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ABSTRACT

Generative models have shown remarkable progress in 3D aspect. Recent works
learn 3D representation explicitly under text-3D guidance. However, limited text-
3D data restricts the vocabulary scale and text control of generations. Generators
may easily fall into a stereotype concept for certain text prompts, thus losing open-
vocabulary generation ability. To tackle this issue, we introduce a conditional
3D generative model, namely TextField3D.Specifically, rather than using the text
prompts as input directly, we suggest to inject dynamic noise into the latent space
of given text prompts, i.e., Noisy Text Fields (NTFs). In this way, limited 3D data
can be mapped to the appropriate range of textual latent space that is expanded by
NTFs. To this end, an NTFGen module is proposed to model general text latent
code in noisy fields. Meanwhile, an NTFBind module is proposed to align view-
invariant image latent code to noisy fields, further supporting image-conditional
3D generation. To guide the conditional generation in both geometry and texture,
multi-modal discrimination is constructed with a text-3D discriminator and a text-
2.5D discriminator. Compared to previous methods, TextField3D includes three
merits: 1) large vocabulary, 2) text consistency, and 3) low latency. Extensive
experiments demonstrate that our method achieves a potential open-vocabulary
3D generation capability.

1 INTRODUCTION

3D creative contents are in significantly increased demand for a wide range of applications, including
video games, virtual reality, and robotic simulation. However, manually creating 3D content is a
time-consuming process that requires a high level of expertise. To achieve automatic generation,
previous works (Niemeyer & Geiger, 2021; Gu et al., 2021; Chan et al., 2022; Gao et al., 2022)
attempt on several 3D representations like Voxel, NeRF, and SDF. Nonetheless, objects from these
methods are unconditionally generated in a single category, which can hardly be applied in practice.

With the success of text-to-image generative models (Ramesh et al., 2021; 2022; Rombach et al.,
2022), text prompts become a flexible variable to achieve open-vocabulary generative capability.
Similar to 2D vision, text-to-3D generation has recently aroused great interest. Current research can
be generally separated into two strategies. One (Jain et al., 2022; Mohammad Khalid et al., 2022;
Poole et al., 2022; Lin et al., 2022) optimizes differentiable 3D representations with vision-language
(V-L) pre-trained knowledge, e.g., DreamFields (Jain et al., 2022) is optimized from knowledge
of the V-L pre-trained model CLIP (Radford et al., 2021), and DreamFusion (Poole et al., 2022) is
guided by a diffusion model Imagen (Saharia et al., 2022). Since no 3D data are involved in training,
these methods can easily fall into artifacts, facing serious 3D consistency problems. Meanwhile, the
cost of optimizing 3D representations is extremely high, in terms of both time and computational re-
sources. The first strategy seems not to be the ultimate solution for 3D generation. The other (Nichol
et al., 2022; Cheng et al., 2023; Wei et al., 2023; Sanghi et al., 2023; Jun & Nichol, 2023) directly
supervises 3D generators with paired text-3D data. These methods allow real-time generation but
are extremely restricted by the scale of available 3D data. Nichol et al. (2022) and Jun & Nichol
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Figure 1: TextField3D is capable of text-to-3D and image-to-3D tasks. In particular, all the text
prompts are from (Nichol et al., 2022; Jun & Nichol, 2023), our method can generate diverse and
reasonable results, exhibiting a potential open-vocabulary capability.

(2023) collect millions of text-3D pairs, which is still thousands of times smaller than the scale of
V-L data. As such, the diversity of generated output and the complexity of text input are incompati-
ble with V-L optimized methods. Therefore, here is the question: With limited data, can we train a
real-time 3D generator with the potential towards open-vocabulary content creation?

The common practice to address data scarcity is introducing V-L pre-trained knowledge to gen-
erators. Specifically, 3D generative latent codes are initialized with pre-trained models. Cheng
et al. (2023) adopt BERT (Devlin et al., 2018)/CLIP (Radford et al., 2021) encoders for text/image-
condition tasks. Sanghi et al. (2023) propose to train a transformer module with CLIP image em-
bedding and replace it with text embedding at inference. Wei et al. (2023) further attempt to align
text prompts with rendered images to improve generative text control. However, one key problem
remains challenging: how to map limited 3D content to comprehensive V-L pre-trained concepts.
Some recent 3D representation learning works Huang et al. (2023); Liu et al. (2023a) align genera-
tive latent space based on limited categories and text prompts, resulting in a close set understanding.

To tackle this issue, we intend to expand the expression range of 3D latent space. We observe
that 3D latent code can easily fall into stereotype concepts when trained in a small data scale with
clean data and templated prompts. For example, a simple prompt “a chair” can represent any
type of chair, tall or short, with or without armrests. However, if supervised on a specific type
of chair, the generator may tend to produce this fixed shape only, losing diversity. Based on this
observation, we introduce a conditional 3D generative model, dubbed TextField3D. TextField3D
maps limited 3D data to dynamic fields of V-L concepts, which are named as Noisy Text Fields
(NTFs). Specifically, we assume that there is a dynamic range in the latent mapping of text-to-3D,
which can be formulated as an injected noise to the text embeddings. We thus propose an NTFGen
module, where text latent code is formulated based on the field of noisy text embeddings. To support
image conditional generation, we further propose an NTFBind module for binding image features
to NTFs and keeping the consistency of multi-view conditions. A view-invariant image latent code
is derived for the image-to-3D task. Furthermore, multi-modal discrimination is constructed for
the supervision of 3D generation, in which we propose a text-3D discriminator to guide geometry
generation and a text-2.5D discriminator to refine texture details.

Compared to previous methods, TextField3D simultaneously possesses three advantages: large vo-
cabulary, text consistency, and low latency. Extensive experiments are conducted on various cate-
gories and complicated text prompts, which exhibit the open-vocabulary potential of our model. We
further employ several metrics to evaluate the generation quality and text consistency, demonstrating
the effectiveness of our newly proposed modules.

Our contributions can be summarised as follows:

• We introduce a conditional 3D generative model TextField3D, in which limited 3D data is
mapped to textual fields with dynamic noise, namely Noisy Text Fields (NTFs).

• We propose NTFGen and NTFBind to manipulate general latent codes for conditional gen-
eration, and a multi-modal discriminator to guide the generation of geometry and texture.

• Extensive experiments present an open-vocabulary potential of our proposed method, in
terms of large vocabulary, text consistency, and low latency.
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2 RELATED WORK

Driven by the increasing demand for 3D creative contents, text-to-3D generation has witnessed rapid
improvement recently. We can generally split current studies into two categories: V-L optimized
methods and 3D supervised methods.

V-L Optimized Methods. With the success of V-L pre-trained models, various works (Jain et al.,
2022; Mohammad Khalid et al., 2022; Poole et al., 2022; Lin et al., 2022; Chen et al., 2023; Wang
et al., 2023) leverage V-L pre-trained knowledge to optimize implicit functions of 3D representa-
tions. Jain et al. (2022) supervise the generation of a NeRF representation by the CLIP guidance of
given text prompts. Poole et al. (2022) introduce Score Distillation Sampling (SDS) to a NeRF vari-
ant, adopting diffusion models to optimize 3D renderings. Based on SDS, Wang et al. (2023) further
propose Variational Score Distillation (VSD), treating the 3D content of a given textual prompt as
a random variable. Albeit approaching open-vocabulary generation, these methods highly depend
on expensive and time-consuming optimization procedures and may easily produce 3D artifacts like
multi-face and paper-thin outputs, which is not a practical solution for 3D generation.

3D supervised Methods. 3D supervised methods train generators with 3D data. Contrary to
V-L optimized methods, they present an efficient way to generate solid 3D content. These
works (Achlioptas et al., 2018; Kosiorek et al., 2021; Chen & Wang, 2022) are basically in an
encoder-decoder architecture. For example, Kosiorek et al. (2021) proposes a variational autoen-
coder, encoding rendered views of scene representations as a generative condition. However, gener-
ations are restricted by the scarcity of 3D data. To allow various generative conditions, some recent
works (Sanghi et al., 2022; Mittal et al., 2022; Fu et al., 2022; Cheng et al., 2023; Wei et al., 2023;
Sanghi et al., 2023) attempt to combine pre-trained knowledge to the latent encoding, while the im-
provement is limited. Nichol et al. (2022) and Jun & Nichol (2023) collect several millions 3D data
for training large-vocabulary generators, which is still far from the data scale of 2D diffusion.

In this work, we aim to enhance the mapping of limited 3D data and comprehensive V-L pre-trained
knowledge, presenting an efficient way to approach open-vocabulary 3D generation.

3 PRELIMINARIES

3.1 3D GENERATIVE MODEL

Regardless of those V-L optimized methods, a 3D generative model takes latent codes to the gen-
erator and supervises corresponding generated contents with 3D data. GET3D (Gao et al., 2022)
proposes a 3D generative adversarial network (GAN) that embeds a random vector to the latent
space of geometry and texture. MeshDiffusion (Liu et al., 2023b) learns to denoise a simple initial
distribution into the target 3D objects with a diffusion model. SDFusion (Cheng et al., 2023) lever-
ages a vector quantised-variational autoencoder (VQ-VAE) to compress 3D shapes into latent space
for further generations. Not losing generality, we can split 3D generation training into three compo-
nents, i.e., a 3D latent code w, a generator G in differentiable 3D representations, and a 3D-related
supervision ∇3DG(w).

3.2 CONDITIONAL 3D GENERATION

To allow condition inputs for the generation, the common strategy is embedding the generative
latent code with corresponding inputs. In 2D text-to-image synthesis (Ramesh et al., 2021; 2022;
Rombach et al., 2022), generators are trained to minimize the objective ∇2DG(w) with large-scale
V-L data, achieving an open-vocabulary performance. Unfortunately, reaching such a tremendous
scale for 3D datasets is challenging. Saharia et al. (2022) suggest that pre-trained text or V-L models
may encode meaningful representations relevant for the generation task. They initialize latent codes
with freezed BERT (Devlin et al., 2018), T5 (Raffel et al., 2020), and CLIP (Radford et al., 2021),
which may alleviate data scarcity to some extent. Therefore, some text-to-3D methods (Sanghi
et al., 2022; Mittal et al., 2022; Fu et al., 2022; Cheng et al., 2023; Wei et al., 2023; Sanghi et al.,
2023) utilize pre-trained knowledge to embed latent vectors w. Take a textual input t as an example:
The conditional latent code wt can be revised as wt = f(z, t), where t is pre-trained text features
encoded from t, and f is a mapping network to embed text features t with noise distributions z.
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Figure 2: The overall framework of TextField3D. The NTFGen module and the NTFBind module
are proposed to encode conditional latent codes in noisy text fields, which are fed to a 3D generator.
Multi-modal discrimination is then exploited to supervise the generation process, including a text-
3D discriminator and a text-2.5D discriminator.

4 METHODOLOGY

Albeit introducing open-vocabulary knowledge from V-L pre-trained models as guidance, previ-
ous 3D generative models (Cheng et al., 2023; Wei et al., 2023; Sanghi et al., 2023) still struggle to
exhibit promising open-vocabulary capability. In this work, we present TextField3D as a feasible so-
lution to approach open-vocabulary generation. To this end, we introduce Noisy Text Fields (NTFs)
to boost the latent mapping between V-L concepts and 3D representations. Meanwhile, we propose
multi-modal discrimination to enhance the supervision of 3D generation. The overall framework is
illustrated in Figure 2. We provide detailed explanations in the following.

4.1 LEARNING GENERAL LATENT SPACE FOR 3D REPRESENTATION

Current available 3D data is limited to a small range of categories, which is unable to cover compre-
hensive concepts of V-L pre-trained knowledge. As shown in Figure 3, previous 3D latent code is
trained with clean data and templated prompts, falling into a stereotype concept of certain prompts
in training data. Therefore, it is a challenging task to align 3D latent space with the open-vocabulary
embedding space of V-L pre-trained models.

In order to learn a general latent code from limited 3D data, we have to map 3D data to an equivalent
expression range of pre-trained concepts. There are some previous studies (Nukrai et al., 2022; Gu
et al., 2022) addressing the issue of imbalanced data between multiple modalities. They attempt to
solve V-L tasks with text-only training. An injected noise n ∼ N(0, ϵ) is attached to the embedded
text, so that image features can be included in the textual space. In our case, text prompts and
3D objects have a one-to-many correspondence, e.g., “a chair” can represent all kinds of chairs in
Figure 3. Accordingly, we can introduce a similar noise to the corresponding 3D latent space.

Noisy Text Latent Code. Considering the scarcity of available text-3D data, we attach a textual
range to 3D latent space following (Nukrai et al., 2022; Gu et al., 2022). However, we observe
that the one-to-many situation is more obvious in 3D. Different from 2D realistic images, rendered
images of 3D data present a single 3D object on a clean background. The diversity can be easily
constrained if a strict text prompt is given like “a tall wooden chair without armrests”. Therefore,
we propose a dynamic noise injection to adjust the range of text embeddings t:

t̃ = t+N(0,σ), where σ = ftxt(t),σ ∈ (ϵ1, ϵ2), (1)

where ftxt is a non-linear network. ϵ1 and ϵ2 are hyperparameters, which are set as 0.0002 and
0.016. t̃ is a textual field injected with dynamic noise, which is regarded as the Noisy Text Field
(NTF) of t. Latent code can then be calculated as w = f(z, t̃) in NTFs, while we observe that the
mapping network f weakens the generative control of t̃. In text-to-image synthesis, Härkönen et al.
(2022) and Sauer et al. (2023) also notice the tendency that the input random vector z can dominate
over text embeddings t. Following them, we propose a late concatenation, bypassing the mapping
networks for text embeddings t̃. We thus have the noisy text latent code w̃t = [w, t̃].
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Figure 3: The motivation of Noisy Text Field. Previous works may easily form stereotype concepts
of training data but have no idea about out-of-distribution prompts. Differently, the Noisy Text Field
can model the semantic correspondences among cases.

To optimize the alignment of latent code and correspondingly generated contents, the common prac-
tice is minimizing the cosine distance between text features and image features,

Lnce(I) = − log
exp(t̃ · [fvis(Itc)]T /τ)

exp(t̃ · [fvis(Itc)]T /τ) +
∑

t̸=t exp(t̃ · [fvis(Itc)]T /τ)
, (2)

where fvis is a pre-trained visual encoder. The image Itc is rendered by a renderer R at the viewpoint
c, which is defined as Itc = R(G(w̃t), c). However, Lnce(I) is a generation-based objective to
match the generated content with the ground-truth text prompt. We further propose a condition-
based objective Lnce(Î), enhancing the alignment of latent code in NTFs with ground-truth rendered
images Î , The final objective for generating noisy textual fields is Lgen = Lnce(I) + Lnce(Î). The
module is thus named as NTFGen.

View-Invariant Image Latent Code. To allow image conditional 3D generation, previous
works (Cheng et al., 2023; Gupta et al., 2023) replace text embeddings t with visual embeddings v as
generative conditions. However, we argue that image conditions are not equivalent to text conditions
in the 3D domain, as images provide additional viewpoint information. In order that generated ob-
jects can keep consistent with image conditions at different views, we learn a view-invariant image
latent code ṽt

c = fview(fvis(Î
t
c), c), where fview is a non-linear network conditioned with camera

poses. Given an input latent code ṽt1
c1 , we randomly select its positive latent code ṽt1c2 and negative

latent code ṽt2c3 . The view-invariant objective Lview expects to bind feature spaces with the same

text prompt, which is formulated as Lview =
∥∥∥ṽt1c1 − ṽt1c2

∥∥∥
2
−

∥∥∥ṽt1c1 − ṽt2
c3

∥∥∥
2
. Meanwhile, we bind

the corresponding generations Itc to noisy text fields t̃ by an NTF binding loss Lntf (I
t
c),

Lntf (I
t
c) = − log

exp(t̃ · [fview(fvis(Itc), c)]T /τ)
exp(t̃ · [fview(fvis(Itc), c)]T /τ) +

∑
t ̸=t exp(t̃ · [fview(fvis(Itc), c)]T /τ)

(3)

The final binding objective is Lbind = Lview + Lntf , and we regard the module as NTFBind.

4.2 TEXTURED MESH GENERATION WITH MULTI-MODAL DISCRIMINATION

After designing general latent code for 3D generation with injected noise, we then discuss the 3D
generative model we used in TextField3D. Previous textured mesh generative models (Chan et al.,
2022; Gao et al., 2022; Gupta et al., 2023) have shown remarkable progress in terms of generation
quality. In particular, GET3D (Gao et al., 2022) attaches a texture field (Oechsle et al., 2019) to a
differentiable 3D representation DMTet (Shen et al., 2021), efficiently producing high-quality tex-
tured meshes. Following it, we feed the noisy texture fields to formulate a conditional generator
toward open-vocabulary 3D content. Furthermore, to better guide the generation process, we in-
troduce multi-modal discrimination and build a generative adversarial training framework. In the
following, we illustrate each component in this framework.

Textured Mesh Generator. Given two random vectors z1 and z2, GET3D adopts two non-linear
mapping networks fgeo and ftex for intermediate latent vectors w1 = fgeo(z1) and w2 = ftex(z2),
which are then used for the generation of 3D shapes and texture. By embedding noisy textual
fields t̃ and bypassing mapping networks fgeo and ftex, the generation process is formulated as
G([w1, t̃], [w2, t̃]).

Text-2.5D Discriminator. The combination of rendered images and corresponding camera poses
is widely used in GAN-based 3D supervision (Gu et al., 2021; Chan et al., 2022; Gao et al., 2022).
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Rendered images can provide detailed visual information that is beneficial for texture generation.
Since 3D geometry is implicitly presented by camera poses, we regard such discrimination as 2.5D
supervision. To further supervise the text consistency, we concatenate the camera pose c with t̃ as a
new discriminative condition. The text-2.5D discriminative objective is formulated as,

L(Dx, G) = Et∈T g(Dx(I
t
c, [c, t̃])) + Et∈T,Ît

c∈Î (g(−Dx(Î
t
c, [c, t̃])) + λ

∥∥∥∇Dx(Î
t
c)
∥∥∥2
2
), (4)

where g(x) is defined as g(x) = −log(1+ exp(x)). Î is the ground-truth rendered image set. λ is a
hyperparameter. x is related to either RGB image or silhouette mask. Following GET3D, we apply
the supervision of both RGB and mask.

Text-3D Discriminator. Although 2.5D discrimination implies 3D spatial information, it is diffi-
cult to represent geometric details of objects such as normal, smoothness, and so on. Some recent
works (Liu et al., 2023b; Cheng et al., 2023; Gupta et al., 2023) have attempted to learn the shape
prior directly from 3D data. Similarly, we exploit sampled point clouds to discriminate the genera-
tive quality. Given a generated mesh object, we uniformly sample point clouds p over its surface. A
discriminator architecture similar to 2.5D is then adopted, while we adjust its mapping network to
PointNet (Qi et al., 2017). We have the text-3D discriminative objective L(Dpc, G),

L(Dpc, G) = Et∈T g(Dpc(p
t, t)) + Et∈T,p̂t∈P̂ (g(−Dpc(p̂

t, t)) + λ
∥∥∥∇Dpc(Î

t
c)
∥∥∥2
2
), (5)

where pt and p̂t are the generated and the ground-truth point clouds with text prompt t, respectively.
P̂ is the ground-truth point cloud set.

4.3 OVERALL TRAINING OBJECTIVE

Finally, we illustrate the overall training objective L of TextField3D, which is defined as follows:

L = L(Dimg, G) + L(Dmask, G) + λpcL(Dpc, G) + λgenLgen, (6)

where the loss weight parameters λpc = 0.01 and λgen = 2. The NTFBind module is additionally
trained by the binding objective Lbind. During its training, we freeze noisy texture fields t̃.

5 EXPERIMENTS

5.1 DATASET

We train TextField3D with a large-scale 3D dataset Objaverse (Deitke et al., 2022), which collects
over 800k 3D objects from various categories. We select around 175k objects among them, which
are qualified for the training. To prepare training data, we render RGBA images of 3D objects from
random camera viewpoints with blender engines (Community, 2018) and annotate textual descrip-
tions to them with the latest image captioning models (Li et al., 2023). For ablation studies, a clean
3D dataset ShapeNet (Chang et al., 2015) is used to evaluate the generative quality. ShapeNet con-
tains over 50k clean 3D objects from 55 categories. We can accurately divide the training and test
sets based on categories, which is the reason why we choose ShapeNet for the ablation studies. We
filter out objects without texture, leaving 32,863 3D textured shapes. The filtered data are split into
training, validation, and testing sets in a ratio of 7:1:2. We additionally annotate ShapeNet with
MiniGPT-4 (Zhu et al., 2023). Please refer to Appendix B for details of data preparation.

5.2 IMPLEMENTATION DETAILS

For Objaverse, we train TextField3D with the full set and evaluate it with open-vocabulary text
prompts. For ShapeNet, we select the best-performing models on the validation set for the evalua-
tion. The total training time is around 3 days and 1 day with 8 V100 GPUs, respectively. Following
GET3D, we use a StyleGAN (Karras et al., 2019) discriminator architecture. We use Adam (Kingma
& Ba, 2014) optimizer and initialize the learning rate to 0.002. The training batch size is 64. We use
CLIP’s ViT-B/32 to embed text/image inputs and freeze them on training. We sample 8,192 points
for each mesh object. And the image resolution is 512× 512 for both rendering and generation.
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5.3 EXPERIMENTAL RESULTS

We train TextField3D on the Objaverse dataset, which is captioned with BLIP-2 (Li et al., 2023).
Four state-of-the-art methods are then selected for comparison: DreamFields (Jain et al., 2022),
DreamFusion (Poole et al., 2022), Point-E (Nichol et al., 2022), and Shap-E (Jun & Nichol, 2023).
Quantitative and qualitative results are presented in the following.

Quantitative Results. To verify open-vocabulary generation ability, Jain et al. (2022) propose an
evaluation set, collecting 153 captions from the Common Objects in Context (COCO) dataset (Lin
et al., 2014). We follow the experiment setting: for each prompt, we render an image from the
corresponding generated object, with a fixed camera pose at a 45◦ angle of elevation and a 30◦

angle of rotation. Table 1 reports the retrieval precision with CLIP (CLIP R-Precision). Our 1-shot
results are better than Point-E and Shap-E, even though TextField3D is trained in a much smaller
data scale. Moreover, since TextField3D generates 3D objects much faster than other methods, we
try eight more times for each prompt and select the most similar image out of 9 (according to the
cosine similarity with CLIP text features). The results (TextField3D, 9-shot) can reach a higher level,
almost close to SDS methods. These results demonstrate that TextField3D is more generalized than
previous supervised methods (Point-E and Shap-E) with much fewer training data and achieves a
comparable open-vocabulary capability with V-L optimized methods by a much faster inference.

Qualitative Results We select seven representative text prompts for the text-to-3D generation
task, including three single nouns, two compound nouns, and two adjectival nouns. As shown in
Figure 4 , the generation quality of DreamFields and Point-E is relatively low. DreamFusion has
several paper-thin cases, i.e., rat, chess piece, and brick chimney, as it is optimized V-L pre-trained
knowledge rather than 3D shape prior. The view consistency is another problem for DreamFusion,
e.g., the generated teapot has multiple spouts. Shap-E is a 3D-optimized method that is similar to
our TextField3D. However, it fails to generate a common rat, which raises questions about its open-
vocabulary capability. Moreover, Shap-E performs poorly in text prompts with simple attribute
binding. The chimney does not have a brick texture, and the teapot is not uniformly filled with green
color. The results of our model TextField3D are basically consistent with text descriptions.

We also conduct image-to-3D generation, comparing with Point-E and Shap-E in Figure 5.
“TextField3D” denotes replacing text embeddings t̃ with image features. “+NTFBind” denotes us-
ing view-invariant image latent code ṽtc. In (a), we provide part of a clay pot in a bottom view
as input. Shap-E can generate a similar shape but the color is lighter than the ground-truth image.
TextField3D can reproduce the color, while the generated pot neck is too long due to the interference
of the input view. The shape and texture are generated precisely only when our NTFBind module is
employed. The front view of a donkey in (b) is much harder to reconstruct, as it looks quite different
in multiple views. Shap-E fails to reproduce the donkey, generating extra legs in a lighter color. The
donkey generated by TextField3D is better than Shap-E’s, but it still has obvious artifacts at the neck
and back. The reproduction with our NTFBind has the best visual result.

5.4 ABLATION STUDIES

NTFGen Module and Multi-Modal Discriminator. To demonstrate the effectiveness of these
two proposed modules, we compare four conditional generation solutions, i.e., (a) embedding pre-
trained V-L features into GET3D, which is similar to SDFusion (Cheng et al., 2023); (b) further

Table 1: CLIP R-Precision on COCO evaluation prompts.
Method ViT-B/32 ViT-L/14 Latency Data Scale

DreamFields 78.6 82.9 ∼ 200 V100-hr -
DreamFusion 75.1 79.1 ∼ 12 V100-hr -

Point-E (300M, text-only) 33.6 35.5 24 V100-sec > 1M
Shap-E (300M, text-only) 37.8 40.9 13 V100-sec > 1M

Point-E (300M) 40.3 45.6 1.2 V100-min > 1M
Point-E (1B) 41.1 46.8 1.5 V100-min > 1M

Shap-E (300M) 41.1 46.4 1.0 V100-min > 1M
TextField3D (ours, 1-shot) 45.8 49.0 ∼ 6.9 V100-sec ∼ 175K
TextField3D (ours, 9-shot) 63.4 67.3 ∼ 1.0 V100-min ∼ 175K
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“An apple”

“A tire”

“A rat”

“An ice 
cream”

“A chess
piece”

DreamField Point-E Shap-E TextField3DDreamFusion

“A brick 
chimney”

“A green
teapot”

Figure 4: Text-to-3D generation. We use seven representative text prompts to exhibit open-
vocabulary generative capability, including single nouns, compound nouns, and adjectival nouns.

Input Image Shap-E TextField3D + NTFBind Ground-Truth

(a)

(b)

Point-E

Figure 5: Image-to-3D generation. We use a clay pot in the bottom view and a donkey in the front
view as image inputs. Our network can reproduce a close novel view to the ground-truth image.

aligning features in (a) by pre-trained models, which is similar to TAPS3D (Wei et al., 2023); (c)
embedding text features with our NTFGen module; (d) further attaching our text-to-3D discriminator
to (c), which is our method TextField3D. We train them on the ShapeNet dataset, with both BLIP-
2 (Li et al., 2023) and MiniGPT-4 (Zhu et al., 2023) captioning.

We quantitatively compare the four solutions, as well as GET3D, in Table 2. FID (Heusel et al.,
2017) and CLIP-score (Hessel et al., 2021) are used for the evaluation. The results demonstrate that
our proposed modules effectively improve generation quality and text control consistency.

We also provide qualitative results in Figure 6. We use a simple text prompt ”A green ball” to
evaluate generation quality and a complicated text prompt ”A round table with red legs and a blue

8
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Table 2: Quantitative Analysis. FID (Heusel et al., 2017) and CLIP-score (Hessel et al., 2021) are
adopted to evaluate the generation quality and text consistency of different solutions.

Method
BLIP-2 (Li et al., 2023) MiniGPT-4 (Zhu et al., 2023)

FID↓ CLIP-Score↑ FID↓ CLIP-Score↑
ViT-B/32 ViT-L/14 ViT-B/32 ViT-L/14

GET3D (Gao et al., 2022) 41.66 - - 41.66 - -
(a) 31.67 28.33 22.79 34.67 28.59 23.44
(b) 29.02 29.80 24.39 29.91 30.03 24.05
(c) 29.73 30.36 25.43 28.69 30.68 25.17
(d) 26.94 30.35 25.57 25.46 30.89 25.77

(b)(a) (c) (d) (b)(a) (c) (d)

“A green ball” “A round table with red legs and a blue top surface”

Figure 6: Ablation studies. We use two text prompts to evaluate the generation quality and text
control consistency of different solutions, demonstrating the effectiveness of our proposed modules.

top surface” to further evaluate text control consistency. In the former case, (d) presents a high-
quality generation thanks to the multi-modal discrimination. In the latter case, (c) and (d) generate
reasonable results according to the textual input, demonstrating the effectiveness of Noisy Text Field.

NTFBind Module. To evaluate view-invariant features ṽt
c = fview(fvis(I

t
c), c), we compare it

with vanilla CLIP features vt
c = fvis(I

t
c). We propose two evaluation metrics: cosine similarity s/s̃

and retrieval ratio r/r̃. We randomly select front view cf and back view cb of 55 generations Itcf , I
t
cb

(one object for each category, with label t). For CLIP similarity, we calculate the mean similarities,
i.e., s =

∑55
i=1 cos(v

ti
cf
,vti

cb
)/55 and s̃ =

∑55
i=1 cos(ṽ

ti
cf
, ṽti

cb
)/55. For retrieval ratio, we regard

the opposite view of the same object as the positive target and views of other objects as negative
targets. r and r̃ are then computed as the average of retrieval ratios. As shown in Table 3, both
the similarity and the ratio of view-invariant features are higher than CLIP features, which indicates
that Lview learns a view-invariant representation. It is more obvious in generated images, further
demonstrating that view-invariant features enhance the generation consistency of novel views.

Table 3: Comparison of view-invariant features and vanilla CLIP features.
Image Source s s̃ r r̃
Ground-truth 88.01% 91.91% 58.07% 81.44%

Generated 84.84% 91.32% 54.54% 76.97%

6 CONCLUSION

In this work, we present TextField3D to enhance the open-vocabulary capability of 3D generative
models. Specifically, we introduce Noisy Text Fields (NTFs) to 3D latent code, enhancing the
mapping of V-L pre-trained knowledge and 3D training data. An NTFGen module is proposed to
generate noisy text latent code, and an NTFBind module is further proposed to bind view-invariant
image latent code to NTFs. Furthermore, to supervise the generation quality and text consistency,
we propose multi-modal discrimination that includes both text-3D and text-2.5D discriminators.
TextField3D can efficiently generate various 3D contents with complicated text prompts, exhibiting
a potential open-vocabulary generative capability.

Broader Impacts. 3D creations are in high demand for various applications. TextField3D can
generate open-vocabulary 3D objects, greatly reducing the cost of producing 3D content. However,
like other generative models, there may be a risk of generating malicious content.

Limitations. TextField3D still depends on the vocabulary of training data, which may not fully
match the general capability of V-L supervised methods. For example, it fails in prompts like “A
corgi is reading a book”, as current 3D data mainly focuses on shape/texture-related concepts but
lacks action-related prompts. Fortunately, the scale of 3D data is steadily increasing. More and more
novel concepts can be included to expand TextField3D’s vocabulary.
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A EXPERIMENTAL DETAILS

A.1 EXPERIMENT IMPLEMENTATION

NTFBind Training and Inference. To support image-to-3D generation, we additionally train an
NTFBind module with the binding objective Lbind. We load the parameters of the generator, the
discriminator, and the NTFGen module on text-to-3D training. We freeze the NTFGen module
during the training so that the NTFBind module can be aligned to the trained noisy text fields. The
overall training objective L is similar to text-to-3D training:

Limage−to−3D = L(Dimg, G) + L(Dmask, G) + λpcL(Dpc, G) + λbindLbind, (7)

where λbind is set as 0.1 in the experiment. Since the camera views are sampled uniformly in a fixed
range, we can randomly generate a camera pose for an input image on inference.

Ablation Studies. In the ablation studies of the main text, we compare four solutions for 3D
conditional generation. We additionally illustrate the latent code encoder of solutions (a) and (b) in
Figure 7. In (a), the latent code is initialized by a V-L pre-trained text encoder and supervised by a
text-2.5D discriminator, the overall loss La = L(Dimg, G)+L(Dmask, G). In (b), rendered images
are further aligned with input text features, which can be regarded as Limg in our NTFGen module.
Its overall loss can be revised as Lb = La + Limg . In (c), a full version of our NTFGen module
is adopted, in which the overall loss can be formulated as Lc = L(Dimg, G) + L(Dmask, G) +
λbindLbind. Finally, (d) presents our TextField3D. Compared with (c), it is further supervised by a
text-3D discriminator. Note that text features in (a)-(b) are fed to a mapping network, while we skip
the mapping of text features in (c)-(d), as we mentioned in the main text.
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Figure 7: The latent code encoders of solutions (a) and (b) in the main text ablation studies.

B DATA PREPARATION

B.1 IMAGE RENDERING

To generate 2D images from 3D meshes for training, we follow the rendering strategy in
GET3D (Gao et al., 2022). We first scale each mesh object such that the longest edge of its bounding
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box equals 0.8. We then render the RGB images and silhouettes from 8 random camera poses, which
are sampled uniformly from an elevation angle of range [0, 1

6π] and a rotation angle of range [0, 2π].
For all camera poses, we use a fixed radius of 1.2 and the field of view (FOV) is 49.13◦. Images are
rendered in Blender (Community, 2018) with fixed lighting.

B.2 IMAGE CAPTIONING

To provide text-3D paired training data, we adopt two image captioning methods BLIP-2 (Li et al.,
2023) and MiniGPT-4 (Zhu et al., 2023) to caption the rendered images in ShapeNet (Chang et al.,
2015) and Objaverse (Deitke et al., 2022). Considering the data scale, we didn’t use MiniGPT-4
to caption Objaverse. In this section, we will introduce the captioning strategies and compare the
captioning effects through examples.

BLIP-2. BLIP-2 leverages a lightweight querying transformer to bridge the gap between pre-
trained image encoders and language models. We use BLIP-2-OPT-2.7b as the captioning model.
For each rendered image, BLIP-2 is employed to expand a sentence beginning with ”an object of ”.
We then extract {text} from the expanded sentence ”an object of {text}” as the caption.

MiniGPT-4. MiniGPT-4 utilizes an advanced large language model (LLM) Vicuna (Chiang et al.,
2023) and a pre-trained vision component of BLIP-2 to formulate multi-modal outputs. It aligns
the encoded visual features with the Vicuna language model using just one projection layer and
freezes all other vision and language components. Albeit a lightweight alignment, it can possess
many similar capabilities to GPT-4, including generating intricate image descriptions and answering
visual questions. Thus, given an input image and its category label {c}, we have a question template
”there is a 3D {c} in the picture, use one sentence to shortly describe its texture and shape” for
MiniGPT-4. Note that despite emphasizing ”use one sentence”, MiniGPT-4 is still likely to generate
multiple sentences. To simplify captions, we use the first sentence of the answer as the final caption.
Due to the time constraint, we only utilize MiniGPT-4 to make captions for ShapeNet in this paper.

Comparison of Captioning Effects. In Figure 8, we choose three representative images to com-
pare the captioning effects of different methods. Since TPAS3D (Wei et al., 2023) also proposes a
pseudo caption generation method for captioning rendered images in part of ShapeNet, we include
it in the comparison. From the three cases, we can observe that captions generated by TAPS3D
and BLIP-2 are relatively similar, primarily in terms of the combination of adjectives and nouns. In
contrast, MiniGPT-4 provides detailed descriptions, including information in both texture and shape.

TAPS3D BLIP-2 MiniGPT-4

“A red
hatchback”

“A red
sports car”

“The image is a red sports 
car with a sleek and shiny 
body, designed with a 
streamlined style”

“A brown
chair”

“A wooden
chair”

“The wooden chair has a 
rectangular shape with a 
curved back and a flat seat”

“A wooden
desk”

“A wooden
table”

“The image is a wooden 
table with a rectangular top 
and four legs”

Figure 8: Comparison of image captioning effects.
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B.3 DATASET FILTERING

Although Objaverse (Deitke et al., 2022) is the largest public 3D dataset, its data quality varies.
Therefore, we have filtered out some low-quality data. The filtering process has two steps: First,
we filter out mesh files that contain more than one object, as our method is not suitable for multi-
object/scene-level generation. Then, we filter out mesh objects according to roughness, because we
find there are many objects with uneven surfaces, as well as objects that look like a piece of paper.
We use Laplacian Regularizer (Hasselgren et al., 2021) to evaluate the roughness of an object, i.e.,
δi = vi − 1

|Ni|
∑

j∈Ni
vj , where Ni is the set of one-ring neighbours for vertex vi. As the average

laplacian regularizer metric δ increases, the roughness level also increases. We select objects whose
δ ∈ [10−1, 10−6] as our final training data, which are not too flat or too rough for generation.

C SUPPLEMENTARY RESULTS

C.1 THREESTUDIO EVALUATION SET

We find a prompt list with 415 prompts in a public repo ThreeStudio and evaluate the CLIP R-
Precision in this test set. Since we haven’t surveyed any method that is evaluated in this set, we only
compare our method with Shap-E. As shown in Table R3, although it is a harder test set, our method
still significantly outperforms Shap-E.

Table 4: CLIP R-Precision on ThreeStudio evaluation prompts.
Method ViT-B/32 ViT-L/14 Latency Data Scale

Shap-E (300M) 13.98 19.51 1.0 V100-min > 1M
TextField3D (ours, 1-shot) 19.04 24.33 ∼ 6.9 V100-sec ∼ 175K
TextField3D (ours, 9-shot) 37.83 42.41 ∼ 1.0 V100-min ∼ 175K

C.2 COMPARISON WITH MORE SOTA METHODS

The reason why not compare TAPS3D and SDFusion directly is that, they are fine-tuning methods
based on single-category GET3D pre-training. For example, in the implementation of the original
TAPS3D, a pre-trained category-wise GET3D checkpoint (e.g., car checkpoint, table checkpoint,
and so on) is first loaded to the generator. The generator is then fine-tuned by the supervision of a
fixed discriminator. Considering that GET3D hasn’t been pre-trained in an open-vocabulary setting,
it is hard to evaluate the original TAPS3D in our benchmark.

Nevertheless, we still provide a comparison based on their official code. We load the checkpoint
of our pre-trained GET3D (Table 2) and further finetune the generator with TAPS3D. As shown in
Table 5, its FID and CLIP-Score (ViT-B/32) results are uncompetitive to our method and even below
the version we reproduced (named as (b) in the main text). We think the results are reasonable,
as the performance of fine-tuned TAPS3D strongly depends on the pre-trained GET3D. We have
demonstrated in Table 2 of the main text that GET3D can hardly generate high-quality 3D results
in a multi-category dataset. As a result, TAPS3D is not an appropriate approach to open-vocabulary
generation.

Furthermore, since TAPS3D hasn’t released the training captions and finetuned checkpoints, we
cannot even make a comparison on single-category generation with them. We notice that SDFusion
has released its text-to-shape checkpoint, which is trained on a table-chair dataset. Therefore, we
further evaluate the original SDFusion with recursive text prompts. As shown in Figure 10, SDFu-
sion is a shape-only generator with low generation resolution. Besides, it is not sensitive to long
sentences, failing to generate curved legs in the last prompt.

C.3 ABLATION STUDY OF NOISY TEXT FIELD

To verify the noise range in our noisy text fields, we design four text prompts with gradually in-
creased attributes for comparison with Shap-E. Jun & Nichol (2023) have mentioned that Shap-E
struggles to bind multiple attributes to different objects. In Figure 9, it fails in the third case when
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Table 5: Performance of the original TAPS3D. The results of GET3D and (b) are from Table 2 in
the main text.

Method FID↓ CLIP-score↑
GET3D 41.66 -
TAPS3D 35.12 28.38

(b) 29.02 29.80
ours 26.94 30.35

two attributes are added. Shap-E generates extra chairs, despite the absence of such a requirement
in the text input. And it is confused by the fourth case, generating blue legs and a mixed-color
top. In contrast, TextField3D performs well in all cases and meanwhile presents a high-level gen-
eration diversity. Moreover, we calculated the variances of t̃ in the four cases, which are 0.2479,
0.2153, 0.1674, and 0.1355, respectively. The variances are consistent with our expectations of
noise range, i.e., a more detailed description has a smaller noise range.

Shap-E

TextField3D

“A table” “A round table” “A round table 
with red legs”

“A round table with red legs 
and a blue top surface”

Figure 9: Examples of gradually increased attributes, comparing with Shap-E (Jun & Nichol, 2023).

To further evaluate the generation performance on gradually increased attributes, we include
ShapeCraft (Fu et al., 2022) in the comparison. We use the recursive prompts in ShapCraft and
rephrase them as longer sentences. As shown in Figure 10, TextField3D can achieve comparable
performance with ShapeCraft, although it hasn’t been specifically trained with recursive prompts.
On the contrary, Shap-E only succeeds in generating the first case. It seems that Shap-E cannot
understand ”with no armrest”, treating the phrase as ”with armrest”.

C.4 ABLATION STUDY OF NTFGEN

Our NTFGen module consists of two objectives, i.e., Limg and Ltxt. To verify the effectiveness
of both objectives, we conduct two more experiments on each objective of ShapeNet (Chang et al.,
2015) with captions from MiniGPT-4. We report the quantitative results in Table 6. Comparing two
objectives, Limg has a better generation quality as its alignment of generations and text features.
However, Ltxt achieves a higher CLIP-score, which implies that Ltxt can enhance the mapping of
noisy text fields. Moreover, there’s only one difference between ”+Limg” and solution (b) in the
ablation studies of the main text, i.e., the position of adding text features. ”+Limg” performs better
than solution (b) (FID: 29.91, CLIP-score: 30.03) in terms of both FID and CLIP-score, demonstrat-
ing that bypassing the mapping network for text features is effective for generation quality and text
control.

C.5 ABLATION STUDY OF NTFBIND

Our NTFBind module binds image features in two dimensions: (1) to the noisy text fields; (2) to the
multiple views. As illustrated in Table 7, two terms of binding are evaluated separately as ”+binding
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ShapeCrafter

“A red 
chair”

Ours

“A red chair 
with no armrest”

“A red long-back 
chair with no armrest”

“A red long-back chair 
with no armrest, legs 

are curved”

“A red chair 
with no armrest”

“A red 
chair”

Shap-E

“A red long-back 
chair with no armrest”

“A red long-back chair 
with no armrest, legs 

are curved”

“A red 
chair”

SDFusion

“A red chair 
with no armrest”

“A red long-back 
chair with no armrest”

“A red long-back chair 
with no armrest, legs 

are curved”

Figure 10: More examples of gradually increased attributes, comparing with ShapeCrafter (Fu et al.,
2022), Shap-E (Jun & Nichol, 2023), and SDFusion Cheng et al. (2023).

Table 6: Quantitative results of NTFGen’s ablation studies.
Method FID↓ CLIP-score↑
+ Limg 29.53 30.43
+ Ltxt 30.82 30.58

+ NTFGen 28.69 30.68

NTFs” and ”+binding views”. It is obvious that binding NTFs can significantly improve the quality
of image-to-3D generation (from 56.71 to 48.84, -7.87 for FID). Although additionally adding a
view-binding can further improve the FID to 48.07, we find that the training of binding-views alone
does not lead to satisfactory results (we don’t report its result as the model cannot even achieve
convergence). We think it is caused by the disruption of alignment between the view-invariant latent
code and the noisy text fields. Therefore, binding NTFs is necessary for the image-to-3D task.

Table 7: Quantitative results of NTFBind’s ablation studies.
Method FID↓

TextField3D 56.71
+ binding NTFs 48.84
+ binding views -

+ NTFBind 48.07

C.6 ABLATION STUDY OF MULTI-MODAL DISCRIMINATION

The intention of the discrimination design is to decouple the supervision of texture and shape gen-
eration. We mainly have two unsuccessful attempts: (1) we split the text condition and the camera
condition into two independent discriminators, expecting that the former condition would focus on
texture and the latter condition would focus on geometry. However, it fails to generate high-quality
content (FID is 36.14). As a result, we combine two conditions together in our final discriminator.
(2) we replace the mask discriminator with a depth discriminator, as depth provides more geometry
information than the silhouette mask. However, all the generated objects fall into a sphere shape
under depth discrimination. We think that is because depth discrimination is too sensitive to depth
changes. Especially when using a mesh representation DMTet (Shen et al., 2021), the prominent
vertices tend to be smoothed to the neighboring surfaces easily, formulating a sphere shape. In-
stead, we introduce a 3D discriminator based on point cloud, which can flexibly represent the mesh
surface.
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C.7 MORE VISUALIZATION RESULTS

To better present our open-vocabulary generation capability, we visualize more generated objects in
Figure 11 and 12. We also provide multiple views of these objects in Figure 13. The elevation angles
for rendering are −15◦, 15◦, and 30◦ from left to right, respectively. In Figure 14, we generate 9
examples for each prompt, showcasing TextField3D’s generation diversity. Note, a beer can in
our training dataset is given in the left of Figure 14 to demonstrate that our results don’t overfit to
training data. Furthermore, we provide more visualization results of complicated input prompts and
conditioned images in Figure 15 and Figure 16, respectively.
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“An orange”

“A lemon”

“A red
mushroom”

“A tree”

“A tree
stump”

DreamField Point-E Shap-E TextField3DDreamFusion

“A deer”

“A giraffe”

“A pagoda”

“A lego model
of a rocket”

“An Egyptian
obelisk”

Figure 11: More visualization results, comparing with previous state-of-the-art methods.

19



Published as a conference paper at ICLR 2024

“A barrel”

“A beer
can”

“A rusty
metal canister”

“A pottery
vase”

“A wooden
crate”

DreamField Point-E Shap-E TextField3DDreamFusion

“A cardboard
box with graffiti”

“A screw”

“A grenade”

“A large
axe”

“A gold
ring”

Figure 12: More visualization results, comparing with previous state-of-the-art methods.
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“An orange” “A lemon”

“A red mushroom” “A tree”

“A tree stump” “A deer”

“A giraffe” “A pagoda”

“A lego model of a rocket” “An Egyptian obelisk”

“A barrel” “A beer can”

“A rusty metal canister” “A pottery vase”

“A wooden crate” “A cardboard box with graffiti”

“A screw” “A grenade”

“A large axe” “A gold ring”

Figure 13: Multi-view visualization of generated objects in Figure 11 and 12. The elevation angles
for rendering are −15◦, 15◦, and 30◦ from left to right, respectively.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 14: 9-shot examples. We provide 9 different bear cans, presenting the diversity of our gen-
eration in a given text. The left beer can is the most similar one we detect in our training dataset,
demonstrating that our method hasn’t overfitted to training data.

“A bus covered in graffiti is
stationary on the pavement”

“a plastic jar of honey glowing
in the middle of the dark”

“a bowl of a meal with an egg sunny 
side up laid on top of everything”

“a very big giraffe that is
siting on the ground”

“the back of a flat screened 
tv connected to a ipad”

“a keyboard that is missing
some keys in the bottom row”

“a red light in front of
a tall building”

“a chair that looks 
like an avocado”

Shap-E

Shap-E

Ours

Ours

Figure 15: Complicated prompts. To further present the open-vocabulary capability, we provide the
visualization results of our generation in complicated prompts. Shap-E is included in the compari-
son.
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Input

Shap-E

Ours

Figure 16: Image-to-3D generation. We provide more visualization results of text-to-3D generation.
Shap-E is included in the comparison.
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