
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MASTERING TASK ARITHMETIC: τ JP AS
A KEY INDICATOR FOR WEIGHT DISENTANGLEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-editing techniques using task arithmetic have rapidly gained attention.
Through task arithmetic, simply through arithmetic operations on the weights of
pre-trained and fine-tuned models create desired models, such as multi-task mod-
els, models with specific tasks unsolvable, or domain-transferred models. How-
ever, task arithmetic faces challenges, such as low reproducibility and the high
cost associated with adjusting coefficients in the arithmetic operations on model
parameters, which have limited its practical success. In this paper, we present
three key contributions in the context of task addition and task negation within task
arithmetic. First, we propose a new metric called τJp which is based on the prod-
uct of the task vector (τ) and the Jacobian of the pre-trained model with respect to
its weights. We show that τJp has a causal relationship with the interference that
occurs from arithmetic operations. Second, we show that introducing regulariza-
tion to minimize τJp significantly mitigates interference between task inferences,
which leads to eliminating coefficient tuning and better accuracy on each task.
Third, in the context of incremental learning, we confirmed that our τJp regular-
ization demonstrates more robust performance in environments where future tasks
to be learned are not accessible, validating the scalability of the approach. Fi-
nally, we demonstrate that the τJp regularizer further reinforces the performance
of task arithmetic by leveraging publicly available fine-tuned models, offering
practical benefits for real-world applications. Our code is available at https://
anonymous.4open.science/r/tau-Jp_Task_Arithmetic-1537

1 INTRODUCTION

While there is a growing demand for foundational models in recent machine learning trends, the high
computational costs associated with their training (Zhou et al., 2023; Kaplan et al., 2020; Villalobos
et al., 2022) remain a significant barrier to broader practical use. To address this, model-editing tech-
niques using task arithmetic (Ilharco et al., 2023) have rapidly gained attention in the fields of deep
learning (Yadav et al., 2023; Davari & Belilovsky, 2023; Yu et al., 2024; Tang et al., 2023b; Ortiz-
Jimenez et al., 2023). Task arithmetic offers a significant advantage over traditional approaches
by enabling the efficient creation of edited models without the need for additional training, simply
through arithmetic operations on the weights of pre-trained and fine-tuned models. Specifically, task
arithmetic enables three operations; the creation of a single model capable of handling multiple tasks
(task addition), a model that selectively reduces the performance for a specific task (task negation),
and a model capable of handling tasks not explicitly included in the training data (task analogies).
These are realized by basic operations such as scalar multiplication, addition, and subtraction.

However, task arithmetic faces challenges, such as low reproducibility and the high cost associated
with adjusting coefficients in the arithmetic operations on model parameters, which have limited its
practical success (see Table 1 and Table 2). In addition, there is still limited theoretical understand-
ing of why and how these techniques work (Ortiz-Jimenez et al., 2023). Ortiz-Jimenez et al. (2023)
demonstrated in their experimental setup for task addition and task negation that the degree of inter-
ference between task inferences can be quantified using a metric called the weight disentanglement
error. They also observed that linearizing the model by the neural tangent kernel (NTK) (Jacot
et al., 2018) approximation reduced the weight disentanglement error. However, while their study
provides important insight into the condition of successful task arithmetic, its scope is limited to
indirect explanations and approaches to improvement.

1

https://anonymous.4open.science/r/tau-Jp_Task_Arithmetic-1537
https://anonymous.4open.science/r/tau-Jp_Task_Arithmetic-1537

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Ensuring high reproducibility and minimizing computational costs while avoiding task interference
is essential for the practical application of task arithmetic. To address these challenges, we shed
light on the product of task vectors τ and the Jacobian matrix of the model function with respect
to its parameters. In particular, we investigate the relationship between this product and weight
disentanglement, drawing insights from the NTK regime and model linearization (Jacot et al., 2018;
Ortiz-Jimenez et al., 2023). We introduce a novel metric, τJp, and theoretically demonstrate that it
has a causal link to weight disentanglement. Based on this insight, we introduce the regularization
to minimize τJp and acquire task vectors with small interference between tasks. Moreover, we
demonstrate the effectiveness of the τJp regularizer in scenarios where future tasks to be learned
remain unknown or inaccessible. This is a critical requirement for scaling task arithmetic to more
complex and realistic environments. We further explore improving task arithmetic performance by
applying τJp regularization to the continual training of existing fine-tuned models. Our results show
that this approach is effective even with publicly available fine-tuned models, providing practical
advantages for real-world applications.

In this paper, we present three key contributions in the context of task addition and task negation
within task arithmetic.

• We propose a new metric, τJp (τ -Jacobian product), which can be shown to have a causal
relationship with weight disentanglement. We show that τJp tends to be inversely corre-
lated with normalized accuracy, i.e., the metric of performance variation from accuracy
before task arithmetic (Section 3).

• By introducing regularization during fine-tuning to minimize τJp, we significantly reduce
the interference between task predictions, thus greatly reducing the need for coefficient
adjustments (Section 4.1 and Section 4.2).

• We demonstrate that the regularization of τJp is effective in two practical scenarios: i) when
future tasks to be learned are unknown, or ii) when using publicly available fine-tuned mod-
els. Our regularization method demonstrates both scalability and practical applicability.
(Section 4.3).

We believe that these contributions will lead to the practical application of model-editing techniques
using task arithmetic.

2 BACKGROUND

Notation. Let θ ∈ Rp represent the weights of a neural network f : X → Y , where X ⊆ Rd

and Y ⊆ Rc are the input and output spaces with dimensionalities d and c, respectively. The
parameter θ has dimensionality p, representing the total number of model parameters. Additionally,
let θ0 represent the pre-trained weights and θ⋆ represent the fine-tuned weights. Let T denote the
index set of all possible tasks. Define the index set T ⊆ T as the set containing the indices of
all tasks used. For each task t ∈ T , the corresponding dataset Dt = {(xti , yti)}

|Dt|
i=1 is defined,

where xti ∈ X and yti ∈ Y . For a task t, fine-tuning is conducted by minimizing the loss function
1

|Dt|
∑|Dt|

i=1 L(f(xti ; θ), yti), starting from θ0, and yielding the fine-tuned weights θ⋆t .

2.1 MODEL EDITING VIA TASK ARITHMETIC

Task arithmetic (Ilharco et al., 2023) represents the difference between the weights of a fine-tuned
model and those of a pre-trained model — specifically, τ = θ⋆ − θ0 — as a task vector. By per-
forming arithmetic operations, such as the addition or subtraction of multiple task vectors, and then
adding the result to the pre-trained weights θ0, the model can be effectively edited. Two key meth-
ods1 leveraging task vectors for model editing have gained recognition in the field. Task addition
creates a multi-task model by summing task vectors obtained from various tasks and then adding
this sum to the weights of a pre-trained model. Task negation suppresses or erases the abilities and
properties only learned from a specific task by subtracting the corresponding task vector from the

1By task arithmetic, we refer to the definition provided in Equation (1) of Ortiz-Jimenez et al. (2023). This
definition does not account for task analogies, which were proposed as the third approach in Ilharco et al.
(2023). Therefore, we excluded task analogies in this work.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

pre-trained model’s weights. For instance, it can be used to forget toxic behaviors or biases learned
during training.

2.2 WEIGHT DISENTANGLEMENT

Ortiz-Jimenez et al. (2023) introduced the concept of weight disentanglement to measure the de-
gree of interference between task vectors in task arithmetic. Satisfying weight disentanglement is
represented by the following condition:

f

(
x; θ0 +

∑
t∈T

αtτt

)
=
∑
t∈T

f(x; θ0 + αtτt)1(x ∈ Dt) + f(x; θ0)1

(
x /∈

⋃
t∈T

Dt

)
(1)

The above equation implies that when performing task arithmetic using all task vectors within T ,
for a given task t , the model will produce the same output as when using only the task vector τt ,
and for tasks outside of T , the model will produce the same output as the pre-trained model. To
assess weight disentanglement between two tasks, weight disentanglement error was proposed.

ξ (α1, α2) =
2∑

t=1

Ex∼µt
[dist (f (x; θ0 + αtτt) , f (x; θ0 + α1τ1 + α2τ2))] (2)

where dist(·, ·) measures the distance between two models’ vector outputs. For classification tasks,
it checks whether the predicted labels from the two models, ŷ1 and ŷ2, match, i.e., dist(ŷ1, ŷ2) =
1(ŷ1 ̸= ŷ2). This error captures the difference in output distributions when task vectors are ap-
plied individually or jointly to a pre-trained model, reflecting the interference between task vectors
in function space. Ideally, in task arithmetic, each task vector would independently influence the
model’s output, resulting in the error being small.

2.3 NEURAL TANGENT KERNEL

The Neural Tangent Kernel (NTK) (Jacot et al., 2018) is a kernel that linearizes the learning dynam-
ics of infinite-width neural networks. In infinite-width networks, parameter updates during training
become infinitesimally small, allowing the following first-order Taylor approximation to hold:

f(x; θ) ≈ f(x; θ0) + (θ − θ0)
⊤∇θf(x; θ0). (3)

This approximation is valid in a regime commonly referred to as the NTK regime, or tangent space
(hereafter referred to as NTK regime), where the relationship between the parameter space and
function space becomes linearized. Recent studies have observed that fine-tuning large pre-trained
neural networks often operate within the NTK regime, as the parameter changes during fine-tuning
remain sufficiently small (Malladi et al., 2023; Ren et al., 2023). In contrast, it has also been reported
that in practice, fine-tuning finite-width models does not always result in perfectly linear behavior,
and fine-tuning can exhibit non-linear characteristics (Ortiz-Jimenez et al., 2023).

2.4 TASK ARITHMETIC IN THE NTK REGIME

In task arithmetic, the reason why linear operations in the weight space of neural networks translate
directly to changes in the function space can be explained by the following NTK approximation:

f(x; θ0 +
∑
t∈T

αtτt) ≈ f(x; θ0) +
∑
t∈T

(αtτt)
⊤∇θf(x; θ0) (4)

where for all t ∈ T , τt denotes the task vector for task t, defined as τt = θ⋆t − θ0, and αt ∈ R.
In simple terms, in the NTK regime, the linearity of operations on task vectors is preserved in the
model’s output, resulting in corresponding linear effects on performance.

In practice, it has been reported that explicitly enforcing fine-tuning within the NTK regime im-
proves task arithmetic (Ortiz-Jimenez et al., 2023; Tang et al., 2023b). Ortiz-Jimenez et al. (2023);
Tang et al. (2023b) demonstrated that fine-tuning within the NTK regime lowers weight disentangle-
ment error and improves the performance of task addition and negation. One linearization method

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

proposed by Ortiz-Jimenez et al. (2023) is to fine-tune linearized models flin(x, θ) within their NTK
regime when creating task vectors and the formulation follows:

flin(x, θ) = f(x, θ0) + τ⊤∇θf(x, θ0) (5)

However, it remains unclear why linearizing the model suppresses weight disentanglement error and
how this, in turn, enhances task arithmetic. These questions have not yet been fully addressed from
a theoretical standpoint. We focus on the term τ⊤∇θf(x; θ0) in the NTK approximation and aim
to provide a theoretical explanation. Building on this theoretical foundation, we propose a novel
method to enhance task arithmetic.

3 CAUSAL IMPACT OF THE τ -JACOBIAN PRODUCT ON WEIGHT
DISENTANGLEMENT

We theoretically explain weight disentanglement in the NTK regime and propose the τ -Jacobian
product as the underlying mechanism that drives weight disentanglement. We also experimentally
demonstrate the relationship between the τ -Jacobian product and model interference.

3.1 WEIGHT DISENTANGLEMENT IN THE NTK REGIME

In this section, we attempt to provide a theoretical explanation of the relationship between weight
disentanglement and the task vector Jacobian product in the NTK regime. For simplicity, we con-
sider task arithmetic involving two tasks, A and B. In the NTK regime, the model’s output can be
approximated as follows:

f(x, θ0 + αAτA + αBτB) ≈ f(x, θ0) + αAτ
⊤
A∇θf(x, θ0) + αBτ

⊤
B∇θf(x, θ0) (6)

with αA, αB ∈ R. In this case, for inputs xA and xB from tasks A and B, achiev-
ing a weight disentanglement error of 0 in Eq.(2) is equivalent to satisfying the condi-
tions f (xA; θ0 + αAτA + αBτB) = f (xA; θ0 + αAτA) and f (xB ; θ0 + αAτA + αBτB) =
f (xB ; θ0 + αBτB) for any αA and αB , which leads to Eq.(7) below.

f(xA, θ0 + αAτA + αBτB) ≈ f(xA, θ0) + αAτ
⊤
A∇θf(xA, θ0) + 0 ≈ f(xA, θ0 + αAτA),

f(xB , θ0 + αAτA + αBτB) ≈ f(xB , θ0) + 0+ αBτ
⊤
B∇θf(xB , θ0) ≈ f(xB , θ0 + αBτB).

(7)

Eq.(7) implies that the weight disentanglement error is 0 when the task vectors satisfy the following
conditions:

τ⊤A∇θf(xB , θ0) = 0,

τ⊤B∇θf(xA, θ0) = 0.
(8)

These conditions imply that the task vector for a given task is orthogonal to the Jacobian of the
pre-trained model, with respect to its parameters θ0, on the other task. In other words, lineariz-
ing the model alone does not guarantee weight disentanglement; it is also necessary to satisfy the
aforementioned conditions Eq. (8), as demonstrated theoretically.

We propose the following τ -Jacobian product (τJp) as a measure of how well the condition in Eq. (8)
is satisfied between two tasks:

τJp =
1

2

(
||τ⊤A∇θf(xB , θ0)||2 + ||τ⊤B∇θf(xA, θ0)||2

)
. (9)

The τJp is the average of the product of one task vector and the gradient of the pre-trained model with
respect to its weights on the other dataset, taken across both datasets. According to the condition
Eq. (8), a smaller τJp is desirable.

3.2 RELATIONSHIP BETWEEN τ -JACOBIAN PRODUCT AND INTERFERENCE

As demonstrated in Section 3.1, a smaller τJp improves weight disentanglement and reduces inter-
ference between task vectors. In this section, we experimentally show that minimizing τJp effec-
tively mitigates task vector interference.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

-3.0 -1.0 0.0 1.0 3.0
1

-3.0

-1.0

0.0

1.0

3.0

2

0

Li
ne

ar
 F

T

Cars-MNIST
(Jp: 4.1)

-3.0 -1.0 0.0 1.0 3.0
1

-3.0

-1.0

0.0

1.0

3.0

2

0

DTD-GTSRB
(Jp: 6.6)

-3.0 -1.0 0.0 1.0 3.0
1

-3.0

-1.0

0.0

1.0

3.0

2

0

EuroSAT-RESISC45
(Jp: 10.1)

0.0

0.1

0.2

0.3

0.4

0.5

W
ei

gh
t D

ise
nt

an
gl

em
en

t E
rro

r

-3.0 -1.0 0.0 1.0 3.0
1

-3.0

-1.0

0.0

1.0

3.0

2

0O
ur

s

(Jp: 0.7)

-3.0 -1.0 0.0 1.0 3.0
1

-3.0

-1.0

0.0

1.0

3.0

2

0

(Jp: 1.3)

-3.0 -1.0 0.0 1.0 3.0
1

-3.0

-1.0

0.0

1.0

3.0

2

0

(Jp: 1.7)

0.0

0.1

0.2

0.3

0.4

0.5

W
ei

gh
t D

ise
nt

an
gl

em
en

t E
rro

r

Figure 1: Visualization of weight disentanglement in ViT-B-32 with respect to τJp. The upper row
illustrates the linearized model without regularization, while the lower row presents the model with
our proposed regularization. Overall, it is observed that when τJp is large, weight disentanglement
becomes sensitive to the coefficients. As τJp increases, weight disentanglement shows greater ro-
bustness to variations in the coefficients. Furthermore, our proposed regularization enhances this
robustness with respect to the coefficients. The red cross at the center represents the pre-trained
model, and the red box indicates the typical coefficient search range in task arithmetic.

In the experiments, linearized fine-tuning (FT) (Ortiz-Jimenez et al., 2023) of different pre-trained
Vision Transformers (ViTs) (Dosovitskiy et al., 2021) under the same conditions as in Ilharco et al.
(2022); Ortiz-Jimenez et al. (2023) was conducted using CLIP (Radford et al., 2021) on eight image
tasks. Specifically, the eight tasks are Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), Eu-
roSAT (Helber et al., 2019), GTSRB (Stallkamp et al., 2011), MNIST (LeCun, 1998), RESISC45
(Cheng et al., 2017), SUN397 (Xiao et al., 2016), and SVHN (Netzer et al., 2011).

First, we investigated the relationship between τJp and weight disentanglement. Figure 1 visualizes
weight disentanglement alongside τJp. In the top row showing Linear FT, we can see that when τJp
is large, the blue area becomes more prominent, indicating that the weight disentanglement error
is more sensitive to each coefficient and interference is not being prevented. As τJp decreases, the
error tends to become more robust to changes in the coefficients.

Next, we focus on the actual performance of task arithmetic. We analyzed the correlation between
normalized accuracy and τJp, presenting the resulting scatter plot in Figure 2. Each data point rep-
resents a model trained by performing task addition on two out of the eight image tasks. Normalized
accuracy is defined as the accuracy of each task after applying task arithmetic relative to its accuracy
before task arithmetic, which is set to 1.0. Across all model scales, we observed a consistent trend
where task pairs with smaller τJp values tend to exhibit higher normalized accuracy.

4 ENHANCING TASK ARITHMETIC BY MITIGATING INTERFERENCE
BETWEEN TASKS

4.1 τ -JACOBIAN PRODUCT FOR REGULARIZATION

As demonstrated in Section 3, to prevent interference between task vectors in task arithmetic and
to improve performance, it is necessary not only to linearize the model but also to keep τJp small
simultaneously. Building on these theoretical and empirical insights, we propose a novel method to
enhance task arithmetic. Specifically, we introduce a regularization during fine-tuning that encour-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2.5 5.0 7.5 10.0
-Jacobian product

0.94

0.96

0.98

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Correlation Coefficient: -0.800
p-value: 0.000

ViT-B-32

2.5 5.0 7.5 10.0
-Jacobian product

0.95

0.96

0.97

0.98

0.99

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Correlation Coefficient: -0.841
p-value: 0.000

ViT-B-16

5 10 15 20
-Jacobian product

0.97

0.98

0.99

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Correlation Coefficient: -0.606
p-value: 0.000

ViT-L-14

Ours Linear FT
Figure 2: Visualization of the relationship between τJp and normalized accuracy. Each point rep-
resents a pair of tasks from the set of eight tasks, yielding

(
8
2

)
combinations, i.e., 28 in total. We

observed a correlation, where smaller τJp values are associated with higher normalized accuracy.
The blue dots represent the results from traditional linearized task addition, while the orange stars
denote the results using task vectors obtained through our proposed regularization. A significant
difference in τJp values between the two approaches is evident, indicating that our proposed regu-
larization reduces τJp and improves task addition performance.

ages τJp to be small — that is, we promote learning to occur in a subspace where τ is orthogonal to
the Jacobian of the pre-trained model, with respect to θ0, for different tasks.

Inspired by this requirement, we propose the following τJp-based regularized loss function:

LτJp(flin(x; θ), y) = L(flin(x; θ), y) + λ
∑

t∈Torth

||(θ − θ0)
⊤∇θflin(xt, θ0)||2 (10)

where Torth denotes the set containing indices of other tasks for which we aim to suppress interfer-
ence. Our objective is to ensure that θ⋆ − θ0 is orthogonal to all ∇θf(xt, θ0) for t ∈ Torth ; that
is, we add the L2 norm of their product as a regularization term. The hyperparameter λ adjusts the
strength of the regularization. It is important to note that, for the computation of the regularization
terms, only the input data for each sample in Torth is required, and labels are not necessary.

However, in practical applications, when there are numerous tasks in Torth where interference needs
to be reduced, calculating penalties for all tasks at each iteration results in significant memory and
computational overhead. To address this, we propose the following more efficient implementation:

L̂
(i)
τJp(flin(x; θ), y) = L(flin(x; θ), y) + λ||(θ − θ0)

⊤∇θflin(x(i mod |Torth|), θ0)||
2 (11)

where i denotes the iteration number, and at each iteration, the task for which the penalty is cal-
culated is rotated within Torth (specifically, (i mod |Torth|)). With this approach, it is sufficient to
calculate the penalty for one task per iteration, ensuring scalability with respect to the size of Torth.
In Appendix C, we conducted a comparison between the loss functions in Eq. (10) and Eq. (11)
using ViT-B-32. Although the latter exhibited a slightly lower capacity to reduce interference be-
tween task vectors, it significantly improved computational efficiency. Moreover, the performance
difference was not statistically significant. Therefore, for the remainder of the experiments, we will
adopt L̂τJp in Eq. (11).

4.2 ENHANCEMENT THROUGH τ -JACOBIAN PRODUCT REGULARIZATION

Settings. We conducted experiments to compare linearized fine-tuning with the regularization in
L̂τJp, standard fine-tuning (Non-lin. FT), and fine-tuning with only linearization (Linear FT), as well
as recent task arithmetic methods such as Ties-Merging (Yadav et al., 2023) and AdaMerging (Yang
et al., 2024), in both task addition and negation scenarios.

For vision tasks, the experimental setup for task addition followed the methodology described in
Section 3.2. In task negation, we introduced a control task, ImageNet (Deng et al., 2009), to maintain
performance during negation.

For NLP tasks, we followed experimental configurations consistent with Ilharco et al. (2023).
Task addition experiments used four selected tasks (MRPC, RTE, CoLA, SST-2) from the GLUE

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Results of task addition using the eight tasks presented in Section 3.2. In the “Task vector
coef.” column, the method of determining the task vector coefficients is presented. “1.0” indicates
that all coefficients were fixed at 1.0, without any coefficient adjustment. Our method demonstrates
significant performance improvements, particularly in reducing tuning costs by eliminating the need
for extensive coefficient adjustments.

Method Task vector coef. ViT-B-32 ViT-B-16 ViT-L-14
Abs. (↑) Norm. (↑) Abs. (↓) Norm. (↑) Abs. (↓) Norm. (↑)

Pre-trained - 47.3 - 54.5 - 65.1 -
Indivisual - 89.9 - 92.2 - 93.7 -
MTL - 87.8 - 90.8 - 92.6 -

Non-lin. FT (Ilharco et al., 2023) 1.0 19.9 20.5 19.1 19.7 37.6 39.0
Grid-searched 70.4 78.0 75.5 81.5 84.0 89.3

Linear FT (Ortiz-Jimenez et al., 2023) 1.0 55.4 61.7 58.2 63.6 80.5 86.7
Grid-searched 74.3 85.0 78.7 87.6 85.8 92.8

Ties-Merging (Yadav et al., 2023) 1.0 74.2 84.8 78.6 87.6 85.0 91.9
Grid-searched 74.2 84.8 78.6 87.6 85.0 91.9

AdaMerging (Yang et al., 2024)2 Trained3 81.1 89.6 85.7 92.5 91.0 96.6

Ours 1.0 84.2 97.2 87.5 98.4 90.8 99.0
Grid-searched 84.5 97.6 87.6 98.5 90.8 99.0

Table 2: Results of task negation using the eight tasks presented in Section 3.2. We report the
minimum accuracy on the target tasks while maintaining 95% of the pretrained model’s accuracy
on control tasks (note: results in (·) are reference values where control task performance did not
exceed 95% of the pretrained model’s accuracy). The results show that our method achieves better
forgetting of target tasks while preserving higher performance on control tasks compared to existing
methods.

Method Task vector coef. ViT-B-32 ViT-B-16 ViT-L-14
Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑)

Pre-trained - 47.3 66.7 54.5 69.3 65.1 77.3

Non-lin. FT (Ilharco et al., 2023) 1.0 (10.9) (44.7) (10.8) (51.6) (15.2) (68.6)
Grid-searched 24.0 60.7 20.3 64.7 18.4 72.4

Linear FT (Ortiz-Jimenez et al., 2023) 1.0 (6.3) (57.2) (5.4) (62.2) (3.0) (67.9)
Grid-searched 11.8 60.6 8.8 65.0 8.3 72.2

Ties-Merging (Yadav et al., 2023) 1.0 21.8 61.6 24.3 67.0 26.6 74.4
Grid-searched 21.8 61.7 24.3 67.0 26.6 74.4

Ours 1.0 11.8 62.5 11.8 67.8 15.1 75.1
Grid-searched 6.7 60.8 4.7 66.0 3.7 73.0

benchmark (Wang et al., 2019), while task negation focused on mitigating model toxicity in text
generation. Specifically, we extracted instances with toxicity scores above 0.8 from Civil Com-
ments (Borkan et al., 2019), performed causal language modeling on this data to obtain task vectors,
and subtracted these vectors from the pre-trained model. Text toxicity was measured using Detox-
ify (Hanu & Unitary team, 2020), with perplexity on WikiText-103 (Merity et al., 2016) used as a
control metric. The models used were T5-small (Raffel et al., 2023) for task addition and GPT-2
small (Radford et al., 2019) for task negation.

Further details on the fine-tuning settings can be found in Appendix B.

Results on Vision Tasks. Table 1 shows that our method consistently outperforms existing ap-
proaches and achieves notable improvements in both average absolute (Abs.) and normalized
(Norm.) performance, regardless of whether task vector coefficients are grid-searched. Even with-
out coefficient adjustment, our approach performs better than prior methods while reducing the cost
of tuning the inference-time hyperparameter. Notably, for ViT-L-14, our method yields the same
results with and without coefficient adjustment, indicating that αt = 1.0 is optimal, and achieve a
normalized accuracy of 99%. This shows that performance is barely degraded by the addition of
task vectors.

Next, examining the task negation results presented in Table 2, we observe that although our method
without task vector coefficient adjustment does not achieve sufficient forgetting of the target task

2In our hardware environment, the memory capacity was insufficient, so we report the results as presented
by Yang et al. (2024). The experiments were conducted under the same experimental settings, except for the
hardware conditions.

3AdaMerging trains the coefficients of task vectors as trainable parameters using a general optimizer (e.g.,
Adam).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: The results of task addition using T5-small on four GLUE tasks (MRPC, RTE, CoLA, SST-
2) are shown, with task vector coefficients grid-searched for all methods. Our proposed approach
consistently outperforms existing methods across all tasks.

Method MRPC RTE CoLA SST-2 Avg.
Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑)

Pre-trained 31.8 - 5.0 - 7.3 - 32.3 - 19.1 -
Indivisual 93.5 - 93.7 - 76.8 - 94.6 - 89.7 -
Non-lin. FT (Ilharco et al., 2023) 76.7 82.0 78.1 83.3 75.8 98.7 66.0 69.8 74.2 83.5
Linear FT (Ortiz-Jimenez et al., 2023) 79.1 89.8 81.3 89.0 74.0 96.4 57.6 61.3 73.0 84.1
Ties-Merging (Yadav et al., 2023) 73.2 95.4 79.0 84.9 60.1 68.2 69.7 73.9 70.5 80.6
Ours 79.1 87.5 82.8 90.6 76.5 99.6 92.5 98.5 82.7 94.0

Table 4: The results of task negation for mitigating toxicity in text generation using GPT-2 are pre-
sented. Task vector coefficients were grid-searched, and the largest coefficient that kept perplexity
within 0.5 of the pre-trained model’s value on WikiText-103 was selected. Our method successfully
reduces toxicity, as measured by two toxicity metrics, while preserving the general linguistic capa-
bilities of the pre-trained model.

Method Toxic generation rate (↓) Average toxic score (↓) WikiText-103 perplexity (↑)
Pre-trained 1.3 0.03 29.4
Non-lin. FT (Ilharco et al., 2023) 1.1 0.02 29.7
Linear FT (Ortiz-Jimenez et al., 2023) 0.9 0.02 29.6
Ties-Merging (Yadav et al., 2023) 1.0 0.02 29.6
Ours 0.4 0.01 29.9

(Targ.), it significantly outperforms existing methods in preserving the performance on the control
tasks (Cont.). Conversely, with coefficient adjustment, our method greatly enhances the forgetting
of the target task, while still surpassing existing methods in preserving control task performance
across all cases.

We clarify why the method without coefficient adjustment (with αt = 1.0) was effective for task
addition but not for task negation. As detailed in Appendix A, in the ideal case where τJp is zero (no
interference), the optimal coefficient αt for task addition is 1.0. Conversely, for task negation, the
optimal αt should be infinitely large in this ideal scenario. However, in realistic situations where τJp
is not zero and interference exists, there is no well-defined theoretical optimal coefficient for task
negation. This makes the fixed coefficient method with αt = 1.0 insufficient to induce adequate
forgetting, necessitating coefficient adjustment.

Finally, to verify whether our regularization effectively improves weight disentanglement, we
present the lower row of Figure 1. Compared to the upper row, which shows the linearized model
without regularization, it is evident that weight disentanglement is significantly enhanced, indicating
that sensitivity to coefficients has been mitigated.

Results on NLP Tasks. The results of task addition on the GLUE benchmark are shown in Table 3,
where task vector coefficients were grid-searched. Our proposed method consistently outperforms
other approaches across all tasks, with superior average performance. Notably, for the SST-2 task,
performance degrades significantly (normalized accuracy: 61.3) without regularization, likely due
to interference from the CoLA task vector, as both are single-sentence tasks. Applying our proposed
regularization substantially mitigates this issue, achieving a normalized accuracy of 98.5.

The results of task negation for mitigating toxicity in text generation are presented in Table 4, with
task vector coefficients also grid-searched. Our method achieves the greatest reduction in toxicity
while maintaining perplexity within 0.5 points of the pre-trained model.

Results using fixed coefficients of 1.0 without adjustment are provided in Appendix E.5.

4.3 SCALABLE REGULARIZATION IN PRACTICAL APPLICATIONS

First, in situations where tasks are introduced incrementally, similar to incremental learning, we
demonstrate that comparable performance can be achieved by applying regularization exclusively to
previously learned tasks(Section 4.3.1). Then, we demonstrate that simply adding a few additional
steps of regularization-based training to existing linearized task vectors yields significant improve-
ments (Section 4.3.2).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.3.1 INCREMENTAL ADDITION

Table 5: Comparison of original regularization
and the incremental regularization in task addition
on ViT-B-32

Method Abs. (↑) Norm. (↑)

No reg. (Linear FT) 74.3 85.0
Incremental reg. (Ours) 83.6 96.5
Full reg. (Ours) 84.5 97.6

In practical applications, scalability to new
tasks is critical. Here, we consider a scenario of
incremental task addition within the previously
discussed eight-task task addition framework.
Specifically, when training on a task t ∈ T ,
future tasks are not taken into account, and reg-
ularization is applied only with respect to past
tasks, i.e., (Torth = {1, 2, . . . , t− 1}).

Table 5 presents a comparison of task addition on ViT-B-32 using three approaches: applying regu-
larization to all tasks (Full reg.), applying regularization incrementally (Incremental reg.), and Linear
FT (No reg.). The results show that applying regularization to all tasks leads to the highest perfor-
mance and helps to prevent task interference, consistent with theoretical expectations. However, the
incremental regularization approach also demonstrates substantial improvement over the existing
unregularized method, indicating that our approach is highly scalable to new tasks.

4.3.2 PENALIZATION ON A EXISTING TASK VECTOR

0 100 200 300 400 500 600 700 800 900 1000
Steps from Linear FT

97.5

98.0

98.5

99.0

99.5

100.0
N

or
m

al
iz

ed
 A

cc
ur

ac
y

3

4

5

6

7

8

9

10

Jp

Figure 3: Regularization-based additional training
for task addition between EuroSAT and SVHN,
using ViT-B-32, where interference was particu-
larly severe.

We also examine the effect of applying our
regularization-based learning in addition to the
task vectors already created by other users, as
shown in Figure 3. The horizontal axis rep-
resents the number of steps in the additional
training, starting from the initial point, which
is the task vector obtained via Linear FT. The
left vertical axis (blue) shows the normalized
accuracy during task addition, while the right
vertical axis (red) represents τJp. It can be ob-
served that both metrics improve sharply within
the first 100 steps, with normalized accuracy
exceeding 99%. Afterward, the improvement
is more gradual. This indicates that even when
a linearized task vector already exists, a small
amount of additional training with our regular-
ization can significantly enhance performance.

5 RELATED WORK

The attempt to merge and average the parameters of multiple neural networks originates from the
work of Utans (1996). In recent years, various methods have been proposed for large-scale neural
networks with numerous parameters, aimed at manipulating their properties or enhancing perfor-
mance through addition and subtraction in the parameter space. For example, by merging a language
model specialized in medical knowledge with one specialized in legal knowledge, it would be pos-
sible to develop a model capable of solving tasks related to medical litigation. Among the various
methods for realizing the integration of models and their knowledge, many are related to task arith-
metic, including task analogies, as well as model merging. One of the simplest approaches to model
merging involves taking the parameters of multiple models fine-tuned from the same pre-trained
model and computing their simple average (Wortsman et al., 2022a; Choshen et al., 2022). Building
on this, various extensions have been proposed. For instance, Don-Yehiya et al. (2023) presents a
framework for the distributed fine-tuning and fusion of multiple models. Ramé et al. (2023) adopts a
strategy where the same pre-trained model is fine-tuned using diverse auxiliary tasks, and the param-
eters of these fine-tuned models are fused. This approach aims to maximize the diversity of model
parameters and thereby improve generalization performance. Jolicoeur-Martineau et al. (2024) pro-
poses a method in which model merging is performed periodically during the fine-tuning process
to ensure that the parameters of individual models do not deviate too far from the population mean.
Muqeeth et al. (2023) introduces a technique in the context of Mixture-of-Experts (MoE), where a
merged expert is created by computing the weighted average of parameters across multiple expert

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

networks. Other approaches such as linearly interpolating between the pre-trained model and the
fine-tuned model, rather than merging parameters of fine-tuned models, have also been explored (Il-
harco et al., 2022; Wortsman et al., 2022b).

On the other hand, in the integration of models via model merging or task arithmetic, interference
between the parameters of multiple models or task vectors can arise, and various methods have been
proposed to mitigate such conflicts. For instance, several methodologies utilize masking operations
on task vectors (Tang et al., 2023a; Wang et al., 2024a; Huang et al., 2024), while others involve
trimming or scaling techniques (Yadav et al., 2023; Davari & Belilovsky, 2023; Yu et al., 2024),
or leverage model linearization (Tang et al., 2023b; Ortiz-Jimenez et al., 2023). Additionally, in
incremental learning (Wang et al., 2024b), Huang et al. (2021) and Wang et al. (2023) introduced
regularization techniques aimed at minimizing task interference during the training of multiple tasks
on the same neural network. These methods ensure that the subspaces in the parameter space asso-
ciated with each task remain orthogonal and disentangled.

Theoretical and analytical studies on the effectiveness of model merging and task arithmetic include
research based on analyses of the loss landscape (Entezari et al., 2022; Qin et al., 2022; Gueta et al.,
2023), as exemplified by linear mode connectivity (Frankle et al., 2020), as well as approaches that
leverage model linearization within the Neural Tangent Kernel (NTK) regime (Jacot et al., 2018).
These studies have demonstrated that during the integration of multiple neural networks via model
merging, techniques such as parameter permutation to align different models within the same basin
in the loss landscape (Ainsworth et al., 2022) or inducing weight disentanglement between task
vectors through linearization (Ortiz-Jimenez et al., 2023) can be effective.

Our proposed method addresses key limitations in existing model integration and task arithmetic
techniques, specifically task interference and the high cost of coefficient tuning. We introduce
the τJp metric (the τ -Jacobian product), which quantifies weight disentanglement, showing an in-
verse correlation with task interference. This metric provides a novel approach to reducing inter-
ference, distinct from conventional masking or trimming techniques. Additionally, by minimizing
τJp through regularization during fine-tuning, we significantly reduce the need for costly coeffi-
cient adjustments. Our method is effective even in practical scenarios, such as when future tasks
are unknown or when using publicly available fine-tuned models, thereby enhancing scalability and
broadening real-world applicability.

6 LIMITATIONS

Our experiments are based on the linear approximation, assuming learning occurs in the NTK
regime. As noted by Ortiz-Jimenez et al. (2023), this linear approximation increases the computa-
tional time for forward calculations by two to three times compared to that of a non-linearized model.
The regularization proposed in this study is based on such linearized models, and this aspect has not
been improved. However, linearization methods leveraging parameter-efficient approaches, such as
LoRA (Hu et al., 2022), have also been proposed (Tang et al., 2023b). Combining these methods
with our regularization has the potential to reduce computational costs while enabling more effi-
cient and effective task arithmetic. Our contribution lies in elucidating the internal structure of task
arithmetic using τJp and confirming the sufficient effectiveness of our regularization under precise
linearization. Validation on larger models (e.g., LLMs) using approximate linearization methods,
such as those mentioned above, is left for future work.

7 CONCLUSION

In this paper, we proposed a novel metric, τJp, to better understand weight disentanglement in task
arithmetic and demonstrated its inverse correlation with normalized accuracy. By incorporating
regularization to minimize τJp during fine-tuning, we significantly reduced task interference, mini-
mizing the need for coefficient adjustments in task addition and negation. In incremental learning,
we found that our τJp regularization method shows strong performance in situations where future
tasks to be learned are unknown or accessible, confirming the scalability of the approach. Further-
more, the τJp regularizer improves the performance of task arithmetic by utilizing publicly avail-
able fine-tuned models, which makes it beneficial for practical use in real-world scenarios. These
findings contribute to advancing the practical application of model-editing techniques through task
arithmetic.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced
metrics for measuring unintended bias with real data for text classification. In Companion pro-
ceedings of the 2019 world wide web conference, pp. 491–500, 2019.

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for better
pretraining. arXiv preprint arXiv:2204.03044, 2022.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606–3613, 2014.

MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: Scaling multi-task model
merging with sparse masks. arXiv preprint arXiv:2312.06795, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, and Leshem Choshen. ColD
fusion: Collaborative descent for distributed multitask finetuning. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 788–806,
2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation in-
variance in linear mode connectivity of neural networks. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=dNigytemkL.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In Proceedings of the International Conference on
Machine Learning, pp. 3259–3269, 2020.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation, 2015.
URL https://arxiv.org/abs/1409.7495.

Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen.
Knowledge is a region in weight space for fine-tuned language models. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, 2023. URL https:
//openreview.net/forum?id=vq4BnrPyPb.

Laura Hanu and Unitary team. Detoxify. Github. https://github.com/unitaryai/detoxify, 2020.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

11

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=dNigytemkL
https://arxiv.org/abs/1409.7495
https://openreview.net/forum?id=vq4BnrPyPb
https://openreview.net/forum?id=vq4BnrPyPb
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. Emr-merging:
Tuning-free high-performance model merging. arXiv preprint arXiv:2405.17461, 2024.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. Continual learning for
text classification with information disentanglement based regularization. In Kristina Toutanova,
Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
terell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 2736–2746, Online, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.naacl-main.218. URL https://aclanthology.org/2021.
naacl-main.218.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
lating weights. Advances in Neural Information Processing Systems, 35:29262–29277, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2023.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in Neural Information Processing Systems, 31, 2018.

Alexia Jolicoeur-Martineau, Emy Gervais, Kilian FATRAS, Yan Zhang, and Simon Lacoste-Julien.
Population parameter averaging (PAPA). Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.net/forum?id=cPDVjsOytS.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):
3521–3526, March 2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL http:
//dx.doi.org/10.1073/pnas.1611835114.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In Proceedings of the International Conference on Machine
Learning, pp. 23610–23641, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adaptive routing.
arXiv preprint arXiv:2306.03745, 2023.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Advances in Neural Information Processing Sys-
tems, 2023. URL https://openreview.net/forum?id=0A9f2jZDGW.

12

https://aclanthology.org/2021.naacl-main.218
https://aclanthology.org/2021.naacl-main.218
https://openreview.net/forum?id=cPDVjsOytS
https://arxiv.org/abs/2001.08361
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
https://openreview.net/forum?id=0A9f2jZDGW

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In In the
36th Annual ACM Symposium on User Interface Software and Technology (UIST ’23), UIST ’23,
New York, NY, USA, 2023. Association for Computing Machinery.

Yujia Qin, Cheng Qian, Jing Yi, Weize Chen, Yankai Lin, Xu Han, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Exploring mode connectivity for pre-trained language models. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 6726–
6746, 2022. doi: 10.18653/v1/2022.emnlp-main.451. URL https://aclanthology.org/
2022.emnlp-main.451.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-Paz.
Model ratatouille: Recycling diverse models for out-of-distribution generalization. In Proceed-
ings of the International Conference on Machine Learning, pp. 28656–28679, 2023.

Yi Ren, Shangmin Guo, Wonho Bae, and Danica J. Sutherland. How to prepare your task head for
finetuning. arXiv preprint arXiv:2302.05779, 2023.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In The 2011 international joint
conference on neural networks, pp. 1453–1460. IEEE, 2011.

Anke Tang, Li Shen, Yong Luo, Liang Ding, Han Hu, Bo Du, and Dacheng Tao. Concrete
subspace learning based interference elimination for multi-task model fusion. arXiv preprint
arXiv:2312.06173, 2023a.

Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, and Dacheng
Tao. Parameter efficient multi-task model fusion with partial linearization. arXiv preprint
arXiv:2310.04742, 2023b.

Joachim Utans. Weight averaging for neural networks and local resampling schemes. In Proceedings
of the AAAI Workshop on Integrating Multiple Learned Models, pp. 133–138, 1996.

Pablo Villalobos, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, Anson Ho, and Marius Hobbhahn.
Machine learning model sizes and the parameter gap, 2022. URL https://arxiv.org/
abs/2207.02852.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJ4km2R5t7.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jiménez, François Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. In Proceedings of the
International Conference on Machine Learning, 2024a.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(8):5362–5383, 2024b. doi: 10.1109/TPAMI.2024.3367329.

13

https://aclanthology.org/2022.emnlp-main.451
https://aclanthology.org/2022.emnlp-main.451
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2207.02852
https://arxiv.org/abs/2207.02852
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning. arXiv
preprint arXiv:2310.14152, 2023.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In Proceedings of the International Conference on Machine
Learning, volume 162, pp. 23965–23998. PMLR, 2022a. URL https://proceedings.
mlr.press/v162/wortsman22a.html.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7959–7971, 2022b.

Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
Exploring a large collection of scene categories. International Journal of Computer Vision, 119:
3–22, 2016.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging: Re-
solving interference when merging models. Advances in Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=xtaX3WyCj1.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng
Tao. Adamerging: Adaptive model merging for multi-task learning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=nZP6NgD3QY.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In Proceedings of the International
Conference on Machine Learning, 2024.

Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben
Yan, Lifang He, Hao Peng, Jianxin Li, Jia Wu, Ziwei Liu, Pengtao Xie, Caiming Xiong, Jian
Pei, Philip S. Yu, and Lichao Sun. A comprehensive survey on pretrained foundation models: A
history from bert to chatgpt, 2023. URL https://arxiv.org/abs/2302.09419.

14

https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://openreview.net/forum?id=xtaX3WyCj1
https://openreview.net/forum?id=nZP6NgD3QY
https://openreview.net/forum?id=nZP6NgD3QY
https://arxiv.org/abs/2302.09419

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A SCALING COEFFICIENTS FOR TASK VECTORS IN THE NTK REGIME

We provide theoretical insights into the coefficients applied to task vectors in task arithmetic, em-
ploying the NTK regime.

A.1 THEORETICAL INSIGHTS

First, as a preliminary step, we present the following two important theorems.
Theorem 1. In the weight space Rp, let θ0 ∈ Rp denote the initial point and θ⋆ ∈ Rp the fine-tuned
point. For any scalar α ∈ R, define a point on the straight line passing through θ0 and θ⋆ as:

θ(α) = (1− α)θ0 + αθ⋆.

Under the NTK regime, the model’s output can be approximated by:

f(x; θ(α)) ≈ (1− α)f(x; θ0) + αf(x; θ⋆).

In other words, linear interpolation in the weight space corresponds to linear interpolation of the
outputs in the function space.

Proof. Noting Eq.(3) and that f(x; θ⋆) ≈ f(x; θ0) + τ⊤∇θf(x; θ0) based on it, we obtain the
following:

f(x; θ(α)) = f
(
x; (1− α)θ0 + αθ⋆

)
= f

(
x; θ0 + α(θ⋆ − θ0)

)
= f(x; θ0 + ατ)

≈ f(x; θ0) + ατ⊤∇θf(x; θ0)

≈ f(x; θ0) + α
(
f(x; θ⋆)− f(x; θ0)

)
= (1− α)f(x; θ0) + αf(x; θ⋆)

Theorem 2. Consider a convex loss function L(f(x; θ)) with respect to the model output f(x; θ).
Then, in the NTK regime, the loss function L(f(x; θ(α))) is convex with respect to α.

Proof. According to Theorem 1, in the NTK regime, f(x; θ(α)) is a linear interpolation between
f(x; θ0) and f(x; θ⋆), such that

f(x; θ(α)) = (1− α)f(x; θ0) + αf(x; θ⋆).

Since the loss function L is convex with respect to the model output, the composite function
L(f(x; θ(α))) is convex with respect to α ∈ R. This follows from the property that the compo-
sition of a convex function with a linear function is convex.

Specifically, because L is convex and f(x; θ(α)) is a linear function of α, the function L(f(x; θ(α)))
is convex with respect to α.

Finally, based on Theorem 2, we can provide the following explanations for the coefficients in task
addition and negation of the linearized model.

Task addition. If the θ⋆ obtained through finetuning for each task is optimal (i.e., minimizes the
loss), then, according to Theorem 2, the loss is minimized at α = 1.0.0. Furthermore, if all τJp
are zero, setting the task-specific coefficients α1 = α2 = · · · = αT = 1.0 enables complete task
addition without any performance degradation for each task.

Task negation. If the θ⋆ obtained through finetuning for a particular task is optimal (i.e., minimizes
the loss), then the loss decreases monotonically in the direction from θ0 towards θ⋆ along τ . Con-
versely, moving in the direction of −τ leads to an increase in loss (i.e., forgetting occurs). This is
because the loss is convex with respect to α. Therefore, in this case, optimal coefficients cannot
theoretically be obtained, and as long as the NTK regime holds, increasing α indefinitely in the
negative direction results in greater forgetting.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS

All our experiments using CLIP were conducted on four NVIDIA V100 GPUs, each with 16GB of
memory.

B.1 FINETUNING DETAILS

Vision Tasks. The fine-tuning process for each task was primarily based on the implementations
of Ilharco et al. (2022); Ortiz-Jimenez et al. (2023). Specifically, for all tasks, we set the number
of steps to 2000, the batch size to 128 (with gradient accumulation for the ViT-L-14 model), and
used the AdamW optimizer with a learning rate of 1e-5, weight decay of 0.1, and a learning rate
schedule based on cosine annealing, incorporating 200 warm-up steps. As noted by Ilharco et al.
(2022); Ortiz-Jimenez et al. (2023), freezing the text encoder during the fine-tuning of CLIP does not
significantly impact final performance, so we adopted a fixed classification head by using the output
of the pre-trained text encoder on class-specific text prompts (e.g., “a photo of {classname}”),
while fine-tuning only the image encoder. For the fine-tuning of the linearized model, we followed
the exact implementation outlined in Ortiz-Jimenez et al. (2023). In our proposed method, during
training for each task within the eight tasks, Torth consisted of all tasks except the target task, as well
as ImageNet. The same task vectors were used for evaluation in both task addition and negation.

NLP Tasks. For task addition in the GLUE benchmark, we adopted a configuration similar to that
used for vision tasks, with the key difference being the use of T5-small as the model. For task
negation, we followed the setup described in Ilharco et al. (2023), using GPT-2 small . Fine-tuning
on Civil Comments involved causal language modeling with a learning rate of 1 1e-5, a batch size
of 16, and training for 5 epochs.

The computation of the τ -Jacobian product for the proposed regularization was performed efficiently
using Jacobian-vector products, as in Ortiz-Jimenez et al. (2023). To reduce computational costs, we
used a batch size of 1

8 of the batch size used for computing the loss on the target task for vision tasks,
and 1

4 for NLP tasks. The strength of the regularization term, represented by the hyperparameter λ,
was tuned using a grid search over the range [1e-3, 1e-2, 1e-1]. Validation accuracy was used
as the evaluation metric. Due to limited computational resources, the value of λ obtained from a
specific task (Image: Cars, NLP: CoLA) was reused for other tasks. Despite this simplification,
the proposed regularization consistently achieved strong performance across various tasks. This
suggests that empirically, the proposed regularization is not highly sensitive to the choice of λ.

B.2 TASK VECTOR COEFFICIENTS

In all experiments where task vector coefficients were determined via grid search, the coefficients
were unified across all task vectors. Specifically, in Eq. (4), we set α1 = α2 = · · · = αT . For task
addition, the grid search range was set to α ∈ {0.0, 0.05, . . . , 1.0}, and for task negation, the range
was α ∈ {0.0, 0.1, . . . , 3.0}.

As demonstrated in Appendix A, under the NTK regime, theoretically, if there is no interference be-
tween task vectors, an optimal coefficient of α = 1.0 should be achieved for task addition. However,
for task negation, the NTK approximation theoretically allows α to grow arbitrarily large within the
valid approximation range. Therefore, we adopted a broader search range for task negation com-
pared to previous approaches.

For coefficient selection, in task addition for both vision and NLP tasks, we chose the coefficient
that yielded the highest normalized accuracy on the validation split. For vision task negation, we
selected the coefficient that achieved the lowest accuracy on the target task while maintaining at least
95% of the pre-trained model’s accuracy on the control task (ImageNet) validation split. In NLP task
negation, we selected the largest coefficient that kept the perplexity on WikiText-103 within 0.5 of
the pre-trained model’s perplexity.

B.3 EVALUATION DETAILS

In the NLP task negation experiments, toxicity was measured using Detoxify (Hanu & Unitary team,
2020). Following the methodology of Ilharco et al. (2023), 1000 text samples were generated with

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the prefix ”I don’t care if this is controversial,” and Detoxify was used to compute the toxicity
scores for these samples. The average of these scores is reported as the ”Average toxicity score”
Additionally, the proportion of samples with a toxicity score of 0.5 or higher was calculated and
reported as the ”Toxic generation rate”

C COMPARISON OF STRICT REGULARIZATION AND CYCLICAL
REGULARIZATION

Applying our proposed regularization strictly to penalize at every iteration, as in (10), is computa-
tionally and memory expensive. Therefore, as shown in (11), we propose a more efficient approach
by penalizing each task cyclically. Here, we compare the performance and computational cost of
this efficient regularization with the original strict regularization, demonstrating that its practical use
is justified.

Table 6 presents the results of a comparison between the two approaches and Linear FT (No reg.) in
the context of task addition using ViT-B-32. The evaluation metrics include absolute accuracy, nor-
malized accuracy, and the actual time taken per iteration. From the perspective of accuracy, the strict
regularization (Strict reg.) slightly outperforms the efficient implementation (Cyclical reg.), indicat-
ing that the strict implementation of our proposed regularization can nearly eliminate interference.
On the other hand, while the efficient implementation performs slightly worse in terms of accuracy,
the difference is not significant. Notably, in terms of actual computation time, it achieves a around
80% reduction. Furthermore, despite having a runtime comparable to Linear FT, it demonstrates a
significant improvement in performance.

Based on the above observations, the approximate regularization in (11) provides faster and suffi-
ciently effective regularization.

Table 6: Comparison of the strict regularization and the efficient regularization in task addition on
ViT-B-32

Method Abs. (↑) Norm. (↑) Sec. / Iter.(↓)

No reg. (Linear FT) 74.3 85.0 0.361
Cyclical reg. (11) 84.5 97.6 0.374
Strict reg. (10) 86.4 99.3 2.027

D TASK ARITHMETIC AND MULTI TASK LEARNING

Multi-Task Learning (MTL) (Caruana, 1997) involves training a single model simultaneously on
data from multiple tasks. When sufficient input data and labels are available for each target task,
leveraging them concurrently enables the construction of a unified model capable of handling mul-
tiple tasks effectively.

However, if even one of the tasks has limited access to sufficient data or lacks labels, achieving
this in a single training process becomes challenging. Additionally, adding new capabilities to a
pre-trained model while maintaining its performance on other tasks (Kirkpatrick et al., 2017), or
forgetting toxic abilities, is not a straightforward task.

In contrast, task arithmetic offers high practicality, flexibility, and scalability. Firstly, in practical
applications, task arithmetic does not require complete access to all task data simultaneously during
training. Instead, it allows for learning in environments where only partial access to data is available,
and the weights can be integrated afterward to create a multi-task model. In addition, since each task
has its own independent weight (task vector), task arithmetic offers flexibility to represent a wide
variety of models. For example, with task vectors for N tasks, it is possible to represent 2N different
models through task vector addition or negation. In the context of recent advancements such as
Large Language Model (LLM)-based chatbots and multi-agent systems (Park et al., 2023), where
diverse models are needed to adapt to various situations, the flexibility of task arithmetic is highly
significant. Furthermore, as discussed in Section 4.3, our method can be easily extended in the
context of continual learning while maintaining performance on previous tasks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Furthermore, Table 7 compares the performance, data requirements, and flexibility of Non-lin. FT,
Linear FT, our proposed method, and MTL. Notably, MTL requires access to inputs and labels for all
tasks, whereas task arithmetic operates under more restricted assumptions. Unlike conventional task
arithmetic approaches (Non-lin. FT and Linear FT), our method requires access to inputs from other
tasks. This extension naturally aligns with the context of Unsupervised Domain Adaptation (Ganin
& Lempitsky, 2015), where only the data distribution xother from other domains is accessible. By
leveraging access to this data distribution, our method learns task vectors in orthogonal directions,
enhancing the disentanglement of model weights. In contrast to other methods, which cannot utilize
the data distribution xother in such scenarios, we propose an effective learning strategy tailored to
this specific context.

Table 7: Comparison of task addition and MTL. On the right side, the table shows the types of data
required for training on task t ∈ T , as well as the flexibility of the model. Here, xself represents
the input data of the current task, yself represents the labels of the current task, and xother and
yother refer to data from tasks other than t. In MTL, training requires data that includes labels
from all tasks, whereas task addition can be applied in more relaxed scenarios where MTL is not
feasible. Flexibility indicates whether the model’s performance can be easily modified for specific
tasks after training. On the left side, the table shows the accuracy across eight tasks for each model
scale, demonstrating that task addition using our regularization achieves performance comparable to
MTL, even in more relaxed scenarios.

Method ViT-B-32 ViT-B-16 ViT-L-14 xself yself xother yother Flexibility
Non-lin. FT 70.4 75.5 84.0 ✓ ✓ ✗ ✗ ✓

Linear FT 74.3 78.7 85.5 ✓ ✓ ✗ ✗ ✓

Ours 84.5 87.6 90.8 ✓ ✓ ✓ ✗ ✓

MTL 87.8 90.8 92.6 ✓ ✓ ✓ ✓ ✗

E ADDITIONAL RESULTS

Here, we present more detailed experimental results related to the discussions in the main text.

E.1 SINGLE TASK ACCURACY ON EACH TASK

Figure 4 presents the accuracy for each task using the three FT methods described in Section 4.2,
along with the pre-trained model.

As noted by Ortiz-Jimenez et al. (2023), Non-linear FT outperforms the linearized FT methods
(Linear FT and Ours) due to the non-linear advantage.

Notably, despite the regularization in our proposed method, which constrains learning to a subspace
orthogonal to ∇θf(xt; θ0), t ∈ Torth , there is no degradation in performance compared to the
original Linear FT. This demonstrates that our method successfully prevents task interference while
maintaining performance by guiding learning in a space that mitigates inter-task interference.

E.2 EFFECT OF TASK ADDITION ON EACH TASK

In Figure 5, we present the absolute and normalized accuracies for each task after task addition, com-
paring different methods. The right-hand plots of normalized accuracy demonstrate that our method
not only achieves the highest accuracy across most tasks but also maintains consistent performance
across all tasks, indicating that task-independent regularization is effectively achieved. Moreover, in
the left-hand plots of absolute accuracy, our method outperforms existing methods on all tasks ex-
cept for EuroSAT (Helber et al., 2019). These results suggest that our method successfully prevents
interference between tasks while preserving absolute performance.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0
Ab

so
lu

te
 A

cc
ur

ac
y

ViT-b-32 (single task)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 A
cc

ur
ac

y

ViT-b-16 (single task)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 A
cc

ur
ac

y

ViT-l-14 (single task)

Non-linear FT Linear FT Ours Pre-trained
Figure 4: The absolute accuracy after fine-tuning for each of the eight tasks, comparing Non-linear
FT (blue), Linear FT (orange), Ours (red), and the pre-trained model (green).

E.3 τ JP ON EACH TASK PAIR

Figure 6 illustrates the τJp between task pairs for both Linear FT and Ours. These results demon-
strate that our proposed regularization reduces the τJp between tasks. Compared to Linear FT, Ours
shows a notably lower τJp in the off-diagonal components of the heatmap, i.e., between different
datasets. These results suggest that our proposed method effectively decreases the τJp values.

E.4 RELATIONSHIP BETWEEN τ JP AND COSINE SIMILARITY OF TASK VECTORS

Interpreting similarity or interference between tasks in terms of cosine similarity of their task vectors
has been a common practice (Ilharco et al., 2023; Wang et al., 2023). However, explanations for the
interpretations remain limited and it is unclear whether cosine similarity fully accounts for those
relationships between tasks. In this section, we attempt to analyze the relationship between task
interference and task vector similarity through the lens of τJp.

We consider two tasks, A and B. Assuming that the fine-tuning of task B is conducted with a single
update using the entire dataset, τB can be expressed as follows:

τB = ∇θLB(f(xB , θ0))

= ∇θf(xB , θ0)
∂LB

∂f(xB , θ0)
(12)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: The results of task addition using T5-small on four GLUE tasks (MRPC, RTE, CoLA, SST-
2) are shown, with task vector coefficients 1.0. Our proposed approach consistently outperforms
existing methods across all tasks.

Method MRPC RTE CoLA SST-2 Avg.
Abs. (↑) Norm. (↑) Abs. (↓) Norm. (↑) Abs. (↓) Norm. (↑) Abs. (↓) Norm. (↑) Abs. (↓) Norm. (↑)

Pre-trained 31.8 - 5.0 - 7.3 - 32.3 - 19.1 -
Non-lin. FT (Ilharco et al., 2023) 70.3 91.6 72.2 77.2 90.2 96.3 57.1 60.4 72.5 81.4
Linear FT (Ortiz-Jimenez et al., 2023) 74.7 97.4 79.1 89.8 81.7 89.4 56.2 59.8 72.9 84.1
Ties-Merging (Yadav et al., 2023) 73.2 95.4 79.0 84.9 60.1 68.2 69.7 73.9 70.5 80.6
Ours 76.5 99.6 79.1 87.5 82.8 90.6 92.5 98.5 82.7 94.0

Table 9: The results of task negation for mitigating toxicity in text generation using GPT-2 are
presented. Task vector coefficients were fixed at 1.0. Our method effectively reduces toxicity while
maintaining the perplexity of the pre-trained model, whereas other methods result in a significant
increase in perplexity.

Method Toxic generation rate (↓) Average toxic score (↓) WikiText-103 perplexity (↑)
Pre-trained 1.3 0.03 29.4
Non-lin. FT (Ilharco et al., 2023) 0.0 0.01 95.7
Linear FT (Ortiz-Jimenez et al., 2023) 0.0 0.00 66.7
Ties-Merging (Yadav et al., 2023) 0.6 0.02 87.7
Ours 0.5 0.01 30.7

The first equation above is derived from the fact that the loss function becomes convex with respect
to the weights in the NTK regime (Theorem 2 in Appendix A). Using this expression, the cosine
similarity can be rewritten as:

cos(τA, τB) =
τ⊤A τB

|τA| · |τB |

=
1

|τA| · |τB |
τ⊤A∇θf(xB , θ0)

∂LB

∂f(xB , θ0)
(13)

In the above, τ⊤A∇θf(xB , θ0) is part of τJp, which, as we have demonstrated, explicitly affects
task interference (or weight disentanglement) in the model. Although τ⊤A∇θf(xB , θ0) is included
in the cosine similarity, based on the equation, the presence of other components also affects their
relationship, making it difficult to claim a theoretical correlation between them.

Figure 7 shows the cosine similarity between task pairs for both Linear FT and Ours. In Linear FT,
the cosine similarity between MNIST (LeCun, 1998) and SVHN (Netzer et al., 2011) is particularly
high, whereas in Ours, the values are much smaller and comparable to those of other task pairs. On
the other hand, the cosine similarities between Cars and SVHN in Linear FT is higher than the ones
in Ours. Therefore, no consistent trend was observed between cosine similarity and τJp.

In Figure 8, we present a scatter plot with τJp on the horizontal axis and the cosine similarity
between the two task vectors on the vertical axis. Weak positive correlations were observed between
these values in three model sizes. In particular, since cosine similarity tends to be small value when
the number of dimension is large, the correlation is considered weak in the setting of ViT-L-14.

Based on these analysis, cosine similarity appears to be less effective in representing weight dis-
entanglement compared to τJp. This implies that τJp regularization performs better than cosine
similarity for reducing task interference.

E.5 ADDITIONAL RESULTS ON NLP TASKS

Table 8 (task addition) and Table 9 (task negation) present the results of the NLP experiments where
task vector coefficients were not adjusted.

In task addition, our method consistently outperforms other approaches, achieving a normalized
accuracy of 94.0% even without coefficient adjustment, effectively preventing interference between
task vectors during addition.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

In task negation, while Linear FT achieves the greatest reduction in toxicity, it significantly impacts
the pre-trained model’s perplexity, increasing it by +37.3 points, thereby affecting the original lan-
guage capabilities. In contrast, our method limits the perplexity increase to just +1.3 points while
sufficiently mitigating toxicity.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0
Ab

so
lu

te
 A

cc
ur

ac
y

ViT-b-32 (addition)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

ViT-b-32 (addition)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 A
cc

ur
ac

y

ViT-b-16 (addition)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

ViT-b-16 (addition)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 A
cc

ur
ac

y

ViT-l-14 (addition)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

ViT-l-14 (addition)

Non-linear FT Linear FT Ours
Figure 5: The absolute accuracy (left column) and normalized accuracy (right column) for each of
the eight tasks after task addition, comparing Non-linear FT (blue), Linear FT (orange), and Ours
(red).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

9.036 5.420 5.221 5.148 4.134 4.990 4.896 5.716

5.420 10.128 7.767 6.644 6.366 7.062 6.691 7.064

5.221 7.767 15.789 9.527 7.726 10.056 10.349 6.912

5.148 6.644 9.527 12.063 8.396 6.297 9.898 5.848

4.134 6.366 7.726 8.396 12.973 5.488 9.692 5.131

4.990 7.062 10.056 6.297 5.488 11.388 6.226 6.693

4.896 6.691 10.349 9.898 9.692 6.226 12.862 5.731

5.716 7.064 6.912 5.848 5.131 6.693 5.731 8.272

Linear FT (ViT-B-32)

0

5

10

15

20

25

30

35

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

7.578 1.046 0.909 0.948 0.721 0.973 0.887 1.096

1.046 6.406 1.377 1.279 1.006 1.424 1.267 1.336

0.909 1.377 8.472 1.490 0.869 1.684 1.433 1.038

0.948 1.279 1.490 10.759 1.329 1.104 2.339 1.054

0.721 1.006 0.869 1.329 12.497 0.833 1.685 0.771

0.973 1.424 1.684 1.104 0.833 7.734 1.058 1.237

0.887 1.267 1.433 2.339 1.685 1.058 11.570 0.985

1.096 1.336 1.038 1.054 0.771 1.237 0.985 5.023

Ours (ViT-B-32)

0

5

10

15

20

25

30

35

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

9.423 5.760 5.621 5.225 4.452 5.464 5.324 6.064

5.760 10.355 8.155 7.080 6.106 7.597 7.826 7.628

5.621 8.155 16.072 10.012 7.642 10.106 9.802 7.294

5.225 7.080 10.012 11.790 8.511 6.894 9.564 6.403

4.452 6.106 7.642 8.511 12.313 5.406 8.980 5.281

5.464 7.597 10.106 6.894 5.406 11.778 7.057 7.067

5.324 7.826 9.802 9.564 8.980 7.057 13.568 6.497

6.064 7.628 7.294 6.403 5.281 7.067 6.497 8.639

Linear FT (ViT-B-16)

0

5

10

15

20

25

30

35

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

7.585 0.984 0.835 0.868 0.615 0.925 0.793 0.999

0.984 5.940 1.311 1.228 0.902 1.352 1.205 1.270

0.835 1.311 8.616 1.491 0.827 1.607 1.325 0.970

0.868 1.228 1.491 9.848 1.167 1.083 1.993 0.971

0.615 0.902 0.827 1.167 11.748 0.788 1.427 0.670

0.925 1.352 1.607 1.083 0.788 7.263 0.995 1.201

0.793 1.205 1.325 1.993 1.427 0.995 11.718 0.874

0.999 1.270 0.970 0.971 0.670 1.201 0.874 4.937

Ours (ViT-B-16)

0

5

10

15

20

25

30

35

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

18.750 9.715 9.601 8.168 8.469 9.403 9.012 10.007

9.715 17.118 13.534 10.961 11.079 11.950 11.438 12.149

9.601 13.534 33.275 15.810 14.911 18.494 17.907 12.044

8.168 10.961 15.810 21.477 15.748 10.910 17.204 9.980

8.469 11.079 14.911 15.748 33.686 10.385 19.543 10.082

9.403 11.950 18.494 10.910 10.385 22.311 11.477 11.651

9.012 11.438 17.907 17.204 19.543 11.477 26.420 9.741

10.007 12.149 12.044 9.980 10.082 11.651 9.741 14.988

Linear FT (ViT-L-14)

0

5

10

15

20

25

30

35

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

10.697 1.573 1.536 1.521 1.234 1.653 1.431 1.769

1.573 6.653 1.836 1.779 1.430 1.978 1.764 1.779

1.536 1.836 12.235 1.873 1.658 4.601 2.684 1.640

1.521 1.779 1.873 15.160 1.742 1.745 4.431 1.580

1.234 1.430 1.658 1.742 20.717 1.285 1.585 1.141

1.653 1.978 4.601 1.745 1.285 11.408 1.545 1.744

1.431 1.764 2.684 4.431 1.585 1.545 16.765 1.336

1.769 1.779 1.640 1.580 1.141 1.744 1.336 5.508

Ours (ViT-L-14)

0

5

10

15

20

25

30

35

Figure 6: Heatmaps visualizing τJp on each task pair. The darker the color of the cell, the higher
the value it represents. The values within cells indicates τJp. The figures in the left columns show
the model with our proposed regularization, while the figures in the right columns show the existing
linearized model without regularization. Our proposed regularization results lower τJp between
different tasks.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

1.000 0.031 0.020 0.028 0.024 0.024 0.022 0.032

0.031 1.000 0.043 0.058 0.044 0.044 0.049 0.052

0.020 0.043 1.000 0.038 0.029 0.045 0.035 0.027

0.028 0.058 0.038 1.000 0.059 0.030 0.070 0.033

0.024 0.044 0.029 0.059 1.000 0.027 0.122 0.026

0.024 0.044 0.045 0.030 0.027 1.000 0.028 0.035

0.022 0.049 0.035 0.070 0.122 0.028 1.000 0.025

0.032 0.052 0.027 0.033 0.026 0.035 0.025 1.000

Linear FT (ViT-B-32)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

1.000 0.042 0.019 0.027 0.040 0.046 0.031 0.039

0.042 1.000 0.007 0.008 0.011 0.029 0.015 0.025

0.019 0.007 1.000 0.032 0.020 0.006 0.011 0.013

0.027 0.008 0.032 1.000 0.034 0.024 0.009 0.023

0.040 0.011 0.020 0.034 1.000 0.032 0.063 0.033

0.046 0.029 0.006 0.024 0.032 1.000 0.030 0.040

0.031 0.015 0.011 0.009 0.063 0.030 1.000 0.030

0.039 0.025 0.013 0.023 0.033 0.040 0.030 1.000

Ours (ViT-B-32)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

1.000 0.038 0.024 0.034 0.028 0.027 0.027 0.037

0.038 1.000 0.048 0.065 0.050 0.047 0.054 0.064

0.024 0.048 1.000 0.044 0.033 0.043 0.036 0.032

0.034 0.065 0.044 1.000 0.060 0.035 0.062 0.043

0.028 0.050 0.033 0.060 1.000 0.028 0.103 0.034

0.027 0.047 0.043 0.035 0.028 1.000 0.030 0.041

0.027 0.054 0.036 0.062 0.103 0.030 1.000 0.034

0.037 0.064 0.032 0.043 0.034 0.041 0.034 1.000

Linear FT (ViT-B-16)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

1.000 0.048 0.014 0.033 0.030 0.003 0.065 0.041

0.048 1.000 0.004 0.017 0.021 0.008 0.046 0.026

0.014 0.004 1.000 0.031 0.029 0.041 0.010 0.016

0.033 0.017 0.031 1.000 0.019 0.026 0.031 0.025

0.030 0.021 0.029 0.019 1.000 0.036 0.035 0.022

0.003 0.008 0.041 0.026 0.036 1.000 0.001 0.002

0.065 0.046 0.010 0.031 0.035 0.001 1.000 0.045

0.041 0.026 0.016 0.025 0.022 0.002 0.045 1.000

Ours (ViT-B-16)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

1.000 0.030 0.018 0.022 0.018 0.020 0.016 0.028

0.030 1.000 0.032 0.044 0.033 0.033 0.027 0.048

0.018 0.032 1.000 0.027 0.022 0.032 0.021 0.026

0.022 0.044 0.027 1.000 0.035 0.023 0.028 0.032

0.018 0.033 0.022 0.035 1.000 0.019 0.046 0.024

0.020 0.033 0.032 0.023 0.019 1.000 0.017 0.033

0.016 0.027 0.021 0.028 0.046 0.017 1.000 0.021

0.028 0.048 0.026 0.032 0.024 0.033 0.021 1.000

Linear FT (ViT-L-14)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

1.000 0.029 0.033 0.029 0.029 0.029 0.031 0.026

0.029 1.000 0.026 0.019 0.015 0.022 0.022 0.016

0.033 0.026 1.000 0.036 0.031 0.032 0.026 0.030

0.029 0.019 0.036 1.000 0.027 0.031 0.028 0.027

0.029 0.015 0.031 0.027 1.000 0.040 0.006 0.024

0.029 0.022 0.032 0.031 0.040 1.000 0.016 0.020

0.031 0.022 0.026 0.028 0.006 0.016 1.000 0.019

0.026 0.016 0.030 0.027 0.024 0.020 0.019 1.000

Ours (ViT-L-14)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Heatmaps visualizing cosine similarity of taskvectors on each task pair. The darker the
color of the cell, the higher the value it represents. The values within cells indicates cosine similarity.
The figures in the left columns show the model with our proposed regularization, while the figures
in the right columns show the existing linearized model without regularization.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

2.5 5.0 7.5 10.0
-Jacobian product

0.000

0.025

0.050

0.075

0.100

0.125

Co
sin

e
Si

m
ila

rit
y

Correlation Coefficient: 0.502
p-value: 0.000

ViT-B-32

2.5 5.0 7.5 10.0
-Jacobian product

0.000

0.025

0.050

0.075

0.100

Co
sin

e
Si

m
ila

rit
y

Correlation Coefficient: 0.555
p-value: 0.000

ViT-B-16

5 10 15 20
-Jacobian product

0.01

0.02

0.03

0.04

0.05

Co
sin

e
Si

m
ila

rit
y

Correlation Coefficient: 0.246
p-value: 0.067

ViT-L-14

Ours Linear FT
Figure 8: Visualization of the relationship between τJp and cosine similarity. Each point represents
a pair of tasks from the set of eight tasks, yielding

(
8
2

)
combinations, i.e., 28 in total. The blue

dots represent the results from traditional linearized task addition, while the orange stars denote the
results using task vectors obtained through our proposed regularization.

25

	Introduction
	Background
	Model Editing via Task Arithmetic
	Weight Disentanglement
	Neural Tangent Kernel
	Task Arithmetic in the NTK regime

	Causal Impact of the -Jacobian Product on Weight Disentanglement
	Weight disentanglement in the NTK regime
	Relationship between -Jacobian product and interference

	Enhancing Task Arithmetic by Mitigating Interference Between Tasks
	-Jacobian Product for Regularization
	Enhancement through -Jacobian Product Regularization
	Scalable Regularization in Practical Applications
	Incremental Addition
	Penalization on a Existing Task Vector

	Related Work
	Limitations
	Conclusion
	Scaling Coefficients for Task Vectors in the NTK Regime
	Theoretical insights

	Implementation Details
	Finetuning Details
	Task Vector Coefficients
	Evaluation Details

	Comparison of Strict Regularization and Cyclical Regularization
	Task Arithmetic and Multi Task Learning
	Additional Results
	Single Task Accuracy on Each Task
	Effect of Task Addition on Each Task
	Jp on Each Task Pair
	Relationship between Jp and cosine similarity of task vectors
	Additional results on NLP tasks

