

000 TRANSFORMERS KNOW WHEN THEY DON'T KNOW: 001 LAYER-WISE DISTANCE AWARENESS FOR OOD DE- 002 TECTION

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Out-of-distribution object detection (OOD-OD) is essential for building robust
014 vision systems in safety-critical applications. While transformer-based architec-
015 tures have become dominant in object detection, existing work on OOD-OD has
016 primarily focused on OOD object synthesis or OOD detection scores, with lim-
017 ited understanding of the internal feature representations of transformers. In this
018 work, we present the first in-depth analysis of transformer features for OOD-OD.
019 Motivated by theoretical insights that *input distance awareness* – the ability of fea-
020 ture representations to reflect the distance from the training distribution – is a key
021 property for predictive uncertainty estimation and reliable OOD detection, we sys-
022 tematically evaluate this property across transformer layers. Our analysis reveals
023 that certain transformer layers exhibit heightened input distance awareness. Lever-
024 aging this observation, we develop simple yet effective OOD detection methods
025 based on features from these layers, achieving state-of-the-art performance across
026 multiple OOD-OD benchmarks. Our findings provide new insights into the role
027 of transformer representations in OOD detection. **Code and additional experi-
028 ments are in the Supp.**

030 1 INTRODUCTION

032 Table 1: **We conduct the first study to systematically analyze transformer features for OOD**
033 **detection.** Most existing methods focus on CNN-based object detectors, and many techniques are
034 tailored specifically to CNN models and backbones, e.g., SAFE (Wilson et al., 2023). Meanwhile,
035 recent efforts have focused on techniques for synthesizing OOD objects and OOD detection scores.
036 In contrast, feature representations for OOD detection in transformer-based object detectors remains
037 largely unexplored.

	Arch.		Research focus		
	CNN	Transformer	OOD Synthesis	OOD score	Feature for OOD
VOS (Du et al., 2022b)	✓		✓		
FFS (Kumar et al., 2023)	✓		✓		
SR-VAE (Wu & Deng, 2023)	✓		✓		
DFDD (Wu et al., 2023)	✓		✓		
MPD (Aming & Deng, 2024)	✓		✓		
SIREN (Du et al., 2022a)		✓		✓	
VisTa (Zhang et al., 2025b)	✓			✓	
SAFE (Wilson et al., 2023)	✓		✓		✓(CNN)
SyncOOD (Liu et al., 2024)	✓		✓		
Ours		✓			✓(Transformer)

052 Object detection is one of the most critical tasks in computer vision. Currently, state-of-the-art
053 (SOTA) object detectors (Zhao et al., 2024a;b; Hou et al., 2024) are trained on closed-set datasets,

which can lead to overconfident predictions on outlier samples (Dhamija et al., 2020; Nguyen et al., 2015). In real-world deployments, such as autonomous driving, unknown objects often emerge, and failing to detect them can result in serious accidents (Nitsch et al., 2021). As a result, the research community is actively pursuing out-of-distribution detection in both image classification (Wang & Li, 2024; Tang et al., 2024; Ming et al., 2022; Yuan et al., 2024; Xue et al., 2024; Bai et al., 2024; Zhang et al., 2024) and object detection (Liu et al., 2024; Wilson et al., 2023; Kumar et al., 2023; Wu & Deng, 2023; Wu et al., 2023; Aming & Deng, 2024; Du et al., 2022a;b) to better recognize outlier samples and enhance the trustworthiness of model predictions.

Research gaps in OOD-OD. Recent OOD-OD approaches commonly operate by extracting features from one or several layers of a pretrained detector and then applying techniques such as energy-based scoring or lightweight classifiers (e.g., MLPs) to distinguish in-distribution (ID) and out-of-distribution (OOD) samples. While effective to some extent, this line of work still leaves several critical gaps, as summarized in Table 1. First, although transformer-based detectors such as MS-DETR (Zhao et al., 2024a), ViTDET (Li et al., 2022) have become popular in modern object detection, most OOD-OD methods remain focusing on CNN-based backbones like Faster-RCNN. For example, VOS (Du et al., 2022b), FFS (Kumar et al., 2023), DFDD (Wu et al., 2023), and SAFE (Wilson et al., 2023) are all developed for CNN backbones. Only SIREN (Du et al., 2022a) leverages a transformer-based model, but they treats transformers as monolithic units, without investigating which specific internal layers or components are most sensitive to OOD signals. Second, the majority of existing methods extract features exclusively from the final layer of the detector, assuming that high-level representations are sufficient for capturing distributional shifts. However, this overlooks the representational diversity encoded across intermediate layers, which may offer more robust cues for OOD detection, especially in deep transformer-based models (Zhang et al., 2022; Sonkar & Baraniuk, 2023). As a result, it remains unclear how to best utilize the internal structure of transformers to enhance OOD-OD performance.

In this work, we conduct the first study to analyze transformer layers for OOD object detection and propose a simple and effective method based on our analysis of transformer layer characteristics. Our work builds on the theoretical foundation of *input distance awareness*. Particularly, Liu et al. (2020a) identify input distance awareness as a necessary condition for reliable uncertainty estimation in deep networks. Their formulation emphasizes that this property depends on a bi-Lipschitz mapping between input space and hidden representations, ensuring that distances in the feature space reflect meaningful differences in the input distribution. Motivated by this insight, we hypothesize that certain internal layers in transformer-based detectors better preserve input distance, and thus are more effective for OOD detection. We propose a framework for layer-wise sensitivity analysis to quantify this distance-preserving property. Based on our analysis, we propose a simple and effective method to identify and aggregate features from the most sensitive layers. This principled approach yields a simple, architecture-agnostic method that consistently improves OOD detection performance without retraining or architectural modifications. Focusing on OOD-OD, our contributions can be summarized as follows. **Firstly**, we bridge a critical gap by proposing a framework to analyze internal layers of Transformer architectures for OOD-OD effectiveness, going beyond the conventional focus on penultimate layer or CNN-based features. **Secondly**, we are the first to exploit theoretical results of input distance awareness in Transformer architectures for OOD-OD, leveraging Lipschitz analysis to quantify sensitivity. **Thirdly**, we achieve SOTA performance on challenging OOD-OD benchmarks without retraining the object detector. Our results are demonstrated across ID-OOD dataset setups using two important Transformer-based object detectors. **Finally**, while previous approaches rely on highly specialized OOD detection methods tied to specific object detectors, our approach is model-agnostic. It is based solely on extracted features and does not require architectural modifications, making it more easily applicable for new Transformer-based object detectors.

2 RELATED WORKS

OOD Detection for Image Classification can be broadly categorized into fine-tuning-based and post-hoc approaches. Fine-tuning-based mitigate overconfidence on OOD samples by introducing random noise, shuffling image patches (Lee et al., 2017), using auxiliary datasets (Hein et al., 2019), or synthesizing outliers (Du et al., 2022b; Tao et al., 2023), though their performance depends on outlier quality and may degrade ID accuracy. Post-hoc methods require no retraining; MSP (Hendrycks &

108 Gimpel, 2016) inspired variants such as ODIN (Liang et al., 2017), Energy Score (Liu et al., 2020b),
 109 ReAct (Sun et al., 2021), and DICE (Sun & Li, 2022). Other works exploit feature-space distances,
 110 e.g., Mahalanobis (Lee et al., 2018) or k-NN (Sun et al., 2022). Recent studies (Tang et al., 2024)
 111 analyzes different layers, moving beyond methods that rely solely on logits (Lee et al., 2018) or
 112 penultimate layer features (Sun et al., 2022), emphasize explore of intermediate layers representation
 113 for OOD detection. Highlighting the importance of exploring intermediate-layer representations
 114 for OOD detection. In this work, we are the first to analyze the sensitivity of different intermediate
 115 layers in object detectors, without being limited to a specific architectural variant, and to propose a
 116 sensitivity-guided selection criterion for identifying the most effective layers from which to extract
 117 object-specific features for OOD detection.

118 **OOD Detection for Object Detection.** Early approaches focused on generating synthetic OOD
 119 data, such as VOS (Du et al., 2022b), NPOS (Tao et al., 2023), DFDD (Wu et al., 2023), SRVAE (Wu
 120 & Deng, 2023), and FFS (Kumar et al., 2023). In contrast to these synthesis-based approaches,
 121 SIREN (Du et al., 2022a) does not require any OOD samples; instead, it introduces an auxiliary
 122 model to reshape ID feature representations. RUNA (Zhang et al., 2025a) addresses the cognitive
 123 limitations of object detectors by integrating CLIP (Radford et al., 2021) into the detection pipeline,
 124 performing multi-step OOD detection through repeated CLIP-based image encoding. Unlike VOS,
 125 NPOS, SIREN, DFDD, SR-VAE, and FFS, SAFE (Wilson et al., 2023) follows a post-hoc detection
 126 paradigm. It proposes a feature selection mechanism that identifies sensitivity-aware representations
 127 and trains an MLP for OOD detection. However, SAFE is restricted to specific CNN components,
 128 namely batch normalization and skip connections. Our approach departs from these constraints by
 129 proposing a Bi-Lipschitz-based sensitivity analysis to identify distance-aware intermediate layers,
 130 without relying on any architectural assumptions. This allows our method to generalize effectively
 131 across a wide range of object detectors.

132 **Uncertainty estimation.** Traditional approaches to uncertainty estimation, such as deep ensem-
 133 bles and Bayesian neural networks, are computationally expensive. To address this, SNGP (Liu
 134 et al., 2020a) explores distance-awareness as a means to measure the distributional shift between
 135 test and training samples, thereby supporting uncertainty estimation in deterministic models. Since
 136 deep neural networks are not inherently designed to preserve input distance sensitivity, numerous
 137 studies have introduced regularization techniques to promote this property. These studies include
 138 sensitivity-aware training (Liu et al., 2020a) and spectral normalization (Miyato et al., 2018). Ar-
 139 chitectural factors such as residual connections have also been investigated for their influence on
 140 sensitivity (Mukhoti et al., 2021). Several of these works (Liu et al., 2020a; Van Amersfoort et al.,
 141 2020; Mukhoti et al., 2021) emphasize the importance of distance-awareness properties for OOD
 142 detection.

143 Rather than focusing solely on the penultimate layer and retrained the model, as in Liu et al. (2020a),
 144 we analyze the sensitivity of each layer in pretrained object detectors. We further propose variations
 145 of the sensitivity formulation to identify the most sensitive layers for OOD detection.

146 3 PRELIMINARIES

147 We start with a pretrained object detector f , which takes an input image x and outputs D object
 148 predictions - each with a class label and a bounding box. However, some predicted objects may be
 149 OOD, despite being assigned high confidence by the model. The goal of OOD-OD is to classify
 150 each predicted object as either ID or OOD, thereby improving the reliability of object detectors in
 151 real-world deployments.

152 3.1 INPUT DISTANCE AWARENESS

153 A reliable measure of uncertainty, particularly for detecting OOD inputs, requires a deterministic
 154 model to be input distance-aware, meaning it can quantify how far a test example lies from the
 155 training data manifold. Without such awareness, models often produce overconfident predictions
 156 for OOD inputs, even when these inputs are far from the known data distribution. This issue arises
 157 because uncertainty is frequently associated with the decision boundary, which is learned through the
 158 model’s task-specific optimization, rather than with the true distance from the training data manifold
 159 (Liu et al., 2020a).

162 Consider a deep neural network with logits defined as:

$$\text{logit}(x) = g \circ h(x),$$

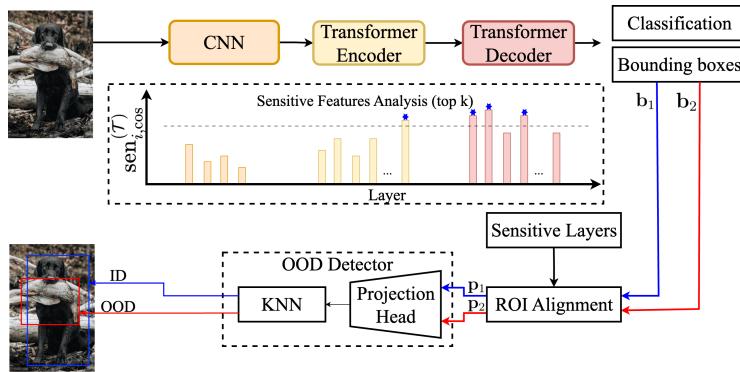
165 where $h : \mathcal{X} \rightarrow \mathcal{H}$ is the hidden mapping that transforms input x into a feature representation $h(x)$,
166 and g maps $h(x)$ to class logits. Following Liu et al. (2020a), *input distance awareness* requires two
167 conditions:

- 168 • **Distance-aware output layer (g):** The output function must produce uncertainty estimates
169 that reflect hidden-space distances $\|h(x) - h(x')\|_{\mathcal{H}}$, for example, in Gaussian process-
170 based output layers.
- 171 • **Distance-preserving hidden mapping (h):** Distances in the hidden space meaningfully
172 correspond to distances in the input space $\|x - x'\|_{\mathcal{X}}$.

174 When both conditions hold, the model’s uncertainty estimates naturally scale with the distance from
175 the training domain, improving both calibration and OOD detection. In our work, we focus on the
176 distance-preserving of the hidden layers. In Liu et al. (2020a), they improve distance preservation
177 in intermediate layers using spectral normalization and analyze it using the Bi-Lipschitz equation:

$$178 K_1 \|x - x^*\|_I \leq \|h(x) - h(x^*)\|_F \leq K_2 \|x - x^*\|_I \quad (1)$$

179 Here, x and x^* are two distinct inputs, while $\|\cdot\|_I$ and $\|\cdot\|_F$ denote distance metrics in input
180 and feature spaces, respectively. K_1 and K_2 are constants. Importantly, the lower Lipschitz bound
181 $K_1 \|x - x^*\|_I \leq \|h(x) - h(x^*)\|_F$ characterizes **sensitivity** of the hidden representation, ensuring
182 their effectiveness in preserving meaningful changes in the input manifold, which is important for
183 OOD detection.



197 Figure 1: Our propose OOD-OD method, SeFea, which leverage sensitive object-specific features
198 (OSFs) in transformer-based object detector. The top k most sensitive transformer layers are pre-
199 identified using $\text{sen}_{i,\cos}^{(T)}$ sensitivity metric. Feature maps from these layers are extracted and pro-
200 cessed through ROI Align, then concatenated to form the OSFs, denoted as p_d . These OSFs are then
201 passed through the OOD Detector module, which outputs OOD predictions for each detected object,
202 enabling discrimination between in-distribution (blue) and out-of-distribution (red) objects.

204 4 PROPOSED METHOD

206 Motivated by prior theoretical work on sensitivity and the need for a fine-grained, layer-wise under-
207 standing of OOD detection, we pose a central question: *How can sensitivity be leveraged to identify*
208 *transformer layers most effective for OOD-OD?* In what follows, we first present an overview of our
209 method, which utilizes sensitive transformer layers for OOD-OD. We then introduce our framework
210 for identifying these sensitive transformer layers, grounded in the lower Lipschitz bound formulation
211 in Eq. 1.

213 4.1 OVERVIEW OF PROPOSED OOD-OD METHOD: SEFEA

215 Figure 1 outlines our sensitive transformer feature-based OOD-OD method, SeFea. Transformer
layers are first ranked using a sensitivity-based algorithm to characterize input–distance awareness.

The detailed design of this algorithm are described in a later section. Based on the resulting sensitivity values, we select the most sensitive layers for OOD detection. Feature extraction is performed by using a tracker to collect the corresponding feature maps from the object detector. To obtain object-specific features (OSFs), we use the predicted bounding boxes $\{b_1, \dots, b_D\}$ to crop the object regions of each feature map. For each object d and each layer l , we extract features denoted as $O_{l,d}$. Each $O_{l,d}$ is then spatially pooled to a size of 1×1 (width \times height) to produce a feature vector $p_{l,d}$, whose dimensionality matches that of the corresponding feature map l . The final OSF vector for each object, p_d , is formed by concatenating the feature vectors $\{p_{1,d}, \dots, p_{k,d}\}$ from all sensitive layers, which form our sensitive feature (SeFea).

Afterward, the OSFs are passed through the OOD Detector module for OOD detection. Specifically, we explore the detection head proposed in Du et al. (2022a), which consists of a projection head implemented as a sequence of fully connected layers. This head is trained to enforce a von Mises-Fisher distribution on the OSF embeddings. The OOD score is then computed using the KNN distance in this compact and normalized feature space.

Our approach is architecture-agnostic and does not rely on the common assumption that the penultimate-layer representation is well-suited for OOD detection. Instead, it systematically selects the most sensitive layers, making it applicable to a wide range of object detectors. Unlike SAFE (Wilson et al., 2023), which imposes constraints such as the presence of batch normalization and skip connections, or methods that depend solely on penultimate-layer features (Du et al., 2022a;b; Kumar et al., 2023), our method can be applied without such architectural restrictions.

4.2 SENSITIVE LAYERS ANALYSIS

A key question is how to rank the transformer layers for OOD detection. Motivated by prior theoretical analyses of input distance awareness in hidden-layer representations, we design *layer-wise sensitivity metrics* to quantify how strongly each transformer layer responds to changes in the input. Following Liu et al. (2020a), transformer layers with higher sensitivity are expected to be more effective for OOD detection.

To achieve more accurate comparisons across layers with different feature dimensionalities, we explore *dimension-invariant similarity measures*. Normalized Euclidean distance achieves dimension invariance by normalization with dimensionality, yielding the average per-dimension difference. Cosine similarity is dimension-invariant because it measures only the angle between two vectors, normalizing their magnitudes and disregarding the dimensionality of the feature space. We explore these metrics for more accurate sensitivity comparisons across transformer layers of varying dimensionalities, mitigating potential bias toward higher-dimensional layers.

Using the Bi-Lipschitz's lower bound in Eq. 1, and applying normalization with respect to both the input and feature dimensionalities, we develop the following equation for quantifying sensitivity awareness for the i -th transformer layer:

$$\text{sen}_{i,\text{Euc}}^{(\mathcal{T})} = \frac{C_x}{n_{\text{pairs}} \cdot C_i} \sum_{j=1}^{n_{\text{pairs}}} \frac{\|f_i(x_j^{(\mathcal{T})}) - f_i(x_j)\|}{\|x_j^{(\mathcal{T})} - x_j\|}. \quad (2)$$

Beside the normalized Euclidean distance, we further consider cosine similarity to develop the following equation for quantifying sensitivity for the i -th transformer layer:

$$\text{sen}_{i,\text{cos}}^{(\mathcal{T})} = \frac{1}{n_{\text{pairs}}} \sum_{j=1}^{n_{\text{pairs}}} \frac{1 - \cos(f_i(x_j^{(\mathcal{T})}), f_i(x_j))}{1 - \cos(x_j^{(\mathcal{T})}, x_j)}. \quad (3)$$

We explore several types of transformation \mathcal{T} to obtain $x_j^{(\mathcal{T})}$ from x_j for the distance computation.

- Random Sample: $x_j^{(\mathcal{T})}$ is another random sample different from x_j .

270 • FGSM: $x_j^{(\mathcal{T})} = FGSM(x_j)$ denoting adversarially perturbed sample obtained via Fast
 271 Gradient Sign Method (FGSM) (Goodfellow et al., 2014), is used to induce perturbations
 272 on x_j to obtain $x_j^{(\mathcal{T})}$.
 273

274 • Gaussian: $x_j^{(\mathcal{T})} = x_j + \mathcal{N}(\mu, \sigma^2)$, where $\mathcal{N}(\mu, \sigma^2)$ is Gaussian noise with pre-defined
 275 mean and standard deviation.

277 In Eq. 2 and Eq. 3, C_x denotes the dimensionality of the input space, and C_i denotes the dimension-
 278 ality of the feature of the i -th transformer layer. n_{pairs} represents the predefined number of randomly
 279 sampled pairs used in the sensitivity computation. The sensitivity is computed for each pair, and the
 280 mean over all pairs is then taken to obtain the final sensitivity score.

281 In our OOD-OD detector, instead of choosing features solely from the highest-sensitivity layer for
 282 OOD detection, we also aggregate features from several high-sensitivity-aware layers. Neural net-
 283 works learn hierarchical representations: lower layers capture basic features, while higher layers
 284 encode more complex concepts. By concatenating features from various layers, our OSFs harness
 285 a richer spectrum of information, enhancing their ability to distinguish ID from OOD detections.
 286 This layer-feature integration aligns with the principle that combining diverse representation levels
 287 can improve the robustness and accuracy of OOD detection systems. The number of high-sensitivity
 288 layers used for concatenation is explored in the supplementary material.

289 4.2.1 SENSITIVITY & OOD PERFORMANCE CORRELATION

292 **Table 2: Validation of effectiveness of our proposed sensitivity metrics in selecting effective**
 293 **transformer layers for OOD-OD.** Pearson correlation between layer-wise sensitivity scores (Eq. 2
 294 and Eq. 3) and OOD detection performance (AUROC) across all layers of MS-DETR and ViTDET
 295 object detectors. Our analysis shows that Cosine distance paired with Random Sampling yields the
 296 highest correlation, indicating its effectiveness in identifying effective transformer layer for OOD-
 297 OD.

298 299 Model	Sensitivity Calculation	Transformation Type (\mathcal{T})	Pearson↑			
			VOC		BDD	
			MS-COCO	OpenImages	MS-COCO	OpenImages
300 301 302 303 304 305 306 307 308 309	Euclidean	Random Sample	0.397	0.393	0.366	0.376
		FGSM	0.286	0.256	0.224	0.239
		$\mathcal{N}(10,30)$	0.324	0.295	0.260	0.274
		$\mathcal{N}(10,150)$	0.412	0.388	0.292	0.305
	Cosine	Random Sample	0.612	0.608	0.677	0.653
		FGSM	0.363	0.344	0.390	0.387
		$\mathcal{N}(10,30)$	0.471	0.465	0.540	0.528
		$\mathcal{N}(10,150)$	0.592	0.586	0.687	0.661
	ViTDET	Euclidean	Random Sample	0.248	0.244	0.148
		Cosine	Random Sample	0.816	0.775	0.697

310 To validate effectiveness of Eq. 2 and Eq. 3 in selecting transformer layers for our OOD detector,
 311 we analyze their correlation with OOD detection accuracy. The details of transformer-based models
 312 (MS-DETR, ViTDET), and the details of the implementation of the sensitivity calculation, such as
 313 n_{pairs} and the dimension of the input space, are provided in the Experiment section and Supp. The
 314 correlation is measured using the *Pearson* correlation coefficient.

315 This sensitivity–OOD accuracy correlations are reported in Table 2. We observe that cosine simi-
 316 larity consistently achieves higher correlations with OOD detection accuracy than Euclidean dis-
 317 tance across both MS-DETR and ViTDET, with the gap being particularly pronounced for ViTDET.
 318 Among different types of transformation \mathcal{T} , Random Sample transformation generally yields the
 319 strongest correlations, while FGSM perturbations produce noticeably lower values. Gaussian noise
 320 perturbations—especially with higher variance—often match or slightly surpass the performance of
 321 normal pairs. These findings indicate that angular-based similarity measures with Random Sample
 322 transformation is effective in identifying effective transformer layer. Therefore, in our method, we
 323 rank layers by Eq. 3 to compute $\text{sen}_{i,\text{cos}}^{(\text{RandomSample})}$, and the OSFs used in our method are collected
 from the k most sensitive layers according to this ranking (See Figure 1).

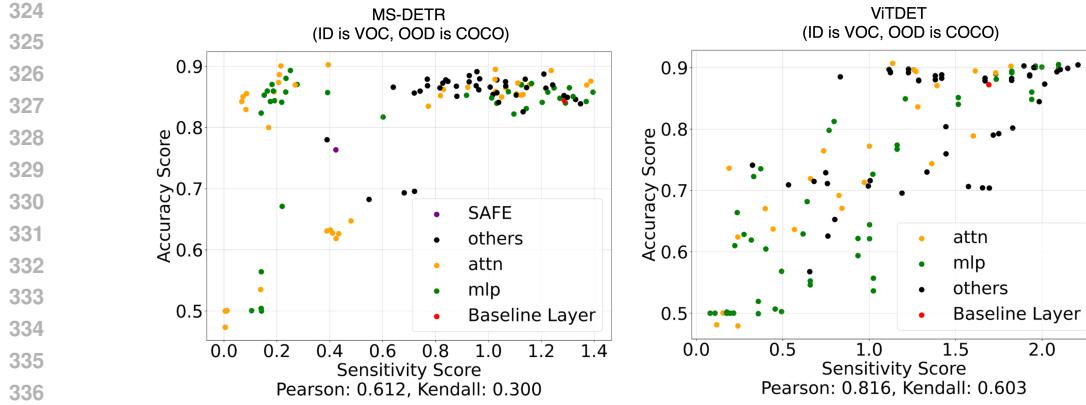


Figure 2: Correlation between sensitivity and OOD detection performance across all layers. The layers considered include SAFE (Wilson et al., 2023), penultimate (Baseline Layer), attention layers (attn), MLP layers (mlp), and other components (others). Each point represents an individual layer, with its sensitivity score $\text{sen}_{i,\text{cos}}^{(\mathcal{T})}$ and the corresponding OOD detection performance (AUROC) based on the OSFs extracted from that layer. The SIREN-KNN is used as the OOD detector, and sensitivity is computed using inputs obtained from Random Sample transformation.

Figure 2 visualizes sensitivity–OOD performance relationship across different layers. We find a clear trend where layers with higher sensitivity tend to exhibit higher OOD detection accuracy. Notably, many intermediate transformer layers show higher sensitivity and OOD accuracy than the penultimate layer, suggesting that the richest OOD cues often reside in intermediate layers. Overall, there exists noticeable correlation between OOD accuracy and sensitivity, and our sensitivity metric serves as a viable selection signal for identifying sensitive layers.

Table 3: Comparison of the proposed method SeFea (*Ours*) with existing OOD-OD methods (MSP (Hendrycks & Gimpel, 2016), SAFE (Wilson et al., 2023) and SIREN (Du et al., 2022a)) on two transformer-based architectures: MS-DETR and ViTDET. All methods use **SIREN-KNN** (left) or **SIREN-vMF** (right) as the OOD detector, except for MSP. Evaluation is performed on PASCAL-VOC as the ID dataset, and MS-COCO and OpenImages as the OOD datasets. Performance is reported using AUROC and FPR95 metrics.

Method	SIREN-KNN				SIREN-vMF				
	ID: PASCAL-VOC		ID: BDD		ID: PASCAL-VOC		ID: BDD		
	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	
MS-DETR	MSP	77.37/69.48	68.55/75.08	79.22/82.28	80.26/81.30	77.37/69.48	68.55/75.08	79.22/82.28	80.26/81.30
	SAFE	77.26/79.29	78.54/75.12	82.90/80.68	72.50/75.08	76.08/84.33	76.20/60.63	72.78/75.19	76.15/75.29
	SIREN	84.39/80.75	53.47/59.37	88.60/89.75	64.73/61.38	73.14/69.90	81.50/82.68	76.48/78.09	80.32/82.01
	<i>Ours</i>	86.38/86.22	50.71/50.13	88.95/90.16	61.57/60.37	84.37/84.47	58.05/55.83	88.17/87.39	63.02/60.69
ViTDET	MSP	73.75/73.31	87.13/86.65	71.41/72.92	87.50/86.75	73.75/73.31	87.13/86.65	71.41/72.92	87.50/86.75
	SIREN	87.24/86.80	55.71/52.56	87.17/87.62	62.98/62.15	83.67/ 87.34	58.05/ 50.72	74.44/74.19	72.66/72.01
	<i>Ours</i>	90.41/90.79	40.13/41.52	89.60/91.28	46.90/44.14	84.08/85.49	54.69/50.88	90.02/93.94	42.10/30.26

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets We use the same ID and OOD datasets following Du et al. (2022b) for all our experimental setups. Specifically, PASCAL-VOC (VOC) and Berkeley DeepDrive-100K (BDD) serve as the ID datasets, while subsets of MS-COCO and OpenImages function as the OOD datasets. The OOD sets are curated to ensure the absence of any classes present in the ID sets.

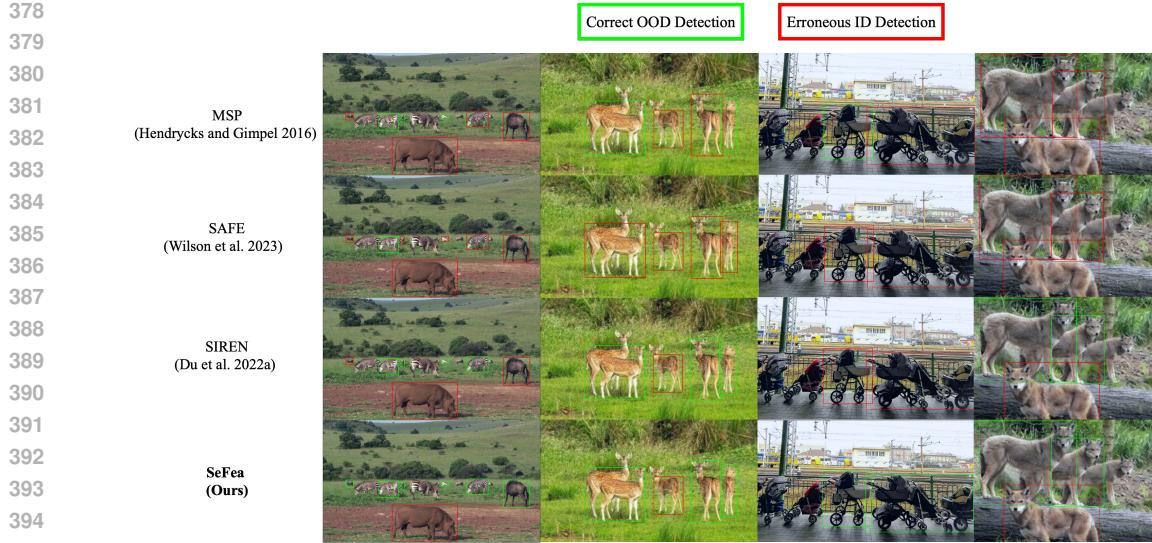


Figure 3: Qualitative visualization of OOD-OD detection results from the MS-DETR object detector with Pascal-VOC as the ID dataset. Detection results are obtained by comparing the OOD score against the threshold at FPR95. Green boxes indicate that the OOD detector correctly classifies the object as OOD, while red boxes denote misclassification as ID. All images are chosen such that none of the 20 Pascal-VOC classes appear in the scenes.

Evaluation Metrics AUROC and FPR95 are used, with details provided in the appendix. We follow the evaluation protocol of Wilson et al. (2023); Du et al. (2022b), where AUROC and FPR95 are computed after filtering out low-confidence bounding box predictions.

Object detectors Most prior OOD detection methods have been developed for the Faster R-CNN architecture, whereas our work focuses on transformer-based architectures—specifically MS-DETR and ViTDET—which, to the best of our knowledge, have not been previously explored for OOD-OD. Consequently, we re-implement several SOTA methods, including MSP (Hendrycks & Gimpel, 2016), SAFE (Wilson et al., 2023), and SIREN (Du et al., 2022a), within our MS-DETR and ViTDET framework to ensure a fair comparison.

5.2 IMPLEMENTATION

Network Architecture To analyze and identify sensitive layers in transformer-based architectures for OOD-OD, we utilize MS-DETR (Zhao et al., 2024a) and ViTDET (Li et al., 2022), paired with ResNet-50(He et al., 2016) and ViT-B(Dosovitskiy et al., 2021) backbones, respectively. Since these architectures are originally trained on the COCO dataset, we retrain them on the designated ID datasets prior to evaluation. The pre-trained models are ensured to achieve strong detection performance on the ID validation sets, and provide a fair comparison of OOD detection given the predicted bounding boxes. Details of the pre-training results on the ID datasets are provided in the supplementary material. It is important to note that although SIREN (Du et al., 2022a) retrains both the object detector and the OOD detector using a customized loss function, in our implementation, we only train the SIREN OOD detector while keeping the pretrained object detector frozen.

Feature Extraction The overall pipeline is depicted in Figure 1; Transformer features are identified using Eq. 3, which has been validated to be effective in the previous section. More details can be found in the supplementary material. **OOD Detectors** We adopt the SIREN framework (Du et al., 2022a) with two types of prototype-based detection heads. The extracted OSFs are first passed through a projection layer to obtain modulated features tailored for the OOD detection task. In the SIREN-KNN setting, class prototypes are constructed via KNN clustering. In contrast, the SIREN-vMF setting models class-wise prototypes using von Mises-Fisher (vMF) distributions. OOD samples are identified as those with low probability under all class prototypes.

432 5.3 QUANTITATIVE ANALYSIS
433434 Tables 3 compare our method with existing SOTA OOD-OD approaches with two types of OOD
435 detector:436 SIREN-KNN. Across both transformer-based architectures (MS-DETR and ViTDET) and all
437 ID/OOD dataset configurations, SeFea consistently outperforms MSP, SAFE, and SIREN base-
438 lines, achieving the highest AUROC and lowest FPR95 scores. Compared to the strongest base-
439 line (SIREN), AUROC improvements range from +0.35% to +5.47%, while FPR95 reductions are
440 often substantial—frequently exceeding 10%. Notably, ViTDET benefits more from SeFea than
441 MS-DETR, particularly in FPR95 (e.g., reducing from 55.71% to 40.13% on VOC/COCO and from
442 62.98% to 46.90% on BDD/COCO), suggesting that our sensitivity-guided intermediate-layer se-
443 lection (using Eq. 3) outperforms the penultimate-layer feature used in SIREN (Du et al., 2022a),
444 or batch norm/skip connection features used in SAFE (Wilson et al., 2023). These results highlight
445 the effectiveness of SeFea in improving OOD robustness and demonstrate its architecture-agnostic
446 applicability through a simple sensitivity-based heuristic.447 SIREN-vMF. When using the SIREN-vMF OOD scoring function, SeFea again demonstrates con-
448 sistent improvements across nearly all configurations, except for one case, ranking second on ViT-
449 DET with VOC/OpenImages setup, with only a small gap of 1.85% in AUROC and 0.16% in FPR95.
450 Notably, for the more challenging BDD as the ID setting, the FPR95 improves significantly, drop-
451 ping from 72.01% to 30.26% on the BDD/OpenImages setup, highlighting SeFea’s strong capability
452 to reduce false positives in certain scenarios. While improvements are also observed for MS-DETR,
453 the relative gains are smaller than those on ViTDET.454 5.4 QUALITATIVE ANALYSIS
455456 Figure 3 provides qualitative results. It presents OOD detection results for MSP, SAFE, SIREN, and
457 our SeFea method (from top to bottom) on a set of OOD images, with all visualizations based on
458 the SIREN-KNN detector. MS-DETR is used as the detector, Pascal-VOC serves as the ID dataset,
459 and COCO is used as OOD to determine the FPR95 threshold. Across all example scenes, SeFea
460 consistently produces more correctly classified OOD objects (green boxes) and fewer false-positive
461 ID predictions (red boxes) than the SIREN baseline. This improvement is especially pronounced in
462 the first column, where SIREN misses several OOD objects, while SeFea correctly flags nearly all
463 deer as OOD. In the wolf example (last column), MSP and SAFE misclassify multiple wolves as
464 ID, whereas SeFea substantially reduces these errors. This indicates stronger robustness when OOD
465 objects share strong visual similarities with ID classes. Moreover, SeFea demonstrates consistent
466 detection capability across varying object scales, from small to large. These results provide the first
467 systematic evidence that sensitivity-guided intermediate-layer selection—rather than defaulting to
468 the penultimate layer—offers a principled, architecture-independent path to SOTA OOD detection
469 in object detection.470 **Additional results and ablation are included in Appendix.**471 6 CONCLUSION
473474 We address the overlooked research gap of understanding intermediate-layer representations for
475 OOD detection from a sensitivity perspective, challenging the common assumption that the penul-
476 timate layer is always optimal. Our experiments show that intermediate layers often encode
477 richer and more informative cues for distinguishing ID from OOD objects. By quantifying in-
478 put-distance awareness via a sensitivity metric, we find a strong correlation with OOD detection
479 performance—particularly in ViTDET—and demonstrate that sensitivity serves as an effective cri-
480 terion for layer selection. Extending the analysis across multiple detector architectures and diverse
481 ID/OOD setups further validates the robustness of this finding. Our method is architecture-agnostic,
482 as it does not depend on specialized layers, making it broadly applicable across object detection
483 pipelines. We remark that our work validates the theoretical results of Liu et al. (2020a) on input
484 distance awareness in practical transformer-based object detection models.485 **Limitation.** Our work studies two important transformer-based object detection models due to com-
putation constraint. Including more transformer-based detectors can further strengthen our findings.

486 REFERENCES
487

488 WU Aming and Cheng Deng. Modulated phase diffusor: Content-oriented feature synthesis for de-
489
490
491 Yichen Bai, Zongbo Han, Bing Cao, Xiaoheng Jiang, Qinghua Hu, and Changqing Zhang. Id-
492
493
494 Akshay Dhamija, Manuel Gunther, Jonathan Ventura, and Terrance Boult. The overlooked elephant
495
496
497
498 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
499
500 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
501
502 Xuefeng Du, Gabriel Gozum, Yifei Ming, and Yixuan Li. Siren: Shaping representations for detect-
503
504
505 Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don't know by
506
507
508 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
509
510
511 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
512
513
514
515 Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield high-
516
517
518
519 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
520
521
522 Xiuquan Hou, Meiqin Liu, Senlin Zhang, Ping Wei, Badong Chen, and Xuguang Lan. Relation
523
524
525 Nishant Kumar, Siniša Šegvić, Abouzar Eslami, and Stefan Gumhold. Normalizing flow based
526
527
528
529 Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers
530
531
532 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
533
534
535 Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer back-
536
537
538 Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
539
image detection in neural networks. *arXiv preprint arXiv:1706.02690*, 2017.

540 Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshmi-
 541 narayanan. Simple and principled uncertainty estimation with deterministic deep learning via
 542 distance awareness. *Advances in neural information processing systems*, 33:7498–7512, 2020a.
 543

544 Jiahui Liu, Xin Wen, Shizhen Zhao, Yingxian Chen, and Xiaojuan Qi. Can ood object detectors learn
 545 from foundation models? In *European Conference on Computer Vision*, pp. 213–231. Springer,
 546 2024.

547 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
 548 tion. *Advances in neural information processing systems*, 33:21464–21475, 2020b.
 549

550 Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyou Sun, Wei Li, and Yixuan Li. Delving into out-of-
 551 distribution detection with vision-language representations. *Advances in neural information pro-
 552 cessing systems*, 35:35087–35102, 2022.

553 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
 554 for generative adversarial networks. *arXiv preprint arXiv:1802.05957*, 2018.
 555

556 Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, PH Torr, and Yarin Gal. Deterministic
 557 neural networks with inductive biases capture epistemic and aleatoric uncertainty. *arXiv preprint
 558 arXiv:2102.11582*, 2, 2021.

559 Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confi-
 560 dence predictions for unrecognizable images. In *Proceedings of the IEEE conference on computer
 561 vision and pattern recognition*, pp. 427–436, 2015.

562 Julia Nitsch, Masha Itkina, Ransalu Senanayake, Juan Nieto, Max Schmidt, Roland Siegwart,
 563 Mykel J Kochenderfer, and Cesar Cadena. Out-of-distribution detection for automotive per-
 564 ception. In *2021 IEEE International Intelligent Transportation Systems Conference (ITSC)*, pp.
 565 2938–2943. IEEE, 2021.

566 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 567 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 568 models from natural language supervision. In *International conference on machine learning*, pp.
 569 8748–8763. PMLR, 2021.

570 Shashank Sonkar and Richard G Baraniuk. Investigating the role of feed-forward networks in trans-
 571 formers using parallel attention and feed-forward net design. *arXiv preprint arXiv:2305.13297*,
 572 2023.

573 Yiyou Sun and Yixuan Li. Dice: Leveraging sparsification for out-of-distribution detection. In
 574 *European conference on computer vision*, pp. 691–708. Springer, 2022.

575 Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activa-
 576 tions. *Advances in neural information processing systems*, 34:144–157, 2021.

577 Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
 578 neighbors. In *International conference on machine learning*, pp. 20827–20840. PMLR, 2022.

579 Keke Tang, Chao Hou, Weilong Peng, Runnan Chen, Peican Zhu, Wenping Wang, and Zhihong
 580 Tian. Cores: Convolutional response-based score for out-of-distribution detection. In *Proceedings
 581 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10916–10925,
 582 2024.

583 Leitian Tao, Xuefeng Du, Xiaojin Zhu, and Yixuan Li. Non-parametric outlier synthesis. *arXiv
 584 preprint arXiv:2303.02966*, 2023.

585 Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using a
 586 single deep deterministic neural network. In *International conference on machine learning*, pp.
 587 9690–9700. PMLR, 2020.

588 Han Wang and Sharon Li. Bridging ood detection and generalization: A graph-theoretic view.
 589 *Advances in Neural Information Processing Systems*, 37:35049–35083, 2024.

594 Samuel Wilson, Tobias Fischer, Feras Dayoub, Dimity Miller, and Niko Sünderhauf. Safe:
 595 Sensitivity-aware features for out-of-distribution object detection. In *Proceedings of the*
 596 *IEEE/CVF international conference on computer vision*, pp. 23565–23576, 2023.
 597

598 Aming Wu and Cheng Deng. Discriminating known from unknown objects via structure-enhanced
 599 recurrent variational autoencoder. In *Proceedings of the IEEE/CVF conference on computer vision*
 600 *and pattern recognition*, pp. 23956–23965, 2023.

601 Aming Wu, Da Chen, and Cheng Deng. Deep feature deblurring diffusion for detecting out-of-
 602 distribution objects. In *Proceedings of the IEEE/CVF international conference on computer vi-*
 603 *sion*, pp. 13381–13391, 2023.

604 Feng Xue, Zi He, Yuan Zhang, Chuanlong Xie, Zhenguo Li, and Falong Tan. Enhancing the power
 605 of ood detection via sample-aware model selection. In *Proceedings of the IEEE/CVF Conference*
 606 *on Computer Vision and Pattern Recognition*, pp. 17148–17157, 2024.

607 Yue Yuan, Rundong He, Yicong Dong, Zhongyi Han, and Yilong Yin. Discriminability-driven
 608 channel selection for out-of-distribution detection. In *Proceedings of the IEEE/CVF Conference*
 609 *on Computer Vision and Pattern Recognition*, pp. 26171–26180, 2024.

610 Bin Zhang, Jinggang Chen, Xiaoyang Qu, Guokuan Li, Kai Lu, Jiguang Wan, Jing Xiao, and Jian-
 611 zong Wang. Runa: Object-level out-of-distribution detection via regional uncertainty alignment
 612 of multimodal representations. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 613 volume 39, pp. 26418–26426, 2025a.

614 Bin Zhang, Xiaoyang Qu, Guokuan Li, Jiguang Wan, and Jianzong Wang. Vista: Visual-contextual
 615 and text-augmented zero-shot object-level ood detection. In *ICASSP 2025-2025 IEEE Interna-
 616 tional Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2025b.

617 Boxuan Zhang, Jianing Zhu, Zengmao Wang, Tongliang Liu, Bo Du, and Bo Han. What if the
 618 input is expanded in ood detection? *Advances in Neural Information Processing Systems*, 37:
 619 21289–21329, 2024.

620 Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? *Journal of Machine*
 621 *Learning Research*, 23(67):1–28, 2022.

622 Chuyang Zhao, Yifan Sun, Wenhao Wang, Qiang Chen, Errui Ding, Yi Yang, and Jingdong Wang.
 623 Ms-detr: Efficient detr training with mixed supervision. In *Proceedings of the IEEE/CVF confer-
 624 ence on computer vision and pattern recognition*, pp. 17027–17036, 2024a.

625 Jinjing Zhao, Fangyun Wei, and Chang Xu. Hybrid proposal refiner: Revisiting detr series from the
 626 faster r-cnn perspective. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 627 *Pattern Recognition*, pp. 17416–17426, 2024b.

633 A APPENDIX

635 In this supplementary material, we provide additional ablation studies, more qualitative visualiza-
 636 tions, inference time measurements, object detector accuracies on the ID datasets, and the algorithm
 637 for easier understanding. These details are not included in the main paper due to space limitations.

639 Additional results	1
640 Additional Qualitative Results	1
641 Inference time overhead	1
642 K-sensitive layers	1
643	
644	
645 Reproducibility Details	4
646 Code	4
647 Sensitivity analysis - details	4
648 Evaluation Metrics	4

648	Computational Resources	4
649		
650		
651	Algorithm	4
652		
653		
654	LLM usage	4

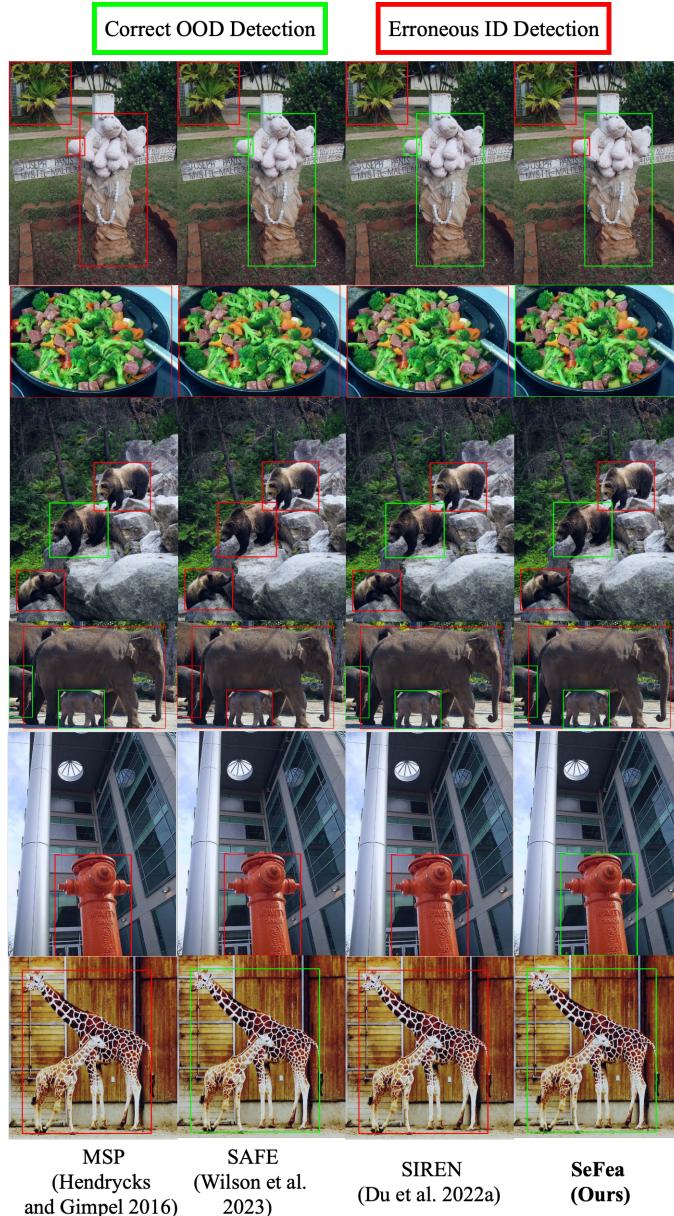


Figure 4: Qualitative visualization of OOD-OD detection results from the MS-DETR object detector with **Pascal-VOC as the ID dataset**, the images are collected from the COCO dataset. Detection results are obtained by comparing the OOD score against the threshold at FPR95. Green boxes indicate that the OOD detector correctly classifies the object as OOD, while red boxes denote misclassification as ID. All images are chosen such that none of the 20 Pascal-VOC classes appear in the scenes.

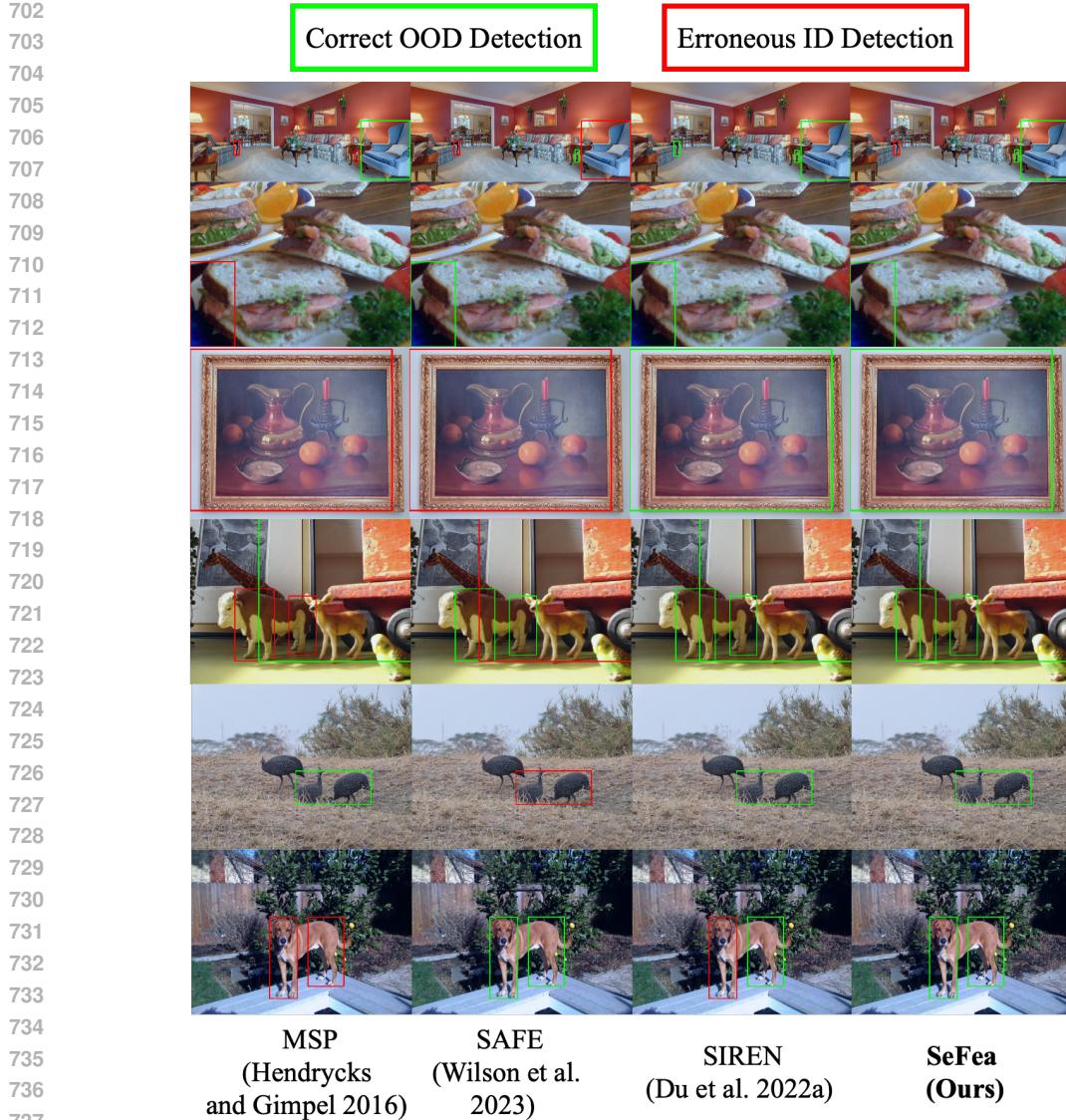


Figure 5: Qualitative visualization of OOD-OD detection results from the MS-DETR object detector with **BDD as the ID dataset**, the images is collected from the COCO dataset. Detection results are obtained by comparing the OOD score against the threshold at FPR95. Green boxes indicate that the OOD detector correctly classifies the object as OOD, while red boxes denote misclassification as ID. All images are chosen such that none of the 10 BDD classes appear in the scenes.

B ADDITIONAL RESULTS

B.1 ADDITIONAL QUALITATIVE RESULTS

Additional visualizations are provided in Figures 4 and 5.

B.2 INFERENCE TIME OVERHEAD

Table 4 illustrates the latency of the object detector and the additional overhead introduced by OOD detection, measured in FPS. We evaluate latency on two OOD datasets—COCO and OpenImages. Since different ID dataset configurations result in varying numbers of predicted bounding boxes, which in turn affect OOD-OD detection latency, we report results for both ID setups. The MS-

756

757 Table 4: Frames-per-second (FPS) metrics for the MS-DETR object detector and OOD-OD. Each
758 cell reports the FPS for single-image inference. The table presents the latency of the OOD detector
759 applied to each feature type, with SIREN-KNN used as the OOD detector for all feature types.

	ID: PASCAL-VOC		ID: BDD		Avg FPS
	COCO	OpenImages	COCO	OpenImages	
Object Detector	22	24	24	24	23
OOD Detector – SAFE	69	75	43	76	62
OOD Detector – SIREN	69	75	94	79	78
OOD Detector – SeFea	68	75	44	78	<u>63</u>

765

766

767 DETR object detector achieves approximately 23 FPS for object detection alone. SIREN-based
768 feature OOD detection achieves the highest speed, as it is obtained solely from the penultimate
769 layer. Interestingly, although both our approach and SAFE utilize four layers for OOD detection,
770 our method achieves higher FPS for extraction because the selectively chosen OSFs in our approach
771 produce smaller feature dimensionality than those used by SAFE. Notably, despite extracting fea-
772 tures from four layers, our approach still attains a competitive FPS compared with the one-layer
773 SIREN method (63 with 78).

774

775

776 Table 5: Ablation study on the number of top- k sensitive layers used for OSFs collection in two
777 transformer-based architectures: MS-DETR and ViTDET. All methods employ **SIREN-KNN** as the
778 OOD detector. Evaluation is conducted on PASCAL-VOC and BDD as the ID datasets, with MS-
779 COCO and OpenImages serving as the OOD datasets. Each reported value is the average over the
780 two OOD datasets. Performance is measured using AUROC and FPR95. The bold cell indicates the
781 best result, while the underlined cell indicates the second-best.

	top- k sensitive layers	ID: PASCAL-VOC		ID: BDD	
		AUROC \uparrow	FPR95 \downarrow	AUROC \uparrow	FPR95 \downarrow
MS-DETR	1	83.93	60.93	86.73	64.79
	2	<u>86.41</u>	53.70	88.56	65.46
	3	87.05	<u>51.36</u>	89.33	63.57
	4	86.30	50.42	<u>89.56</u>	<u>60.97</u>
	5	85.91	53.23	89.74	58.28
	Penultimate	82.57	56.42	89.18	63.01
ViTDET	1	<u>90.46</u>	<u>43.85</u>	91.24	43.02
	2	90.03	45.01	91.56	<u>41.06</u>
	3	89.18	45.06	<u>91.47</u>	40.15
	4	90.60	40.83	90.44	45.52
	5	89.08	44.62	89.82	46.80
	Penultimate	87.02	54.14	87.40	62.57

799

800

801 B.3 K-SENSITIVE LAYERS

802

803 The effect of varying the number of top- k sensitive layers for OOD detection is shown in Table 5.
804 The AUROC score remains relatively stable across different numbers of k sensitive layers. However,
805 when $k = 4$, the results generally achieve well performance for both AUROC and FPR95 on MS-
806 DETR and ViTDET, as indicated by the bold and underlined values representing the best and second-
807 best results, respectively. Therefore, we select the top 4 sensitive layers for OSF collection, and all
808 results for our proposed SeFea method in the main paper are reported using this k value. In addition,
809 the performance of the penultimate layer is also compared with that of the top- k layers, to explicitly
810 demonstrate that the top- k layers outperform the penultimate layer for OOD detection.

810 C REPRODUCIBILITY DETAILS
811812 C.1 CODE
813814 We have made the code publicly available under anonymity at the following GitHub link: GitHub
815 Repository816
817 C.2 SENSITIVITY ANALYSIS - DETAILS
818819 **Transformer-based models** MS-DETR (Wilson et al., 2023) is currently one of the SOTAs for
820 object detection task. It introduces additional one-to-many supervision for DETR-based methods,
821 leading to several variants. In this paper, we adopt the variant of MS-DETR built upon Deformable
822 DETR and refer to it simply as MS-DETR. The architecture consists of a CNN backbone, a trans-
823 former encoder, a transformer decoder, and prediction heads for object classes and bounding box
824 positions. The encoder comprises six stacked transformer encoder blocks; each block contains SA
825 layers and MLP layers that process feature maps from the CNN backbone. For analysis of SAFE
826 features, we follow Wilson et al. (2023) and select batch norm / skip connection layers from CNN
827 blocks.828 ViTDET (Li et al., 2022) adapts the plain Vision Transformer for object detection by retaining a
829 ViT backbone pre-trained with Masked Autoencoders (MAE), enabling strong single-image rep-
830 resentations. In this paper, we focus on the ViT-B backbone, which consists of 12 Transformer
831 blocks, 768-dimensional embeddings, and 12-head self-attention. During fine-tuning, ViTDET dis-
832 cards hierarchical backbones and classical feature pyramid networks (FPNs); instead, it constructs
833 a lightweight four-level feature pyramid directly from the stride-16 output of the final ViT block,
834 enabling multi-scale reasoning with minimal overhead. We investigate the distance-awareness prop-
835 erties of individual layers for out-of-distribution detection.836
837 Table 6: As reference, we provide mAP on the ID datasets – VOC, and BDD – across different
838 object detectors.

839 Dataset	840 Method	841 mAP
842 VOC	Deformable DETR (Du et al., 2022a)	60.8
	MS-DETR (Zhao et al., 2024a)	57.9
	ViTDET/ViT-B (Li et al., 2022)	63.5
844 BDD	Deformable DETR (Du et al., 2022a)	31.3
	MS-DETR (Zhao et al., 2024a)	33.1
	ViTDET/ViT-B (Li et al., 2022)	34.9

845 **ID performance of Object Detectors** Since MS-DETR and ViTDET do not provide pretrained
846 weights on the selected ID datasets, we train these models from scratch on the corresponding ID
847 datasets. The ID performance, summarized in Table 6, confirms that the models are properly trained
848 for evaluation of OOD-OD performance.849 **Hyperparameters** We compute the Lipschitz norm by randomly sampling 5,000 pairs of bounding
850 boxes. For $O_{l,d}$ in the input space (x), pooling along the spatial dimensions reduces the feature map
851 to 1×1 , yielding $p_{l,d}$ with only three channels. To increase dimensionality, for the input, we only
852 pooling to 2×4 for VOC and 2×2 for BDD. The 2×4 size corresponds to the smallest bounding
853 box dimensions in VOC, while for BDD-where the smallest bounding box is less than one pixel-we
854 choose 2×2 to enhance dimensionality.855
860 C.3 EVALUATION METRICS
861862 We assess OOD performance using two standard metrics-AUROC and FPR95-commonly adopted in
863 prior OOD-OD studies (Liu et al., 2024; Wilson et al., 2023; Du et al., 2022b). AUROC measures the
Area Under the Receiver Operating Characteristic Curve, which is calculated over multiple thresh-

864 olds; higher values indicate better performance, and 50% corresponds to random guessing. FPR95,
 865 on the other hand, reports the false positive rate when the true positive rate is at 95%, lower is better.
 866

867 **C.4 COMPUTATIONAL RESOURCES**
 868

869 All experiments were conducted using Python 3.11.3 and PyTorch 2.3.0+cu121 on an NVIDIA
 870 RTX 6000 Ada Generation GPU (45 GB memory) running Ubuntu 22.04.3 LTS, equipped with an
 871 AMD Ryzen Threadripper PRO 5975WX 32-core processor. Please refer to the SAFE paper (Wilson
 872 et al., 2023) for environment installation instructions.
 873

874 **D ALGORITHM *SeFea***
 875

876 In Figure 1 of main paper we provide an overview of our OOD-OD method *SeFea*. Here we further
 877 provide the algorithm.
 878

879 **Algorithm 1** Inference process of the proposed *SeFea* method for OOD-OD task.
 880

881 **Input:** Input image X ; object detector f ; OOD score module r ; a set of indices of the k most
 882 sensitive layers M .
 883

884 **Output:** Object-wise OOD predictions.
 885

- 886 1. Perform inference using the object detector f on input X to obtain detected bounding boxes
 887 $\mathbb{B} = \{b_d\}_{d=1}^D$.
 888 2. For each detected object b_d , extract the object-specific features (OSFs) from sensitive layers
 889 indexed in M , and concatenate them to form a unified representation:
 890

$$891 p_d = \text{Concat}(\{p_{l,d}\}_{l \in M}).$$

- 892 3. Compute the OOD score for each object representation using the OOD score module r :
 893

$$894 s_d = r(p_d).$$

895 As discussed in the main paper, sensitive transformer layers are determined by our proposed sensi-
 896 tivity metric $\text{sen}_{i,\text{cos}}^{(T)}$, which has been validated to be correlated with OOD-OD accuracy. The indices
 897 of the sensitive transformer layers are stored in M , and the features of these layers are used by our
 898 proposed *SeFea* for OOD-OD task as in Algorithm 1. In our experiments, MS-DETR and ViTDET
 899 are explored as f , and SIREN-KNN and SIREN-vMF are explored as OOD score module r .
 900

901 **E LLM USAGE**
 902

903 We used GPT-5 as a writing assistant for grammar checking and improving the formality of phrasing
 904 in sentences or short paragraphs. The model was not involved in research ideation, experimental
 905 design, analysis, or substantive content generation.
 906

907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917