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ABSTRACT

Out-of-distribution object detection (OOD-OD) is essential for building robust
vision systems in safety-critical applications. While transformer-based architec-
tures have become dominant in object detection, existing work on OOD-OD has
primarily focused on OOD object synthesis or OOD detection scores, with lim-
ited understanding of the internal feature representations of transformers. In this
work, we present the first in-depth analysis of transformer features for OOD-OD.
Motivated by theoretical insights that input distance awareness – the ability of fea-
ture representations to reflect the distance from the training distribution – is a key
property for predictive uncertainty estimation and reliable OOD detection, we sys-
tematically evaluate this property across transformer layers. Our analysis reveals
that certain transformer layers exhibit heightened input distance awareness. Lever-
aging this observation, we develop simple yet effective OOD detection methods
based on features from these layers, achieving state-of-the-art performance across
multiple OOD-OD benchmarks. Our findings provide new insights into the role
of transformer representations in OOD detection. Code and additional experi-
ments are in the Supp.

1 INTRODUCTION

Table 1: We conduct the first study to systematically analyze transformer features for OOD
detection. Most existing methods focus on CNN-based object detectors, and many techniques are
tailored specifically to CNN models and backbones, e.g., SAFE (Wilson et al., 2023). Meanwhile,
recent efforts have focused on techniques for synthesizing OOD objects and OOD detection scores.
In contrast, feature representations for OOD detection in transformer-based object detectors remains
largely unexplored.
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VOS (Du et al., 2022b) ✓ ✓
FFS (Kumar et al., 2023) ✓ ✓
SR-VAE (Wu & Deng, 2023) ✓ ✓
DFDD (Wu et al., 2023) ✓ ✓
MPD (Aming & Deng, 2024) ✓ ✓
SIREN (Du et al., 2022a) ✓ ✓
VisTa (Zhang et al., 2025b) ✓ ✓
SAFE (Wilson et al., 2023) ✓ ✓ ✓(CNN)
SyncOOD (Liu et al., 2024) ✓ ✓
Ours ✓ ✓(Transformer)

Object detection is one of the most critical tasks in computer vision. Currently, state-of-the-art
(SOTA) object detectors (Zhao et al., 2024a;b; Hou et al., 2024) are trained on closed-set datasets,
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which can lead to overconfident predictions on outlier samples (Dhamija et al., 2020; Nguyen et al.,
2015). In real-world deployments, such as autonomous driving, unknown objects often emerge, and
failing to detect them can result in serious accidents (Nitsch et al., 2021). As a result, the research
community is actively pursuing out-of-distribution detection in both image classification (Wang &
Li, 2024; Tang et al., 2024; Ming et al., 2022; Yuan et al., 2024; Xue et al., 2024; Bai et al., 2024;
Zhang et al., 2024) and object detection (Liu et al., 2024; Wilson et al., 2023; Kumar et al., 2023;
Wu & Deng, 2023; Wu et al., 2023; Aming & Deng, 2024; Du et al., 2022a;b) to better recognize
outlier samples and enhance the trustworthiness of model predictions.

Research gaps in OOD-OD. Recent OOD-OD approaches commonly operate by extracting fea-
tures from one or several layers of a pretrained detector and then applying techniques such as
energy-based scoring or lightweight classifiers (e.g., MLPs) to distinguish in-distribution (ID) and
out-of-distribution (OOD) samples. While effective to some extent, this line of work still leaves
several critical gaps, as summarized in Table 1. First, although transformer-based detectors such as
MS-DETR (Zhao et al., 2024a), ViTDET (Li et al., 2022) have become popular in modern object
detection, most OOD-OD methods remain focusing on CNN-based backbones like Faster-RCNN.
For example, VOS (Du et al., 2022b), FFS (Kumar et al., 2023), DFDD (Wu et al., 2023), and
SAFE (Wilson et al., 2023) are all developed for CNN backbones. Only SIREN (Du et al., 2022a)
leverages a transformer-based model, but they treats transformers as monolithic units, without in-
vestigating which specific internal layers or components are most sensitive to OOD signals. Second,
the majority of existing methods extract features exclusively from the final layer of the detector, as-
suming that high-level representations are sufficient for capturing distributional shifts. However, this
overlooks the representational diversity encoded across intermediate layers, which may offer more
robust cues for OOD detection, especially in deep transformer-based models (Zhang et al., 2022;
Sonkar & Baraniuk, 2023). As a result, it remains unclear how to best utilize the internal structure
of transformers to enhance OOD-OD performance.

In this work, we conduct the first study to analyze transformer layers for OOD object detection and
propose a simple and effective method based on our analysis of transformer layer characteristics.
Our work builds on the theoretical foundation of input distance awareness. Particularly, Liu et al.
(2020a) identify input distance awareness as a necessary condition for reliable uncertainty estima-
tion in deep networks. Their formulation emphasizes that this property depends on a bi-Lipschitz
mapping between input space and hidden representations, ensuring that distances in the feature space
reflect meaningful differences in the input distribution. Motivated by this insight, we hypothesize
that certain internal layers in transformer-based detectors better preserve input distance, and thus
are more effective for OOD detection. We propose a framework for layer-wise sensitivity analy-
sis to quantify this distance-preserving property. Based on our analysis, we propose a simple and
effective method to identify and aggregate features from the most sensitive layers. This principled
approach yields a simple, architecture-agnostic method that consistently improves OOD detection
performance without retraining or architectural modifications. Focusing on OOD-OD, our contribu-
tions can be summarized as follows. Firstly, we bridge a critical gap by proposing a framework to
analyze internal layers of Transformer architectures for OOD-OD effectiveness, going beyond the
conventional focus on penultimate layer or CNN-based features. Secondly, we are the first to exploit
theoretical results of input distance awareness in Transformer architectures for OOD-OD, leveraging
Lipschitz analysis to quantify sensitivity. Thirdly, we achieve SOTA performance on challenging
OOD-OD benchmarks without retraining the object detector. Our results are demonstrated across
ID-OOD dataset setups using two important Transformer-based object detectors. Finally, while
previous approaches rely on highly specialized OOD detection methods tied to specific object de-
tectors, our approach is model-agnostic. It is based solely on extracted features and does not require
architectural modifications, making it more easily applicable for new Transformer-based object de-
tectors.

2 RELATED WORKS

OOD Dection for Image Classification can be broadly categorized into fine-tuning-based and post-
hoc approaches. Fine-tuning-based mitigate overconfidence on OOD samples by introducing ran-
dom noise, shuffling image patches (Lee et al., 2017), using auxiliary datasets (Hein et al., 2019), or
synthesizing outliers (Du et al., 2022b; Tao et al., 2023), though their performance depends on outlier
quality and may degrade ID accuracy. Post-hoc methods require no retraining; MSP (Hendrycks &
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Gimpel, 2016) inspired variants such as ODIN (Liang et al., 2017), Energy Score (Liu et al., 2020b),
ReAct (Sun et al., 2021), and DICE (Sun & Li, 2022). Other works exploit feature-space distances,
e.g., Mahalanobis (Lee et al., 2018) or k-NN (Sun et al., 2022). Recent studies (Tang et al., 2024)
analyzes different layers, moving beyond methods that rely solely on logits (Lee et al., 2018) or
penultimate layer features (Sun et al., 2022), emphase explore of intermidate layers representation
for OOD detection. Highlighting the importance of exploring intermediate-layer representations
for OOD detection.In this work, we are the first to analyze the sensitivity of different intermediate
layers in object detectors, without being limited to a specific architectural variant, and to propose a
sensitivity-guided selection criterion for identifying the most effective layers from which to extract
object-specific features for OOD detection.

OOD Detection for Object Detection. Early approaches focused on generating synthetic OOD
data, such as VOS (Du et al., 2022b), NPOS (Tao et al., 2023), DFDD (Wu et al., 2023), SRVAE (Wu
& Deng, 2023), and FFS (Kumar et al., 2023). In contrast to these synthesis-based approaches,
SIREN (Du et al., 2022a) does not require any OOD samples; instead, it introduces an auxiliary
model to reshape ID feature representations. RUNA (Zhang et al., 2025a) addresses the cognitive
limitations of object detectors by integrating CLIP (Radford et al., 2021) into the detection pipeline,
performing multi-step OOD detection through repeated CLIP-based image encoding. Unlike VOS,
NPOS, SIREN, DFDD, SR-VAE, and FFS, SAFE (Wilson et al., 2023) follows a post-hoc detection
paradigm. It proposes a feature selection mechanism that identifies sensitivity-aware representations
and trains an MLP for OOD detection. However, SAFE is restricted to specific CNN components,
namely batch normalization and skip connections. Our approach departs from these constraints by
proposing a Bi-Lipschitz-based sensitivity analysis to identify distance-aware intermediate layers,
without relying on any architectural assumptions. This allows our method to generalize effectively
across a wide range of object detectors.

Uncertainty estimation. Traditional approaches to uncertainty estimation, such as deep ensem-
bles and Bayesian neural networks, are computationally expensive. To address this, SNGP (Liu
et al., 2020a) explores distance-awareness as a means to measure the distributional shift between
test and training samples, thereby supporting uncertainty estimation in deterministic models. Since
deep neural networks are not inherently designed to preserve input distance sensitivity, numerous
studies have introduced regularization techniques to promote this property. These studies include
sensitivity-aware training (Liu et al., 2020a) and spectral normalization (Miyato et al., 2018). Ar-
chitectural factors such as residual connections have also been investigated for their influence on
sensitivity (Mukhoti et al., 2021). Several of these works (Liu et al., 2020a; Van Amersfoort et al.,
2020; Mukhoti et al., 2021) emphasize the importance of distance-awareness properties for OOD
detection.

Rather than focusing solely on the penultimate layer and retrained the model, as in Liu et al. (2020a),
we analyze the sensitivity of each layer in pretrained object detectors. We further propose variations
of the sensitivity formulation to identify the most sensitive layers for OOD detection.

3 PRELIMINARIES

We start with a pretrained object detector f , which takes an input image x and outputs D object
predictions - each with a class label and a bounding box. However, some predicted objects may be
OOD, despite being assigned high confidence by the model. The goal of OOD-OD is to classify
each predicted object as either ID or OOD, thereby improving the reliability of object detectors in
real-world deployments.

3.1 INPUT DISTANCE AWARENESS

A reliable measure of uncertainty, particularly for detecting OOD inputs, requires a deterministic
model to be input distance-aware, meaning it can quantify how far a test example lies from the
training data manifold. Without such awareness, models often produce overconfident predictions
for OOD inputs, even when these inputs are far from the known data distribution. This issue arises
because uncertainty is frequently associated with the decision boundary, which is learned through the
model’s task-specific optimization, rather than with the true distance from the training data manifold
(Liu et al., 2020a).
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Consider a deep neural network with logits defined as:
logit(x) = g ◦ h(x),

where h : X → H is the hidden mapping that transforms input x into a feature representation h(x),
and g maps h(x) to class logits. Following Liu et al. (2020a), input distance awareness requires two
conditions:

• Distance-aware output layer (g): The output function must produce uncertainty estimates
that reflect hidden-space distances ∥h(x) − h(x′)∥H, for example, in Gaussian process-
based output layers.

• Distance-preserving hidden mapping (h): Distances in the hidden space meaningfully
correspond to distances in the input space ||x− x′||X .

When both conditions hold, the model’s uncertainty estimates naturally scale with the distance from
the training domain, improving both calibration and OOD detection. In our work, we focus on the
distance-preserving of the hidden layers. In Liu et al. (2020a), they improve distance preservation
in intermediate layers using spectral normalization and analyze it using the Bi-Lipschitz equation:

K1∥x− x∗∥I ≤ ∥h(x)− h(x∗)∥F ≤ K2∥x− x∗∥I (1)
Here, x and x∗ are two distinct inputs, while ∥ · ∥I and ∥ · ∥F denote distance metrics in input
and feature spaces, respectively. K1 and K2 are constants. Importantly, the lower Lipschitz bound
K1∥x − x∗∥I ≤ ∥h(x) − h(x∗)∥F characterizes sensitivity of the hidden representation, ensuring
their effectiveness in preserving meaningful changes in the input manifold, which is important for
OOD detection.

Figure 1: Our propose OOD-OD method, SeFea, which leverage sensitive object-specific features
(OSFs) in transformer-based object detector. The top k most sensitive transformer layers are pre-
identified using sen

(T )
i,cos sensitivity metric. Feature maps from these layers are extracted and pro-

cessed through ROI Align, then concatenated to form the OSFs, denoted as pd. These OSFs are then
passed through the OOD Detector module, which outputs OOD predictions for each detected object,
enabling discrimination between in-distribution (blue) and out-of-distribution (red) objects.

4 PROPOSED METHOD

Motivated by prior theoretical work on sensitivity and the need for a fine-grained, layer-wise under-
standing of OOD detection, we pose a central question: How can sensitivity be leveraged to identify
transformer layers most effective for OOD-OD? In what follows, we first present an overview of our
method, which utilizes sensitive transformer layers for OOD-OD. We then introduce our framework
for identifying these sensitive transformer layers, grounded in the lower Lipschitz bound formulation
in Eq. 1.

4.1 OVERVIEW OF PROPOSED OOD-OD METHOD: SEFEA

Figure 1 outlines our sensitive transformer feature-based OOD-OD method, SeFea. Transformer
layers are first ranked using a sensitivity-based algorithm to characterize input–distance awareness.
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The detailed design of this algorithm are described in a later section. Based on the resulting sensi-
tivity values, we select the most sensitive layers for OOD detection. Feature extraction is performed
by using a tracker to collect the corresponding feature maps from the object detector. To obtain
object-specific features (OSFs), we use the predicted bounding boxes {b1, . . . , bD} to crop the ob-
ject regions of each feature map. For each object d and each layer l, we extract features denoted
as Ol,d. Each Ol,d is then spatially pooled to a size of 1 × 1 (width × height) to produce a feature
vector pl,d, whose dimensionality matches that of the corresponding feature map l. The final OSF
vector for each object, pd, is formed by concatenating the feature vectors {p1,d, . . . , pk,d} from all
sensitive layers, which form our sensitive feature (SeFea).

Afterward, the OSFs are passed through the OOD Detector module for OOD detection. Specifically,
we explore the detection head proposed in Du et al. (2022a), which consists of a projection head
implemented as a sequence of fully connected layers. This head is trained to enforce a von Mises-
Fisher distribution on the OSF embeddings. The OOD score is then computed using the KNN
distance in this compact and normalized feature space.

Our approach is architecture-agnostic and does not rely on the common assumption that the
penultimate-layer representation is well-suited for OOD detection. Instead, it systematically selects
the most sensitive layers, making it applicable to a wide range of object detectors. Unlike SAFE
(Wilson et al., 2023), which imposes constraints such as the presence of batch normalization and
skip connections, or methods that depend solely on penultimate-layer features (Du et al., 2022a;b;
Kumar et al., 2023), our method can be applied without such architectural restrictions.

4.2 SENSITIVE LAYERS ANALYSIS

A key question is how to rank the transformer layers for OOD detection. Motivated by prior the-
oretical analyses of input distance awareness in hidden-layer representations, we design layer-wise
sensitivity metrics to quantify how strongly each transformer layer responds to changes in the in-
put. Following Liu et al. (2020a), transformer layers with higher sensitivity are expected to be more
effective for OOD detection.

To achieve more accurate comparisons across layers with different feature dimensionalities, we ex-
plore dimension-invariant similarity measures. Normalized Euclidean distance achieves dimension
invariance by normalization with dimensionality, yielding the average per-dimension difference.
Cosine similarity is dimension-invariant because it measures only the angle between two vectors,
normalizing their magnitudes and disregarding the dimensionality of the feature space. We explore
these metrics for more accurate sensitivity comparisons across transformer layers of varying dimen-
sionalities, mitigating potential bias toward higher-dimensional layers.

Using the Bi-Lipschitz’s lower bound in Eq. 1, and applying normalization with respect to both
the input and feature dimensionalities, we develop the following equation for quantifying sensitivity
awareness for the i-th transformer layer:

sen
(T )
i,Euc =

Cx

npairs · Ci

npairs∑
j=1

∥fi(x(T )
j )− fi(xj)∥

∥x(T )
j − xj∥

. (2)

Beside the normalized Euclidean distance, we further consider cosine similarity to develop the fol-
lowing equation for quantifying sensitivity for the i-th transformer layer:

sen
(T )
i,cos =

1

npairs

npairs∑
j=1

1− cos
(
fi(x

(T )
j ), fi(xj)

)
1− cos

(
x
(T )
j , xj

) . (3)

We explore several types of transformation T to obtain x
(T )
j from xj for the distance computation.

• Random Sample: x(T )
j is another random sample different from xj .
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• FGSM: x(T )
j = FGSM(xj) denoting adversarially perturbed sample obtained via Fast

Gradient Sign Method (FGSM) (Goodfellow et al., 2014), is used to induce perturbations
on xj to obtain x

(T )
j .

• Gaussian: x
(T )
j = xj + N (µ, σ2), where N (µ, σ2) is Gaussian noise with pre-defined

mean and standard deviation.

In Eq. 2 and Eq. 3, Cx denotes the dimensionality of the input space, and Ci denotes the dimension-
ality of the feature of the i-th transformer layer. npairs represents the predefined number of randomly
sampled pairs used in the sensitivity computation. The sensitivity is computed for each pair, and the
mean over all pairs is then taken to obtain the final sensitivity score.

In our OOD-OD detector, instead of choosing features solely from the highest-sensitivity layer for
OOD detection, we also aggregate features from several high-sensitivity-aware layers. Neural net-
works learn hierarchical representations: lower layers capture basic features, while higher layers
encode more complex concepts. By concatenating features from various layers, our OSFs harness
a richer spectrum of information, enhancing their ability to distinguish ID from OOD detections.
This layer-feature integration aligns with the principle that combining diverse representation levels
can improve the robustness and accuracy of OOD detection systems. The number of high-sensitivity
layers used for concatenation is explored in the supplementary material.

4.2.1 SENSITIVITY & OOD PERFORMANCE CORRELATION

Table 2: Validation of effectiveness of our proposed sensitivity metrics in selecting effective
transformer layers for OOD-OD. Pearson correlation between layer-wise sensitivity scores (Eq. 2
and Eq. 3) and OOD detection performance (AUROC) across all layers of MS-DETR and ViTDET
object detectors. Our analysis shows that Cosine distance paired with Random Sampling yields the
highest correlation, indicating its effectiveness in identifying effective transformer layer for OOD-
OD.

Model Sensitivity
Calculation

Transformation
Type (T )

Pearson↑
VOC BDD

MS-COCO OpenImages MS-COCO OpenImages

MS-DETR

Euclidean

Random Sample 0.397 0.393 0.366 0.376
FGSM 0.286 0.256 0.224 0.239
N (10,30) 0.324 0.295 0.260 0.274
N (10,150) 0.412 0.388 0.292 0.305

Cosine

Random Sample 0.612 0.608 0.677 0.653
FGSM 0.363 0.344 0.390 0.387
N (10,30) 0.471 0.465 0.540 0.528
N (10,150) 0.592 0.586 0.687 0.661

ViTDET
Euclidean Random Sample 0.248 0.244 0.148 0.184
Cosine Random Sample 0.816 0.775 0.697 0.690

To validate effectiveness of Eq. 2 and Eq. 3 in selecting transformer layers for our OOD detector,
we analyze their correlation with OOD detection accuracy. The details of transformer-based models
(MS-DETR, ViTDET), and the details of the implementation of the sensitivity calculation, such as
npairs and the dimension of the input space, are provided in the Experiment section and Supp. The
correlation is measured using the Pearson correlation coefficient.

This sensitivity–OOD accuracy correlations are reported in Table 2. We observe that cosine sim-
ilarity consistently achieves higher correlations with OOD detection accuracy than Euclidean dis-
tance across both MS-DETR and ViTDET, with the gap being particularly pronounced for ViTDET.
Among different types of transformation T , Random Sample transformation generally yields the
strongest correlations, while FGSM perturbations produce noticeably lower values. Gaussian noise
perturbations—especially with higher variance—often match or slightly surpass the performance of
normal pairs. These findings indicate that angular-based similarity measures with Random Sample
transformation is effective in identifying effective transformer layer. Therefore, in our method, we
rank layers by Eq. 3 to compute sen

(RandomSample)
i,cos , and the OSFs used in our method are collected

from the k most sensitive layers according to this ranking (See Figure 1).
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Figure 2: Correlation between sensitivity and OOD detection performance across all layers. The
layers considered include SAFE (Wilson et al., 2023), penultimate (Baseline Layer), attention lay-
ers (attn), MLP layers (mlp), and other components (others). Each point represents an individual
layer, with its sensitivity score sen

(T )
i,cos and the corresponding OOD detection performance (AU-

ROC) based on the OSFs extracted from that layer. The SIREN-KNN is used as the OOD detector,
and sensitivity is computed using inputs obtained from Random Sample transformation.

Figure 2 visualizes sensitivity–OOD performance relationship across different layers. We find a
clear trend where layers with higher sensitivity tend to exhibit higher OOD detection accuracy.
Notably, many intermediate transformer layers show higher sensitivity and OOD accuracy than the
penultimate layer, suggesting that the richest OOD cues often reside in intermediate layers. Overall,
there exists noticeable correlation between OOD accuracy and sensitivity, and our sensitivity metric
serves as a viable selection signal for identifying sensitive layers.

Table 3: Comparison of the proposed method SeFea (Ours) with existing OOD-OD methods (MSP
(Hendrycks & Gimpel, 2016), SAFE (Wilson et al., 2023) and SIREN (Du et al., 2022a)) on two
transformer-based architectures: MS-DETR and ViTDET. All methods use SIREN-KNN (left) or
SIREN-vMF (right) as the OOD detector, except for MSP. Evaluation is performed on PASCAL-
VOC as the ID dataset, and MS-COCO and OpenImages as the OOD datasets. Performance is
reported using AUROC and FPR95 metrics.

SIREN-KNN SIREN-vMF

Method
ID: PASCAL-VOC ID: BDD ID: PASCAL-VOC ID: BDD

OOD: MS-COCO/OpenImages OOD: MS-COCO/OpenImages
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

M
S-

D
E

T
R MSP 77.37/69.48 68.55/75.08 79.22/82.28 80.26/81.30 77.37/69.48 68.55/75.08 79.22/82.28 80.26/81.30

SAFE 77.26/79.29 78.54/75.12 82.90/80.68 72.50/75.08 76.08/84.33 76.20/60.63 72.78/75.19 76.15/75.29
SIREN 84.39/80.75 53.47/59.37 88.60/89.75 64.73/ 61.38 73.14/69.90 81.50/82.68 76.48/78.09 80.32/82.01
Ours 86.38/86.22 50.71/50.13 88.95/90.16 61.57/60.37 84.37/84.47 58.05/55.83 88.17/87.39 63.02/60.69

V
iT

D
E

T MSP 73.75/73.31 87.13/86.65 71.41/72.92 87.50/86.75 73.75/73.31 87.13/86.65 71.41/72.92 87.50/86.75
SIREN 87.24/86.80 55.71/52.56 87.17/87.62 62.98/62.15 83.67/87.34 58.05/50.72 74.44/74.19 72.66/72.01
Ours 90.41/90.79 40.13/41.52 89.60/91.28 46.90/44.14 84.08/85.49 54.69/50.88 90.02/93.94 42.10/30.26

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets We use the same ID and OOD datasets following Du et al. (2022b) for all our experimental
setups. Specifically, PASCAL-VOC (VOC) and Berkeley DeepDrive-100K (BDD) serve as the ID
datasets, while subsets of MS-COCO and OpenImages function as the OOD datasets. The OOD sets
are curated to ensure the absence of any classes present in the ID sets.

7
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Figure 3: Qualitative visualization of OOD-OD detection results from the MS-DETR object detector
with Pascal-VOC as the ID dataset. Detection results are obtained by comparing the OOD score
against the threshold at FPR95. Green boxes indicate that the OOD detector correctly classifies the
object as OOD, while red boxes denote misclassification as ID. All images are chosen such that none
of the 20 Pascal-VOC classes appear in the scenes.

Evaluation Metrics AUROC and FPR95 are used, with details provided in the appendix. We follow
the evaluation protocol of Wilson et al. (2023); Du et al. (2022b), where AUROC and FPR95 are
computed after filtering out low-confidence bounding box predictions.

Object detectors Most prior OOD detection methods have been developed for the Faster R-CNN
architecture, whereas our work focuses on transformer-based architectures—specifically MS-DETR
and ViTDET—which, to the best of our knowledge, have not been previously explored for OOD-
OD. Consequently, we re-implement several SOTA methods, including MSP (Hendrycks & Gimpel,
2016), SAFE (Wilson et al., 2023), and SIREN (Du et al., 2022a), within our MS-DETR and ViT-
DET framework to ensure a fair comparison.

5.2 IMPLEMENTATION

Network Architecture To analyze and identify sensitive layers in transformer-based architectures
for OOD-OD, we utilize MS-DETR (Zhao et al., 2024a) and ViTDET (Li et al., 2022), paired with
ResNet-50(He et al., 2016) and ViT-B(Dosovitskiy et al., 2021) backbones, respectively. Since
these architectures are originally trained on the COCO dataset, we retrain them on the designated
ID datasets prior to evaluation. The pre-trained models are ensured to achieve strong detection
performance on the ID validation sets, and provide a fair comparison of OOD detection given the
predicted bounding boxes. Details of the pre-training results on the ID datasets are provided in the
supplementary material. It is important to note that although SIREN (Du et al., 2022a) retrains both
the object detector and the OOD detector using a customized loss function, in our implementation,
we only train the SIREN OOD detector while keeping the pretrained object detector frozen.

Feature Extraction The overall pipeline is depicted in Figure 1; Transformer features are identi-
fied using Eq. 3, which has been validated to be effective in the previous section. More details
can be found in the supplementary material. OOD Detectors We adopt the SIREN framework (Du
et al., 2022a) with two types of prototype-based detection heads. The extracted OSFs are first passed
through a projection layer to obtain modulated features tailored for the OOD detection task. In the
SIREN-KNN setting, class prototypes are constructed via KNN clustering. In contrast, the SIREN-
vMF setting models class-wise prototypes using von Mises-Fisher (vMF) distributions. OOD sam-
ples are identified as those with low probability under all class prototypes.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 QUANTITATIVE ANALYSIS

Tables 3 compare our method with existing SOTA OOD-OD approaches with two types of OOD
detector:

SIREN-KNN. Across both transformer-based architectures (MS-DETR and ViTDET) and all
ID/OOD dataset configurations, SeFea consistently outperforms MSP, SAFE, and SIREN base-
lines, achieving the highest AUROC and lowest FPR95 scores. Compared to the strongest base-
line (SIREN), AUROC improvements range from +0.35% to +5.47%, while FPR95 reductions are
often substantial—frequently exceeding 10%. Notably, ViTDET benefits more from SeFea than
MS-DETR, particularly in FPR95 (e.g., reducing from 55.71% to 40.13% on VOC/COCO and from
62.98% to 46.90% on BDD/COCO), suggesting that our sensitivity-guided intermediate-layer se-
lection (using Eq. 3) outperforms the penultimate-layer feature used in SIREN (Du et al., 2022a),
or batch norm/skip connection features used in SAFE (Wilson et al., 2023). These results highlight
the effectiveness of SeFea in improving OOD robustness and demonstrate its architecture-agnostic
applicability through a simple sensitivity-based heuristic.

SIREN-vMF. When using the SIREN-vMF OOD scoring function, SeFea again demonstrates con-
sistent improvements across nearly all configurations, except for one case, ranking second on ViT-
DET with VOC/OpenImages setup, with only a small gap of 1.85% in AUROC and 0.16% in FPR95.
Notably, for the more challenging BDD as the ID setting, the FPR95 improves significantly, drop-
ping from 72.01% to 30.26% on the BDD/OpenImages setup, highlighting SeFea’s strong capability
to reduce false positives in certain scenarios. While improvements are also observed for MS-DETR,
the relative gains are smaller than those on ViTDET.

5.4 QUALITATIVE ANALYSIS

Figure 3 provides qualitative results. It presents OOD detection results for MSP, SAFE, SIREN, and
our SeFea method (from top to bottom) on a set of OOD images, with all visualizations based on
the SIREN-KNN detector. MS-DETR is used as the detector, Pascal-VOC serves as the ID dataset,
and COCO is used as OOD to determine the FPR95 threshold. Across all example scenes, SeFea
consistently produces more correctly classified OOD objects (green boxes) and fewer false-positive
ID predictions (red boxes) than the SIREN baseline. This improvement is especially pronounced in
the first column, where SIREN misses several OOD objects, while SeFea correctly flags nearly all
deer as OOD. In the wolf example (last column), MSP and SAFE misclassify multiple wolves as
ID, whereas SeFea substantially reduces these errors. This indicates stronger robustness when OOD
objects share strong visual similarities with ID classes. Moreover, SeFea demonstrates consistent
detection capability across varying object scales, from small to large. These results provide the first
systematic evidence that sensitivity-guided intermediate-layer selection—rather than defaulting to
the penultimate layer—offers a principled, architecture-independent path to SOTA OOD detection
in object detection.

Additional results and ablation are included in Appendix.

6 CONCLUSION

We address the overlooked research gap of understanding intermediate-layer representations for
OOD detection from a sensitivity perspective, challenging the common assumption that the penul-
timate layer is always optimal. Our experiments show that intermediate layers often encode
richer and more informative cues for distinguishing ID from OOD objects. By quantifying in-
put–distance awareness via a sensitivity metric, we find a strong correlation with OOD detection
performance—particularly in ViTDET—and demonstrate that sensitivity serves as an effective cri-
terion for layer selection. Extending the analysis across multiple detector architectures and diverse
ID/OOD setups further validates the robustness of this finding. Our method is architecture-agnostic,
as it does not depend on specialized layers, making it broadly applicable across object detection
pipelines. We remark that our work validates the theoretical results of Liu et al. (2020a) on input
distance awareness in practical transformer-based object detection models.

Limitation. Our work studies two important transformer-based object detection models due to com-
putation constraint. Including more transformer-based detectors can further strengthen our findings.

9
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Figure 4: Qualitative visualization of OOD-OD detection results from the MS-DETR object detec-
tor with Pascal-VOC as the ID dataset, the images is collected from the COCO dataset. Detection
results are obtained by comparing the OOD score against the threshold at FPR95. Green boxes
indicate that the OOD detector correctly classifies the object as OOD, while red boxes denote mis-
classification as ID. All images are chosen such that none of the 20 Pascal-VOC classes appear in
the scenes.
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Figure 5: Qualitative visualization of OOD-OD detection results from the MS-DETR object detector
with BDD as the ID dataset, the images is collected from the COCO dataset. Detection results are
obtained by comparing the OOD score against the threshold at FPR95. Green boxes indicate that
the OOD detector correctly classifies the object as OOD, while red boxes denote misclassification
as ID. All images are chosen such that none of the 10 BDD classes appear in the scenes.

B ADDITIONAL RESULTS

B.1 ADDITIONAL QUALITATIVE RESULTS

Additional visualizations are provided in Figures 4 and 5.

B.2 INFERENCE TIME OVERHEAD

Table 4 illustrates the latency of the object detector and the additional overhead introduced by OOD
detection, measured in FPS. We evaluate latency on two OOD datasets—COCO and OpenImages.
Since different ID dataset configurations result in varying numbers of predicted bounding boxes,
which in turn affect OOD-OD detection latency, we report results for both ID setups. The MS-
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Table 4: Frames-per-second (FPS) metrics for the MS-DETR object detector and OOD-OD. Each
cell reports the FPS for single-image inference. The table presents the latency of the OOD detector
applied to each feature type, with SIREN-KNN used as the OOD detector for all feature types.

ID: PASCAL-VOC ID: BDD Avg FPSCOCO OpenImages COCO OpenImages
Object Detector 22 24 24 24 23
OOD Detector – SAFE 69 75 43 76 62
OOD Detector – SIREN 69 75 94 79 78
OOD Detector – SeFea 68 75 44 78 63

DETR object detector achieves approximately 23 FPS for object detection alone. SIREN-based
feature OOD detection achieves the highest speed, as it is obtained solely from the penultimate
layer. Interestingly, although both our approach and SAFE utilize four layers for OOD detection,
our method achieves higher FPS for extraction because the selectively chosen OSFs in our approach
produce smaller feature dimensionality than those used by SAFE. Notably, despite extracting fea-
tures from four layers, our approach still attains a competitive FPS compared with the one-layer
SIREN method (63 with 78).

Table 5: Ablation study on the number of top-k sensitive layers used for OSFs collection in two
transformer-based architectures: MS-DETR and ViTDET. All methods employ SIREN-KNN as the
OOD detector. Evaluation is conducted on PASCAL-VOC and BDD as the ID datasets, with MS-
COCO and OpenImages serving as the OOD datasets. Each reported value is the average over the
two OOD datasets. Performance is measured using AUROC and FPR95. The bold cell indicates the
best result, while the underlined cell indicates the second-best.

top-k
sensitive layers

ID: PASCAL-VOC ID: BDD
AUROC↑ FPR95↓ AUROC↑ FPR95↓

M
S-

D
E

T
R

1 83.93 60.93 86.73 64.79
2 86.41 53.70 88.56 65.46
3 87.05 51.36 89.33 63.57
4 86.30 50.42 89.56 60.97
5 85.91 53.23 89.74 58.28

Penultimate 82.57 56.42 89.18 63.01

V
iT

D
E

T

1 90.46 43.85 91.24 43.02
2 90.03 45.01 91.56 41.06
3 89.18 45.06 91.47 40.15
4 90.60 40.83 90.44 45.52
5 89.08 44.62 89.82 46.80

Penultimate 87.02 54.14 87.40 62.57

B.3 K-SENSITIVE LAYERS

The effect of varying the number of top-k sensitive layers for OOD detection is shown in Table 5.
The AUROC score remains relatively stable across different numbers of k sensitive layers. However,
when k = 4, the results generally achieve well performance for both AUROC and FPR95 on MS-
DETR and ViTDET, as indicated by the bold and underlined values representing the best and second-
best results, respectively. Therefore, we select the top 4 sensitive layers for OSF collection, and all
results for our proposed SeFea method in the main paper are reported using this k value. In addition,
the performance of the penultimate layer is also compared with that of the top-k layers, to explicitly
demonstrate that the top-k layers outperform the penultimate layer for OOD detection.
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C REPRODUCIBILITY DETAILS

C.1 CODE

We have made the code publicly available under anonymity at the following GitHub link: GitHub
Repository

C.2 SENSITIVITY ANALYSIS - DETAILS

Transformer-based models MS-DETR (Wilson et al., 2023) is currently one of the SOTAs for
object detecion task. It introduces additional one-to-many supervision for DETR-based methods,
leading to several variants. In this paper, we adopt the variant of MS-DETR built upon Deformable
DETR and refer to it simply as MS-DETR. The architecture consists of a CNN backbone, a trans-
former encoder, a transformer decoder, and prediction heads for object classes and bounding box
positions. The encoder comprises six stacked transformer encoder blocks; each block contains SA
layers and MLP layers that process feature maps from the CNN backbone. For analysis of SAFE
features, we follow Wilson et al. (2023) and select batch norm / skip connection layers from CNN
blocks.

ViTDET (Li et al., 2022) adapts the plain Vision Transformer for object detection by retaining a
ViT backbone pre-trained with Masked Autoencoders (MAE), enabling strong single-image rep-
resentations. In this paper, we focus on the ViT-B backbone, which consists of 12 Transformer
blocks, 768-dimensional embeddings, and 12-head self-attention. During fine-tuning, ViTDET dis-
cards hierarchical backbones and classical feature pyramid networks (FPNs); instead, it constructs
a lightweight four-level feature pyramid directly from the stride-16 output of the final ViT block,
enabling multi-scale reasoning with minimal overhead. We investigate the distance-awareness prop-
erties of individual layers for out-of-distribution detection.

Table 6: As reference, we provide mAP on the ID datasets – VOC, and BDD – across different
object detectors.

Dataset Method mAP

VOC

Deformable DETR (Du et al., 2022a) 60.8

MS-DETR (Zhao et al., 2024a) 57.9

ViTDET/ViT-B (Li et al., 2022) 63.5

BDD

Deformable DETR (Du et al., 2022a) 31.3

MS-DETR (Zhao et al., 2024a) 33.1

ViTDET/ViT-B (Li et al., 2022) 34.9

ID performance of Object Detectors Since MS-DETR and ViTDET do not provide pretrained
weights on the selected ID datasets, we train these models from scratch on the corresponding ID
datasets. The ID performance, summarized in Table 6, confirms that the models are properly trained
for evaluation of OOD-OD performance.

Hyperparameters We compute the Lipschitz norm by randomly sampling 5,000 pairs of bounding
boxes. For Ol,d in the input space (x), pooling along the spatial dimensions reduces the feature map
to 1 × 1, yielding pl,d with only three channels. To increase dimensionality, for the input, we only
pooling to 2× 4 for VOC and 2× 2 for BDD. The 2× 4 size corresponds to the smallest bounding
box dimensions in VOC, while for BDD-where the smallest bounding box is less than one pixel-we
choose 2× 2 to enhance dimensionality.

C.3 EVALUATION METRICS

We assess OOD performance using two standard metrics-AUROC and FPR95-commonly adopted in
prior OOD-OD studies (Liu et al., 2024; Wilson et al., 2023; Du et al., 2022b). AUROC measures the
Area Under the Receiver Operating Characteristic Curve, which is calculated over multiple thresh-
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olds; higher values indicate better performance, and 50% corresponds to random guessing. FPR95,
on the other hand, reports the false positive rate when the true positive rate is at 95%, lower is better.

C.4 COMPUTATIONAL RESOURCES

All experiments were conducted using Python 3.11.3 and PyTorch 2.3.0+cu121 on an NVIDIA
RTX 6000 Ada Generation GPU (45 GB memory) running Ubuntu 22.04.3 LTS, equipped with an
AMD Ryzen Threadripper PRO 5975WX 32-core processor. Please refer to the SAFE paper (Wilson
et al., 2023) for environment installation instructions.

D ALGORITHM SeFea

In Figure 1 of main paper we provide an overview of our OOD-OD method SeFea. Here we further
provide the algorithm.

Algorithm 1 Inference process of the proposed SeFea method for OOD-OD task.
Input: Input image X; object detector f ; OOD score module r; a set of indices of the k most
sensitive layers M .
Output: Object-wise OOD predictions.

1. Perform inference using the object detector f on input X to obtain detected bounding boxes
B = {bd}Dd=1.

2. For each detected object bd, extract the object-specific features (OSFs) from sensitive layers
indexed in M , and concatenate them to form a unified representation:

pd = Concat ({pl,d}l∈M ) .

3. Compute the OOD score for each object representation using the OOD score module r:

sd = r(pd).

As discussed in the main paper, sensitive transformer layers are determined by our proposed sensi-
tivity metric sen(T )

i,cos, which has been validated to be correlated with OOD-OD accuracy. The indices
of the sensitive transformer layers are stored in M , and the features of these layers are used by our
proposed SeFea for OOD-OD task as in Algorithm 1. In our experiments, MS-DETR and ViTDET
are explored as f , and SIREN-KNN and SIREN-vMF are explored as OOD score module r.

E LLM USAGE

We used GPT-5 as a writing assistant for grammar checking and improving the formality of phrasing
in sentences or short paragraphs. The model was not involved in research ideation, experimental
design, analysis, or substantive content generation.
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