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Abstract

Benchmark workloads are extremely important to the database management re-1

search community, especially as more machine learning components are integrated2

into database systems. Here, we propose a Bayesian optimization technique to3

automatically search for difficult benchmark queries, significantly reducing the4

amount of manual effort usually required. In preliminary experiments, we show5

that our approach can generate queries with more than double the optimization6

headroom compared to existing benchmarks.7

1 Introduction8

Database researchers strive to build high-performance systems for processing SQL queries. To9

evaluate their work, the database community depends on benchmarks to approximate challenging10

queries. Traditionally, synthetic benchmarks (i.e., data drawn from random distributions) like the TPC11

family [14, 2] have been dominant, but some benchmarks over “real world” data, like the Join Order12

Benchmark (JOB) over the Internet Movie database (IMDb) have also been used [8]. Work applying13

machine learning techniques to database systems (e.g., [5]) has recently underscored the importance14

of “real world“ benchmarks, as synthetic data distributions are normally either overly simplistic (e.g.,15

a uniform key column) or entirely unlearnable (e.g., noise) [10]. As a concrete example, consider a16

recent report from AWS Redshift, which highlights the relative “easiness” of traditional benchmarks17

compared to the workloads they observe [23].18

This gap has led to a scramble (or perhaps an arms race) for larger and more challenging benchmarks,19

with solutions including “matching” synthetic workloads to real traces [7], manually constructing new20

querysets over public data [11], synthesizing queries with LLMs [19], or adding additional queries to21

existing datasets [25]. With the exception of [19], all of these approaches require significant manual22

effort. And, with the exception of [25], all of these approaches do not optimize for the difficulty of the23

benchmark (i.e., the potential room for improvement over existing systems, which we call headroom).24

In this work, we present a preliminary system that automatically synthesizes simple queries with25

significant optimization headroom (i.e., high difficulty). Our approach uses Bayesian optimization to26

discover query-and-plan pairs for which the discovered plan performs significantly better than the27

baseline system. In addition to being fully automated, this approach has three key advantages: first,28

by directly optimizing for query headroom, we show that we can find queries that have more than29

double the headroom of existing benchmarks. Second, by searching over plans in addition to queries,30

we generate witness plans with significantly better performance than the baseline system, which is31

potentially useful for debugging performance bugs. Third, by restricting our search space to simple32

queries (conjunctive queries with no aliased joins), our benchmark queries can run on every relational33

database system currently known to the authors.34
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At a high level, our approach formulates the benchmark building problem as a optimization problem,35

and uses Bayesian optimization enhanced with a latent-space representation of both SQL queries36

and plans. To handle the structured, discrete nature of SQL queries, we use a composite variational37

autoencoder that encodes queries and plans into a shared continuous latent space, enabling efficient38

search. Queries are embedded with a large text embedding model and decoded with a fine-tuned39

compact LLM using grammar-constrained decoding [3], ensuring syntactic validity, while plans40

benefit from a closed vocabulary representation that guarantees well-formedness. This combination41

allows the system to efficiently propose and evaluate candidate pairs, iteratively refining its model to42

uncover challenging, high-headroom queries.43

2 Methods44

The core problem we address is the automated discovery of adversarial pairs (Q,P ), where Q is a SQL45

query and P is an execution plan for Q. An adversarial pair is one where the latency of plan P , denoted46

L(P ), is significantly lower than the latency of the plan generated by the database’s default query47

optimizer, L(Pdefault). We formulate this as a black-box optimization problem aimed at maximizing48

either the relative speedup, L(Pdefault)/L(P ), or the absolute speedup, L(Pdefault)− L(P ).49

Black-box and Bayesian optimization. In black-box optimization, we aim to optimize an oracle50

objective function f(x) over a space of candidates x∗ = argmaxx∈X f(x). Examples of such51

problems include molecule activity maximization for drug discovery [22, 12], and binding affinity of52

DNA sequences or proteins [1, 4]. Commonly, f(x) is assumed to be expensive to evaluate or even53

completely unknown.54

Bayesian optimization is a sample-efficient framework to solve these expensive model-based optimiza-55

tion problems [15, 13, 20]. At iteration t of BO, one has access to observations Dt = {(xi, yi)}ti=1,56

where yi denotes the objective value of the input xi. Typically, a Gaussian process [18] is employed57

as the surrogate model to approximate the objective function using these inputs and values. This58

surrogate model aids the optimization by employing an acquisition function, which strategically59

proposes the next candidates for evaluation. After querying these candidates through the true oracle,60

the surrogate model is updated with the new observations. This process gradually builds a more61

comprehensive dataset and refines the surrogate model, thereby improving the quality of the proposed62

samples in future iterations.63

Bayesian optimization over SQL queries. Bayesian optimization is a sample-efficient technique64

for optimizing expensive black-box functions. However, standard BO operates on continuous vector65

spaces, whereas our search space consists of discrete, structured objects (SQL queries and query66

plans). We bridge this gap using Latent Space BO (LS-BO), a technique proven effective in domains67

like molecule design [12] and offline query planning [21].68

The LS-BO framework requires two key components: (1) an encoder E that maps structured inputs69

into a continuous latent space, Z , and (2) a decoder D that maps points from Z back into the70

structured input space. In this paper, we introduce a novel, composite Variational Autoencoder (VAE)71

architecture that creates a joint latent space for both queries and plans together.72

We construct a continuous latent space Z = [zq; zp] ∈ R320 that concatenates query VAE latents73

(zq ∈ R256) with plan VAE latents (zp ∈ R64):74

Eq : SQL string → zq, Dq : zq → SQL string,
Ep : plan string → zp, Dp : zp → plan string.

At inference time, decoding z yields an executable pair (Q̂, P̂ ); the plan string is turned into database-75

specific instructions (such as an optimizer hint string [16]) and combined with Q̂ for execution.76

Plan representation and VAE. Our plan representation is identical to prior work using Bayesian77

optimization for query planning [21]. At a high level, we encode plans as strings of integers which78

are then interpreted as operator selections and join orders. Like SELFIES [6], every string represents79

a valid plan, and every plan is represented by at least one string, although (unlike SELFIES) some80

plans are represented by more than one string. This means that any sequence decoded from Ep can be81

interpreted as a valid plan.82
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Figure 1: CDFs of absolute and relative differences between baseline system (DuckDB) and witness
plan for our generated benchmark. Median values at red cross.

Query VAE. Unlike query plans, SQL lacks a SELFIES-style [6] closed vocabulary where any83

token sequence is valid. To sidestep data scarcity (∼20k queries) and grammar complexity, we84

do not train a full encoder–decoder VAE for queries. Instead, we (i) use a text embedding model85

as the query encoder Eq (OpenAI text-embedding-3-large), then (ii) fine-tune a small LLM86

(Qwen-2.5-0.5B) as a compact query decoder Dq to map the first 256 embedding dimensions back87

to SQL queries. This is similar to prompt tuning [9], where the embedding is passed to the LLM as88

a soft-prompt, and the LLM is trained to decode the embedding back to the original query string.89

We use grammar-constrained decoding during inference to guarantee syntactic correctness of the90

reconstructed query. This yields ∼67% string reconstruction accuracy for queries and ∼99% for91

plans.92

A Simple SQL Subset To generate simple queries that work across a wide variety of databases, we93

focus on conjunctive queries [24]. Essentially, queries are restricted to: (1) joining together relations94

with equijoins (e.g., between foreign and primary keys), and (2) conjunctive predicates on table95

columns. Each query performs an ungrouped count(*) aggregation. Our formulation thus excludes96

SQL features like subqueries, window functions, recursion, etc. While simple, conjunctive queries97

are still difficult for modern query optimizers [8].98

Grammar-constrained decoding for SQL. To make sure the query decoder Dq always decodes99

to a valid query, we compiled a concise EBNF for our SQL subset (by enumerating the powerset of100

joinable tables and filterable columns) and enforced it during Dq decoding via grammar constrained101

generation using vLLM. This addresses the main challenges associated with unconstrained decoding:102

(i) syntactic invalidity and (ii) semantically impossible references (e.g., undefined aliases). The103

grammar constraint only applies to Dq , since Dp is designed to have a set of closed vocabulary where104

any decoded sequence is always valid.105

3 Preliminary results106

To test the feasibility of our approach, we generated a workload against the IMDb dataset (chosen107

to facilitate comparison with prior work using the same dataset). To match the original join order108

benchmark [8], we generated 122 query plans. These plans were collected by selecting the best109

candidates (in terms of relative and absolute headroom) from a weeklong BO run. Queries were110

executed on DuckDB [17] on a node equipped with an AMD Ryzen 5 3600 and 64GB of RAM. The111

entire dataset was cached in memory.112

We plot the CDFs of the absolute and relative headrooms in Figure 1. The median query in our113

generated workload had an absolute headroom of 25 seconds, meaning that the witness plan was114

25 seconds faster than the default plan chosen by DuckDB. In terms of relative headroom, the115

median query in our generated workload had a witness plan that was 20x faster than the default plan116

chosen by DuckDB. The largest differences found approach 30 seconds in absolute terms, and nearly117

80x in relative terms. The least difficult query in our workload has less than a second of absolute118

improvement and only a 1.5x relative improvement (potentially attributable to noise). We hope that119
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Figure 2: Comparison of geometric mean relative headroom for four benchmarks. Values for JOB
and JOB-Complex are from [25]. Values for Stack are approximated from [11]. Values for “Ours”
are computed with respect to the witness plan.

longer BO runs in the future will continue to shift both distributions right; the comparative “easiness”120

of the weakest generated queries is potentially attributable to a lack of search time.121

To compare the quality of our generated benchmark against prior work, Figure 2 shows the mean122

(geometric) relative headroom of different benchmark. Since computing the headroom of a benchmark123

is expensive (i.e., one must execute millions of query plans per query), we rely on results reported124

in prior work, and thus compare only the mean relative headroom (as absolute headroom is not125

consistently reported).126

4 Conclusion and Future Work127

In this extended abstract, we presented a fully automated approach for creating challenging database128

benchmarks by viewing benchmark creation as an optimization problem and using Bayesian opti-129

mization in a joint latent space over both SQL queries and execution plans. Our combination of VAE130

decoders enables joint embeddings for queries and plans, while grammar-constrained decoding en-131

sures syntactic validity of generated SQL within a simple, widely portable subset (conjunctive queries132

with equijoins and predicates). Together, these choices let the system efficiently find adversarial133

(query, plan) pairs with substantial optimization headroom.134

Preliminary experiments on IMDb with DuckDB show promising evidence: from a week-long BO135

run we selected 122 candidates, and the resulting workload exhibits a median absolute headroom of136

25 s and a median relative headroom of 20× between the default plan and the discovered witness plan137

(with the largest gaps approaching 30 s and 80×, respectively). These results suggest our automated138

process can find queries that are a lot harder than those in commonly used benchmarks.139

For future work, with a much larger set of hard (query, plan) pairs from extended runs, we could fine-140

tune a schema-conditioned LLM to directly generate pairs in bulk, skipping Bayesian optimization141

for most cases. The model would learn from (SQL, plan, headroom) triples, use grammar-constrained142

decoding to preserve validity, and be paired with a fast verifier (parse + quick execution/cost check)143

to filter outputs. A simple reward model or DPO-style objective that favors higher headroom can bias144

generation toward adversarial regions without explicit search. In practice, we could batch-generate145

candidates, keep the top-k under the verifier, and fall back to optimization only when confidence is146

low, therefore cutting wall-clock time while maintaining quality through periodic active-learning147

sessions.148

Overall, our method reduces manual effort, directly targets “difficulty” via headroom, and yields149

concrete witness plans that can help with debugging and system improvement, while keeping queries150

broadly executable across systems.151
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