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Abstract

Benchmark workloads are extremely important to the database management re-
search community, especially as more machine learning components are integrated
into database systems. Here, we propose a Bayesian optimization technique to
automatically search for difficult benchmark queries, significantly reducing the
amount of manual effort usually required. In preliminary experiments, we show
that our approach can generate queries with more than double the optimization
headroom compared to existing benchmarks.

1 Introduction

Database researchers strive to build high-performance systems for processing SQL queries. To
evaluate their work, the database community depends on benchmarks to approximate challenging
queries. Traditionally, synthetic benchmarks (i.e., data drawn from random distributions) like the TPC
family [14! 2] have been dominant, but some benchmarks over “real world” data, like the Join Order
Benchmark (JOB) over the Internet Movie database (IMDb) have also been used [8]]. Work applying
machine learning techniques to database systems (e.g., [5]) has recently underscored the importance
of “real world“ benchmarks, as synthetic data distributions are normally either overly simplistic (e.g.,
a uniform key column) or entirely unlearnable (e.g., noise) [10]]. As a concrete example, consider a
recent report from AWS Redshift, which highlights the relative “easiness” of traditional benchmarks
compared to the workloads they observe [23]].

This gap has led to a scramble (or perhaps an arms race) for larger and more challenging benchmarks,
with solutions including “matching” synthetic workloads to real traces [7]], manually constructing new
querysets over public data [11]], synthesizing queries with LLMs [[19], or adding additional queries to
existing datasets [25]. With the exception of [19], all of these approaches require significant manual
effort. And, with the exception of [25]], all of these approaches do not optimize for the difficulty of the
benchmark (i.e., the potential room for improvement over existing systems, which we call headroom).

In this work, we present a preliminary system that automatically synthesizes simple queries with
significant optimization headroom (i.e., high difficulty). Our approach uses Bayesian optimization to
discover query-and-plan pairs for which the discovered plan performs significantly better than the
baseline system. In addition to being fully automated, this approach has three key advantages: first,
by directly optimizing for query headroom, we show that we can find queries that have more than
double the headroom of existing benchmarks. Second, by searching over plans in addition to queries,
we generate witness plans with significantly better performance than the baseline system, which is
potentially useful for debugging performance bugs. Third, by restricting our search space to simple
queries (conjunctive queries with no aliased joins), our benchmark queries can run on every relational
database system currently known to the authors.
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At a high level, our approach formulates the benchmark building problem as a optimization problem,
and uses Bayesian optimization enhanced with a latent-space representation of both SQL queries
and plans. To handle the structured, discrete nature of SQL queries, we use a composite variational
autoencoder that encodes queries and plans into a shared continuous latent space, enabling efficient
search. Queries are embedded with a large text embedding model and decoded with a fine-tuned
compact LLM using grammar-constrained decoding [3]], ensuring syntactic validity, while plans
benefit from a closed vocabulary representation that guarantees well-formedness. This combination
allows the system to efficiently propose and evaluate candidate pairs, iteratively refining its model to
uncover challenging, high-headroom queries.

2 Methods

The core problem we address is the automated discovery of adversarial pairs (Q, P), where Q is a SQL
query and P is an execution plan for (). An adversarial pair is one where the latency of plan P, denoted
L(P), is significantly lower than the latency of the plan generated by the database’s default query
optimizer, L( Pyefaur).- We formulate this as a black-box optimization problem aimed at maximizing
either the relative speedup, L( Pycgau)/L(P), or the absolute speedup, L( Pyegaur) — L(P).

Black-box and Bayesian optimization. In black-box optimization, we aim to optimize an oracle
objective function f(x) over a space of candidates x* = argmax, ., f(x). Examples of such
problems include molecule activity maximization for drug discovery [22|[12]], and binding affinity of
DNA sequences or proteins [[I,4]]. Commonly, f(x) is assumed to be expensive to evaluate or even
completely unknown.

Bayesian optimization is a sample-efficient framework to solve these expensive model-based optimiza-
tion problems [13} 13} 20]. At iteration ¢ of BO, one has access to observations Dy = {(x;, y;) }i_;,
where y; denotes the objective value of the input x;. Typically, a Gaussian process [18]] is employed
as the surrogate model to approximate the objective function using these inputs and values. This
surrogate model aids the optimization by employing an acquisition function, which strategically
proposes the next candidates for evaluation. After querying these candidates through the true oracle,
the surrogate model is updated with the new observations. This process gradually builds a more
comprehensive dataset and refines the surrogate model, thereby improving the quality of the proposed
samples in future iterations.

Bayesian optimization over SQL queries. Bayesian optimization is a sample-efficient technique
for optimizing expensive black-box functions. However, standard BO operates on continuous vector
spaces, whereas our search space consists of discrete, structured objects (SQL queries and query
plans). We bridge this gap using Latent Space BO (LS-BO), a technique proven effective in domains
like molecule design [[12] and offline query planning [21]].

The LS-BO framework requires two key components: (1) an encoder £ that maps structured inputs
into a continuous latent space, Z, and (2) a decoder D that maps points from Z back into the
structured input space. In this paper, we introduce a novel, composite Variational Autoencoder (VAE)
architecture that creates a joint latent space for both queries and plans together.

We construct a continuous latent space Z = [z,; 2,] € R32° that concatenates query VAE latents
(24 € R?56) with plan VAE latents (2, € R5%):

&y SQL string — 2, Dy : zg — SQL string,
&p : plan string — 2, D, : z, — plan string.

At inference time, decoding z yields an executable pair (@ , ]3), the plan string is turned into database-
specific instructions (such as an optimizer hint string [[16]]) and combined with () for execution.

Plan representation and VAE. Our plan representation is identical to prior work using Bayesian
optimization for query planning [21]]. At a high level, we encode plans as strings of integers which
are then interpreted as operator selections and join orders. Like SELFIES [6]], every string represents
a valid plan, and every plan is represented by at least one string, although (unlike SELFIES) some
plans are represented by more than one string. This means that any sequence decoded from &, can be
interpreted as a valid plan.
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Figure 1: CDFs of absolute and relative differences between baseline system (DuckDB) and witness
plan for our generated benchmark. Median values at red cross.

Query VAE. Unlike query plans, SQL lacks a SELFIES-style [6] closed vocabulary where any
token sequence is valid. To sidestep data scarcity (~20k queries) and grammar complexity, we
do not train a full encoder—decoder VAE for queries. Instead, we (i) use a text embedding model
as the query encoder &, (OpenAl text-embedding-3-large), then (ii) fine-tune a small LLM
(Qwen-2.5-0.5B) as a compact query decoder D, to map the first 256 embedding dimensions back
to SQL queries. This is similar to prompt tuning [9]], where the embedding is passed to the LLM as
a soft-prompt, and the LLM is trained to decode the embedding back to the original query string.
We use grammar-constrained decoding during inference to guarantee syntactic correctness of the
reconstructed query. This yields ~67% string reconstruction accuracy for queries and ~99% for
plans.

A Simple SQL Subset To generate simple queries that work across a wide variety of databases, we
focus on conjunctive queries [24]. Essentially, queries are restricted to: (1) joining together relations
with equijoins (e.g., between foreign and primary keys), and (2) conjunctive predicates on table
columns. Each query performs an ungrouped count (*) aggregation. Our formulation thus excludes
SQL features like subqueries, window functions, recursion, etc. While simple, conjunctive queries
are still difficult for modern query optimizers [8]].

Grammar-constrained decoding for SQL. To make sure the query decoder D, always decodes
to a valid query, we compiled a concise EBNF for our SQL subset (by enumerating the powerset of
joinable tables and filterable columns) and enforced it during D, decoding via grammar constrained
generation using VLLM. This addresses the main challenges associated with unconstrained decoding:
(1) syntactic invalidity and (ii) semantically impossible references (e.g., undefined aliases). The
grammar constraint only applies to Dy, since D), is designed to have a set of closed vocabulary where
any decoded sequence is always valid.

3 Preliminary results

To test the feasibility of our approach, we generated a workload against the IMDb dataset (chosen
to facilitate comparison with prior work using the same dataset). To match the original join order
benchmark [8]], we generated 122 query plans. These plans were collected by selecting the best
candidates (in terms of relative and absolute headroom) from a weeklong BO run. Queries were
executed on DuckDB [[17] on a node equipped with an AMD Ryzen 5 3600 and 64GB of RAM. The
entire dataset was cached in memory.

We plot the CDFs of the absolute and relative headrooms in Figure [T} The median query in our
generated workload had an absolute headroom of 25 seconds, meaning that the witness plan was
25 seconds faster than the default plan chosen by DuckDB. In terms of relative headroom, the
median query in our generated workload had a witness plan that was 20x faster than the default plan
chosen by DuckDB. The largest differences found approach 30 seconds in absolute terms, and nearly
80x in relative terms. The least difficult query in our workload has less than a second of absolute
improvement and only a 1.5x relative improvement (potentially attributable to noise). We hope that



120
121

122
123
124
125
126

127

128
129
130
131
132
133
134

135

137
138
139

140
141
142
143
144
145
146
147
148

149
150
151

Average Headroom
= =
u N e N
o w o w

N
v

0.0 j
JOB JOB-Complex Stack Ours
Benchmark

Figure 2: Comparison of geometric mean relative headroom for four benchmarks. Values for JOB
and JOB-Complex are from [23]]. Values for Stack are approximated from [11]]. Values for “Ours”
are computed with respect to the witness plan.
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longer BO runs in the future will continue to shift both distributions right; the comparative “easiness’
of the weakest generated queries is potentially attributable to a lack of search time.

To compare the quality of our generated benchmark against prior work, Figure [2] shows the mean
(geometric) relative headroom of different benchmark. Since computing the headroom of a benchmark
is expensive (i.e., one must execute millions of query plans per query), we rely on results reported
in prior work, and thus compare only the mean relative headroom (as absolute headroom is not
consistently reported).

4 Conclusion and Future Work

In this extended abstract, we presented a fully automated approach for creating challenging database
benchmarks by viewing benchmark creation as an optimization problem and using Bayesian opti-
mization in a joint latent space over both SQL queries and execution plans. Our combination of VAE
decoders enables joint embeddings for queries and plans, while grammar-constrained decoding en-
sures syntactic validity of generated SQL within a simple, widely portable subset (conjunctive queries
with equijoins and predicates). Together, these choices let the system efficiently find adversarial
(query, plan) pairs with substantial optimization headroom.

Preliminary experiments on IMDb with DuckDB show promising evidence: from a week-long BO
run we selected 122 candidates, and the resulting workload exhibits a median absolute headroom of
25 s and a median relative headroom of 20x between the default plan and the discovered witness plan
(with the largest gaps approaching 30 s and 80x, respectively). These results suggest our automated
process can find queries that are a lot harder than those in commonly used benchmarks.

For future work, with a much larger set of hard (query, plan) pairs from extended runs, we could fine-
tune a schema-conditioned LLM to directly generate pairs in bulk, skipping Bayesian optimization
for most cases. The model would learn from (SQL, plan, headroom) triples, use grammar-constrained
decoding to preserve validity, and be paired with a fast verifier (parse + quick execution/cost check)
to filter outputs. A simple reward model or DPO-style objective that favors higher headroom can bias
generation toward adversarial regions without explicit search. In practice, we could batch-generate
candidates, keep the top-k under the verifier, and fall back to optimization only when confidence is
low, therefore cutting wall-clock time while maintaining quality through periodic active-learning
sessions.

Overall, our method reduces manual effort, directly targets “difficulty” via headroom, and yields
concrete witness plans that can help with debugging and system improvement, while keeping queries
broadly executable across systems.
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