

σ2

)
(9)

1We will abuse notation slightly: sometimes g will be followed
by some manipulation (e.g., an activation function) before obtain-
ing z.
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which is to be minimized (Equation 7). For predicted µ =

g(x,w) and fixed σ =
√
2
−1

the equation becomes

− log p(y|x) = log π

2
+ ∥y − g(x,w)∥2, (10)

which is exactly the MSE up to an additive constant that
does not modify the optimization. Therefore, for this choice
of fixed (σ) and predicted (µ) parameters, minimizing the
LogScore (Lf = − log p(y|x)) amounts to minimizing the
MSE. The same happens for the MAE, but with the Laplace
distribution:

Lf (z, y) = log(2b) + b−1|y − µ|, (11)

where z = µ = g(x,w) and b = 1. The equivalence
between the optima (which are the mean and median of the
true p(y|x) for the MSE and MAE, respectively) happens
irrespective of the choice of the distribution width (σ or b).
This well-known fact is explained in (Bishop & Nasrabadi,
2006) and justifies the MSE and the MAE.

4.2. Learned Parameters

It is interesting to note that the choice of which parameter
to predict (µ) and which parameter to fix (the width) is arbi-
trary, one could have chosen to predict the width and fix the
µ instead. In fact, a third way to handle parameters was in-
troduced in (Hamilton et al., 2020) which involves learning
a global parameter. In particular, they showed that learning
the “fixed” width b or σ of the assumed distribution during
training was useful for outlier detection, robust modeling,
and recalibration. This approach is a step closer to what is
commonly known as probabilistic regression.

4.3. Full Likelihood Maximization

One of the key concepts in (Bishop & Nasrabadi, 2006) is
log-likelihood maximization. This is equivalent to mini-
mizing the LogScore. LogScore minimization is applica-
ble to any distribution f (as long at it does not diverge).
One can choose to predict all the parameters of the distri-
bution f . For the Laplace case, this entails to predicting
(µ, b) = (g(x,w)1,Softplus(g(x,w)2)), where the second
variable should be positive. For the Gaussian case, we can
similarly set (µ, σ) = (g(x,w)1,Softplus(g(x,w)2)). The
Gaussian case is exactly the Mixture of Gaussians (MoG)
distribution for K = 1, and in this case the loss becomes

Lf (z, y) = log

(∑
k

πk
1√
2πσ2

k

exp

(
−1

2σ2
k

||y − µk||2
))

,

(12)
with z = {(πi, µi, σi)}i, mixture weights (π1, . . . , πK) =
Softmax(g(x,w)1, . . . , g(x,w)K), centers µi =
g(x,w)K+i, and widths σi = Softplus(g(x,w)2K+i).
Predicting the parameters of this distribution is called

Mixture Density Networks (MDN) (Bishop, 1994), which
are interesting as they can represent multiple modes.

4.4. Minimizing the CRPS

The same concept of minimizng a SPSR can be applied for
the CRPS. In fact, closed-form expressions of the CRPS are
known for most canonical distributions (Jordan, 2017). For
instance, for the Laplace distribution the CRPS is

L(z, y) = b

(
exp (−b−1|y − µ|)− 3

4
+ b−1|y − µ|

)
.

(13)

Notably, (Dheur & Taieb, 2023) compared the calibration
of a MDN trained to minimize the NLL and another MDN
trained to minimize the CRPS, for which a closed-form
expression also exists (Grimit et al., 2006).

4.5. Piecewise-linear CDFs

A more flexible way to parameterize a distribution that ac-
cepts an arbitrary number of parameters is via defining the
CDF at a finite number B + 1 of knots (b, τ). Between two
consecutive knots bi < bj , no information is provided, and
out of indifference, all y : bi < y < bj are assigned the
same probability density f(y). This means that the CDF is
composed of straight lines connecting consecutive points,
justifying the piecewise linear (PL) denomination. Advan-
tages of PL include the flexible number of parameters and
the capacity to approximate any empirical distribution given
enough knots. Consequently, the PDF is piecewise-constant,
as we only assumed τi = F (bi). Without loss of generality
we can assume ordered bin borders b0 ≤ b1 ≤ · · · ≤ bB .

In what follows, we provide different ways to train a network
to predict the points (bi, τi) that will define the CDF. We
will always ask for the good simultaneous ordering of the
bi and the τi, as monotonicity (bi < bj ⇒ τi < τj) is
broken otherwise, and the resulting function is not a CDF.
The notion of quantile will be relevant. The τ -quantile is
called bτ and it is such that F (bτ ) = τ .

4.6. Regression as Classification

The next loss we introduce is the categorical cross-entropy
(CE) loss. The categorical cross-entropy loss is widely
used for categorical distributions, i.e., where the possible
set of values is unordered, discrete, finite, and mutually
exclusive. These assumptions fit classification tasks, but
do not fit regression. However, some notable works have
used the CE loss for regression anyways (Sønderby et al.,
2020; Oord et al., 2016). To compute it, they discretize the
continuous domain, i.e. fix the bin borders bi, and predict
the probability mass (τi+1−τi) inside each bin [bi, bi+1] for
i ∈ [0, B−1]. If the bounds of the domain are unknown, one
can also predict the out-of-bounds probabilities P (Y ≤ b0)

5
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and P (bB < Y ). The option with (b0, bB) as borders is
presented here. The Cross-Entropy loss is

L(z, y) = −
B∑
i=1

1y∈[bi−1,bi] log zi (14)

for zi = Softmax(g(x,w)1, . . . , g(x,w)B)i. Due to the
softmax, the predictions are normalized (

∑
i zi = 1).

The PDF at a given bin is given by f(y ∈ [bi, bi+1]) =
τi+1−τi
bi+1−bi

= zi+1

bi+1−bi
. Therefore, in the case of regularly

spaced bins, the CE loss is equivalent to LogScore mini-
mization up to a scale factor, and can be dubbed histogram
estimation. For the case with irregular bins, the LogScore
minimizing rule is

L(z, y) = −
B∑
i=1

1y∈[bi−1,bi] log
zi

bi − bi−1
. (15)

A potential drawback of this approach is that quantizing
the domain and defining lower and upper bounds might not
be easy. Quantile regression (explained next) might be pre-
ferred for such cases. Furthermore, this loss is local and
does not exploit the well-defined bin order, which might
be useful if one expects consecutive bins to have similar
probabilities. Nevertheless, Stewart et al. explored why
framing regression as classification was successful in ma-
chine learning competitions, and found that the implicit
biases induced by gradient-descent made optimization eas-
ier for the CE loss. The observation extends trivially to
probabilistic regression.

4.7. Quantile Regression

Quantile regression (QR) is a traditional probabilistic re-
gression method whose goal is to predict the bτi for a range
of τis, for instance [0.25, 0.5, 0.75]. This is, the F (bi) are
fixed (usually F (bi) = i/B) and one predicts the zi = bi.
It leverages the pinball loss, which generalizes the mean
absolute error (τMAE = 0.5) for any value of τ . The pinball
loss is

L(z, y) =
∑
i

(τi − 1y≤bτi
)(y − bτi) (16)

and it approximates the CRPS (Bracher et al., 2021). An
advantage of this loss is that each bτi is independent, and no
ordering needs to be imposed during training. This loss has
been tried in reinforcement learning with success, where it
was presented as an improvement to categorical distribution
modeling (Dabney et al., 2018b).

4.8. Implicit Quantile Networks

Instead of simply doing quantile regression, one can train a
network to predict the bτ for any given τ . This method was

introduced in (Dabney et al., 2018a). Assume that the net-
work h : X → Rd maps the input x to some features h(x),
and some extra layers gl : Rd → R map the features to
an output value. An additional function ϕ : [0, 1] → Rd

embeds sampled quantiles τ into the feature space. Then
the estimated value is

bτ = gl(h(x) · ϕ(τ)) = g(x,w, τ) (17)

with ϕj(τ) = ReLU
(∑n−1

i=0 cos(πiτ)wij + cj

)
, where

n = 64, and wij and cj are the parameters of the function ϕ.
The coordinate j indexes each one of the d dimensions.

At each training step, one samples N quantile levels
τ1, . . . , τN from a uniform distribution, predicts zi = bi =
g(x,w, τi) and computes the following loss

L(z) =
∑
i

|τi − 1y≤bτi
|Lκ(y − bτi)

κ
, (18)

where the Huber loss term (Huber, 1992) is used instead of
the absolute difference of the pinball loss:

Lκ(δ) =

{
1
2δ

2, if |δ| ≤ κ,

κ
(
|δ| − κ

2

)
, if |δ| > κ.

(19)

Alternatively, one could use the pinball loss, that way an
approximation of the CRPS would be minimized.

4.9. Energy Based Models

Introduced in (Gustafsson et al., 2020a) and further devel-
oped in (Gustafsson et al., 2022), Energy Based Models
(EBM) is to the cross-entropy what IQN is to QR. However,
creating an implicit version of the cross-entropy is not as
easy, as the probabilities estimated by the implicit network
should be normalized. In particular, EBM estimate

f(y) =
exp(g(x,w, y))

Z(x,w)
, (20)

with a normalization term

Z(x,w) =

∫
exp(g(x,w, y))dy, (21)

which is intractable. EBM approximate the above ratio via
Monte-Carlo importance sampling, therefore requiring a
proposal distribution q(y). The original paper assumed q
was a mixture of three Gaussians centered at y with widths
selected via hyperparameter optimization (Gustafsson et al.,
2020a). It sampled M values {bm}Mm=1 from q and used as
loss

L(z, y) = log

(
1

M

M∑
m=1

exp(g(x,w, bm))

q(bm)

)
− g(x,w, y).

(22)
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However, the choice of q was arbitrary, and a workaround
was proposed in (Gustafsson et al., 2022). In this second
work a MDN implemented q and was jointly trained with
g via minimization of the KL divergence with the EBM
distribution, which simplified to Equation 22 (where q was
the MDN). This second paper also trained g using noise con-
trastive estimation, that we omit for brevity. This method
is more general and more complex than the previous ones.
Similarly to IQN, EBM has a feature extractor h, an em-
bedder ϕ, and a projector gl (with different dimensions for
these).

5. A Taxonomy of Probabilistic Regression
Losses

We now develop the taxonomy of losses Lf , looking at
(a) the distribution f , (b) the SPSR to be minimized, (c) the
choice of the fixed, learned and predicted parameters z, and
(d) whether the distribution is provided implicitly or explic-
itly. These design choices allow one to trivially generate
new losses, as we exemplify by the end of this Section.

5.1. Distribution f

All the losses Lf assume a probability distribution f param-
eterized by z. It is impossible not to do so, as the continuous
target space requires specifying probabilities for an infinite
number of outcomes. The assumption on f is also needed
when getting distributions from ensemble methods.

There are two main groups of distributions f (or F ): canoni-
cal distributions and piecewise-linear (PL) CDFs (histogram-
like PDFs). The first group uses well-known distributions
that depend on a few parameters, e.g. Laplace or Mixture of
Gaussians distributions (Bishop & Nasrabadi, 2006; Bishop,
1994; Hamilton et al., 2020; Dheur & Taieb, 2023). Two
advantages of parametric distribution are the parameter ef-
ficiency and their natural occurrence in some applications.
They should be the best if they match the underlying data-
generating process. The other group assumes PL CDFs and
is mainly represented by Quantile Regression (Koenker &
Bassett, 1978) and Regression as Classification (Stewart
et al., 2023). These are light on assumptions and flexible.
The IQN (Dabney et al., 2018a) can be seen as an implicit
version of QR, but EBMs (Gustafsson et al., 2022) are more
general and assume little.

5.2. Optimization Objective

Once a distribution is chosen, it must be fitted by minimiz-
ing a criterion that encourages fidelity to the data distribu-
tion. Naturally, the two SPSR used to evaluate probabilistic
forecasts are candidate criteria. The LogScore or NLL is
usually well-defined and differentiable, but the CRPS is
not necessarily so. Differentiable, closed-form expressions

of the CRPS for parametric distributions do exist in many
cases, but exact CRPS expressions are hard to find for PL
approaches. We found three differentiable expressions of
the CRPS for PL CDFs that we present in the Supplement.

From the methods analyzed, most minimize the LogScore
(Hamilton et al., 2020; Bishop, 1994; Gustafsson et al.,
2020a; 2022; Nix & Weigend, 1994; Sønderby et al., 2020;
Oord et al., 2016), but some minimize the CRPS (Dheur
& Taieb, 2023; Koenker & Bassett, 1978; Dabney et al.,
2018a).

5.3. Choice of Fixed, Learned and Predicted Parameters

Each parameter required by the distribution can be either
fixed, a learned constant, or freely predicted. For instance,
traditional regression using the MSE or the MAE as a loss
can be seen as estimating the center of a distribution with
fixed width (Bishop & Nasrabadi, 2006). However, it is also
possible to learn the parameters of the distribution globally
(Hamilton et al., 2020).

In particular, when assuming a PL CDF with knots (bi, τi)
indexed by i, one can choose to fix the bi and predict the
free τi (histogram estimation) (Stewart et al., 2023) or fix
the τi and predict the free bi (quantile regression) (Koenker
& Bassett, 1978). These are the two main ways used to gen-
erate PL CDFs. Histogram estimation is easy to implement
and works well given a good quantization of the domain,
while quantile regression finds a good quantization of the
space automatically.

5.4. Explicit and Implicit Models

Implicit methods implement a function g(x,w, t) that de-
scribes the distribution f : for instance if t = τ then g might
predict b = g(x,w, t) such that P (Y ≤ b|x) = τ (Dabney
et al., 2018a), or conversely, τ = g(x,w, t = b) = P (Y ≤
b|x) (Gustafsson et al., 2020a; 2022). These examples corre-
spond to the IQN and EBM, respectively. Implicit methods
operate with fewer assumptions but are more complex to
train and infer with compared to explicit methods, which
are limited by the number of parameters.

5.5. New Losses

These design choices (distribution, objective, parameters),
described in Table 1, characterize most loss functions
present in previous works and signal the existence of new
ones. Playing with different combinations one can get, for
example, CRPS-minimizing histogram-estimation (Hist-
CRPS), which fixes bi and predicts τi, but minimizing
the CRPS. Another option is Kernel Density Estimation
(KDE), which assumes as width the variance of the pre-
dicted values and generates the centers of equally weighted
Gaussians (essentially a MDN where only {µi}i are pre-

7
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Table 2. Comparison of methods across UCI datasets with mean NLL and standard deviation computed over 20-fold cross-validation
(Mean ± Std). Lower is better. Colors aid visualization and go linearly from red (worse, clipped at the third maximum value) to green
(better, clipped at the minimum value).

METHOD BOSTON CONCRETE ENERGY KIN8NM NAVAL POWER WINE YACHT

GCDS 18.66±8.92 13.64±6.88 1.46±0.72 −0.38±0.36 −5.06±0.48 2.83±0.06 6.52±21.86 0.61±0.34
PBP 2.53±0.27 3.19±0.05 2.05±0.05 −0.83±0.02 −3.97±0.10 2.92±0.02 1.03±0.03 1.58±0.08
MC DROPOUT 2.46±0.12 3.21±0.18 1.50±0.11 −1.14±0.05 −4.45±0.38 2.90±0.03 0.93±0.06 1.73±0.22
DEEPENSEMBLES 2.35±0.16 2.93±0.12 1.40±0.27 −1.06±0.02 −5.94±0.10 2.89±0.02 0.96±0.06 1.11±0.18
CARD 2.35±0.12 2.96±0.09 1.04±0.06 −1.32±0.02 −7.54±0.05 2.82±0.02 0.92±0.05 0.90±0.08
HIST-CRPS 3.49±0.27 4.15±0.13 3.40±0.28 0.17±0.10 −2.76±0.01 4.24±0.07 −0.34±0.12 2.78±0.24
KDE 2.86±0.38 3.55±1.03 2.75±0.48 −1.04±0.06 −4.22±0.14 2.84±0.37 1.02±0.32 3.26±0.55
PINBALL 2.78±0.30 3.45±0.17 1.55±0.40 −0.99±0.07 −5.73±0.83 2.93±0.04 0.80±0.08 1.10±0.36
LAPLACE-CRPS 2.41±0.19 3.04±0.10 1.28±0.29 −1.03±0.02 −5.52±0.19 2.89±0.02 0.95±0.05 0.93±0.18
CE 2.72±0.27 3.38±0.05 0.97±0.18 −1.10±0.02 −5.26±0.07 2.70±0.18 −0.71±0.03 2.07±0.13
GAUSSIAN-NLL 2.54±0.26 3.21±0.42 1.32±0.51 −1.25±0.05 −6.03±0.62 2.81±0.04 0.94±0.09 1.41±1.41
LAPLACE wb 2.50±0.25 3.04±0.14 0.80±0.23 −1.19±0.04 −5.61±0.3 2.81±0.02 0.93±0.07 1.09±0.53
MDN 2.49±0.52 3.08±0.46 1.81±1.38 −1.26±0.02 −5.79±0.97 2.73±0.38 0.13±0.04 1.09±0.22
LAPLACE-NLL 2.43±0.30 3.03±0.30 1.16±0.17 −1.22±0.03 −5.68±0.24 2.79±0.21 0.93±0.04 0.60±0.13

dicted). This is a method that generates samples of the
distribution in a single forward pass. This loss was evalu-
ated in the experiments. These proposals are novel, trivially
generated by changing some of the design choices described
by the taxonomy, and show that it is possible to use the
taxonomy as a template to create new loss functions. We
evaluate them in our experiments.

6. Experiments
Following previous works (Han et al., 2022; Gal & Ghahra-
mani, 2016), we conduct experiments on many real datasets
of the UCI ML repository. The full dataset and experimental
details are provided in the Supplement. These datasets are
all tabular, and the same MLP was used for all methods. We
run a subset of the methods that allow for insightful com-
parisons. For reference, we also report the performances
of PBP (Hernández-Lobato & Adams, 2015), Monte-Carlo
Dropout (MCD) (Gal & Ghahramani, 2016; Hron et al.,
2018), DeepEnsembles (Lakshminarayanan et al., 2017),
GCDS (Zhou et al., 2023) and CARD (Han et al., 2022),
which describe approaches that are less efficient (regarding
costs of implementation, training and inference) than direct
methods (except for PBP). We also note that we trained
and evaluated direct methods with the configuration tuned
for CARD or simpler. Compared with CARD, we remove
gradient clipping and exponential moving averages, and set
weight decay to 0.01. All experimental details are provided
in the Supplement.

All the PL CDF methods use 32 bins, and MDN uses 3
Gaussians. Results are summarized in Table 2, which shows
that the diffusion-based method CARD performs best, fol-
lowed by canonical distributions (Laplace, MDN), and them

by deep ensembles and the cross-entropy, which achieve
similar performance. We again note that CARD requires
plenty of training time and the hyperparameters were tuned
for it to achieve good performance. The results of Table 2
are divided into sample-predicting methods (top) and direct
methods (bottom). The first, except for PBP, are expensive
to train and run. In contrast, direct methods are cheap. The
main takeaway from the table is that direct methods are
comparable in performance to sample-predicting methods.
In particular, Laplace-NLL, MDN (along with its particu-
lar case Gaussian-NLL), and Cross-Entropy present perfor-
mances that many times surpass those of the CARD, the best
sample-predicting method. Finally, we timed the training for
CARD and direct methods, finding that the direct methods
are from 10× to 100× faster than CARD (Supplement E).

7. Conclusion
Probabilistic regression is relevant to many domains. Previ-
ous literature overlooked the simple, strong baselines pro-
vided by deep probabilistic regression losses. This paper
organized the losses into a taxonomy, exposed closed-form
expressions of the CRPS of piecewise-linear CDFs, and
experimentally evaluated representative methods. When
choosing a simple loss, practitioners can pick a parametric
distribution and do quantile regression or histogram estima-
tion. On top of that, they can choose to minimize the CRPS
or the LogScore, which are the strictly proper scoring rules
most commonly used for evaluation. Experiments suggest
that canomical distributions are strong candidates and that
the cross-entropy loss performs similarly to DeepEnsem-
bles, which are top-performers for scaled up applications
(Gustafsson et al., 2020b). We hope this work will draw
attention to the simplest ways to do probabilistic regression.
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A. Datasets
We follow (Gal & Ghahramani, 2016; Han et al., 2022;
Lakshminarayanan et al., 2017) in using public regression
datasets from the UCIML repository. They can be found in
this link.

B. Code
Code is available at https://
anonymous.4open.science/r/
LossesForDeepProbabilisticRegression/.

C. Implementation Details
We build upon CARD code. Firstly reproducing their results
(they are reproducible) and then implementing our meth-
ods on their codebase. We keep our methods as simple as
possible and follow their configuration (tuned for CARD)
as closely as possible. The differences are: 1. we remove
exponential moving averages of the weights, 2. we add 0.01
of weight decay, 3. we remove gradient clipping. For the
methods that require min and max bounds, we compute the
support size r = ytrain

max−ytrain
min, and obtain b0 = ytrain

min−r/10
and bB = ytrain

max+r/10 (except for Wine where we use r/5).
The number of Gaussians for the MDN is 3, the number
of bin levels and quantile levels is set to 32. We did not
tune these parameters. Our NLL computation was compared
with the original computation to ensure correctness. This im-
plied adding a scaling factor to all the NLL computed in the
normalized space (all the datasets are mean-std normalized).
The experiments were all run on 20-fold cross-validation as
done in the original (Han et al., 2022).

D. Categorical Evaluation
Evaluating probabilistic predictions for classification or cat-
egorical tasks involves using the LogScore (as in regression)
or the Brier score (Brier, 1950), althought the first is pre-
ferred for mathematical convenience (Benedetti, 2010).

E. Time Results
The time for the training over the first fold is reported for
two of the datasets, namely Concrete and Kin8nm. Full
comparison against CARD was not reported because CARD
takes a long time to train and original results did not include
training time. The results are in Table 3. They show that
the cross-entropy is the slowest method, but it takes 10% of
CARD training time for Concrete, and 5% of the training
time for Kin8nm. The fastest of the methods in the literature
is the Gaussian-NLL, which is more than 100× faster than
CARD.
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Losses for Deep Probabilistic Regression

Table 3. Training time in minutes across datasets and methods.

METHOD CONCRETE KIN8NM

CARD 9.4523 54.4446
HIST-CRPS 0.0906 0.2737
KDE 0.1446 0.5342
PINBALL 0.2637 0.4574
LAPLACE-CRPS 0.2409 0.6950
CE 0.9776 2.6564
GAUSSIAN-NLL 0.0977 0.4664
LAPLACE wb 0.1356 0.6175
MDN 0.2390 1.1582
LAPLACE-NLL 0.1984 1.5194

F. Differentiable Forms of the CRPS
F.1. CRPS Formula for PL CDF:

The consensus way to evaluate probabilistic regression pre-
dictions in some areas (e.g. meteorology, epidemiology)
is using the CRPS. One can naturally ask if directly min-
imizing the CRPS is possible. It turns out that for the
piecewise-linear CDF, the CRPS has a differentiable closed-
form expression. Define borders such that F (b0) = 0 and
F (bB) = 1. The most complicated part of the closed-form
solution is the integral of F (y)2 in a bin∫ bi+1

bi

(
F (bi) +

F (bi+1)− F (bi)

bi+1 − bi
(z − bi)

)2

dz

= −1

3

(
F (bi)

2 + F (bi)F (bi+1) + F (bi+1)
2
)
(bi−bi+1),

(23)

where we used that F (y) is piecewise-linear. The integral of
F (y) in a bin is easier to derive, and we omit it for brevity.
To develop the CRPS from Eq. (2) we assume b0 < y < bB ,
name k the index such that bk−1 < y < bk and get F (y)
from linear interpolation between F (bk−1) and F (bk). We
decompose the CRPS as

CRPS(F, y) =
∫ ∞

−∞
(F (y′)− 1y≤y′)2dy′

=

∫ y

b0

F (y′)2dy′ +

∫ bB

y

(F (y′)− 1)
2
dy′

=

∫ bB

b0

F (y′)2dy′ − 2

∫ bB

y

F (y′)dy′ + bB − y

= bB − y +

i=B∑
i=1

∫ bi

bi−1

F (y′)2dy′

− 2

(∫ bk

y

F (y′)dy′ +

i=B∑
i=k+1

∫ bi

bi−1

F (y′)dy′

)
, (24)

and find that the sum of individual applications of Eq. (23)
added to the integral of F (y) yields the score. For bB < y

the formula is CRPS(F, y) =
∫ y

b0
F (y′)2dy′ = (y − bB) +∫ bB

b0
F (y′)2dy′ and for y < b0 it is CRPS(F, y) = (b0 −

y) +
∫ bB
b0

(F (y′) − 1)2dy′ (the rest follows). We refer the
reader to the code for the full implementation.

This formula is used for Hist-CRPS, but it extends to all
losses that use a PL CDF. We checked this implementation
of the CRPS against numerical integration to ensure cor-
rectness. However, it is restricted to correctly ordered bin
borders.

F.2. Pinball loss

The pinball loss has been shown to be an approximation
of the CRPS (Bracher et al., 2021). Formally, the Pinball
function is

ρτ (u) =

τ u, u ≥ 0,

(τ − 1)u, u < 0.
(25)

and the CRPS becomes∫ ∞

−∞

[
F (x)−1{x ≥ y}

]2
dx =

∫ 1

0

ρτ
(
F−1(τ)− y

)
dτ.

(26)
In other words, the squared-difference form of CRPS is
equivalent to the integral of pinball losses over all quantiles
from 0 to 1.

F.3. Empirical CRPS for Point Predictions

Similarly to our loss KDE, one could predict many values
of ŷ. Another popular form of the CRPS is

CRPS(F, y) = E
[
|X − y|

]
− 1

2 E
[
|X −X ′|

]
, (27)

and with M predictions ŷi one can approximate

CRPS(F, y) =
1

M

∑
i

|ŷi − y| − 1

2M

∑
i

∑
j

|ŷi − ŷj |

(28)

which is differentiable with respect to the point predictions
ŷ.
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