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Advanced probabilistic programming languages (PPLs) using hybrid particle filtering combine symbolic exact
inference and Monte Carlo methods to improve inference performance. These systems use heuristics to
partition random variables within the program into variables that are encoded symbolically and variables
that are encoded with sampled values, and the heuristics are not necessarily aligned with the developer’s
performance evaluation metrics. In this work, we present inference plans, a programming interface that enables
developers to control the partitioning of random variables during hybrid particle filtering. We further present
Siren, a new PPL that enables developers to use annotations to specify inference plans the inference system
must implement. To assist developers with statically reasoning about whether an inference plan can be
implemented, we present an abstract-interpretation-based static analysis for Siren for determining inference
plan satisfiability. We prove the analysis is sound with respect to Siren’s semantics. Our evaluation applies
inference plans to three different hybrid particle filtering algorithms on a suite of benchmarks. It shows that
the control provided by inference plans enables speed ups of 1.76x on average and up to 206x to reach a
target accuracy, compared to the inference plans implemented by default heuristics; the results also show that
inference plans improve accuracy by 1.83x on average and up to 595x with less or equal runtime, compared
to the default inference plans. We further show that our static analysis is precise in practice, identifying all
satisfiable inference plans in 27 out of the 33 benchmark-algorithm evaluation settings.

CCS Concepts: • Mathematics of computing→ Sequential Monte Carlo methods; • Theory of compu-
tation→ Program analysis.
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1 Introduction

Probabilistic programming languages (PPLs) support primitives for modeling random variables and
performing probabilistic inference [Goodman and Stuhlmüller 2014; Holtzen et al. 2020; Murray
and Schön 2018; Narayanan et al. 2016; Tolpin et al. 2016]. They provide high-level abstractions for
probabilistic modeling that hide away the complex details of inference algorithms while leveraging
common programming language constructs such as functions, loops, and control flow. PPLs serve
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as an expressive tool for solving such problems. Users can focus on modeling the problem, rather
than the details of inference techniques.

Fig. 1. Hybrid inference with particle filtering.

Hybrid Inference Systems. Hybrid in-
ference systems – such as delayed sam-
pling [Lundén 2017; Murray et al. 2018],
semi-symbolic inference [Atkinson et al.
2022], Sequential Monte Carlo with be-
lief propagation [Azizian et al. 2023], and
automatically marginalized MCMC [Lai
et al. 2023] – automatically incorporate
exact inference with Monte Carlo meth-
ods to improve performance. They uti-
lize a symbolic encoding of random vari-
ables to represent some or all parts of the
model, enabling symbolic computation
that lowers the variance of estimations.
Hybrid inference algorithms that apply to
particle filters [Gordon et al. 1993] imple-
ment an automatic Rao-Blackwellization
of the particle filter [Doucet et al. 2000];
hybrid inference algorithms that apply
to MCMC algorithms automatically im-
plement collapsed sampling [Liu 1994]. In
this work, we focus on hybrid inference
systems that perform symbolic computations dynamically at runtime. These systems are able to
take advantage of exact inference opportunities that only become available once the inference
system replaces some variables with concrete Monte Carlo samples.
Figure 1 depicts hybrid inference using particle filtering as the approximate inference method.

The algorithmmaintains a collection of parallel instances of executions, represented by the big boxes.
Each instance contains a symbolic structure that encodes certain random variables symbolically,
as shown by the circles in the diagram; other random variables are encoded as constant samples
drawn from probability distributions, depicted as squares. The sizes of the boxes correspond to the
associated weight, which indicates how likely these instances are based on observed data (the white
circles). The instances execute in parallel until they hit a checkpoint at which they are resampled,
meaning the distribution of instances is adjusted based on the weights. The arrows between each
box indicate the transition or transformation of a particle from one stage to the next, including
when a particle is duplicated during the resampling step.

Objective Oblivious Heuristics. When a hybrid inference system cannot solve the entire program
with symbolic computation, it must partition the random variables into variables that it encodes
symbolically and variables it encodes with concrete sampled values. Different partitions make
different subsets of random variables more accurate. Choosing which partition to use then depends
on 1) the probabilistic model and 2) the metrics used by the developer to evaluate the program.
Hybrid inference systems automatically choose a partition to use based on the program structure
using built-in heuristics. However, they are oblivious to the objectives of the developer and to how
the developer measures performance. Their selected partition might not produce good inference
performance as a result. In these cases, developers need an interface for applying alternative
heuristics that incorporate their evaluation objectives to achieve better performance.
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Inference Plans. In this work, we present inference plans, a programming interface that gives
developers fine-grained control over how random variables are partitioned into sampled and
symbolic variables during hybrid inference. An inference plan consists of a sequence of distribution
encoding annotations – symbolic and sample – that specify whether the inference runtime should
encode each random variable with a symbolic distribution or an approximate Monte Carlo sample.
Our evaluation shows that the control provided by inference plans enables speed ups of 1.76x on
average and up to 206x to reach a target accuracy, compared to the inference plans implemented by
default heuristics; the results also show that inference plans improve accuracy by 1.83x on average
and up to 595x with less or equal runtime, compared to the default inference plans.
In applications, such as control systems [Burkhart and Bishop 1996; Huang et al. 2017b; Mehra

et al. 1995], robotics [Doucet et al. 2000], signal processing [Duník et al. 2017], and data sci-
ence [Mansinghka et al. 2018], developers must tradeoff between accuracy and runtime during
program development before deploying the program in production. By testing different inference
plans during program development, developers can apply heuristics best-suited to their applications
and optimize their programs on custom performance metrics.

Satisfiability Analysis. A key challenge in delivering the inference plans interface is that, de-
pending on the program, the inference algorithm may not be able to maintain a random variable
symbolically if the corresponding inference problem is too hard for the system to solve exactly.
Furthermore, because hybrid inference systems are dynamic and can change their behavior based
on both the program inputs and random samples, the failure to maintain symbolic computation may
only manifest in some executions. This can lead to unpredictable or random accuracy degradations.
We call an inference plan unsatisfiable in some execution if in that execution, the algorithm cannot
evaluate the program while encoding the symbolic annotated variables symbolically. We present in
this work an abstract-interpretation-based program analysis that can statically determine whether
or not an inference plan is satisfiable in all executions for the given program. Against a suite of 11
benchmarks, using the 3 algorithms, our analysis identifies all satisfiable plans in 27 out of the 33
benchmark-algorithm evaluation settings.

Contributions. In this paper, we present the following contributions:

• We present Siren, a first-order functional PPL. Siren introduces distribution encoding
annotations that programmers can use to assert an overall specification for how variables are
represented by the inference algorithm; we term this specification an inference plan. Siren
implements several existing hybrid particle filtering systems, unified via the hybrid inference
interface, an extension of the symbolic interface from [Atkinson et al. 2022]. We define the
syntax and semantics of the language in Section 3.
• Wepresent an inference plan satisfiability analysis, which determines statically if the annotated
inference plan is satisfiable for all executions of a program. We formalize this analysis via
abstract interpretation and present a proof of its soundness in Section 4.
• We implement the hybrid inference interface with semi-symbolic inference, delayed sampling,
and Sequential Monte Carlo with belief propagation, and empirically show in Section 5 that
inference plans speed up inference by 1.76x on average and up to 206x to reach target accuracy,
compared to the default inference plans. We also show that inference plans improve accuracy
by 1.83x on average and up to 595x with less or equal runtime, compared to the default plans.
• We empirically evaluate the precision of our analysis in Section 5. Against a suite of 11
benchmarks, using the 3 algorithms, our analysis identifies all satisfiable plans in 27 out of
the 33 benchmark-algorithm evaluation settings.
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Inference plans enable developers to apply alternative heuristics to hybrid particle filtering algo-
rithms within a probabilistic program. These customizations can improve inference performance,
all the while maintaining the separation of probabilistic modeling and inference.

2 Example

Fig. 2. Diagram of a radar tracker.

To demonstrate how a developer can use inference plans to
customize and improve inference performance, we present a
simplified example adapted from Bilik and Tabrikian [2010].
Figure 2 shows a cartoon diagram of a radar tracker. The goal
of the radar tracker is to track the movement of an aircraft by
estimating the position x and altitude alt of the aircraft over
time. The radar tracker can be specified as a probabilistic model.
The model captures both the aircraft’smovement noise and also
the radar’s measurement noise. The movement noise q captures
the uncertainty in the model’s belief of the aircraft movement relative to its previous position due
to external factors such as turbulence. The measurement noise captures inaccuracies in the radar
measurements. For example, measurements naturally have white noise from radio interference.
Additionally, when the aircraft is at lower altitudes, the measurements can be affected by spiking
noise induced by electromagnetic waves reflecting off of the aircraft at an angle [Bilik and Tabrikian
2010]. In our example tracker, when the aircraft is at an altitude greater than 5, the measurement
noise is modeled by only the white noise r. Otherwise, it has additional noise other.

2.1 Specification in Siren

Figure 3 presents two versions of the Siren program that implements the radar tracker. The
programs share the same probabilistic model, but differ in the annotations used to specify random
variable encodings. Each program models the movement noise q and white noise r defined on
Lines 10 and 11 with Inverse-Gamma distributions. The step function defined on Lines 1-9 updates
the predicted position and altitude and conditions the model on radar measurement data.
On Lines 3 and 4, the x positions and alt altitudes are modeled as Gaussian random walks, i.e.

as Gaussian distributions with a mean equal to the respective previous value. They have variance
equal to q. Lines 5 and 6 model the measurement noise v. If the current estimated altitude alt

is less than 5, the program models the measurement noise as r+other; the variable other models
the additional spiking noise as a separate, time-varying Inverse-Gamma distribution. Otherwise,
the program models the measurement noise as only the white noise r. The measured position
and altitude are modeled as Gaussian distribution centered around the estimated position x and
estimated altitude alt, respectively, and with the measurement noise as variance.
Lines 7 and 8 condition the model on the measured position being equal to the data value x_o

and on the measured altitude being equal to a_o. The fold_resample operation on Line 12 iterates
step on the measurement data (provided by program inputs stored in variable data) with initial
position 0, altitude 10, and the noises q and r. The program returns the final accumulator: the list
of estimated positions, estimated altitudes, the movement noise, and the white noise.

2.2 Inference Plans

Each random variable in Figure 3 has an optional distribution encoding annotation that specifies how
the inference system should encode the variable. The inference system should encode a variable
annotated with symbolic as a symbolic expression representing the corresponding distribution,
and should encode one annotated with sample with a concrete sample drawn from the distribution.
The two programs in Figure 3 differ in only the annotations on Lines 3 and 11.
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1 let step = fun ((x_o,a_o),(xs,alts,q,r)) ->

2 let x0,alt0 = hd(xs),hd(alts) in

3 let symbolic x <- gaussian(x0,q) in

4 let sample alt <- gaussian(alt0,q) in

5 let sample other <- invgamma(1.,10.) in

6 let v = if alt < 5 then r+other else r in

7 let () = observe(gaussian(x,v),x_o) in

8 let () = observe(gaussian(alt,v),a_o) in

9 (cons(x,xs),cons(alt,alts),q,r)

10 let sample q <- invgamma(1.,1.) in

11 let sample r <- invgamma(1.,1.) in

12 fold_resample(step,data,([0.],[10.],q,r))

(a) Annotated with Symbolic x Inference Plan.

1 let step = fun ((x_o,a_o),(xs,alts,q,r)) ->

2 let x0,alt0 = hd(xs),hd(alts) in

3 let sample x <- gaussian(x0,q) in

4 let sample alt <- gaussian(alt0,q) in

5 let sample other <- invgamma(1.,10.) in

6 let v = if alt < 5 then r+other else r in

7 let () = observe(gaussian(x,v),x_o) in

8 let () = observe(gaussian(alt,v),a_o) in

9 (cons(x,xs),cons(alt,alts),q,r)

10 let sample q <- invgamma(1.,1.) in

11 let symbolic r <- invgamma(1.,1.) in

12 fold_resample(step,data,([0.],[10.],q,r))

(b) Annotated with Symbolic r Inference Plan.

Fig. 3. A program written in Siren that implements a radar tracking.

The annotations control the execution of Siren’s hybrid particle filtering implementation – a
combination of particle filtering with symbolic computation. Each particle contains a symbolic
state, which collects the symbolic distributions of symbolically-encoded random variables. The
Siren runtime treats variables encoded using samples as constant values during program execution.
The Figure 1 diagram shows an execution of the Figure 3a program. In one particle of the

execution, the variable q is bound to the constant value 1.7, a random sample drawn from the
Inverse-Gamma distribution on Line 10. Then, on the first iteration, the symbolic random variable
𝑋𝑥 created on Line 3 has the symbolic distributionN(0., 1.7). This particle also has alt bound to the
constant sample 10.3 and r to 0.2; the observed variable on Line 7 has the distribution N(𝑋𝑥 , 0.2).
In another particle, q is bound to 0.6, r to 0.1, alt to 4.5, and other to 3.1. Then, 𝑋𝑥 has the symbolic
distribution N(0., 0.6) and the Line 7 variable has N(𝑋𝑥 , 3.2), as r+other evaluates to 3.2.

The inference algorithm uses symbolic computation to evaluate the symbolic components of the
particle. For example, in Figure 3a, the observed variable on Line 7 has a conditional distribution
dependent on the symbolic variable 𝑋𝑥 . The algorithm symbolically transforms the conditional
distribution into a marginal distribution so that the algorithm can condition the model on the
input value. During evaluation, the particle accumulates a weight from conditioning on input
values. Then, at resampling checkpoints, a new collection of particles is resampled from the existing
collection. In Figure 3 the resampling step occurs at the end of each fold_resample iteration.

2.2.1 Accuracy and Performance. To deploy the radar tracker, the developer must ensure that it will
achieve adequate performance. In this aircraft tracking application, the program must be within the
acceptable margins of error and allowable latency or it can lead to catastrophic collisions [Ali et al.
2015]. This is challenging because the accuracy and runtime of hybrid particle filtering depend on
both the number of particles and the inference plan used to perform inference.

Particle Count. While the runtime of a hybrid particle filter typically varies proportionally to the
particle count, the relationship between accuracy and particle count is difficult to determine. In
general, developers need to search for a count that meets their accuracy and runtime constraints.

Inference Plan. A hybrid inference system’s accuracy and runtime also depend on the inference
plan. This enables developers to use inference plans to control the inference system’s performance
and improve upon the system’s default performance (i.e. its accuracy and runtime under the default
inference plan automatically selected by the systemwhen no annotations are present in the program).
However, as inference plans operate by adjusting the partition between symbolic and sampled
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variables, the effect on accuracy and runtime is often hard to predict. Keeping variables symbolic
can reduce the number of particles the system requires to achieve adequate accuracy, but this
behavior is not guaranteed. Additionally, different inference plans can achieve higher accuracy
for different variables. In an application such as radar tracking where highly accurate results are
required within a time constraint, the developer can determine the program’s behavior by executing
it with different inference plans to build a performance profile. The developer can then choose the
best inference plan and particle count to use in production.

Performance Profile. In the tracking example, themost important variables are the target’s position
and altitude, so the developer would like to optimize the program for the highest accuracy for x
and alt. However, the program runtime cannot exceed the acceptable latency, or the estimations
will be too out of date. For this example, we assume 3 seconds as the maximum allowable runtime.

Figure 4 presents a performance profile for the programs in Figure 3. These graphs present scatter
plots of accuracy and latency over a range of particle counts and for a variety of different inference
plans. Each graph uses an accuracy metric measuring the error of the inference algorithm’s estimate
of either x or alt. The red squares present the time and accuracy tradeoff for the default inference
plan that makes no annotations. An alternative inference plan – called the Symbolic x Inference Plan

because it annotates x with symbolic – is the one from Figure 3a, and is shown in green diamonds.
An additional alternative plan – called Symbolic r Inference Plan because it annotates r symbolic –
is the one from Figure 3b, and is shown in purple circles.

100 102

Execution Time in s (log scale)

10−1

100

101

102

Er
ro

r
(lo

g
sc

al
e)

x

100 102

Execution Time in s (log scale)

10−1

100

101

102

alt

No Annotations
Symbolic x Plan

Symbolic r Plan

Fig. 4. Accuracy and runtime performance of the Figure 3
programs. Each scatter plot presents the program execu-
tion time and accuracy for particle counts 𝑝 ranging from
1 to 1024 and multiple inference plans. Each data point is
an experiment that – across 100 runs – measures the me-
dian runtime and the 90th percentile of the Mean Squared
Error for the relevant random variable – x or alt.

Inference Plan Comparison. The developer
can conclude from the performance profile
in Figure 4 that, given a time constraint of
3 seconds, the best plan to optimize for x

accuracy is the Symbolic x Plan. This demon-
strates the value of using inference plans to
control the inference system’s behavior, as
the default behavior of the system is oblivi-
ous to the developer’s objectives and cannot
adapt accordingly. Consequently, the default
plan is inferior in accuracy.
The profile also shows that the Symbolic

r Plan achieves the best accuracy for alt

within the 3-second constraint. This plan
also achieves better accuracy than the de-
fault plan on both x and alt. None of the
plans achieves the best accuracy within 3
seconds for both variables, so the developer
has to decide which is more critical to optimize for. The differing performance outcomes further
illustrate the importance of inference plans: Developers can apply alternative inference plans to
achieve the best performance on the variables they care about the most.

2.2.2 Unsatisfiable Annotations. According to the performance profiles, the developer may select
either the Symbolic x Plan of Figure 3a with 8 particles or the Symbolic r Plan of Figure 3b with
16 particles as the configuration to deploy in production with acceptable accuracy and latency.
However, this profile also demonstrates the challenges in drawing conclusions from empirical data:
The Symbolic r Plan is unsatisfiable in general.
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To collect the performance profile, we generated the data for the performance profile assuming
the aircraft stays at its cruising altitude of 10. If we instead generate data to model a descent
where the aircraft eventually descends to an altitude below 5, the input altitude data passed to
the variable a_o on Line 1 will be different. Then, the performance profile may no longer be valid.
Namely, with the original generated cruising data, the estimated altitude was never less than 5.
However, with the generated descent data, the probability of the estimated altitude being less
than 5 is significantly higher and, as a result, so is the probability of encountering an unsatisfiable

annotation. The symbolic annotation on r is unsatisfiable in those executions because the inference
runtime cannot evaluate the program while encoding r symbolically.

In Figure 3b, if the altitude of the aircraft is at or above 5, then the observed variables on Lines 7
and 8 have symbolic Gaussian distributions with variance 𝑋𝑟 . The Inverse-Gamma distribution of
𝑋𝑟 is conjugate with the Gaussian distribution, which means that the inference system can find a
closed-form solution to the model and can encode r symbolically. However, if the altitude of the
aircraft drops below 5, the program specifies that the observed variables have symbolic Gaussian
distributions with variance equal to the sum of two Inverse-Gamma random variables: r and other.
This sum does not have an Inverse-Gamma distribution and is not conjugate with the Gaussian
distributions on Lines 7 and 8. Without a conjugacy relationship to exploit, the inference system
cannot solve the model analytically, even though the developer annotated variable r as symbolic.
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(a) Aircraft cruising at altitude 10.
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(b) Aircraft descending from altitude 10 to 0.

Fig. 5. Accuracy of x and alt over 100 timesteps at altitudes,
measured as the Squared Error of the estimated value to the
true value at that timestep.

Dynamic Encoding Cast. In such a sce-
nario, Siren, like other hybrid inference
systems [Atkinson et al. 2022; Azizian et al.
2023; Lundén 2017; Murray et al. 2018],
will, conceptually, dynamically cast the of-
fending symbolic annotation to a sample

annotation, changing the underlying dis-
tribution encoding to a concrete sample.
However, Figure 5 illustrates the impact
of such a coercion. Figure 5 shows the ac-
curacy of the position and altitude of a
simulated aircraft over 100 timesteps us-
ing the two programs in the two differ-
ent flight modes. In Figure 5a, where the
aircraft is cruising at altitude 10, the pat-
tern observed in the performance profiles
is replicated. The Symbolic x Plan consis-
tently achieves better accuracy for the x

position, and the Symbolic r Plan for alt.
In either case, both plans have errors less
than 1 for both variables at all timesteps.
However, when the aircraft is descending, this pattern is broken. In Figure 5b, the aircraft is now
operating in a noisier environment. The accuracy and runtime of a probabilistic model inherently
depend on the conditioned inputs, so both plans experience an error spike in alt. The Symbolic x

Plan still maintains a relatively low error for x, whereas the Symbolic r Plan has a significant error
spike at around 60 timesteps such that the estimation error of x is a magnitude larger than before.
The error spike cannot be explained by the noisier environment alone, because the Symbolic x Plan

does not exhibit an x error spike of the same magnitude. The accuracy degradation in x by the
Symbolic r Plan is due to a dynamic encoding cast on an unsatisfiable annotation.
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Performance Degradation. A dynamic encoding cast has implications for inference performance,
as it means that the runtime cannot implement the annotated inference plan and has to implement
a different inference plan to continue execution. While flexible and enables the program execution
to continue, it can cause imprecision that is unacceptable in certain applications. In this example,
casting the unsatisfiable annotation causes a significant decrease in accuracy in x. The significant
accuracy degradation negates the advantage the Symbolic r Plan has over the Symbolic x Plan for
alt. Given the possible impact on accuracy, the developer should use the Symbolic x Plan instead.

2.3 Inference Plan Satisfiability Analysis

To enable developers to ensure their program is free from dynamic encoding casts, Siren performs
the inference plan satisfiability analysis to determine whether the annotated inference plan is
satisfiable during all possible executions of the program using the hybrid inference algorithm.

Abstract Interpretation. The analysis uses an abstract interpretation of the program. It main-
tains abstract symbolic distributions of random variables and uses abstract expressions to over-
approximate program executions. Consider the unsatisfiable plan from Figure 3b. On Line 6, because
the analysis does not know the exact value of alt, it uses an abstract value to over-approximate
the subexpressions in the branches. If alt is above 5, the abstract subexpression is 𝑋𝑟 , referring to
the abstract random variable from Line 11. If alt is below 5, the subexpression is 𝑋𝑟 +̂ UnkC. The
abstract value UnkC represents some unspecified constant. All random samples are constant values,
so other evaluates to UnkC. The analysis over-approximates the subexpressions as a single abstract
expression: UnkE ({𝑋𝑟 }) – an unspecified abstract expression that references 𝑋𝑟 .

Unsatisfiable Inference Plan. The analysis also approximates how the system decides when to per-
form symbolic computations. The Line 7 variable has the abstract distribution N̂ (UnkC, UnkE ({𝑋𝑟 })).
The variance is the expression computed on Line 6. The inference algorithm cannot perform sym-
bolic computations when the variance is a complex expression. Because r (corresponding to 𝑋𝑟 )
is annotated with symbolic, the variable will be dynamically cast in those instances. The analysis
rejects the program, correctly identifying that the inference plan is unsatisfiable in some executions.

Satisfiable Inference Plan. The satisfiability analysis will always reject unsatisfiable inference
plans, but it may be overly conservative and erroneously reject satisfiable plans. Nevertheless, the
analysis is precise in practice. For example, it correctly determines the program in Figure 3a is
satisfiable. At Line 7, the observed variable has the symbolic distribution N̂ (𝑋𝑥 , UnkC), where 𝑋𝑥

refers to the symbolic random variable created on Line 3. The variance is an unknown constant,
the mean is a linear expression, and 𝑋𝑥 also has a Gaussian symbolic distribution. This model
only consists of linear-Gaussian distributions – a class of probabilistic models that the inference
algorithm can solve entirely symbolically. Thus, x will always be encoded symbolically as the
annotation requires, so the analysis accepts the inference plan.

2.4 Summary

Using annotations, developers can select alternative inference plans that are better aligned with
their objectives. With the satisfiability analysis, the developer can further guarantee the inference
plan will always be satisfiable in any execution. If Siren successfully compiles a program, then
any variable annotated with symbolic will always be represented symbolically in any execution,
and any variable annotated with sample will always be sampled. This provides developers with the
guarantee that their program performance will not be degraded by unsatisfiable annotations.
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3 Language Syntax and Semantics

We present the syntax and semantics of the first-order functional PPL, Siren, adapted from Staton
[2017]. We have extended the language to support distribution encoding annotations and adapted
it to use hybrid inference, and specify its semantics via the hybrid inference interface.

3.1 Syntax

𝑣 ::= 𝑐 | 𝑥 | (𝑣, 𝑣) | op(𝑣) | nil | cons(𝑣, 𝑣)
𝑒 ::= 𝑣 | 𝑓 (𝑣) | if 𝑣 then 𝑒 else 𝑒

| let 𝑥 = 𝑒 in 𝑒 | fold(𝑓 , 𝑣, 𝑣)
| let 𝜅 𝑥 ← op(𝑣) in 𝑒 | observe(𝑣, 𝑣)
| resample

𝜅 ::= 𝜀 | symbolic | sample
𝑑 ::= let 𝑓 = fun 𝑥 → 𝑒

prog ::= 𝑑∗ 𝑒

Fig. 6. Syntax of the Siren language.

Figure 6 presents the syntax of Siren. An ex-
pression 𝑒 is a value 𝑣 (constant; variable; pair;
or the application of an operator, e.g., arithmetic
operation, distribution, or list), a function appli-
cation, a conditional, or a local definition. We add
the classic fold operator as well. Siren supports
probabilistic operators. The expression let 𝑥 ←
op(𝑣) in 𝑒 introduces a new local random variable
𝑥 with distribution op(𝑣) to be used in 𝑒 . Option-
ally, a symbolic or sample annotation adorns a
random variable declaration. The observe(𝑣1, 𝑣2)
expression conditions the model on a variable with distribution 𝑣1 having value 𝑣2. The resample

operator instructs the program to perform resampling for particle filtering. The fold_resample

operation used in Section 2 is syntactic sugar for applying resample at the end of all fold iterations.
Finally, a program is a sequence of function declarations 𝑑 with a main expression.

3.2 Operational Semantics

While Siren has an ideal measure-based semantics (see Appendix A), the measure is, in general,
intractable. An alternative is to interpret the model as a weighted sampler that returns a value
and a score measuring the likelihood of the result with respect to the model. To approximate the
posterior distribution, a weighted sampler launches a set of independent executions of the sampler,
the particles, and returns a categorical distribution that associates each value with its score. Siren
implements a particle filter which occasionally resamples the set of particles according to their
score during executions. Following [Lundén et al. 2021], we add an explicit resample operator to
the language to enable programs to explicitly trigger resampling.1 We present the operational
semantics of Siren which is a big-step semantics extended with checkpoints for resampling.

3.2.1 Hybrid Inference Interface. Hybrid particle filtering algorithms reduce variance in particle
filters by computing closed-form distributions where possible and only drawing random samples
if symbolic computation fails. We first present definitions for the hybrid inference interface, an
extension of the symbolic interface [Atkinson et al. 2022], that underpins our operational semantics.

Symbolic Expressions. Figure 7 presents the grammar of symbolic expressions used by algorithms
implementing the hybrid inference interface. It specifies a grammar of distributions 𝐷 that includes,
but is not limited to, Gaussian, Bernoulli, Inverse-Gamma, and Dirac Delta distributions. 𝐷 can also
be a sampled-Delta distribution (denoted as 𝛿𝑠 ), which is a Dirac Delta distribution that is used only
to represent a sample drawn from a probability distribution. Figure 7 further specifies a grammar
of expressions 𝐸 that uses operators to combine constant values 𝑐 and random variables 𝑋 . The
operators include standard arithmetic and comparison operators and a conditional operator ite.

1Automatic selection of resampling locations for optimal performance is an open problem [Lundén et al. 2021].
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𝐷 F N(𝐸, 𝐸) | B(𝐸) | Γ−1 (𝐸, 𝐸) | 𝛿 (𝐸) | 𝛿𝑠 (𝐸) | . . .
𝐸 F 𝑐 | 𝑋 | 𝐸 + 𝐸 | 𝐸 - 𝐸 | 𝐸 * 𝐸

| 𝐸 / 𝐸 | ite(𝐸, 𝐸, 𝐸) | 𝐸 Cmp 𝐸

Cmp F = | != | < | <= 𝑐 ∈ V, 𝑋 ∈ RV

Fig. 7. Grammar of symbolic expressions.

Assume : 𝐴 × 𝐷 ×𝐺 → RV ×𝐺
Observe : RV × V ×𝐺 → 𝐺 × R

Value : RV ×𝐺 → V ×𝐺

Fig. 8. Hybrid Inference Interface.

Symbolic State. A symbolic state 𝑔 ∈ 𝐺 = RV → 𝐴 ×𝐷 ×𝑁 is a finite mapping whose domain is
the set of random variable names. It maps each random variable to an entry 𝑔(𝑋 ) consisting of an
optional annotation (𝐴 = {sample, symbolic, 𝜀} where 𝜀 represents no annotation) denoted 𝑔 (𝑋 )a, a
symbolic representation of a distribution 𝑔 (𝑋 )d, and an implementation-specific data field 𝑔 (𝑋 )n.

Interface. The hybrid inference interface uses three operations to manipulate the symbolic state,
shown in Figure 8. The Assume operation takes an annotation, a distribution, and a symbolic
state, and returns a new random variable with the updated symbolic state. The Observe operation
conditions the symbolic state on the input variable having the given value and returns the updated
state and a score for the particle filter to use as the weight. The Value operation replaces the input
variable with a sample from its distribution, turning it into a sampled-Delta distribution. These
operations decide whether the runtime samples a random variable or encodes a random variable
symbolically in the symbolic state. By doing so, they determine the default inference plan in the
absence of annotations. We will discuss different implementations of the interface in Section 3.3.

3.2.2 Unsatisfiable Annotation. When a distribution encoding annotation is unsatisfiable, the
Siren runtime performs a dynamic encoding cast, enabling the execution to continue. In particular,
the Value operation executes as if the annotation of the input random variable is 𝜀 even if the
annotation of the input random variable is symbolic.

3.2.3 Big-Step Semantics with Checkpoints. Next, we present the semantics of Siren. Figures 9
to 11 show a fragment, and the full semantics is in Appendix B. A particle is represented by a pair
(expression, symbolic state). A Siren program is described by three types of rules:
• Particle Evaluation. The evaluation relation 𝑒, 𝑔 ↓r 𝑒′, 𝑔′,𝑤 evaluates a particle (𝑒, 𝑔) and
returns an updated particle (𝑒′, 𝑔′), the associated score𝑤 , and a resample flag r indicating if
the evaluation was interrupted.
• Particle Set Evaluation. The evaluation relation {𝑒𝑖 , 𝑔𝑖 }1≤𝑖≤𝑁 ⇊ 𝐷 gathers the results of a set
of particles into a distribution 𝐷 .
• Model Evaluation. The evaluation relation 𝑒 ⇓𝑁 𝐷 evaluates a program expression 𝑒 into a
distribution 𝐷 using 𝑁 particles.

Particle Evaluation. Figure 9 shows a fragment of the particle evaluation rules. A constant 𝑣 is
already fully reduced so the resample flag r is set to false. Since it is a deterministic value, the
associated score is 1. The resample operator interrupts reductions by setting the resample flag r
to true; it reduces to the unit value. The semantics of if 𝑣 then 𝑒1 else 𝑒2 consists of two cases.
If 𝑒1 and 𝑒2 are pure (i.e. they do not perform any observe or resample) and the condition 𝑣 is not a
constant (i.e. it contains some symbolic random variables) then the rule reduces to an ite symbolic
expression used for symbolic computation. Since there is no observe, the score is 1. Otherwise, the
rule evaluates the condition to a constant value and uses it to decide which branch to execute. This
rule is elided in Figure 9, but can be found in Appendix B. The Siren semantics uses the Value∗
helper operation to evaluate an expression to a constant by calling Value on all random variables
in the expression before evaluation. The semantics of a local declaration let 𝑥 = 𝑒1 in 𝑒2 depends
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𝑣, 𝑔 ↓false 𝑣, 𝑔, 1 resample, 𝑔 ↓true unit, 𝑔, 1

pure(𝑒1, 𝑒2) ¬const(𝑣)
𝑒1, 𝑔 ↓false 𝑣1, 𝑔1, 1 𝑒2, 𝑔1 ↓false 𝑣2, 𝑔′, 1

if 𝑣 then 𝑒1 else 𝑒2, 𝑔 ↓false ite(𝑣, 𝑣1, 𝑣2), 𝑔′, 1

𝑒1, 𝑔 ↓true 𝑒′1, 𝑔
′,𝑤

let 𝑥 = 𝑒1 in 𝑒2, 𝑔 ↓true let 𝑥 = 𝑒′1 in 𝑒2, 𝑔
′,𝑤

𝑒1, 𝑔 ↓false 𝑣1, 𝑔1,𝑤1 𝑒2 [𝑥 ← 𝑣1], 𝑔1 ↓r 𝑒′2, 𝑔2,𝑤2

let 𝑥 = 𝑒1 in 𝑒2, 𝑔 ↓r 𝑒′2, 𝑔2,𝑤1 ∗𝑤2

let 𝑥 = 𝑓 ((𝑙
hd
, 𝑣)) in fold(𝑓 , 𝑙

tl
, 𝑥), 𝑔 ↓r 𝑒, 𝑔′,𝑤

fold(𝑓 , cons(𝑙
hd
, 𝑙

tl
), 𝑣), 𝑔 ↓r 𝑒, 𝑔′,𝑤

𝜅 ∈ {𝜀, symbolic} Assume(𝜅, dist(𝑣), 𝑔) = 𝑋,𝑔𝑋 𝑒 [𝑥 ← 𝑋 ], 𝑔𝑋 ↓r 𝑒′, 𝑔′,𝑤
let 𝜅 𝑥 ← dist(𝑣) in 𝑒, 𝑔 ↓r 𝑒′, 𝑔′,𝑤

Assume(sample, dist(𝑣), 𝑔) = 𝑋,𝑔𝑋 Value(𝑋,𝑔𝑋 ) = 𝑣𝑥 , 𝑔
′
𝑋 𝑒 [𝑥 ← 𝑣𝑥 ], 𝑔′𝑋 ↓

r 𝑒′, 𝑔′,𝑤

let sample 𝑥 ← dist(𝑣) in 𝑒, 𝑔 ↓r 𝑒′, 𝑔′,𝑤

Assume(𝜀, dist(𝑣1), 𝑔) = 𝑋,𝑔𝑋 Value∗ (𝑣2, 𝑔𝑋 ) = 𝑣, 𝑔𝑣 Observe(𝑋, 𝑣, 𝑔𝑣) = 𝑔′,𝑤

observe(dist(𝑣1), 𝑣2), 𝑔 ↓false unit, 𝑔′,𝑤

Fig. 9. Fragment of the particle evaluation rules. The full semantics is in Appendix B.{
𝑒𝑖 , 𝑔𝑖 ↓false 𝑣𝑖 , 𝑔′𝑖 ,𝑤𝑖

}
1≤𝑖≤𝑁

{
Distribution(𝑣𝑖 , 𝑔′𝑖 ) = 𝐷𝑖

}
1≤𝑖≤𝑁 𝑊 =

∑
1≤𝑖≤𝑁𝑤𝑖

{𝑒𝑖 , 𝑔𝑖 }1≤𝑖≤𝑁 ⇊
∑
1≤𝑖≤𝑁

𝑤𝑖

𝑊
× 𝐷

𝑖{
𝑒𝑖 , 𝑔𝑖 ↓r𝑖 𝑒′𝑖 , 𝑔

′
𝑖 ,𝑤𝑖

}
1≤𝑖≤𝑁

∨
1≤𝑖≤𝑁 r𝑖 𝜇 = Cat

({
𝑤𝑖 , (𝑒′𝑖 , 𝑔

′
𝑖 )
}
1≤𝑖≤𝑁

)
{Draw(𝜇)}1≤𝑖≤𝑁 ⇊ 𝐷

{𝑒𝑖 , 𝑔𝑖 }1≤𝑖≤𝑁 ⇊ 𝐷

Fig. 10. Particle set evaluation rules.

on resample operators. If there is a resample in 𝑒1 the first rule reduces 𝑒1 up to the first resample
and stops the evaluation (i.e. the resample flag is set to true). Otherwise, 𝑒1 fully reduces without
interruption, and the total score is the product of the score of 𝑒1 and 𝑒2. The expression fold(𝑓 , 𝑙, 𝑣)

is standard; it evaluates to the accumulator 𝑣 if the list is empty. Otherwise, the semantics evaluates
the function call of 𝑓 on the first element of 𝑙 and the accumulator 𝑣 and recurses on the rest of the
list. We include the rules of function calls, impure if-expressions, and applying fold to an empty
list in Appendix B.
A random variable let 𝜅 𝑥 ← dist(𝑣) in 𝑒 uses Assume to create a new random variable in the

symbolic state. The annotation sample denotes that the variable must be encoded using samples,
symbolic denotes it must be encoded symbolically, and 𝜀 denotes that the runtime should decide.
If a random variable is annotated sample, the operation Value draws a random sample from the
variable’s distribution and updates the symbolic state. The observe operator uses Assume to create
a new random variable without annotations in the symbolic state and uses Observe to condition
the random variable and compute the score of the particle. The value to condition on must be a
constant value, so the rule uses Value∗ to turn 𝑣2 into a constant value.

Particle Set Evaluation. Figure 10 shows the particle set evaluation rules. The rules handle
resuming execution from checkpoints on a set of 𝑁 particles. If all the particles finish execution (i.e.
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the resample flag is false), the rule gather the computed distributions into a mixture distribution
where Distribution(𝑣, 𝑔) returns the distribution of 𝑣 with respect to the symbolic state 𝑔 and
𝑤𝑖/𝑊 are the normalized scores. Otherwise, the rule builds a categorical distribution 𝜇 of particles
using the weights and resamples a fresh set of particles {Draw(𝜇)} before resuming the execution.

{𝑒, ∅}1≤𝑖≤𝑁 ⇊ 𝐷

𝑒 ⇓𝑁 𝐷

Fig. 11. Model evaluation.

Model Evaluation. To evaluate the expression 𝑒 with a set of
𝑁 particles, the model evaluation rule launches the particle set
evaluation with 𝑁 independent particles (𝑒, ∅) where each particle
starts with an initially empty symbolic state. The program evaluates
to a distribution 𝐷 . Figure 11 shows the rule.

3.3 Implementing the Hybrid Inference Interface

The Siren semantics enables inference plans to be used with different hybrid particle filtering
algorithms through the hybrid inference interface. The hybrid inference interface serves as a barrier
between two halves of hybrid particle filtering algorithms. Above the interface is the implementation
of the programming language and the particle filtering component of the algorithm (Figures 9
to 11). Below the interface, i.e. the implementation of the interface operations from Figure 8, is the
specification of how to apply symbolic computation. Developers can extend the Siren runtime with
a new hybrid particle filtering algorithm by implementing only the interface operations, without
needing to re-implement the programming language or the particle filter.
To illustrate how the interface can be implemented, we present the implementation for two

algorithms – semi-symbolic inference [Atkinson et al. 2022] and delayed sampling [Lundén 2017;
Murray et al. 2018] – to illustrate 1) how to detect opportunities for symbolic computation during
inference and 2) how to extend the symbolic state with additional runtime information. We note
that the interface is more general; for evaluation in Section 5, we implement a third inference
algorithm – Sequential Monte Carlo with belief propagation [Azizian et al. 2023] – that exhibits
both features. The full implementations of these algorithms are quite complex, so we defer the full
details to the respective works. In this section, we focus on presenting only details that pertain
to either 1) how an inference algorithm’s internal control flow relates to its inference plans, and
2) providing a semantic foundation for the analysis and its soundness (in particular, for Section 4.3).

3.3.1 Semi-symbolic Inference. Semi-symbolic inference (SSI) implements the hybrid inference
interface using a series of helper functions. For example, SSI defines the Value operation – which
replaces a random variable with a sample from its distribution – using the hoist and intervene
helper functions. The hoist function manipulates the given random variable to have no parent
variables and intervene updates the variable with the sample. The Value operation is defined as:

Value(𝑋,𝑔) = let 𝑔′ = hoist(𝑋,𝑔) in let 𝑣 = Draw(𝑔′ (𝑋 )𝑑 )in (𝑣, intervene(𝑋, 𝛿𝑠 (𝑣), 𝑔′))

We defer a full discussion of the implementation of Value, hoist, and other helper functions to
[Atkinson et al. 2022]. However, the SSI implementation of the hybrid inference interface depends
on a key core operation called swap. A partial definition of swap is as follows:

swap(𝑋1, 𝑋2, 𝑔) = match 𝑔 (𝑋1)d, 𝑔 (𝑋2)d with
| N (𝜇0, var0),N(𝜇, var) if (𝜇 = 𝑎 ∗ 𝑋1 + 𝑏) ∧ const(var0, var) :
let (𝜇′0, var′0) = ((𝑎 * 𝜇0) + 𝑏, (𝑎 * 𝑎) * var0) in
let (var′′0 , 𝜇′′0 ) = (1 / (1 / var0 + 1 / var), (𝜇′0 / var′0 + 𝑋2 / var) * var

′′
0 ) in

(𝑔[𝑋1 ↦→ N ((𝜇′′0 - 𝑏) / 𝑎, var′′0 / (𝑎 * 𝑎))] [𝑋2 ↦→ N (𝜇′0, var′0 + var)], true)
. . .

| _ : (𝑔, false)
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The swap operation enables the SSI runtime to symbolically transform different conjugate distri-
butions in different cases; here we show the case for linear-Gaussians. When 1) both 𝑋1 and 𝑋2
are Gaussian-distributed, 2) the variance of each distribution is constant (i.e., does not depend on
any random variables), and 3) the mean of 𝑋2 is expressible as an affine function of 𝑋1, the swap
operation performs linear-Gaussian swapping. Note that all operations inside the swap construct
symbolic expressions and perform no actual computation (e.g. 𝑎 * 𝑎 construct a symbolic expression
representing 𝑎2). The swap operation computes the new parameters of the swapped distributions
according to the standard rules for conjugate priors [Fink 1997] and updates the new distributions
in the symbolic state. It returns the updated state which represents the same distribution but where
𝑋2 no longer depends on 𝑋1 and 𝑋1 now depends on 𝑋2. It also returns a true flag indicating a
swap occurred. If no conjugate distributions are available, the swap operation returns a false flag,
indicating that exact inference is not possible and the algorithm must use approximate sampling.

The success and failure of the swap transformation determine whether the SSI runtime encodes
a random variable symbolically or samples it, influencing the inference plan it implements. For
example, in Figure 3a, the x variable in Line 3 and the observed Gaussian in Line 7 are linear-
Gaussians. The swap function will apply the linear-Gaussian swapping, maintaining x symbolically.
Whereas, if v is non-constant, the linear-Gaussian case will not apply. If no other conjugate prior
case applies, the SSI runtime will be forced to sample x.

3.3.2 Delayed Sampling. Delayed sampling (DS) is a hybrid inference algorithm that also exploits
conjugacy relationships [Lundén 2017; Murray et al. 2018]. It is an alternative implementation of
the interface that represents the symbolic state using a forest of disjoint trees, where each node in
each tree is a random variable.
While we defer the full discussion of DS to prior work, we note here that compared to SSI,

DS specifies additional information about each random variable, as each node is one of 3 types
– Initialized, Marginalized, or Realized – and the inference plan satisfiability analysis needs to
incorporate this additional information. In particular, Initialized nodes represent random variables
that have a conditional distribution dependent on their parent; Marginalized nodes represent
variables that have marginal distributions, and may need to track an optional prior distribution (and
a reference to its original parent); and Realized nodes represent variables that have been replaced
by a constant value through sampling or observing. The DS symbolic state uses the data field 𝑔 (𝑋 )n
to track the node type for each random variable, where 𝑆rv ⊆ RV are the children of the node:

𝑁 ::= marginalized(𝑆rv) | marginalized(𝑋, 𝐷, 𝑆rv) | initialized(𝑋, 𝑆rv) | realized
DS maintains invariants about the symbolic state, including that each tree contains at most one

path of Marginalized nodes. These invariants further influence the inference plans implemented by
the DS runtime and require DS to implement the symbolic interface using a series of unique helper
functions. For example, DS implements the Value operation using the helpers graft and realize:

Value(𝑋,𝑔) = let 𝑔′ = graft(𝑋,𝑔) in let 𝑣 = Draw(𝑔′ (𝑋 )𝑑 ) in (𝑣, realize(𝑋, 𝛿𝑠 (𝑣), 𝑔′))
While we defer the full details to prior work [Lundén 2017; Murray et al. 2018], we note that

graft and realize utilize the node types to manipulate the symbolic state. These operations
determine whether the DS runtime samples random variables as well as the default inference plan
when no annotations are provided.

4 Inference Plan Satisfiability Analysis

Using the symbolic and sample distribution encoding annotations, developers can express an
inference plan specifying their requirements for how each random variable is encoded. However,
the hybrid inference runtime performs a dynamic encoding cast on unsatisfiable annotations,
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𝐷̂ F N̂ (𝐸, 𝐸) | B̂(𝐸) | Γ̂−1 (𝐸, 𝐸) | 𝛿 (𝐸) | 𝛿𝑠 (𝐸) | . . . | TopD | UnkD (𝑆rv)
𝐸 F 𝑐 | 𝑋 | 𝐸 +̂ 𝐸 | . . . | UnkC | TopE | UnkE (𝑆rv)

ˆCmp F =̂ | !̂= | <̂ | <̂= 𝑐 ∈ V̂, 𝑋 ∈ R̂V, 𝑆rv ⊆ R̂V

Fig. 12. Grammar of abstract symbolic expressions. Grayed-out expressions are identical to those in Figure 7.

enabling the program execution to continue at the risk of potential accuracy degradation. In this
section, we present the inference plan satisfiability analysis, which statically identifies unsatisfiable
annotations to assist developers reason about which inference plans to use. If the analysis passes,
the inference is guaranteed to encode all sample variables with samples and all symbolic variables
symbolically. We next formalize the analysis as an abstract interpretation and prove its soundness.

4.1 Abstract Hybrid Inference

Our analysis performs an abstract interpretation of the program by relying on an analogous version
the hybrid inference interface that operates over the abstract domain. We refer to this version of
the interface as the abstract hybrid inference interface. We construct abstract symbolic expressions
and abstract symbolic states that the abstract interface operates over and manipulates. The abstract
interface operations mirror the concrete operations, except that �Observe and �Value do not
perform scoring or sampling.

Abstract Symbolic Expressions. Figure 12 shows the grammar of abstract expressions. For every
symbolic expression, there is a corresponding abstract symbolic expression. Abstract expressions can
also be UnkC, representing all constants, or TopE, representing all possible expressions. Additionally,
they can also be the UnkE (𝑆rv) expression, where 𝑆rv is a set of abstract random variables; the
UnkE (𝑆rv) expression represents expressions that reference any number of the random variables in
𝑆rv . Likewise, abstract distributions also can be TopD or UnkD (𝑆rv).

Abstract symbolic expressions are equipped with a partial order, which we summarize as follows:

𝑐 ≤ UnkC UnkC ≤ 𝑋

𝑋 ≤ UnkE ({𝑋 })
UnkE (𝑆rv) ≤ TopE UnkD(𝑆rv) ≤ TopD

UnkE (𝑆rv) ≤ UnkE (𝑆 ′
rv
) ⇐ 𝑆rv ⊆ 𝑆 ′

rv

UnkE (𝑆rv,1) +̂ UnkE (𝑆rv,2) ≤ UnkE (𝑆 ′
rv
) ⇐ 𝑆 ′

rv
= 𝑆rv,1 ∪ 𝑆rv,2

𝐸1 +̂ 𝐸2 ≤ 𝐸′1 +̂ 𝐸′2 ⇐ 𝐸1 ≤ 𝐸′1, 𝐸2 ≤ 𝐸′2
. . .

The abstract expression UnkC subsumes all constants and is itself considered a constant. Abstract
random variables subsume constants. The UnkE ({𝑋 }) expression subsumes the variable 𝑋 . The
UnkE (𝑆rv) expression is a refinement of the top expression TopE and the relative ordering between
UnkE (𝑆rv) expressions is defined by their variable sets. Likewise, UnkD (𝑆rv) is a refinement of TopD.
A plus expression subsumes another plus expression if the subexpressions also subsumes the
subexpressions of the other expression. Other complex expressions and distributions are analogous.
Multiple abstract expressions can be over-approximated as one expression via a joining ex-

pression, defined as taking the least upper bound according to the partial ordering. The partial
ordering is designed to maintain more precise abstract expressions and distributions by recursing
on subexpressions if the top-level expression type matches. For example, the join of 𝑋1 +̂ 1̂ and
𝑋2 +̂ 2̂ produces UnkE ({𝑋1, 𝑋2}) +̂ UnkC. Random variables are not equivalent to each other, so their
join can only be the UnkE ({𝑋1, 𝑋2}) expression.
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Retaining a precise representation of expressions is essential to the precision of the analysis
because the hybrid inference algorithms depend on identifying expressions of certain classes (e.g.
linear-Gaussians) to perform symbolic computation. However, symbolic computations can also
cause the expression size to grow exponentially and infinitely, which is computationally expensive.
To make the abstract domain finite, while trading off between precision and runtime, the analysis
widens abstract expressions that are over the expression tree depth threshold 𝑇 to UnkE (𝑆rv). We
use 𝑇 = 5 in our implementation.

Abstract Symbolic State. An abstract symbolic state 𝑔 is a finite mapping of abstract random
variables (which reside in their own namespace) to tuples of annotations, abstract distributions, and
the implementation-specific abstract data field:𝑔 ∈ 𝐺 = R̂V → 𝐴×𝐷̂×𝑁̂ . Each entry is a constraint
on entries in the concrete state. For example, 𝑔 (𝑋 )d = N̂ (UnkC, UnkC) requires the concrete state to
map the corresponding variable to Gaussian distributions with constant parameters.
𝐴 =

{�sample, �symbolic, 𝜀} is the abstraction of annotations that is equipped with a partial ordering
that defines its join operation: 𝜀 ≤ �sample ≤ �symbolic. The partial ordering is designed such that
only a single abstract annotation needs to be tracked for each abstract random variable. An abstract
random variable represents one or more concrete random variables, and so its abstract annotation
must represent one or more concrete annotations. A sample annotation is always satisfiable because
the Siren semantics collapses the random variable to a sampled value upon instantiation. This
means the analysis does not need to remember �sample annotations. However, a symbolic annotation
could be an unsatisfiable annotation if the Siren runtime needs to sample it to continue execution.
Then, the analysis must identify if any concrete random variable annotated with symbolic will
be sampled in the program, so �symbolic is the greatest in the partial ordering, to encompass the
presence of one or more symbolic annotations.

Abstract states are equipped with a partial order and a join operation:

𝑔1 ≤ 𝑔2 ⇐⇒ ∀𝑋̂ ∈dom(𝑔1 ) 𝑔1 (𝑋 ) ≤ 𝑔2 (𝑋 )

During the analysis, the join operation may introduce random variables that are unreachable from
the abstract expression accompanying the abstract state. However, additional unreachable random
variables in a symbolic state do not affect executions, so abstract symbolic states are equivalent
for a given expression if all reachable variables from the expression have the same entries. This
notion is useful when comparing two abstract symbolic states during the analysis. We define a
weak equivalence between two abstract symbolic states that only compares random variables that
are reachable from the given expression to capture this notion.

𝑔1 �𝑒 𝑔2 ⇐⇒ ∀𝑋̂ ∈reachable(𝑒, 𝑔1, 𝑔2 ) 𝑔1 (𝑋 ) = 𝑔2 (𝑋 )

let symbolic x1 <- gaussian(1.,1.) in

let symbolic x2 <- gaussian(0.,1.) in

let x = if cond then x1+1. else x2+2. in

observe(gaussian(x,5.), obs)

Fig. 13. Example program.

Precision of Joining Expressions. When a program
contains data-dependent or stochastic control flow,
the static analysis does not know which branch
would be evaluated. In such cases, the analysis must
over-approximate the true states of the program by
joining the abstract expressions and symbolic states
from the branches. It then loses critical information about the structures of the subexpressions.
Hybrid inference relies on matching symbolic expressions to detect exact inference opportunities,
so the over-approximation can significantly impact the precision of the analysis.
For example, consider the program in Figure 13, where cond and obs are constant values. The

variables x1 and x2 refer to the abstract random variables 𝑋1 and 𝑋2. No matter which branch the
runtime executes, the observed Gaussian is a linear-Gaussian. In SSI, the parent variable in both
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�Value∗ (𝑣, 𝑔) = UnkC, 𝑔𝑣 𝑒1, 𝑔𝑣 ↓̂ 𝑣1, 𝑔′1 𝑒2, 𝑔𝑣 ↓̂ 𝑣2, 𝑔′2 rename_join(𝑣1, 𝑣2, 𝑔′1, 𝑔
′
2) = 𝑣 ′′, 𝑔′

if 𝑣 then 𝑒1 else 𝑒2, 𝑔 ↓̂ 𝑣 ′′, 𝑔′

𝑓 ((𝑙, 𝑣)), 𝑔 ↓̂ 𝑣 𝑓 , 𝑔𝑓 rename_join(𝑣, 𝑣 𝑓 , 𝑔, 𝑔𝑓 ) = 𝑣 𝑗 , 𝑔 𝑗 𝑣 = 𝑣 𝑗 𝑔 �(𝑙,𝑣) 𝑔 𝑗

fold(𝑓 , 𝑙, 𝑣), 𝑔 ↓̂ 𝑣, 𝑔

𝑓 ((𝑙, 𝑣)), 𝑔 ↓̂ 𝑣 𝑓 , 𝑔𝑓 rename_join(𝑣, 𝑣 𝑓 , 𝑔, 𝑔𝑓 ) = 𝑣 𝑗 , 𝑔 𝑗 fold(𝑓 , 𝑙, 𝑣 𝑗), 𝑔 𝑗 ↓̂ 𝑣 ′, 𝑔′

fold(𝑓 , 𝑙, 𝑣), 𝑔 ↓̂ 𝑣 ′, 𝑔′

𝑆𝐷 =

{ �Distribution(𝑣, 𝑔′) | (𝑒, 𝑔) ∈ 𝑆𝑝 , (𝑒, 𝑔 ↓̂ 𝑣, 𝑔′)
}

𝑆𝑝 ⇊̂
⊔

𝐷̂
𝑖
∈𝑆𝐷 𝐷̂

𝑖

{𝑒, ∅} ⇊̂ f̂ail

𝑒 ⇓̂ f̂ail

{𝑒, ∅} ⇊̂ 𝐷̂

𝑒 ⇓̂ satisfiable

Fig. 14. Fragment of the abstract interpretation rules. The full set of rules is in Appendix C.

cases would remain as symbolic expressions, so the inference plan is satisfiable for all possible
executions. However, the analysis does not know the value of cond, so it must over-approximate the
program state by joining 𝑋1 +̂ 1̂ and 𝑋2 +̂ 2̂ into UnkE ({𝑋1, 𝑋2}) +̂ UnkC. It concludes the resulting
abstract observed Gaussian is not necessarily linear-Gaussian, as the UnkE ({𝑋1, 𝑋2}) expression
also represents expressions that are non-linear to 𝑋1 and 𝑋2. Consequently, it cannot be sure 𝑋1
and 𝑋2 will not be sampled and cannot determine the inference plan is satisfiable even though it is.

We define a special operation for joining expressions that takes advantage of the fact that abstract
random variables can be renamed without compromising soundness, which we prove in Appendix D.
The key idea is that abstract random variables and concrete random variables exist in different
namespaces. A single abstract variable can represent more than one concrete variable if its abstract
symbolic state entry over-approximates the entries of those concrete variables. By renaming two
otherwise disparate variables to the same name, their entries are forced to be joined into one. We
define the special join of two expressions 𝐸1 and 𝐸2 under symbolic states 𝑔1 and 𝑔2 as:

rename_join(𝐸1, 𝐸2, 𝑔1, 𝑔2) = let (𝐸3, 𝑔3) = rename(𝐸1, 𝐸2, 𝑔2) in (𝐸1 ⊔ 𝐸3, 𝑔1 ⊔ 𝑔3)
where ⊔ refers to the basic join operation implied by the partial orders for abstract expressions and
abstract symbolic states. The rename(𝐸1, 𝐸2, 𝑔2) function returns renamed versions of 𝐸2 and 𝑔2
that maximize the similarities between 𝐸1 and 𝐸2 with capture-avoiding substitution.

For the program in Figure 13, the analysis renames the variable 𝑋2 to 𝑋1. The joined expression
is the more structurally precise expression 𝑋1 +̂ UnkC, and the joined state assigns 𝑋1 to N̂ (UnkC, 1̂).
Then, the observed variable has the distribution N̂ (𝑋1 +̂ UnkC, 5). rename_join retains the shared
structure in the expressions, and the analysis recognizes the observed variable as a linear-Gaussian.

Fail. A program execution may encounter an unsatisfiable annotation that is dynamically cast to
be satisfiable. When the analysis detects the possibility of this event (i.e. when a �symbolic abstract
random variable could be sampled), it returns f̂ail, the top of all abstract values: Any value joined
with f̂ail results in f̂ail. Any operation that receives f̂ail as input also returns f̂ail as the output.

4.2 Abstract Interpretation Rules

Figure 14 presents a fragment of the interpretation rules of a Siren program using the abstract
hybrid inference operations. We present here only the rules that differ from the concrete semantics
and include the full abstract semantics in Appendix C.
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Conditionals. When �Value∗ returns UnkC, the analysis cannot determine which branch of a
conditional is taken, so it interprets both branches and joins the resulting abstract expressions with
rename_join to approximate the program execution.

Fold. If the fold operation receives a list argument 𝑙 that is not a constant list, such as UnkE (∅),
the analysis over-approximates the operation by computing the abstract fixpoint of the function 𝑓 .
The analysis first interprets 𝑓 on (𝑙, 𝑣). Since 𝑙 is not a constant list, it is either UnkE (𝑆rv) or TopE,
each of which also over-approximates any particular item in the list, respectively. The analysis
computes (𝑣 𝑗 , 𝑔 𝑗 ) using rename_join, which are the over-approximations of the current inputs
and the inputs of the next iteration for 𝑓 . If they are weakly equal to the current inputs, no further
application of 𝑓 could be different; the fixpoint computation stops when 𝑣 and 𝑣 𝑗 are equal and 𝑔
and 𝑔 𝑗 are weakly equal with respect to (𝑙, 𝑣).
During fixpoint computations, the analysis could be joining UnkE (𝑆rv) expressions. However,

𝑆rv can grow arbitrarily large. To bound the growth, the analysis widens the joined expression by
converting UnkE (𝑆rv) to TopE if |𝑆rv | ≥ 𝑁 for some parameter 𝑁 . Our implementation uses 𝑁 = 4,
but the parameter may be adjusted for greater precision at the cost of more fixpoint iterations.

Particle Set and Model Evaluation. Unlike the concrete semantics, the abstract semantics spawns
only a singleton set of particles to evaluate, as there are no weights to consider. All possible particles
from a program are accounted for in a single abstract particle evaluation. Thus, there is no abstract
equivalent of the resampling step, and resample is a no-op. The abstract interpretation of a program
is then simply whether the abstract particle evaluation rules encounter failures or not.

4.3 Implementing the Abstract Hybrid Inference Interface

The analysis, analogous to the concrete semantics, relies on the abstract hybrid inference interface.
As such, the analysis is also unified across different hybrid particle filtering algorithms. Only the
implementation of the interface is required to extend the analysis to a new algorithm. This section
presents how the analysis implements an abstract version of the hybrid interface for SSI and DS.
While we defer the full details to Appendix C.2, we note the similarity of the abstract operations to
the concrete operations from Section 3.3, except that the abstract operations have extensions to
handle the analysis’s imprecision. We present here the abstract version of SSI’s swap operation
and how the analysis incorporates the additional information in DS’s node types.

4.3.1 Semi-Symbolic Inference. Each SSI operation has an abstract version that mirrors the concrete
operation and differs only in how it handles abstract values like UnkD (𝑆rv). For instance, the �Value
operation depends on �hoist and �intervene, and it uses UnkC instead of drawing values. However,
for �Value, there is the additional difference that it returns f̂ail if the input variable has the �symbolic
annotation i.e. the concrete random variables represented by the abstract random variable may
have an unsatisfiable annotation.

�Value(𝑋,𝑔) = if 𝑔 (𝑋 )a = �symbolic then f̂ail
else let 𝑔′ = �hoist(𝑋,𝑔) in (UnkC, �intervene(𝑋, 𝛿𝑠 (UnkC), 𝑔′))

To show how implementations handle abstract values, we next describe the abstract swap
operation used in SSI. The abstract operation simulates the concrete swap operation as defined in
Section 3.3.1 by detecting conjugacy and performing the equivalent computation where it can:
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�swap(𝑋1, 𝑋2, 𝑔) = match 𝑔 (𝑋1)d, 𝑔 (𝑋2)d with
| N̂ (𝜇0, var0), N̂ (𝜇, var) if (𝜇 = 𝑎 *̂ 𝑋1 +̂ 𝑏) ∧�const(var0, var) :
let (𝜇′0, var′0) = ((𝑎 *̂ 𝜇0) +̂ 𝑏, (𝑎 *̂ 𝑎) *̂ var0) in
let (var′′0 , 𝜇′′0 ) = (1̂ /̂ (1̂ /̂ var0 +̂ 1̂ /̂ var), (𝜇′0 /̂ var′0 +̂ 𝑋2 /̂ var) *̂ var

′′
0 ) in

(𝑔 [𝑋1 ↦→ N̂ ((𝜇′′0 -̂ 𝑏) /̂ 𝑎, var′′0 /̂ (𝑎 *̂ 𝑎))] [𝑋2 ↦→ N̂
(
𝜇′0, var

′
0 +̂ var

)
], true)

. . .

| UnkD (_), _ : (set_top(𝑋1, 𝑔), f̂alse)
| _ : (𝑔, f̂alse)

Because the analysis is performed at compile-time, it can only perform a best-effort detection of
conjugates, given that parameters might be represented by the opaque UnkE (𝑆rv) and UnkD (𝑆rv)
expressions. If the abstract distribution of the parent variable 𝑋1 is UnkD (𝑆rv) or TopD, the analysis
recursively sets 𝑋1 and its ancestors to TopD using set_top(𝑋1, 𝑔). During this process, if the
random variable or any of its ancestors (i.e. the parents of the variable and their parents and so on)
are annotated �symbolic, the analysis cannot be sure if the variable is a conjugate prior nor that it is
not a conjugate prior (meaning that it will be sampled), so the analysis conservatively f̂ails.

For example, consider an abstract symbolic state where that the parent variable𝑋1 has the abstract
distribution UnkD ({𝑋3}), and variable𝑋3 has N̂ (1., 1.). Also,𝑋3 has the �symbolic annotation. Because
the parent variable 𝑋1 can be any distribution referencing 𝑋3, the analysis cannot determine if 𝑋1
has a conjugate prior distribution to the child variable 𝑋2. Subsequently, it cannot determine if
𝑋1 will be sampled or not and will invoke set_top(𝑋1, 𝑔), resulting in 𝑋1 and 𝑋3 both having the
distribution TopD, because it also cannot determine the representations of upstream distributions.
𝑋3 has the �symbolic annotation, so the analysis will return f̂ail.

4.3.2 Delayed Sampling. The abstract node types of DS can be Initialized, Marginalized, or Realized.
Initialized and Marginalized nodes still track their parent variables, their prior distributions (using
abstract expressions), and their children. The fourth abstract node type, TopN, is the top of all node
states. It indicates that the analysis does not know the node’s type. No prior and no parent to the
random variable are tracked for TopN, only its children.

𝑁̂ ::= �marginalized(𝑆rv) | �marginalized(𝑋, 𝐷̂ , 𝑆rv) | �initialized(𝑋, 𝑆rv) | �realized | TopN(𝑆rv)
Here, 𝑆rv ⊆ R̂V represents the set of possible child random variables. The abstract node states are
equipped with a partial ordering:�realized ≤ TopN(∅)�marginalized(𝑆rv) ≤ �marginalized(𝑆 ′

rv
) ⇐ 𝑆rv ⊆ 𝑆 ′

rv�marginalized(𝑆rv) ≤ TopN(𝑆 ′
rv
) ⇐ 𝑆rv ⊆ 𝑆 ′

rv�marginalized(𝑋, 𝐷̂ , 𝑆rv) ≤ �marginalized(𝑋 ′, 𝐷̂ ′, 𝑆 ′
rv
) ⇐ (𝑋, 𝐷̂ ) ≤ (𝑋 ′, 𝐷̂ ′), 𝑆rv ⊆ 𝑆 ′

rv�marginalized(𝑋, 𝐷̂ , 𝑆rv) ≤ TopN(𝑆 ′
rv
) ⇐ 𝑆rv ⊆ 𝑆 ′

rv�initialized(𝑋, 𝑆rv) ≤ �initialized(𝑋 ′, 𝑆 ′
rv
) ⇐ 𝑋 ≤ 𝑋 ′, 𝑆rv ⊆ 𝑆 ′

rv�initialized(𝑋, 𝑆rv) ≤ TopN(𝑆 ′
rv
) ⇐ 𝑆rv ⊆ 𝑆 ′

rv

TopN(𝑆rv) ≤ TopN(𝑆 ′
rv
) ⇐ 𝑆rv ⊆ 𝑆 ′

rv

The join operation defined by the partial ordering is used when the analysis has to compute the
join of two abstract symbolic states. Even though Initialized and Marginalized node states may be
tracking parent and prior distributions, TopN does not. This is because as soon as an abstract node
type becomes TopN, the analysis recursively over-approximates the parent and Marginal children to
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the node by setting them to TopN node states as well. During this process, if any of these random
variables has a �symbolic annotation, the analysis returns f̂ail.

For example, consider two abstract symbolic states 𝑔1 and 𝑔2. In both states, the variable
𝑋1 has the node type �marginalized({𝑋2}). 𝑋2 has the node type �initialized(𝑋1, ∅) in 𝑔1 but�marginalized(𝑋1, N̂ (𝑋1, 1.), 𝑋3) in 𝑔2. The symbolic state 𝑔2 also has 𝑋3 having the node type�marginalized(𝑋2, N̂ (𝑋2, 1.), ∅) and the �symbolic annotation. The join operation between these two
states results in 𝑋2 having TopN node type. Because delayed sampling uses the node types to deter-
mine whether to sample variables, the analysis would not be able to determine whether its parents
and children would be sampled. As such, it would then set 𝑋1 and 𝑋3 to both be TopN node types as
well. The resulting state would have 𝑋1 having the node type TopN({𝑋2}), 𝑋2 having TopN({𝑋3}),
and 𝑋3 having TopN(∅). 𝑋3 has the �symbolic annotation, so the analysis will return f̂ail.

4.4 Properties

In this section, we show that the inference plan satisfiability analysis is sound. The approach
is mostly standard [Cousot and Cousot 1977, 1992], except for how it handles random variable
names and the variable sets in abstract expressions. We will highlight these nonstandard elements
throughout the formal development. First, we define the collecting semantics for sets of program
states that serves as the basis of our soundness proof. The collecting semantics accumulates from
program executions the information relevant to the program properties under study. The abstract
states computed by the analysis must over-approximate the collected concrete states to ensure
soundness. Next, we define the abstraction and concretization functions that relate abstract values
to concrete values. Finally, we present key lemmas and theorems that prove the analysis is sound.

𝑆𝑐 =
{
(𝑒′, 𝑔′, r) | (𝑒, 𝑔 ↓r 𝑒′, 𝑔′,𝑤)

}
𝑒, 𝑔 ↓̃ 𝑆𝑐

Fig. 15. Collecting particle evaluation rule.

4.4.1 Collecting Semantics. The collecting semantics is
a forward collecting semantics [Cousot and Cousot 1992]
based on our operational semantics. The program states
collected differ between our three types of evaluation
rules. Even though the operational semantics uses weight
values and performs resampling, the collecting semantics ignores these aspects. The analysis only
depends on the possible particles produced during program execution. The resampling step does
not introduce any new particles to the execution, only duplicating or removing existing particles.
Additionally, weight values do not affect the representation of random variables. As such, weights
are not collected and the resampling step in the particle set evaluation rules is a no-op.

Particle Evaluation. The collecting semantics of particle evaluation collects any particle that can
result from applying concrete particle evaluation rules to the particle, shown in Figure 15. The
rules may produce more than one evaluated particle due to data-dependent or randomized control
flow. The collecting semantics returns all such possible evaluated particles with the resample flags,
dropping weight values. We call these tuples configurations.

When a symbolic distribution encoding annotation is unsatisfiable, the Siren runtime performs a
dynamic encoding cast by sampling the annotated random variable anyway, enabling the execution
to continue. The cast is the event that the inference plan satisfiability analysis must detect. In the
collecting semantics, the Value function must return the fail value if the annotation of the input
random variable is symbolic. The fail value propagates in the standard way.

Value(𝑋,𝑔) = if 𝑔 (𝑋 )a = symbolic then fail
else let 𝑔′ = hoist(𝑋,𝑔) in let 𝑣 = Draw(𝑔′ (𝑋 ))in (𝑣, intervene(𝑋, 𝛿𝑠 (𝑣), 𝑔′))
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Particle Set and Model Evaluation. While the bulk of the soundness proof refers to the collecting
particle evaluation ↓̃, the top-level theorems also refer to collecting analogs of the particle set and
model evaluation semantics of Figure 10 and 11. The relation (𝑆𝑝 ⇊̃ 𝑆𝐷 ) means that the set of
particles 𝑆𝑝 evaluates to the set of distributions 𝑆𝐷 , and the definition of ⇊̃ refers to the definition
of ↓̃. Similarly, the relation (𝑒 ⇓̃ 𝑆𝐷 ) means that the program 𝑒 evaluates to the set of distributions
𝑆𝐷 , and the definition ⇓̃ depends on ⇊̃. The definitions for both ⇊̃ and ⇓̃ are in Appendix D.

4.4.2 Abstraction. The abstraction function 𝛼 maps sets of concrete values to an abstract value.
We define the function first for singleton sets of concrete values. The abstraction of sets of multiple
values is then the join of the corresponding abstracted values.

Concrete random variables and abstract random variables have different namespaces. To account
for this, the abstraction function assumes the existence of a default mapping R̂V canon : RV → R̂V
that maps concrete variable names to abstract variable names. The abstractions of both random
variables and symbolic states use this to produce the appropriate name in abstract values.

Definition 4.1 (Abstraction Function). We define the abstraction function 𝛼 as follows. The default
mapping function R̂V canon maps every concrete variable to a unique, canonical abstract variable.

𝛼 ({𝑐}) = 𝑐 𝛼 ({𝑋 }) = R̂V canon (𝑋 )
𝛼 ({𝐸1 + 𝐸2}) = 𝛼 ({𝐸1}) +̂ 𝛼 ({𝐸2}) 𝛼 ({(𝑣1, 𝑣2)}) = (𝛼 ({𝑣1}), 𝛼 ({𝑣2}))

𝛼 ({symbolic}) = �symbolic
· · ·

𝛼 ({𝑔}) =

{
R̂V canon (𝑋 ) ↦→ 𝛼 ({𝑔(𝑋 )})

��� 𝑋 ∈ dom(𝑔)}
𝛼 ({fail}) = f̂ail 𝛼 (𝑆𝑣) =

⊔
𝑣∈𝑆𝑣 𝛼 ({𝑣})

For example, consider a particle (𝐸,𝑔) with symbolic expression 𝐸 = 𝑋1 + 1 and symbolic state𝑔 =

{𝑋1 ↦→ (symbolic, Γ(1, 1), realized)}. Assuming that R̂V canon maps 𝑋1 to the abstract variable 𝑋𝑎 ,
we have that 𝛼 ({𝐸,𝑔}) = (𝑋𝑎 +̂ 1̂, 𝛼 ({𝑔})) where 𝛼 ({𝑔}) = {𝑋𝑎 ↦→ ( �symbolic, Γ̂(1̂, 1̂), �realized)}.
4.4.3 Concretization. The concretization function 𝛾 plays the opposite role to the abstraction
function: it maps every abstract value to a set of concrete values. While we formalize abstraction
with a default mapping function, the concretization needs to account for all possible mappings. We
first define a version of the concretization function that is parameterized by a surjective function
R̂V : RV → R̂V that maps concrete random variables to abstract random variables. The function
must be surjective since every abstract random variable must have a corresponding concrete random
variable. The function does not have to be injective, because an abstract variable can represent
multiple concrete variables that share properties in the symbolic state. The concretizations for
UnkE (𝑆rv) and UnkD (𝑆rv) incorporate the variable set 𝑆rv by ensuring that the concretization includes
only those expressions whose free variables are a subset of 𝑆rv . We formalize this using the operation
FV (𝐸, R̂V ) that returns the set of free variables in 𝐸 , mapped to abstract names using R̂V . Finally,
we define the concretization function by taking the union over all possible name-mapping functions;
the set resulting from the concretization function is closed under name re-mappings.

Definition 4.2 (Concretization Function). We define the concretization function 𝛾 as follows. First,
we define 𝛾 as a function that takes in an abstract state and the name-mapping function R̂V . The
function R̂V is surjective and it maps concrete random variables into abstract random variables.
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𝛾 (𝑐, R̂V ) = {𝑐} 𝛾 (UnkC, R̂V ) = V

𝛾 (𝑋, R̂V ) = {𝑋 | R̂V (𝑋 ) = 𝑋 }⋃V 𝛾 (UnkE (𝑆rv), R̂V ) = {𝐸 | FV (𝐸, R̂V ) ⊆ 𝑆rv}
𝛾 (TopE, R̂V ) = 𝐸 𝛾 ( �symbolic, R̂V ) = {symbolic, sample, 𝜀}

𝛾 (𝐸1 +̂ 𝐸2, R̂V ) = {𝐸1 + 𝐸2 | 𝐸1 ∈ 𝛾 (𝐸1, R̂V ), 𝐸2 ∈ 𝛾 (𝐸2, R̂V )}
𝛾 ((𝑣1, 𝑣2), R̂V ) = {(𝑣1, 𝑣2) | 𝑣1 ∈ 𝛾 (𝑣1, R̂V ), 𝑣2 ∈ 𝛾 (𝑣2, R̂V )}

· · ·
𝛾 (𝑔, R̂V ) = {𝑔 | ∀𝑋 if R̂V (𝑋 ) ∈ dom(𝑔) then 𝑔(𝑋 ) ∈ 𝑔 (R̂V (𝑋 )) else 𝑋 ∉ dom(𝑔)}

Now, we define 𝛾 by taking the union over all possible surjective naming functions:

𝛾 (𝑣) =
{
𝑣

��� 𝑣 ∈ 𝛾 (𝑣, R̂V ), R̂V ∈ 𝑋 → 𝑋, R̂V is surjective

}
For example, the concrete symbolic state {𝑋1 ↦→ (sample, 𝛿 (1)), 𝑋2 ↦→ (sample, 𝛿 (2))} is included

in the concretization 𝛾 ({𝑋𝑎 ↦→ (�sample, UnkD (∅))}). Conversely, the concrete symbolic state
{𝑋1 ↦→ (sample,N(𝑋2, 1.)), 𝑋2 ↦→ (sample, 𝛿𝑠 (1))} is not. Additionally, the concretization 𝛾 (𝐷̂ )
where 𝐷̂ = N̂ (𝑋𝑎, 𝑋𝑏 +̂ 1̂.) includes both N(𝑋0, 𝑋1 + 1.) and N(𝑋1, 𝑋0 + 1.).

4.4.4 Soundness of Analysis. We now present the key ideas and properties necessary to prove the
soundness of the analysis and defer the full formalization and proofs to Appendix D. Our treatment
of soundness is limited in that we assume the analysis has a sound implementation of the symbolic
interface, and show that under this assumption, the overall analysis is sound. We formalize this
assumption as follows:

Assumption 4.1 (Abstract Hybrid Inference Interface Soundness). For every 𝑖 ∈ {Assume,
Value,Observe} and input values 𝑣𝑖 , we have that 𝑖 (𝑣𝑖 ) ∈ 𝛾 (𝑖 (𝛼 ({𝑣𝑖 }))).

Because of the join operation on abstract symbolic states, an abstract operation might compute
an abstract symbolic state that has variables that are not reachable from the computed expression.
The concretization of abstract symbolic states retains those unreachable variables in the concrete
symbolic states. Symbolic states with different domains are not strictly equal. However, unreachable
variables do not alter the evaluated expression nor the reachable entries in the resulting symbolic
state. To account for this property, we define a weak equivalence relation for concrete symbolic
states, analogous to the weak equivalence relation for abstract states.

The formalization uses an auxiliary operation ↓̃∗ for repeatedly evaluating a particle until it has
terminated, which we define precisely in Appendix D. We write configuration sets that have weakly
equivalent symbolic states as 𝑆𝑐 � 𝑆 ′𝑐 ⇐⇒ 𝑆 ′𝑐 = {(𝑒, 𝑔′, r) | (𝑒, 𝑔, r) ∈ 𝑆𝑐 , 𝑔 �𝑒 𝑔′}. We use an aux-
iliary operation to drop the resample flag in configurations: forgetr(𝑆𝑐 ) = {(𝑒, 𝑔) | (𝑒, 𝑔, r) ∈ 𝑆𝑐 }.
We first show the analysis is sound when the particle evaluation terminates, and resuming

particle evaluation preserves the soundness of the analysis.

Lemma 4.1 (Terminating Particle Evaluation Soundness). For every particle (𝑒, 𝑔), such that

(𝑒, 𝑔 ↓̃ 𝑆𝑐 ) and∀(𝑣, 𝑔′, r ) ∈𝑆𝑐 (𝑣 = fail)∨¬r, we have (𝑒, 𝛼 ({𝑔}) ↓̂ 𝑣 ′, 𝑔′) and there exists a configuration
set 𝑆 ′𝑐 such that 𝑆𝑐 � 𝑆 ′𝑐 and forgetr(𝑆 ′𝑐 ) ⊆ 𝛾 ((𝑣 ′, 𝑔′)).

Lemma 4.2 (Preservation). If (𝑒, 𝑔 ↓r 𝑒′, 𝑔′,𝑤), then there exists abstract values 𝑣, 𝑣 ′ and abstract

symbolic states 𝑔,𝑔′, 𝑔′′ such that 1) (𝑒, 𝛼 ({𝑔}) ↓̂ 𝑣, 𝑔) ⇐⇒ (𝑒′, 𝛼 ({𝑔′}) ↓̂ 𝑣 ′, 𝑔′), 2) 𝑔′ �𝑣′ 𝑔′′, and
3) 𝛾 ((𝑣 ′, 𝑔′′)) ⊆ 𝛾 ((𝑣, 𝑔)).

It follows that the analysis is sound for evaluating any particle until termination.

Lemma 4.3 (Particle Evaluation Soundness). For every particle (𝑒, 𝑔), such that (𝑒, 𝑔 ↓̃∗ 𝑆𝑐 ),
we have (𝑒, 𝛼 ({𝑔}) ↓̂ 𝑣, 𝑔) and a configuration set 𝑆 ′𝑐 such that 𝑆𝑐 � 𝑆 ′𝑐 and forgetr(𝑆 ′𝑐 ) ⊆ 𝛾 ((𝑣, 𝑔)).
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Additionally, every distribution resulting from a particle set evaluation can be traced back to a
particle in the particle set and be equivalently derived by evaluating the particle until termination.

Lemma 4.4 (Particle Trace). If (𝑆𝑝 ⇊̃ 𝑆𝐷 ), we have for all 𝐷 ∈ 𝑆𝐷 , there exists (𝑒, 𝑔) ∈ 𝑆𝑝 such

that (𝑒, 𝑔 ↓̃∗ 𝑆𝑐 ) and 𝐷 ∈ {Distribution(𝑣, 𝑔) | (𝑣, 𝑔, r) ∈ 𝑆𝑐 }.
From the particle trace property with the fact the analysis is sound when evaluating a particle

until termination, we have that the analysis is sound with respect to evaluating sets of particles.
The soundness of the model evaluation follows.

Theorem 4.5 (Particle Set Evaluation Soundness). For every particle set 𝑆𝑝 , and distribution

set 𝑆𝐷 such that (𝑆𝑝 ⇊̃ 𝑆𝐷 ), we have that
{
𝑒, 𝛼 ({𝑔}) | (𝑒, 𝑔) ∈ 𝑆𝑝

}
⇊̂ 𝐷̂ and 𝑆𝐷 ⊆ 𝛾 (𝐷̂ ).

Corollary 4.6 (Model Evaluation Soundness). If 𝑒 ⇓̃ {fail}, then 𝑒 ⇓̂ f̂ail.

Overall, the soundness results show that if the analysis does not produce f̂ail, the collecting
semantics does not produce fail and therefore every execution of the program is satisfiable with
respect to the inference plan.

5 Evaluation

In this section, we empirically evaluate the efficacy of Siren on a set of probabilistic programs.
We also empirically evaluate how good the inference plan satisfiability analysis is at identifying
whether an inference plan is satisfiable. We seek to answer these research questions:

RQ1. Can inference plans improve hybrid particle filtering performance? In other words, does
there exist an inference plan that improves program performance compared to the default plan?
RQ2. How precise is the inference plan satisfiability analysis? Section 4.4 proves the analysis

is sound, so it will never state an unsatisfiable inference plan is satisfiable. The task remains to
empirically determine whether the analysis can detect satisfiable inference plans in practice.

RQ3. How long does the inference plan satisfiability analysis take?

5.1 Benchmarks

We evaluate the performance of different hybrid particle filtering algorithms on a set of benchmark
programs. We describe here the 11 benchmarks and identify the variables evaluated for accuracy.
The following benchmarks are benchmarks withmultiple inference plans from prior work on SSI and
DS by Atkinson et al. [2022] and Baudart et al. [2020]: Outlier , Tree, SLAM , andWheels. We describe
the programs and the evaluated variables in Appendix E. We also added the following additional
benchmarks, each of which cannot be solved purely with exact inference. They demonstrate the
advantages of using inference plans for improving performance against the default behavior.

Aircraft is the program presented in Section 2.
Noise is a one-dimensional particle filter with a hidden state modeled by Gaussian distributions (x)

with variance modeled by an Inverse-Gamma distribution (q). Observations are made on Gaussian
distributions centered around the previous state with variance also modeled by an inverse-Gamma
distribution (r). This program is adapted from Duník et al. [2017].

Radar is a radar tracker with glint noise modeled as a random, rarely occurring spike [Wu 1993].
The observation noise is modeled by the sum of two independent Inverse-Gamma distributions (r
and other) if the env random variable – modeled by a Bernoulli – indicates a spike. This differs from
the Aircraft program in that it only models the Gaussian-distributed x position, and the Bernoulli
random variable determines whether to observe a spike in the measurement noise.
EnvNoise is similar to Radar , but the noise variable other is modeled by the more flexible Beta

distribution [Arazo et al. 2019; Ma and Leijon 2011].
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OutlierHeavy models a one-dimensional particle filter where there might be sensor errors pro-
ducing outlier observations. The hidden state is modeled by Gaussian distributions (xt) and the
sensor error rate as a Beta prior (outlier_prob) to a Bernoulli. The regular observations are made
on Gaussian distributions and the outlier observations are modeled by a long-tailed location-scale
𝑡 distribution as used in Chang [2014]. This program is an extension of the Outlier benchmark
implemented by Atkinson et al. [2022] and adapted from Minka [2001].
SLDS is a switching linear dynamical system adapted from Obermeyer et al. [2019]. The model

switches between two nonlinear Kalman filters that each have unknown measurement noises. The
switching label follows Markovian dynamics and is modeled by two Beta priors (trans_prob0 and
trans_prob1). The filters use Gaussian distributed hidden states (x0 and x1). The measurement
noises are modeled by Inverse-Gamma distributions (obs_noise0, obs_noise1).

Runner , adapted from Azizian et al. [2023], models the 2-D position (x, y) and speed (sx, xy) of a
runner based on speedometer readings and the altitude, modeled by Gaussian distributions.
We include the source code and the annotations of each evaluated inference plan for each

benchmark in Appendix E.

5.2 Methodology

We implemented Siren in Python. In addition to semi-symbolic inference and delayed sampling,
we also implemented a third hybrid inference algorithm: SMC with belief propagation (SMC
with BP) [Azizian et al. 2023]. The algorithm swaps parent-child dependencies using conjugate
distributions similar to SSI and maintains node types in the data field like DS. The implementation
is available at https://github.com/psg-mit/siren/tree/main.

5.2.1 RQ1 Methodology. To determine Siren’s performance for RQ1, we execute each benchmark
100 times for 100 timesteps with an exponentially increasing particle count from 1 to 1024. We
execute each benchmark using all satisfiable inference plans, except for SLDS with SSI and DS, where
due to the large number of inference plans, we sort the plans by the number of symbolic variables
in descending order and only compare the first 4 plans (and any plans tied with those) against the
plan with all sampled variables and the default plan. We set the timeout to 300 seconds. We measure
the accuracy by the Mean Squared Error of the posterior expected value of the variable compared to
its ground truth value, which is available as all data were generated by sampling from the prior. For
each benchmark, we compute the speedup each inference plan achieves compared to the default
plan to reach the target accuracy, defined as the 90th percentile of error by the default plan using
the greatest particle count evaluated that did not timeout. Following Atkinson et al. [2022] and
Baudart et al. [2020], reaching target accuracy is defined as log(𝑃90% (loss)) − log(losstarget) < 0.5.
We also compute the summary statistics of the increase in accuracy each plan achieves compared
to the default plan with less than or equal runtime. We conduct experiments on a 60-vCPU Intel
Xeon Cascade Lake (up to 3.9 GHz) node with 240 GB RAM.

5.2.2 RQ2 Methodology. To determine Siren’s analysis precision for RQ2, we enumerated all
satisfiable and unsatisfiable inference plans, and measured if the inference plan satisfiability analysis
correctly determines the satisfiability of each plan.

5.2.3 RQ3 Methodology. For each program, algorithm, and inference plan (satisfiable or not), we
measured the runtime of the analysis to answer RQ3.

5.3 Results

5.3.1 RQ1 Results. Across all benchmarks, variables, and inference algorithms, using the best
inference plans produces an average speedup of 1.76x to reach the same target accuracy compared
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Fig. 16. For each particle count, the plots show the median execution time to the 90th percentile of error for
each variable using different satisfiable inference plan.

to the default plans, with a maximum speedup of 206x. The best inference plans achieve 1.83x better
accuracy with equal or less runtime compared to the default plans, with a maximum increase of
595x. See Appendix F for the breakdowns for each benchmark.
Figure 16 plots the experiment results of Outlier and Noise using the SSI algorithm. For each

particle count, we plot the median runtime to the 90th percentile of error for each evaluated variable.
For the plots of the remaining algorithms and benchmarks, see Appendix F.
The Outlier results in Figure 16 show that, when the execution time is greater than 10 seconds,

the annotated Plan 2 achieves better accuracy for xt than the default Plan 6 and would be preferred
in a context where the developer cares the most about xt. Overall, aggregated across particle counts,
the best accuracy achieved by any plan with less or equal runtime to the default plan is 2.75x better
than the default for outlier_prob and 1.89x for xt. Additionally, while the default Plan 6 has the
fastest execution time to reach target accuracy for outlier_prob, the alternative Plan 7 achieves the
fastest execution time to reach target accuracy for xt offering a speedup of 1.16x over the default
plan. Thus, the best inference plan to use depends on the context in which the system is deployed.

For Noise, the best accuracy achieved by any plan with less or equal runtime to the default plan is
2.36x better than the default plan for x, 1.33x for q, and 2.83x for r on average across particle counts.
The results in Figure 16 show that the annotated Plan 3 achieves the lowest error for x, but the
alternative Plan 4 and the default Plan 5 achieve the lowest error for q. In terms of efficiency, the
default Plan 5 has the fastest execution time to reach target accuracy for q. But the alternative Plan
3 has the fastest execution time for x and r, with a speedup of 19x and 1.33x over the default plan,
respectively. Thus, the inference plan that should be used depends on the context – in particular
which variable the developer considers most important.
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Table 1. Number of satisfiable inference plans identified by the inference plan satisfiability analysis out of
the total number of satisfiable inference plans for each benchmark and algorithm.

Identified Satisfiable Plans / Satisfiable Plans

Algorithm Noise Radar EnvN Out OutH Tree SLDS Runner Wheels SLAM Air

SSI 5/5 3/3 3/3 4/4 2/2 3/4 28/36 4/4 3/4 3/4 3/3
DS 4/4 2/2 2/2 2/2 2/2 3/3 16/16 1/1 1/3 2/2 2/2
SMC w/ BP 2/2 2/2 2/2 2/2 1/1 3/4 4/4 4/4 3/3 1/1 2/2

Total Plans 8 32 32 8 8 4 128 16 4 4 32

Overall, these results demonstrate that inference performance depends strongly on the inference
plan, that the plan that should be used to execute the program is context-dependent, and that
annotated inference plans enable substantial speedups and increase in accuracy over the default.

5.3.2 RQ2 Results. To evaluate the analysis precision for RQ2, we run the analysis on all 11
benchmarks and 3 inference algorithms, and summarize the results in Table 1. We manually count
the total number of satisfiable plans in each case as well as how many of these plans the analysis
identifies. The analysis identifies all satisfiable plans in 27 out of the 33 evaluated settings. This
shows that the analysis is precise in practice. We describe below the edge cases where the analysis
does not identify satisfiable plans.

Aliasing. The loss of precision in SLDS executed with SSI is due to aliasing. When joining
expressions in conditionals and fold fixpoint computations, the analysis loses information. This
introduces an aliasing problem because inconsistent branch conditions are not detected. This is
illustrated in the following program,

let symbolic x1 <- gaussian(0.,1.) in

let symbolic var1 <- invgamma(1.,1.) in

observe(gaussian(if cond then x1 else 1., if !cond then var1 else 1.), obs)

where cond and obs are constants. Because cond and !cond are inconsistent branch conditions and
the else-branches are both constants, in any execution SSI only needs a conjugacy relation for
either x1 or var1. Such a single-variable conjugacy relation always exists, so annotating both x1

and var1 symbolic will not throw an error in any execution. However, the analysis approximates
the observed Gaussian distribution as N̂ (𝑋𝑥1, 𝑋var1), meaning that the distribution is potentially
depending on both x1 and var1, which would require a conjugacy relationship for both variables
simultaneously. SSI does not support this, so the analysis concludes that SSI may throw an error
when in fact no such error-throwing execution exists. This problem manifests in SLDS with SSI but
does not affect any other benchmarks.

Widening Expressions. In SLAM with SSI, the analysis widens abstract expressions to UnkE (𝑆rv)
when the expression tree depth is over the preset threshold because large symbolic expressions can
be computationally expensive. It also widens UnkE (𝑆rv) to TopE when the number of variables in
𝑆rv is over the preset threshold to hasten the convergence of the fixpoint computation during a
fold because 𝑆rv can grow indefinitely large. However, the TopE expression is not precise enough
for the analysis to detect conjugacies that SSI needs to perform symbolic computation in SLAM

when all the variables are annotated symbolic.

Syntactic Partial Ordering Comparisons. The analysis fails to identify satisfiable plans in Tree

with SSI and SMC with BP and Wheels with SSI and DS because the partial ordering of abstract
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Table 2. Time taken by the analysis averaged over all inference plans for each benchmark and algorithm in
seconds. The analysis time for SLAMwith SSI is exceptionally long due to the intractable symbolic computation
of full exact inference.

Algorithm Noise Radar EnvN Out OutH Tree SLDS Runner Wheels SLAM Air

SSI 0.40 0.41 0.42 0.41 0.41 0.40 0.50 0.54 0.45 40.93 0.46
DS 0.39 0.40 0.41 0.41 0.40 0.38 0.50 0.54 0.45 0.53 0.46
SMC w/ BP 0.39 0.40 0.42 0.41 0.40 0.38 0.49 0.54 0.45 0.51 0.46

expressions performs comparisons syntactically. For example, UnkC *̂ 𝑋 and UnkC *̂ 𝑋 +̂ UnkC do
not share syntactic expression structure, so joining the expressions produces UnkE ({𝑋 }). The
over-approximated expression UnkE ({𝑋 }) is not considered an affine expression with respect to 𝑋 ,
causing the analysis to fail to identify linear-Gaussian conjugacies.

5.3.3 RQ3 Results. We summarize the time taken by the analysis averaged over the all inference
plans for each evaluated setting in Table 2. Overall, the analysis takes less than 1 second for all
benchmarks, algorithms, and inference plans, except for SLAM with SSI using the default Plan 0.
Plan 0 annotates all variables with symbolic, which SSI can implement on SLAM. However, the
symbolic computation here results in performing exact inference on a program with only Bernoullis,
which is intractable as the conjugacy transformation exponentially increases the expression size.
By lowering the widening thresholds, this time could be sped up, at the expense of precision.
Nevertheless, the analysis is in general fast to perform.

6 Related Work

Hybrid Inference. Siren supports hybrid inference algorithms based on particle filtering. Other
Monte Carlo inference methods can also be combined with exact inference; Hakaru [Narayanan et al.
2016], Autoconj [Hoffman et al. 2018], and automatic marginalization [Lai et al. 2023] perform static
transformations to solve the model analytically, and allow the rest to be solved with Monte Carlo
methods such as Metropolis-Hastings and HMC. These Monte Carlo methods have the same key
feature as particle filtering, which is that there is a subset of random variables that, when reduced
to constant values, allows the algorithm to analytically solve the rest of the inference problem. This
paradigm naturally leads to the concept of partitioning random variables in a probabilistic model
into sample and symbolic random variables. In systems that perform static transformations, the
partitioning is inherently known at compile time. However, the concept of inference plans can still
provide an explicit interface for reasoning about these partitions. In the dynamic setting where the
partitioning is only entirely determined at run time, a static analysis such as the one in Section 4 is
necessary to determine the satisfiability of inference plans.
To the best of our knowledge, no prior works have combined dynamic symbolic computations

on Monte Carlo methods other than particle filtering. Developing such an algorithm is out of the
scope of this work. Nevertheless, as a proof of concept of how the key ideas presented in this work
extend to other Monte Carlo-based methods, we present an alternative semantics for Siren using a
basic Metropolis-Hastings implementation combined with symbolic computations in Appendix G.
We show that using inference plans can improve performance and that the analysis is still precise.

Programmable Inference. Inference plans is an instance of programmable inference, where the
programming system hands over control of the inference procedure to the user. Other works in
the programmable inference space [Cusumano-Towner et al. 2019; Lew et al. 2019; Mansinghka
et al. 2014, 2018; Tehrani et al. 2020] hand over control to the user at varying stages of inference for
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different inference paradigms. Our interface applies specifically to enable users to use alternative
heuristics for hybrid inference algorithms.

Probabilistic Program Analyses. Several efforts have been made on using program analyses to
detect structure to optimize in probabilistic programs [Cheng et al. 2021; Gorinova et al. 2020;
Huang et al. 2017a; Ritchie et al. 2016; Zhou et al. 2020]. Other works also use program analyses to
statically infer properties about the outputs or resource usage of probabilistic programs [Atkinson
et al. 2021; Cousot and Monerau 2012; Di Pierro and Wiklicky 2000; Gorinova et al. 2021; Lee et al.
2023; Manuel et al. 2020; Monniaux 2000, 2001; Ngo et al. 2018; Smith 2008; Wang and Reps 2024].
Our analysis infers properties about the runtime behavior of the probabilistic inference algorithm.

7 Conclusion

In this work, we present Siren, a new probabilistic programming language for hybrid inference.
Siren enables developers to use inference plans to control the partitioning of random variables into
sampled and symbolic variables. To assist programmers in reasoning about inference plans in hybrid
inference systems, Siren employs a static analysis that determines if an inference plan is satisfiable
in all possible executions of the program. Our design of the hybrid inference interface enables Siren
to work with multiple hybrid inference algorithms, including semi-symbolic inference, delayed
sampling, and SMC with belief propagation.

The promise of PPLs is to separate the task of probabilistic modeling from the complex low-level
details of building an inference algorithm. However, to achieve good performance in practice,
developers often need control over the behavior of the inference system. Siren brings custom
hybrid inference to the paradigm of probabilistic programming: developers can adjust the behavior
of the inference algorithm to achieve better performance while maintaining the separation of
modeling and inference.

Data-Availability Statement

The artifact of this work is available on Zenodo [Cheng et al. 2024].
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