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Abstract

Our goal is to guide pre-trained language models (PLMs) towards uncon-
ditional text generation tasks while resolving the domain gap and avoiding
the catastrophic forgetting. Because Transformer-based models are pre-
trained on more massive and heterogeneous corpora than specific target
corpus, the gap between these corpora and the target corpus raises the
question of whether these PLMs will actually benefit this task even after
fine-tuning. As the domain adaptation of PLMs needs to bridge this gap, we
propose a framework, Topic Aware Transformer (TAT), that adapts PLMs
for target-aware text generation while alleviating catastrophic forgetting.
The motivation of TAT to distill the target-specific knowledge as topics,
and steer PLMs toward these topics. This requirement and motivation lead
us to introduce a topic steering layer (TSL) as an additional layer, and
Topic Distribution Modeling (TDM) as a training task. Experiments show
that these components resolve the gap as the domain shift, and can tailor
PLMs to generate text to better reflect a given small fine-tuning corpus.

1 INTRODUCTION

Our goal is to adapt pre-trained language models (PLMs) to achieve unconditional text
generation toward a target domain. The success of Transformer-based PLMs motivates
us to explore how to fine-tune them so as to well reflect a given target corpus thereby
generating more personalized texts with very few specializations. The size of the target
corpus is generally much smaller than that of existing pre-training corpora, which may lead
to catastrophic forgetting (Ramasesh et al., 2021). For example, the popular pre-training
data sets of Giga5en (Parker et al., 2011), and ClueWeb 2012-B1 occupy 16G, and 25TB,
respectively. PLMs can become biased toward the patterns of language used in the training
data (Keskar et al., 2019). Given the rapid diversification of applications, a pre-training
approach is needed to effectively achieve domain shift without catastrophic forgetting.
Toward this domain shift, we propose a framework, Topic Aware Transformer (TAT), that
adapts PLMs as unconditional generative tasks while alleviating catastrophic forgetting.
As the domain knowledge consists of global (e.g., linguistic) and specific (e.g., semantic)
knowledge, our intuition is that knowledge can be represented as a distribution of words,
and the gap between the source and the target domain can be taken to be differences
between distributions. These intuitions motivate TAT to detect these distributions via
topics, and steer PLMs toward these topics to highlight the target-specific knowledge. That
is, the motivation of TAT is to introduce a topic steering layer (TSL) as an additional layer
that detects topics and helps training PLMs theoretically, and Topic Distribution Modeling
(TDM) as a training task to align text on the topic representation on the target domain.
To prevent catastrophic forgetting, TAT can fine-tune PLMs while bridging the domain gap
without updating PLM parameters.
Experiments confirm that TAT supports PLMs and verify its advantages as follows;
•Theoretical contributions: TSL allows topics to act as unsupervised labels that represent
global and target-specific word distributions as domain knowledge, and adapts PLMs to

1https://www.lemurproject.org/clueweb09.php/
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resolve the gap and perform domain shift over topics.
•Practical contributions: As TAT updates only the target-specific word distributions, and
does not need to update the parameters of PLMs, it generates more target-specific texts at
lower computational cost than possible when using previous PLMs alone, while preserving
PLM’s advantages.

2 PREVIOUS WORK

Recently, pre-trained neural language models (NLMs), such as BERT (Devlin et al., 2019),
GPT2 (Radford et al., 2019), XLNet (Yang et al., 2019), RoBERTa (Liu et al., 2019),
and ALBERT (Lan et al., 2020) use Transformer (Vaswani et al., 2017) for learning con-
textualized text representations, and have yielded great advances in NLP tasks. Though
achieving appealing performance, these Transformer-based models are better at exploring
the relationships among local tokens than global semantics (e.g., word collocation over a
given corpus) (Wang et al., 2020). As no Transformer-based model considers these explicit
semantics, Wang et al. (Wang et al., 2020) rearranged and explored the semantics of topic
models and developed a topic-friendly assistant for Transformer-based abstractive summa-
rization models. UNIfied pre-trained Language Model (Dong et al., 2019) supports NLU and
natural language generation (NLG) tasks by employing a shared Transformer network and
utilizing specific self-attention masks to control which context the prediction is conditioned
on. While He et al. improve (He et al., 2018) existing NMT models through layer-wise
coordination of the encoder and decoder, and use modified attention masks in train both
the encoder and the decoder simultaneously, their framework cannot be applied directly to
domain-specific text generation; our framework differs from pre-learning in terms of task ob-
jectives, topic introduction, and fine-tuning. BertSUM (Wang et al., 2020) notes that topic
models are better at learning explicit document semantics than Transformer. Different from
their work, TAT aims to adapt NLMs to text generation tasks by performing domain shift.
As existing PLMs used large raw text data that do not necessarily contain sufficient knowl-
edge or patterns that are directly related to the target-specific task, they still suffer from
several potential limitations. More precisely, texts of specific task, e.g., movie review, can
differ from PLMs training data (Chen et al., 2022). To address the question of whether
pre-training on a corpus more directly tied to the task can further improve performance,
continual pretraining (Gururangan & et al, 2020) has shown benefit of optimizing a PLM
to a target domain before further finetuning. UDALM (Karouzos et al., 2021) first trains
PLMs by masked language modeling (MLM) on the target domain and then trains a target
classifier with source domain labeled data, while keeping the MLM objective on unlabeled
target domain data. AdaPrompt (Chen et al., 2022) is a framework that can adapt a PLM
for the end task considering both the prompts and the verbalizer, and adaptively contin-
ual pretraining on the retrieved data, which can benefit prompt-based methods on NLP
downstream tasks.
While these training based approaches show the improvement in solving the domain gap,
these practice of adapting and controlling pre-trained generative models poses the catas-
trophic forgetting: most approaches to enforcing a control objective result in a dramatic
loss of capabilities of the original model beyond the scope of the control objective. As a way
to take advantage of this achievement, we noted that some knowledge is universal across
domains and some is not. Therefore, our approach aims to avoid this problem by incorpo-
rating a mechanism to recognize these relative differences, and intensively update only the
target-specific knowledge.
As with global semantic information, topic models (Blei et al., 2003; Kawamae, 2018; Wang
et al., 2020), and their extensions, take a global statistical view and look at the word
distributions of topics across a given corpus; they represent each document as a bag-of-word
(BOW) vector. Although these models organize a given corpus into small sets of prominent
topics and have been proven to be powerful tools for uncovering latent structure, they and
their application (Chang et al., 2021; Wang et al., 2018; 2020)are not, in the strict sense,
sequence models.
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Figure 1: (left) The gap between the source and the target domain, domain gap, topic
distribution, and word distributions, (center) The architecture overview of TAT that can
adopt both NLMs and PLMs (e.g., GPT2), where their parameters are duplicated to form
the TAT architecture. Newly introduced elements, Topic steering layer (TSL) and TDM,
are highlighted in red, and TID denotes the representation of each text. (right) the detail of
TSL with the affine in Eq (5). TAT learns WV , WZ , Waz, and bz and trains itself using
TID and TDM on each text.
That is, we focus on bridging the domain gap as the domain shift, and aim to distill target-
specific knowledge as topics, and steers PLMs toward these topics. This approach is designed
to be compatible with training strategies while alleviating catastrophic forgetting.

3 Methodology

3.1 Problem formulation

Neural language models (NLMs) are trained as conditional language models for those specific
tasks that require text generation (Bengio et al., 2003), PLMs. Given text sequence xd =
{xd,1, · · ·, xd,|xd|} and dataset D = {x1, · · ·,xD}, NLMs are pre-trained by maximizing the
following likelihood under forward autoregressive factorization:

LLM (θ) =

|D|∑
d=1

logPθ(xd) =

|D|∑
d=1

|xd|∑
t=1

logPθ(xd,t|xd,1:t−1), (1)

where θ represents model parameters.
As PLMs are trained on heterogeneous corpora, we can observe that the source and the
target domain have both common (e.g., linguistic) and different (e.g., semantic) knowledge,
as shown in Figure 1. Since the gap is intuitively in the difference between distributions over
words (i.e., global and target-specific word distributions), and their distribution (i.e., topic
distribution) over domains, we must recognize these distributions and train PLMs to update
them. For example, given “My favorite artist is”, PLM might predict “Michelangelo” as the
next word, whereas the fine-tuned PLM yields “Botticelli”. This leads us to introduce the
latent variable of topic, z, into the NLMs and then modify Eq (1) to:

LTLM (θ) =

|D|∑
d=1

|xd|∑
t=1

log
Z∑

zt=1

Pθ(xd,t|zt,xd,1:t−1)︸ ︷︷ ︸
word distribution

Pθ(zt|xd,1:t−1)︸ ︷︷ ︸
topic distribution

, (2)

where zt that indicates which global/target distribution is used, and Z is the number of
topics. Different from previous NLMs, topic language model (TLM) explicitly introduces
topics into the generative process to utilize richer contextual information for improving
NLMs/PLMs performance. Note that Pθ(zt|xd,1:t−1) is a multinomial distribution over
discrete variables, not the Gaussian distribution used in variational autoencoders (Kingma
& Welling, 2014) and its extensions such as (Wang & Wan, 2019; Zhu et al., 2021; Cai &
Cai, 2022). This paper explores how to distill the domain-specific knowledge as topics, and
steer PLMs toward topics.

3.2 Motivation and Architecture design

As our challenge is to resolve the gap between the source and the target domain for the
domain shift, it adapts PLMs to generate unconditional texts that reflect the target-domain
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more than the source. The motivation of TAT is that domain adaptation should detect
topics and update related distributions in the fine-tuning stage while preserving the semantic
meaning and language structural information that pre-trained NLMs have, as discussed
in 3.1. Following this motivation, Pθ(zt|xd,1:t−1) in Eq (2) can be interpreted as “the
distribution over topics”. Pθ(xd,t|zt,xd,1:t−1) in Eq (2) is “the distribution over next words”.
They may be global or specific between the source and the target domain. The global
is common over both domains and can be a distribution based on linguistic knowledge,
while the specific is a distribution based on domain-specific knowledge. Although these
differences are relative, vary with a given corpus, and cannot be clearly defined, the ratio
of global word distribution in linguistic knowledge is intuitively considered much higher
than that in semantic knowledge as shown in Figure 1; topics are designed to identify these
different distributions and their weights.
These topics literally inherit the characteristics of latent topic models. While Transformer
encodes context as local information, it requires large corpora to learn the higher-order and
non-linear interactions between words, which demands more parameters, computation re-
sources, and time. It is often observed that the learned attentive patterns of many heads
are not as reasonable as we expect (Michel et al., 2019), and we might obtain this global
information from the upper blocks by increasing the number of transformer blocks (Doso-
vitskiy et al., 2021); unfortunately, as the transformer architecture requires a large number
of parameters, its computational cost is very high. Ramasesh et al. (Ramasesh et al., 2021)
pointed that catastrophic forgetting occurs mainly in the higher layers. These insights lead
us to place a topic steering layer (TSL) on the top Transformer layer and update only its
related parameters to avoid this forgetting. This does not break any PLM structure, and al-
lows reuse of PLMs and their parameters. As 1) a topic describes a co-occurrence pattern of
tokens with similar semantics, and 2) the differences between pre-training and fine-tuning
data sets exist not only in the topic itself, but also in the ratio of topics, we develop a
training task, Topic Distribution Modeling (TDM), to align topics with each text.
Since global distributions do not require additional learning, our architecture is designed
to find target-specific distributions through topics, and update them, Pθ(zt|xd,1:t−1) and
Pθ(xd,t|zt,xd,1:t−1), in fine-tuning. This design enables PLMs to emphasize knowledge that
might otherwise have been buried, and so prevent catastrophic forgetting.

3.3 Input

Given a target domain corpus, TAT feeds the text as input to the decoder, as shown in Fig 1.
Its layers convert the inputs into token (linguistic) embedding, and add special tokens [CLS],
[SEP], [EOS], and <s>. Following the text preprocessing of other Transformer-based NLMs,
TAT tokenizes each input text to create the linguistic input of token embedding, where each
sub-word is embedded with Word Piece (Wu et al., 2016) or another model-specific tokenizer
(e.g., Byte-Pair Encoding (BPE) vocabulary (Radford et al., 2019)) whose length equals
input length. [CLS] token is only inserted prior to the token, and denotes the class of each
source text. [SEP] token is assigned to the end of each sentence in each input sequence, and
indicates a sentence break. [EOS] token is assigned only after the last token in each input
sequence. <s> token is only inserted prior to the token in each target text. Following other
models, a learnable sequence position embedding is added to every input element indicating
its order in the input sequence.

3.4 Attention mechanism

Inside each Transformer layer, the previous layer’s output Hl−1 ∈ R|x|×dh is aggregated
using multi-head self-attention, where |x| is input sequence length. Thus the block core
is multi-head attention with heads that use a causal mask to preclude attending to future
tokens via the scaled dot-product attention:

Q = Hl−1WQ
l ,K = Hl−1WK

l ,V = Hl−1WV
l ,

Attention(Q,K,V) = softmax(
QKT

√
d

+ M)V,Mij =

{−∞ if i < j,
0 else ,

(3)
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where WQ
l ,WK

l ,WV
l ∈ Rdh×dk are learnable weights for computing the queries, keys, and

values, Q,K,V ∈ R|x|×dk , respectively, dk is the shared dimensionality of the queries and
keys. The self-attention mask, M ∈ R|x|×|x|, determines whether a position can attend to
other positions, where, Mij = 0 allows the i-th position to attend to the j-th position and
Mij = −∞ prevents attending.

3.5 Topic steering layer (TSL)

As shown in Figure (1), TAT places these topics and their layer, Topic steering layer (TSL),
on the top of Transformer layers to steer the text decoder. Then, TSL maps hidden repre-
sentation vector HL = [hL,1, · · ·, hL,|x|] ∈ R|x|×dh into topic vector z ∈ RZ , and selects the
topic-specific distribution over words on a given topic. This transformation yields Eq (2)
by defining topic matrix, WZ ∈ Rdh×Z , and word generation function, F(hL,t), where V is
the size of the vocabulary. We apply these matrices to hL,t ∈ Rdh in the text decoder, gain
XT and use it to sample the next token, xi, according to the probability:
XT = LayerNorm(hL,t)WZ ×F(hL,t, zt), Pθ(zt|xd,1:t−1) ∝ LayerNorm(hL,t)WZ ,

Pθ(xd,t|xd,1:t−1, zt) ∝ F(hL,t, zt), Pθ(xd,t|xd,1:t−1) =

Z∑
zt=0

Pθ(xd,t|xd,1:t−1, zt)Pθ(zt|xd,1:t−1),

P (xi ∈ XT ) =
exp(Pθ(xd,t = xi|xd,1:t−1, zt)/Te)∑
i exp(Pθ(xd,t = xi|xd,1:t−1, zt/Te)

, xi ∼ p(xi ∈ XT )

(4)

where WZ are learnable weights, Te > 0 is temperature and xi is the score of the i-th
word in the vocabulary. As XT is normalized into p(xi ∈ XT ) to yield the probability over
words, the next token is chosen by sampling a multinomial distribution with probabilities
clipped to the top-k tokens. Temperature-controlled stochastic sampling methods are used
for generating text from trained NLMs or PLMs. While Te → 0 approximates a greedy
distribution, which magnifies the peaks in the probability distribution, Te → ∞ flattens the
distribution and makes it more uniform.
As with F(hL,t, zt), we propose three transformations (addition, multiplication, and affine)
to generate xd,t that accords with the given zt and xd,1:t−1, hL,t.

TIDi ∝ ΣthL,t F(hL,t, zt) = WV ×


hL,t residual if zt = 0

(1− ω)hL,t + ωgz addition if zt = z and z > 0

hL,t ⊗ gz multiplication if zt = z and z > 0

hL,tWaz + bz affine if zt = z and z > 0,

(5)

where WV ∈ Rdh×V , gz ∈ Rdh , Waz ∈ Rdh×dh , and bz ∈ Rdh are the topic z specific
learnable weights. We prepare the residual to select the input if z = 0, take hL,t as the
global word distribution shown in Figure 1, which preserves PLM functionality, propose
an alternative (i.e., addition, multiplication, and affine) for z > 0, and confirm by a pre-
ablation analysis that affine is the best. Since both the ratio of the global words distribution
and type of target-specific word distribution depend on the given target corpus, they are
determined relative via fine-tuning using Eq (4). TIDi ∈ Rdh denotes the average of hL,t

over each input, i-th text, without using Wz.
Note that just as Eq (1) is transformed into Eq (2) through the introduction of topics,
the top layer of previous Transformer based NLMs/PLMs is decomposed into the product
of WZ and F(hL,t) in Eq (4). While both WZ and Waz (bz,gz) are newly introduced
parameters, WV is the existing parameter and updated in fine-tuning. Different from other
Transformer-based PLMs, TAT 1) aligns the t + 1-th topic of target text, Pθ(zt|xd,1:t−1),
and weights Pθ(xd,t|xd,1:t−1, zt) according to the distribution over topics, and 2) samples
each token according to p(xi ∈ XT ).
The top hidden state, HL, reflects the contextualized representation of the whole sequence
in the decoder. As TAT applies the concept of topic to distill the target-specific knowledge
as topics, the average of the token-level hidden states over each i-th text corresponds to a
topic distribution of topic models, and N-gram topics by incorporating both the preceding
topics and the topic specific distributions over words.
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4 Model Training

Our training uses our newly introduced Topic Distribution Modeling (TDM)

4.1 Topic Distribution Modeling (TDM)

The objective of TDM is to minimize the difference between a document-specific topic
distribution and a text specific representation, TID. The topic vector is the average of zt
over each d-th text with Eq (4), zd, and is gained by multiplying the transpose matrix of
WZ used in Eq (4) to match the number of dimensions zd and TIDd on dh. While we can
make each a text-specific topic distribution, by computing the mean of Pθ(zt|xd,1:t−1) or
max-over-time of all output topics, z1:t, we examine the best, the mean of distribution, in
our comparison experiment. Since zd learns representation directly through topics as shown
in Figure 1, texts with similar content, as discussed in topic models, are considered to have
similar topic distributions. As shown in Figure (1), TID is the final output of the last token
of each input text sequence, and denotes the representation of each text.
For the metrics of L2 regression, cross-entropy, KL-Divergence, and triplet objective, our
experiments confirm that TDM with triplet objective, LTDM (θ), attains better performance
than the alternative combinations, and so employ it in our framework. Since there is no
label that is the ground truth in unconditional text generation, we use zd as the learning
objective. Given zd as an anchor representation of the i-th text, its corresponding text
representation, TIDd, is taken as a positive embedding, while the other text representation,
TIDd́ is taken as a negative embedding. Triplet loss tunes the model such that the distance
between zd and TIDd is smaller than the distance between zd and TIDd́. Mathematically,
this objective minimizes the following loss function:

LTDM (θ) = max
(zd,T IDd,T IDd́)∼B

(||zd − TIDd|| − ||zd − TIDd́||+ ε, 0), (6)

where B is each batch, || • || is a distance metric, and ε is the margin that ensures that zd

is at least ε closer to TIDd than TIDd́; the sampling targets are batch units.

4.2 Training objective of TAT

We employ a unified multi-task learning framework that updates the decoder. As TAT
can adapt PLM-based NLMs, their parameters, θ, of Eq (2) are used to initialize the TAT
decoder, and a fine-tuning process is employed to adapt θ to the fine-tuning data. To
optimize these parameters and bridge the gap between the data used in the pre-training and
the fine-tuning process, we optimize the model loss in this tuning process. Using Eq (2),(6),
we can define the loss function, L(θ), as the sum of these objective functions that is to be
optimized in the fine-tuning stage:

LTAT (θ) = −LTLM (θ) + λTDMLTDM (θ), (7)

where θ is the parameter set of TAT, λTDM are hyper parameters to balance the importance
of TLM and TDM. We use Adaptive Moment Estimation (Adam) (Kingma & Ba, 2015)
over mini-batches to update parameters, and adopt the dropout strategy (Srivastava et al.,
2014) to optimize networks.

5 EXPERIMENTS

5.1 Datasets and Experiment design

Datasets We conducted evaluations using Amazon review2 and Yelp3, as they are large
publicly available datasets and are manually evaluable for screened colleagues. We used
these datasets because the resulting data size is computationally feasible on a general-
purpose server, includes a variety of topics that are different from pre-training corpus, meets

2https://huggingface.co/datasets/amazon_reviews_multi
3https://www.yelp.com/dataset/download
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Table 1: Basic statistics of the datasets used in this paper: In the attributes, #Z denotes
the number of topics for evaluating topic coherence.

Dataset #reviews #vocabulary #Z
Amazon 210,000 246,534 100

Yelp 6,685,900 365,762 200

the public reproducibility requirement, and can validate our insight that a small corpus
can provide significant benefits (Gururangan & et al, 2020). More precisely their domain
similarity is far from PLMs and high enough that they can be used as additional training
data for each other in domain-adaptive pretraining (DAPT) (Gururangan & et al, 2020).
Each record in the dataset contains a review text, review title, star rating, anonymized ID,
and coarse-grained product category, we use only review texts. All reviews were truncated
after 2,000 characters, and all reviews were at least 50 characters long. Among the languages
present, we used only English for ease of interpreting the results. We applied the same pre-
treatment to the Yelp data set and statistics of the resulting data set are shown in Table 1.
We used 90%, 5%, and 5% of each data set as training (e.g., text generation), validation and
test sets, respectively. The final performance comparison results are derived from the test
set, which corresponds to task-adaptive pretraining (TAPT) (Gururangan & et al, 2020).
Experiment Setup We implemented TAT by using Pytorch 1.7.14 and will release this
code soon. We set ε in Eq (6) to 0.2, and λTDM in Eq (7) to 0.5. As the average length
of each text used in fine-tuning data set is around 60, we set the maximum input sequence
length to 64. Note that the ground truth texts were excluded from training/validation data
to prevent information leakage. TAT uses GPT2 as the PLM. Following the training setting,
we used Adam with β1 = 0.9, and β2 = 0.999 was used for optimization, over mini-batches to
update parameters; the dropout strategy (Srivastava et al., 2014) was adopted for network
optimization. The learning rate was 3e-5, with linear warmup over the first 500 steps and
linear decay, where we set the dropout rate, the weight decay, and the batch size to 0.1,
0.01, and 256, respectively. We fine-trained all models on 8 Nvidia Tesla V100 GPUs, each
with 32G memory.

5.2 Topic Coherence

This experiment aims to evaluate how well TAT discovers topics, and compare TAT with
existing topic-based embedding models. In order to quantitatively assess topic quality, we
use the topic coherence measure (Mimno et al., 2010) to examine the relatedness of the
top-ranked words. This score shows high consistency with human judgements in terms of
topic quality (Mimno et al., 2010), where higher scores indicate greater topic coherency. As
the baselines, we used NMF (Lee & Seung, 1999), and LDA+TWE (TWE-1)5, Topic2Vec6,
with CLM7. We set the iterations of the Gibbs sampler, parameter update or epochs to
200 for all models except TAT, where the first 50 iterations were used to burn in the Gibbs
sampler; CLM used matrix factorization in learning word embedding representation. We
varied the number of top ranked words, and measured the resulting performance by using
the coherence model function of gensim8 with “u_mass”.
Table 2(left) shows that the top words of the learned topics are semantically coherent,
which coincides with the finding that using word embedding improves the quality of topic
models (Liu et al., 2015; Xun et al., 2017; Nguyen et al., 2015). TAT learns topics using
the order of both word and topic in each document and updates them iteratively, groups
semantically-related words more efficiently than the alternative approaches, and yields more
distinct topics.

4https://pytorch.org/
4https://huggingface.co/transformers/pretrained_models.html
5https://github.com/largelymfs/topical_word_embeddings
6https://github.com/ukgovdatascience/topic2vec
7https://github.com/XunGuangxu/2in1
8https://radimrehurek.com/gensim/models/coherencemodel.html
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Table 2: (left)Comparison of topic coherence, (right)Example of topics discovered by TAT:
N is #ranked words. In this table, T2V denotes Topic2Vec. The size of the embedding
space for Topic2Vec, CLM and TAT was set to 100(Amazon)/200(Yelp), the skip length
and #negative sampling were set to 5 and 5, respectively. The values in bold show best
performance, and denotes the statistical significance for p < 0.01, compared to the best
baseline. These words were selected from their distance from the topic embedding.

Amazon Yelp
N 5,10,20 5,10,20

TWE -2.11,-2.26,-3.33 -2.93,-3.08,-3.76
NMF -1.92,-2.54,-3.23 -2.67,-2.91,-3.82
T2V -1.75,-2.13,-2.61 -2.28,-2.36,-2.71
CLM -1.71,-1.82,-2.26 -1.52,-1.82,-2.22
TAT -0.88,-1.23,-1.77 -0.92,-1.45,-1.01

topic 1 topic 2 topic 3 topic 4
iphone small action excellent

os clear sci-fi dark
touch better visual cool

camera long staring pleasing
battery fantastic effect classic

Table 3: Comparison and Ablation analysis of various adaptation methods: In this table, F,
P, T, D-N, B-N, M and RL denote Fluency, Perplexity, Topic, Dist-N, BLEU-N, METEOR,
and Rouge-L respectively. In each row, upper/lower value is Amazon/Yelp. GPT-2+f, +pt,
and +DT is GPT-2 after fine-tuning, with prefix-tuning (Li & Liang, 2021), and with
DAPT+TAPT (Gururangan & et al, 2020), respectively. TAT freezes the parameters of
GPT-2 to evaluate the effect of TSL and TDM, TAT+DT freezes them after DT. The bold
values have equivalent meaning to its usage in Table 2.

Model F P T D-2 D-3 B-2 B-3 M RL
GPT-2 ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑

+f 3.11 27.32 0.73 5.12 10.02 14.48 7.82 10.23 17.36
2.65 32.32 0.68 4.55 9.03 14.21 7.22 9.67 16.11

+pt 3.08 27.38 0.73 5.02 10.02 14.93 7.88 10.83 17.8
2.63 32.34 0.68 4.57 9.06 14.33 7.25 10.45 17.21

+DT 3.26 26.12 0.75 5.23 10.31 15.63 8.12 11.23 18.78
2.63 32.34 0.68 4.57 9.06 14.33 7.25 10.95 17.78

TAT |Z| TDM
10 w 3.45 25.16 0.79 5.64 11.18 17.61 8.88 12.21 21.14
10 w 2.85 29.88 0.75 4.67 9.52 15.38 7.71 11.78 20.05
20 w 3.56 23.21 0.81 5.91 12.12 18.13 9.12 13.14 22.15
20 w 2.97 27.23 0.78 5.06 10.25 16.42 8.38 12.16 20.98
20 w/o 3.41 25.21 0.78 5.62 11.12 17.58 8.81 12.12 20.85
20 w/o 2.81 29.91 0.74 4.62 9.47 15.35 7.69 11.72 19.92

+DT 20 w 3.45 25.16 0.79 5.64 11.18 17.61 8.88 12.21 21.14
20 w 2.85 29.88 0.75 4.67 9.32 15.38 7.71 11.78 20.05

We show examples of discovered topics in Table 2, where the ID of the topic is arbitrary;
topic2/4 co-occurs with topic1/3. This result shows that topic 1 and topic 3 have many
words associated with products and contents, while topic 2 and topic 4 have many subjective
words corresponding to features. This indicates that TAT extracts interpretable topics.

5.3 Text Generation

Baselines: To evaluate the quality of generated texts, we add the latest adaptation ap-
proach, GPT2 with prefix-tuning (Li & Liang, 2021), DAPT+TAPT (Gururangan & et al,
2020).
Automated evaluation: We used test-set perplexity, Dist (Li et al., 2016), and BLEU-
N (Papineni et al., 2002) metrics to measure performance, METEOR (Lavie & Agarwal,
2007), and ROUGE (Lin, 2004) metrics to measure performance (Sai et al., 2023). Perplexity
is an automated measure of fluency, and while its effectiveness has been questioned in open-
domain text generation (Liu et al., 2016), we use the well-known test-set perplexity using
different pre-trained NLMs. n-gram based metrics (Dist, BLEU, METEOR, ROUGE) count
the overlap between the generated text, and its corresponding reference text in the test data
after removing seed words.
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Table 4: Case study for Amazon: (top) Ground Truth, (center) GPT2+TAPT+DAPT,
and (TAT). We set seed words of ”I am disappointed in this purchase”, and show the text
generated by each model.

I am disappointed in this purchase. I bought one of these in another color and in size XL
The color is not as vibrant as I would like. It does however still look great. I will use
I ordered an XL size in black which arrived with a large hole. There’s no way anyone

Human evaluation: We employ fluency testing on attribute relevance as the human an-
notation (Dathathri et al., 2020). Annotators were asked to evaluate the fluency of each
individual sample on a scale of 1-5, with 1 being‚ not fluent at all‚ and 5 being, very fluent,
as done in (Lample et al., 2019). Topic reports the fraction of samples matching the target
domain as evaluated by the manual annotators. To consistently evaluate generated texts,
we recruited and screened 10 colleagues who were familiar with movies, music (Amazon),
and restaurants (Yelp) and who could interpret reviews.
Comparisons: As shown in Table 3, TAT outperformed the baselines and achieved better
performance over both data sets. These results support our hypothesis that TSL allows
TAT to distill knowledge in the form of topics, and update only the target-specific word
distributions to prevent catastrophic forgetting. The decline due to the introduction of DT
into TAT implies catastrophic forgetting.
Ablation analysis: To investigate the respective contributions of TAT components, (i.e.,
TSL and TDM), we conducted an ablation analysis. We removed different components and
the resulting text generation quality is shown in Table 3. This table shows that the complete
setting of TAT achieves better performance across both datasets. A within table comparison
shows that TSL is most effective. By comparing the effects of TSL and TDM for the same
pre-training data, these newly introduced tasks improve text generation performance, while
TL was more effective than TDM and DAPT+TAPT.
Error analysis: A manual error analysis showed that some instances marked as errors
were in fact assessed correctly as allowed by partial matching of words in a text. When the
ground truth text is personalized, human judgement is difficult even if the generated text
is different from the ground truth, see Table 4. where the generated texts included more
abstract or higher frequency words than the reference sentences.

6 DISCUSSION

As TAT adapts PLMs toward the target domain as domain shift, it focuses on the difference
between the source and the target domain as word distributions, uses topics as a memory and
an indicator to select these distributions through the use of TSL and TDM. Topics are based
on word co-occurrence in the texts, which varies with the dataset, and allows TAT to capture
the global information. Previous NLMs use local context information to capture semantic
meaning. Formally, TAT performs domain shift by recalculating Pθ(xd,t|zt,xd,1:t−1) and
aligning the Pθ(zt|xd,1:t−1) with the target domain, see Eq (2) and Figure1.
TAT mitigates the gap between the source and the target by highlighting the target-specific
word distributions through topics and updating only these distributions, even if Z is small.
The number of parameters in WZ ∈ Rdh×Z , Z × Waz ∈ Rdh×dh , and Z × bz ∈ Rdh , newly
introduced by TSL, is a much smaller number of parameters than PLMs, and fixing PLMs’s
parameters in the fine-tuning stage lowers the overall computational cost; its effectiveness
is shown in Table 3. Just as topic models have enjoyed success in areas other than text
processing, fine-tuned PLMs with TAT could be applied to other tasks.

7 CONCLUSION

The proposal of this paper, TAT, can adapt PLMs to the unconditional text generation task
while using the target domain as a constraint. Experiments showed that the components of
TSL and TDM enable TAT to discover target-domain-specific topics, fine-tune PLMs over
these topics, and generate valid texts reflecting a given small fine-tuning data set.
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