
Adversarial Query Synthesis via Bayesian
Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Benchmark workloads are extremely important to the database management re-1

search community, especially as more machine learning components are integrated2

into database systems. Here, we propose a Bayesian optimization technique to3

automatically search for difficult benchmark queries, significantly reducing the4

amount of manual effort usually required. In preliminary experiments, we show5

that our approach can generate queries with more than double the optimization6

headroom compared to existing benchmarks.7

1 Introduction8

Database researchers strive to build high-performance systems for processing SQL queries. To9

evaluate their work, the database community depends on benchmarks to approximate challenging10

queries. Traditionally, synthetic benchmarks (i.e., data drawn from random distributions) like the TPC11

family [14, 2] have been dominant, but some benchmarks over “real world” data, like the Join Order12

Benchmark (JOB) over the Internet Movie database (IMDb) have also been used [8]. Work applying13

machine learning techniques to database systems (e.g., [5]) has recently underscored the importance14

of “real world“ benchmarks, as synthetic data distributions are normally either overly simplistic (e.g.,15

a uniform key column) or entirely unlearnable (e.g., noise) [10]. As a concrete example, consider a16

recent report from AWS Redshift, which highlights the relative “easiness” of traditional benchmarks17

compared to the workloads they observe [23].18

This gap has led to a scramble (or perhaps an arms race) for larger and more challenging benchmarks,19

with solutions including “matching” synthetic workloads to real traces [7], manually constructing new20

querysets over public data [11], synthesizing queries with LLMs [19], or adding additional queries to21

existing datasets [25]. With the exception of [19], all of these approaches require significant manual22

effort. And, with the exception of [25], all of these approaches do not optimize for the difficulty of the23

benchmark (i.e., the potential room for improvement over existing systems, which we call headroom).24

In this work, we present a preliminary system that automatically synthesizes simple queries with25

significant optimization headroom (i.e., high difficulty). Our approach uses Bayesian optimization to26

discover query-and-plan pairs for which the discovered plan performs significantly better than the27

baseline system. In addition to being fully automated, this approach has three key advantages: first,28

by directly optimizing for query headroom, we show that we can find queries that have more than29

double the headroom of existing benchmarks. Second, by searching over plans in addition to queries,30

we generate witness plans with significantly better performance than the baseline system, which is31

potentially useful for debugging performance bugs. Third, by restricting our search space to simple32

queries (conjunctive queries with no aliased joins), our benchmark queries can run on every relational33

database system currently known to the authors.34

Submitted to Machine Learning for Systems Workshop at (NeurIPS 2025). Do not distribute.



At a high level, our approach formulates the benchmark building problem as a optimization problem,35

and uses Bayesian optimization enhanced with a latent-space representation of both SQL queries36

and plans. To handle the structured, discrete nature of SQL queries, we use a composite variational37

autoencoder that encodes queries and plans into a shared continuous latent space, enabling efficient38

search. Queries are embedded with a large text embedding model and decoded with a fine-tuned39

compact LLM using grammar-constrained decoding [3], ensuring syntactic validity, while plans40

benefit from a closed vocabulary representation that guarantees well-formedness. This combination41

allows the system to efficiently propose and evaluate candidate pairs, iteratively refining its model to42

uncover challenging, high-headroom queries.43

2 Methods44

The core problem we address is the automated discovery of adversarial pairs (Q,P ), where Q is a SQL45

query and P is an execution plan for Q. An adversarial pair is one where the latency of plan P , denoted46

L(P ), is significantly lower than the latency of the plan generated by the database’s default query47

optimizer, L(Pdefault). We formulate this as a black-box optimization problem aimed at maximizing48

either the relative speedup, L(Pdefault)/L(P ), or the absolute speedup, L(Pdefault)− L(P ).49

Black-box and Bayesian optimization. In black-box optimization, we aim to optimize an oracle50

objective function f(x) over a space of candidates x∗ = argmaxx∈X f(x). Examples of such51

problems include molecule activity maximization for drug discovery [22, 12], and binding affinity of52

DNA sequences or proteins [1, 4]. Commonly, f(x) is assumed to be expensive to evaluate or even53

completely unknown.54

Bayesian optimization is a sample-efficient framework to solve these expensive model-based optimiza-55

tion problems [15, 13, 20]. At iteration t of BO, one has access to observations Dt = {(xi, yi)}ti=1,56

where yi denotes the objective value of the input xi. Typically, a Gaussian process [18] is employed57

as the surrogate model to approximate the objective function using these inputs and values. This58

surrogate model aids the optimization by employing an acquisition function, which strategically59

proposes the next candidates for evaluation. After querying these candidates through the true oracle,60

the surrogate model is updated with the new observations. This process gradually builds a more61

comprehensive dataset and refines the surrogate model, thereby improving the quality of the proposed62

samples in future iterations.63

Bayesian optimization over SQL queries. Bayesian optimization is a sample-efficient technique64

for optimizing expensive black-box functions. However, standard BO operates on continuous vector65

spaces, whereas our search space consists of discrete, structured objects (SQL queries and query66

plans). We bridge this gap using Latent Space BO (LS-BO), a technique proven effective in domains67

like molecule design [12] and offline query planning [21].68

The LS-BO framework requires two key components: (1) an encoder E that maps structured inputs69

into a continuous latent space, Z , and (2) a decoder D that maps points from Z back into the70

structured input space. In this paper, we introduce a novel, composite Variational Autoencoder (VAE)71

architecture that creates a joint latent space for both queries and plans together.72

We construct a continuous latent space Z = [zq; zp] ∈ R320 that concatenates query VAE latents73

(zq ∈ R256) with plan VAE latents (zp ∈ R64):74

Eq : SQL string → zq, Dq : zq → SQL string,
Ep : plan string → zp, Dp : zp → plan string.

At inference time, decoding z yields an executable pair (Q̂, P̂ ); the plan string is turned into database-75

specific instructions (such as an optimizer hint string [16]) and combined with Q̂ for execution.76

Plan representation and VAE. Our plan representation is identical to prior work using Bayesian77

optimization for query planning [21]. At a high level, we encode plans as strings of integers which78

are then interpreted as operator selections and join orders. Like SELFIES [6], every string represents79

a valid plan, and every plan is represented by at least one string, although (unlike SELFIES) some80

plans are represented by more than one string. This means that any sequence decoded from Ep can be81

interpreted as a valid plan.82

2



0 10 20 30
Absolute difference (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

0 20 40 60 80
Relative difference

Figure 1: CDFs of absolute and relative differences between baseline system (DuckDB) and witness
plan for our generated benchmark. Median values at red cross.

Query VAE. Unlike query plans, SQL lacks a SELFIES-style [6] closed vocabulary where any83

token sequence is valid. To sidestep data scarcity (∼20k queries) and grammar complexity, we84

do not train a full encoder–decoder VAE for queries. Instead, we (i) use a text embedding model85

as the query encoder Eq (OpenAI text-embedding-3-large), then (ii) fine-tune a small LLM86

(Qwen-2.5-0.5B) as a compact query decoder Dq to map the first 256 embedding dimensions back87

to SQL queries. This is similar to prompt tuning [9], where the embedding is passed to the LLM as88

a soft-prompt, and the LLM is trained to decode the embedding back to the original query string.89

We use grammar-constrained decoding during inference to guarantee syntactic correctness of the90

reconstructed query. This yields ∼67% string reconstruction accuracy for queries and ∼99% for91

plans.92

A Simple SQL Subset To generate simple queries that work across a wide variety of databases, we93

focus on conjunctive queries [24]. Essentially, queries are restricted to: (1) joining together relations94

with equijoins (e.g., between foreign and primary keys), and (2) conjunctive predicates on table95

columns. Each query performs an ungrouped count(*) aggregation. Our formulation thus excludes96

SQL features like subqueries, window functions, recursion, etc. While simple, conjunctive queries97

are still difficult for modern query optimizers [8].98

Grammar-constrained decoding for SQL. To make sure the query decoder Dq always decodes99

to a valid query, we compiled a concise EBNF for our SQL subset (by enumerating the powerset of100

joinable tables and filterable columns) and enforced it during Dq decoding via grammar constrained101

generation using vLLM. This addresses the main challenges associated with unconstrained decoding:102

(i) syntactic invalidity and (ii) semantically impossible references (e.g., undefined aliases). The103

grammar constraint only applies to Dq , since Dp is designed to have a set of closed vocabulary where104

any decoded sequence is always valid.105

3 Preliminary results106

To test the feasibility of our approach, we generated a workload against the IMDb dataset (chosen107

to facilitate comparison with prior work using the same dataset). To match the original join order108

benchmark [8], we generated 122 query plans. These plans were collected by selecting the best109

candidates (in terms of relative and absolute headroom) from a weeklong BO run. Queries were110

executed on DuckDB [17] on a node equipped with an AMD Ryzen 5 3600 and 64GB of RAM. The111

entire dataset was cached in memory.112

We plot the CDFs of the absolute and relative headrooms in Figure 1. The median query in our113

generated workload had an absolute headroom of 25 seconds, meaning that the witness plan was114

25 seconds faster than the default plan chosen by DuckDB. In terms of relative headroom, the115

median query in our generated workload had a witness plan that was 20x faster than the default plan116

chosen by DuckDB. The largest differences found approach 30 seconds in absolute terms, and nearly117

80x in relative terms. The least difficult query in our workload has less than a second of absolute118

improvement and only a 1.5x relative improvement (potentially attributable to noise). We hope that119

3



JOB JOB-Complex Stack Ours
Benchmark

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e 

He
ad

ro
om

Figure 2: Comparison of geometric mean relative headroom for four benchmarks. Values for JOB
and JOB-Complex are from [25]. Values for Stack are approximated from [11]. Values for “Ours”
are computed with respect to the witness plan.

longer BO runs in the future will continue to shift both distributions right; the comparative “easiness”120

of the weakest generated queries is potentially attributable to a lack of search time.121

To compare the quality of our generated benchmark against prior work, Figure 2 shows the mean122

(geometric) relative headroom of different benchmark. Since computing the headroom of a benchmark123

is expensive (i.e., one must execute millions of query plans per query), we rely on results reported124

in prior work, and thus compare only the mean relative headroom (as absolute headroom is not125

consistently reported).126

4 Conclusion and Future Work127

In this extended abstract, we presented a fully automated approach for creating challenging database128

benchmarks by viewing benchmark creation as an optimization problem and using Bayesian opti-129

mization in a joint latent space over both SQL queries and execution plans. Our combination of VAE130

decoders enables joint embeddings for queries and plans, while grammar-constrained decoding en-131

sures syntactic validity of generated SQL within a simple, widely portable subset (conjunctive queries132

with equijoins and predicates). Together, these choices let the system efficiently find adversarial133

(query, plan) pairs with substantial optimization headroom.134

Preliminary experiments on IMDb with DuckDB show promising evidence: from a week-long BO135

run we selected 122 candidates, and the resulting workload exhibits a median absolute headroom of136

25 s and a median relative headroom of 20× between the default plan and the discovered witness plan137

(with the largest gaps approaching 30 s and 80×, respectively). These results suggest our automated138

process can find queries that are a lot harder than those in commonly used benchmarks.139

For future work, with a much larger set of hard (query, plan) pairs from extended runs, we could fine-140

tune a schema-conditioned LLM to directly generate pairs in bulk, skipping Bayesian optimization141

for most cases. The model would learn from (SQL, plan, headroom) triples, use grammar-constrained142

decoding to preserve validity, and be paired with a fast verifier (parse + quick execution/cost check)143

to filter outputs. A simple reward model or DPO-style objective that favors higher headroom can bias144

generation toward adversarial regions without explicit search. In practice, we could batch-generate145

candidates, keep the top-k under the verifier, and fall back to optimization only when confidence is146

low, therefore cutting wall-clock time while maintaining quality through periodic active-learning147

sessions.148

Overall, our method reduces manual effort, directly targets “difficulty” via headroom, and yields149

concrete witness plans that can help with debugging and system improvement, while keeping queries150

broadly executable across systems.151

4



References152

[1] Luis A. Barrera, Anastasia Vedenko, Jesse V. Kurland, Julia M. Rogers, Stephen S. Gisselbrecht,153

Elizabeth J. Rossin, Jaie Woodard, Luca Mariani, Kian Hong Kock, Sachi Inukai, Trevor Siggers,154

Leila Shokri, Raluca Gordân, Nidhi Sahni, Chris Cotsapas, Tong Hao, Song Yi, Manolis Kellis,155

Mark J. Daly, Marc Vidal, David E. Hill, and Martha L. Bulyk. Survey of variation in human156

transcription factors reveals prevalent dna binding changes. Science, 351(6280):1450–1454,157

2016. doi: 10.1126/science.aad2257.158

[2] Peter Boncz, Thomas Neumann, and Orri Erling. TPC-H Analyzed: Hidden Messages and159

Lessons Learned from an Influential Benchmark. In Revised Selected Papers of the 5th TPC Tech-160

nology Conference on Performance Characterization and Benchmarking - Volume 8391, TPC161

’14, pages 61–76, Berlin, Heidelberg, 2014. Springer-Verlag. ISBN 978-3-319-04935-9. doi:162

10.1007/978-3-319-04936-6_5. URL https://doi.org/10.1007/978-3-319-04936-6_163

5.164

[3] Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqi Chen.165

XGrammar: Flexible and Efficient Structured Generation Engine for Large Language Models,166

May 2025. URL http://arxiv.org/abs/2411.15100. arXiv:2411.15100 [cs].167

[4] Nate Gruver, Samuel Stanton, Nathan C. Frey, Tim G. J. Rudner, Isidro Hotzel, Julien Lafrance-168

Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew Gordon Wilson. Protein design with169

guided discrete diffusion. arXiv Preprint, 2023. doi: 10.48550/arXiv.2305.20009.170

[5] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The Case for171

Learned Index Structures. In Proceedings of the 2018 International Conference on Management172

of Data, SIGMOD ’18, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-4703-7. doi:173

10.1145/3183713.3196909. URL http://doi.acm.org/10.1145/3183713.3196909.174

[6] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alán Aspuru-Guzik.175

Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation,176

March 2020. URL http://arxiv.org/abs/1905.13741. arXiv:1905.13741.177

[7] Skander Krid, Mihail Stoian, and Andreas Kipf. Redbench: A Benchmark Reflecting Real178

Workloads, June 2025. URL http://arxiv.org/abs/2506.12488. arXiv:2506.12488 [cs].179

[8] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas180

Neumann. How Good Are Query Optimizers, Really? PVLDB, 9(3):204–215, 2015. ISSN 2150-181

8097. doi: 10.14778/2850583.2850594. URL http://dx.doi.org/10.14778/2850583.182

2850594.183

[9] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient184

prompt tuning, 2021. URL https://arxiv.org/abs/2104.08691.185

[10] Ryan Marcus, Andreas Kipf, Alexander Van Renen, Mihail Stoian, Sanchit Misra, Alfons186

Kemper, Thomas Neumann, and Tim Kraska. Benchmarking Learned Indexes. PVLDB, 14(1):187

1–13, September 2020. doi: 10.14778/3421424.3421425. Citation Key: benchmark_lis.188

[11] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim189

Kraska. Bao: Making Learned Query Optimization Practical. In Proceedings of the 2021190

International Conference on Management of Data, SIGMOD ’21, China, June 2021. ISBN191

978-1-4503-8343-1. doi: 10.1145/3448016.3452838. Award: ’best paper award’.192

[12] Natalie Maus, Haydn Jones, Juston Moore, Matt J Kusner, John Bradshaw, and Jacob Gardner.193

Local latent space bayesian optimization over structured inputs. In Advances in Neural Informa-194

tion Processing Systems, volume 35, pages 34505–34518. Curran Associates, Inc., 2022. doi:195

10.48550/arXiv.2201.11872.196

[13] Jonas Mockus. The Bayesian approach to global optimization. In System Modeling and197

Optimization, pages 473–481. Springer, 1982.198

[14] Raghunath Othayoth Nambiar and Meikel Poess. The Making of TPC-DS. In VLDB, VLDB199

’06, pages 1049–1058, Seoul, Korea, 2006. VLDB Endowment. URL http://dl.acm.org/200

citation.cfm?id=1182635.1164217.201

[15] M. A. Osborne, R. Garnett, and S. J. Roberts. Gaussian processes for global optimization. In202

3rd International Conference on Learning and Intelligent Optimization (LION3), pages 1–15,203

2009.204

5

https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5
http://arxiv.org/abs/2411.15100
http://doi.acm.org/10.1145/3183713.3196909
http://arxiv.org/abs/1905.13741
http://arxiv.org/abs/2506.12488
http://dx.doi.org/10.14778/2850583.2850594
http://dx.doi.org/10.14778/2850583.2850594
http://dx.doi.org/10.14778/2850583.2850594
https://arxiv.org/abs/2104.08691
http://dl.acm.org/citation.cfm?id=1182635.1164217
http://dl.acm.org/citation.cfm?id=1182635.1164217
http://dl.acm.org/citation.cfm?id=1182635.1164217


[16] PostgreSQL Developers. PostgreSQL hints, https://www.postgresql.org/docs/current/runtime-205

config-query.html, 2024. URL https://www.postgresql.org/docs/current/206

runtime-config-query.html. tex.key= 1.207

[17] Mark Raasveldt and Hannes Mühleisen. DuckDB: an Embeddable Analytical Database. In208

Proceedings of the 2019 International Conference on Management of Data, SIGMOD ’19,209

pages 1981–1984, New York, NY, USA, June 2019. Association for Computing Machinery.210

ISBN 978-1-4503-5643-5. doi: 10.1145/3299869.3320212. URL https://dl.acm.org/211

doi/10.1145/3299869.3320212.212

[18] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on213

Machine Learning, pages 63–71. Springer, 2003.214

[19] Tobias Schmidt, Viktor Leis, Peter Boncz, and Thomas Neumann. SQLStorm: Taking Database215

Benchmarking into the LLM Era. PVLDB, 18(11):4144–4157, 2025. doi: 10.14778/3749646.216

3749683.217

[20] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of machine218

learning algorithms. In Proc NeurIPS, volume 25, pages 2951–9, 2012. doi: 10.48550/arXiv.219

1206.2944.220

[21] Jeffrey Tao, Natalie Maus, Haydn Jones, Yimeng Zeng, Jacob R. Gardner, and Ryan Marcus.221

Learned offline query planning via bayesian optimization. Proc. ACM Manag. Data, 3(3), June222

2025. doi: 10.1145/3725316. URL https://doi.org/10.1145/3725316.223

[22] Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Bench-224

marks for data-driven offline model-based optimization. In Proceedings of the 39th International225

Conference on Machine Learning, volume 162 of PMLR, pages 21658–21676. PMLR, 17–23226

Jul 2022. doi: 10.48550/arXiv.2202.08450.227

[23] Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Eknath Vaidya, Wenjian Dong,228

Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and Tim Kraska.229

Why TPC is not enough: An analysis of the Amazon Redshift fleet. Proceedings of230

the VLDB Endowment, 2024. URL https://www.amazon.science/publications/231

why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet.232

[24] Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin. Yannakakis+:233

Practical Acyclic Query Evaluation with Theoretical Guarantees. Proc. ACM Manag. Data, 3234

(3):235:1–235:28, June 2025. doi: 10.1145/3725423. URL https://dl.acm.org/doi/10.235

1145/3725423.236

[25] Johannes Wehrstein, Timo Eckmann, Roman Heinrich, and Carsten Binnig. JOB-Complex:237

A Challenging Benchmark for Traditional & Learned Query Optimization, July 2025. URL238

http://arxiv.org/abs/2507.07471. arXiv:2507.07471 [cs].239

6

https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html
https://dl.acm.org/doi/10.1145/3299869.3320212
https://dl.acm.org/doi/10.1145/3299869.3320212
https://dl.acm.org/doi/10.1145/3299869.3320212
https://doi.org/10.1145/3725316
https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet
https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet
https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet
https://dl.acm.org/doi/10.1145/3725423
https://dl.acm.org/doi/10.1145/3725423
https://dl.acm.org/doi/10.1145/3725423
http://arxiv.org/abs/2507.07471

	Introduction
	Methods
	Preliminary results
	Conclusion and Future Work

