Under review as a conference paper at I[COMP 2024

FORMATTING INSTRUCTIONS FOR ICOMP 2024
CONFERENCE SUBMISSIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Robust perception in challenging environments is essential for safe and reliable
autonomous driving. Multi-sensor fusion, particularly camera-LiDAR-Radar inte-
gration, plays a pivotal role in achieving this goal. Different sensors have specific
advantages and disadvantages. Existing pipelines are often constrained by ad-
verse weather conditions, where cameras suffer significant degradation. This pa-
per introduces the Camera Bi-directional LiDAR-Radar (CBILR) fusion pipeline,
which leverages the strengths of sensors to enhance LiDAR and Radar point
clouds. CBILR innovates with a bi-directional prefusion step between LiDAR and
Radar, leading to richer feature representations. Prefusion combines LiDAR and
Radar points to compensate for individual sensor weaknesses. Next, the pipeline
combines all features together in the bird’s eye view (BEV) space, resulting in a
comprehensive multi-modal representation. Experiments have demonstrated that
CBILR achieves superior robustness in challenging weather scenarios.

1 INTRODUCTION

For self-driving systems, it is crucial to develop a fast and accurate 3D object detector that predicts
the bounding boxes and categories of road objects. Nowadays, cameras, LIDARs, and Radars are
often used in advanced systems such as drones, robots and autonomous vehicles. Many authors
only use particular sensors to solve perception problems. This can lead to a generalization problem,
because there is a high probability that one type of sensor will be more relevant than others for
certain real-world scenarios. Each sensor has advantages and disadvantages. We can only obtain
color and texture information about objects from cameras. It is made by projective transformation
of the captured 3D scene into a 2D plane and long stages of post-processing raw images, which
is the field of color science. For this reason, cameras cannot provide accurate depth information
(especially in low light conditions) compared to Radars and LiDARs that operate directly in 3D
space [L1 et al.|(2023a); Liang et al| (2022). However, researchers continue to develop perception
algorithms that rely only on cameras because it is a more cost-effective approach |Li et al.|(2023c);
Zhang et al.|(2022)).

1.1 FUSION APPROACHES

Sensor fusion is an essential topic in many perception systems. A lot of papers|Zhong et al.| (2021);
Zhang et al.| (2023a) are devoted to LiDAR-camera fusion because LiDARs have higher resolution,
are less sparse than Radars and can provide accurate measurements at close range. Since Radar
antennas are often installed horizontally, they cannot capture sufficient vertical height information
Yingjie Wang et al.| (2023). For voxel representation, a highly sparse point cloud means that some
voxels contain too few points for processing.

Although LiDARSs can provide accurate geometric information about a scene, they do not perform
as well as Radars at long distances and can introduce noise when the object is moving |[Li et al.
(2023b). In|Nabati & Qif (2020); Nabati et al.| (2021) the authors use Radar-camera fusion for 3D
object detection and tracking. Since such sensors in many cases have opposite advantages and
disadvantages, it is ideal to use multiple sensors [Liu et al.| (2023); [Chen et al| (2023)) for robust
performance in a variety of scenarios and conditions. We have developed a fusion pipeline focused
on improving sensors that can withstand adverse weather conditions.
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There are several strategies for sensor fusion. Early fusion directly combines sensor inputs before
feeding them into shared feature extractors. Late fusion processes sensor inputs independently and
then combines the output results. Mid-level fusion [Liang et al.[(2018) provides an intermediate
representation for each sensor before the final fusion step.

1.2 BEV PERCEPTION

A unified representation is necessary to make it easier to transfer knowledge and combine features
from different modalities |Li et al.| (2022). The vast majority of modern perception methods use a
bird’s eye view (BEV) representation to describe a 3D scene |Roddick| (2021); Zhu et al.| (2023).
BEV is an informal perception standard for autonomous driving scenarios |[Liang et al.|(2022)). Data
from different modalities are used to provide complementary knowledge such as precise locations
from point clouds and rich context from images.

Cameras are typically mounted on vehicles parallel to the ground and facing outward. For this rea-
son, images are captured in a Perspective View (PV), which is orthogonal to BEV. Objects of the
same shape and size in 3D space can have very different representation in the image plane because
of their distance from the camera. The BEV representation does not have scale and occlusion prob-
lems compared to PV representation |Li et al.| (2023a). The transformation from PV to BEV is the
inverse perspective map problem, and it can have more than one solution. Before the deep learn-
ing era, many works tackled this problem by using a homography transformation matrix because of
its computational efficiency. Inverse Perspective Mapping (IPM) has been proposed to address this
challenging mapping problem Mallot et al.| (1991); Ma et al|(2022)). IPM-based methods assume
that all points are on the ground plane sacrificing height variation. In complex real-world scenarios,
3D objects like vehicles possess height and such transformations can cause noticeable artifacts.

In recent years, data-driven methods have been widely used in complex systems such as self-driving
vehicles. Data-driven PV-BEV transformation methods can be divided into three main groups:
depth-based, MLP-based, and transformer-based approaches Ma et al.|(2022)). Depth-based methods
estimate the depth distribution of the each image pixel along the ray (coming from the camera) that
intersects objects in the environment. This allows to elevate the 2D features to 3D, and then obtain
the BEV representations from 3D through dimensionality reduction. Depth-based PV-to-BEV meth-
ods can be divided into two classes depending on the using representation: point-based and voxel-
based methods. Point-based methods are straightforward, they directly utilize depth estimation to
convert pixels into point clouds. Examples: Pseudo-LiDAR |Wang et al.| (2019), Pseudo-LiDAR++
You et al.| (2019), AM3D Ma et al.| (2019), PatchNet [Ma et al.| (2020). Voxel-based method dis-
cretize the 3D space to build a regular structure for feature transformation. The disadvantage of this
approach is the loss of detailed local spatial information within each voxel. The advantage is that
voxels are more effective at covering large-scale scene structure, they are more efficient for 3D scene
understanding.

Another approach is to utilize a variational encoder-decoder or MLP to learn implicit representations
of camera calibrations to project PV features to BEV. MLP plays the role of a universal approximator
of the mapping function from PV to BEV Ma et al.| (2022). MLP-based methods focus primarily on
working with a single image. The drawback of MLP-based methods is that the learned weights are
fixed and not data dependent:

Y=WX WX
Transformer-based methods employ a top-down strategy constructing BEV queries and searching

corresponding features in perspective images through cross-attention mechanism. These methods
are more expressive, but hard to train.

1.3 BEV REPRESENTATION VS VOXEL-BASED

A voxel-based scene representation cannot provide computational efficiency because such represen-
tation describes a 3D scene with dense cubic features V. € RH*W*DXC where H, W, D are the
spatial resolution of the voxel space and C' is the feature dimension. BEV provides the 3D scene
with a 2D feature map B € R”XWx*C which encodes the top view of the scene. This represents
the positional information of the ground plane by accumulating voxel features along the vertical
z-axis. The height dimension contains less information than the other two dimensions [Huang et al.
(2023). It is important to note that some researches do not directly use the BEV representation.
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In Huang et al.| (2023)), the authors propose a Tri-Perspective View (TPV) representation for the
semantic prediction task due to the lack of z-axis information.

1.4 CAMERA-TO-BEV VIEW TRANSFORM

Transforming from a camera view to a bird’s eye view is complex because the depth associated with
each camera feature pixel can be ambiguous. The idea of camera-to-BEV transformation is based on
projective geometry. The process of monocular depth estimation involves generating a unique depth
value for each pixel in an image. The state-of-the-art approach involves predicting a categorical
distribution of depth for each pixel in the image Reading et al.| (2021)); |Liu et al.| (2023)); [Philion &
Fidler| (2020). This technique is known as feature lifting |Philion & Fidler|(2020)).

Depth Distributions Frustum Features

D(u, v) G(u,v)

Image Features

F(u,v)

Figure 1: Each feature pixel F(u,v) is weighted by its depth distribution probabilities D (u, v) of
belonging to D discrete depth bins to generate frustum features G (u, v) [Reading et al.[(2021).

In |Reading et al.| (2021), the model utilize the estimated categorical depth distributions to “lift* an
input image into 3D, generating a frustum-shaped point cloud. The frustum feature grid is then
transformed into a voxel grid using specific camera calibration parameters, and then collapsed into
a BEV feature grid. All steps are well-illustrated in the paper|Reading et al.|(2021)). By associating
image features with estimated depths, image information can be projected into 3D space using a
frustum feature network. The input to the frustum feature network is an image I € RWr>xHrx3,
where Wy, Hy are the image width and height. The network output is a frustum feature grid G €
RWrxHexDXC ywhere Wy, Hp are the width and height of the image feature representation, D
is the number of discretized depth bins, and C is the number of feature channels. If we have N
cameras, the full size of the frustum featuresis N x Wgr x Hp x D.

Let’s denote (u, v, ¢) as a coordinate in image features F and (u, v, d;) as a coordinate in categorical
depth distributions D, where (u, v) is the location of feature pixel, ¢ is the channel index, and d;
is the depth bin index. In order to create a frustum feature grid G, each feature pixel F(u,v) is
weighted by its associated depth bin probabilities in D(u, v). It adds a new depth axis d;, as shown
in figure[T] The outer product can be used to weight feature pixels:

G(u,v) = D(u,v) ® F(u,v) (D)

where D (u, v) is the predicted depth distribution and G (u, v) is a matrix D x C'. The outer product
is calculated for each pixel to generate frustum features G € RWrxHrxDxC  The next steps are
voxel transformation using the camera calibration matrix [Reading et al.| (2021) and collapsing to
BEV.

For example, BEVFusion |Liu et al.| (2023)) converts camera features into a point cloud, aggregates it
with BEV pooling and flattens it along the z-axis. Such algorithms can be related to the Lift-Splat
category Philion & Fidler| (2020); |[Reading et al.|(2021)); Zhou et al.| (2023).

1.5 MOTIVATION

In Zhang et al.| (2023b) authors made a detailed review of how autonomous vehicles perceive the
environment under adverse weather conditions. They summarized the strengths and weaknesses
of each sensor, as shown in the figure @ Camera sensors are the most sensitive to environmental
conditions, but not all parts of an image typically contain destructive information. Recent works|Liu
et al.| (2023)); |Chen et al.| (2023)) have used a mid-level fusion approach to aggregate features from
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Figure 2: Sensor performance and characteristics Zhang et al.|(2023b)).
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all modalities. Combining the representations of different modalities allows to solve perception
problems in adverse weather conditions (see the Table [I)).

Table 1: Sensor fusion and target weather conditions. ”L”, ”’C” and ”R” represent LiDAR, Camera,
and Radar modalities respectively.

Sensor fusion Configuration Target weather
Bi-LRFusion (2023) | R+ L Fog
RadarNet (2020) R+L Rain
MVDNet (2021) R+L Fog
Liu (2021) R+C Rain, fog, nighttime
Rawashdeh (2021) C+L+R Snow
SLS-Fusion (2021) L+C Fog
Radecki (2016) L+R+C Wet conditions

In last time LiDARs and Radars sensors were significantly improved in terms of spatial resolution,
accuracy, velocity measurement and resistance to adverse weather conditions |Thil

2 RELATED WORK

FUTR3D. In|Chen et al.| (2023), every modality is encoded in its own coordinate. This framework
does not assume any particular modalities and their model architectures. For this reason FUTR3D
can work with any selected feature encoders. Researches used three types of data: LiDAR point
cloud, Radar point cloud, and multi-view camera images. VoxelNet was used to encode LiDAR
. m
point clouds as multi-scale Bird’s-eye view (BEV) feature maps {]—'{id € RExH; XWJ} .

Jj=1
H, x W; is the size of the i-th BEV feature map, m is the count of feature maps. Radar points

{r; };\;1 € R are pillarized into 0.8 m pillars. Then MLP ®,,4 is used to achieve per-pillar

, where

features .7-'3;1‘1 = Praa (rj) € RS- where C,, is the number of encoded Radar features. In this
way the Radar BEV feature map Fr,q € R *H*W ig obtained. It is also assumed that there are
N surrounding cameras installed in the car. It is supposed that each camera has taken m images.
For image feature extraction ResNet is used. It outputs multi-scale features for each image, denoted
. m
as FE = = {.FJZ{H € ROXH; xW; } for the k-th camera. So, after camera backbone there are m
j=1

image feature maps for each camera. A transformer decoder uses queries to predict 3D bounding
boxes. The predicted boxes can be repeatedly sent back into the transformer decoder and MAFS to
refine the predictions.

BEVFusion. BEVFusion [Liu et al.[ (2023) is the state-of-the-art fusion pipeline on the nuScenes
and Waymo 3D object detection in 2022. BEVFusion performs sensor fusion in a shared BEV
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space and treats foreground and background, geometric and semantic information equally. There
are fundamental differences in the modalities used to express data from various sensors: cameras
capture data in perspective view and LiDAR in 3D view. For this reason, authors are looking for a
unified representation that is suitable for multi-task multi-modal feature fusion. Camera and LiDAR
features have drastically different densities. The camera-to-LiDAR projection is semantically lossy,
and the LiDAR-to-camera projection creates significant geometric distortion. In this paper, authors
propose BEVFusion to unify multi-modal features in a shared bird’s-eye view (BEV) representation
space for different tasks (see figure [3). The transformation to BEV saves both geometric structure
(from LiDAR features) and semantic density (from camera features).

=
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(a) To Camera: geometric-lossy  (b) To LIDAR: semantic-lossy

BEY features (camera) BEY features (LiDAR)

[
LiDAR features
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(c) Shared BEVFusion  space

Figure 3: BEVFusion unifies camera and LiDAR features in a shared BEV space instead of mapping
one modality to the other|Liu et al.| (2023)).

Bi-LRFusion. Radar provides longer detection range than LiDAR, which is essential on highways
and expressways. But LiDAR is better at capturing the object’s 3D shape. The existing feature-
level Radar fusion methods commonly ignore the problems caused by the lack of height information
and extreme sparsity of Radar data. Specifically, taking the data from the nuScenes dataset as an
example, the 32-beam LiDAR sensor produces approximately 30,000 points, while the Radar sensor
only captures about 200 points for the same scene. The height values of the Radar points are simply
set as the ego Radar sensor’s height. All height values are transformed to the LiDAR coordinate
system, but this is not consistent for objects with different heights.

In this work authors introduced a bi-directional LiDAR-Radar fusion framework, termed Bi-
LRFusion. To fully utilize the advantages of combining LiDAR and Radar, the authors enhance
the Radar features in two directions with the help of LiDAR data. It makes Radar features more
powerful before the final BEV fusion step. Bi-LRFusion first encodes BEV features for each modal-
ity individually. Then, LiDAR-to-Radar (L2R) fusion is proposed to use to enhance the extremely
sparse Radar features (see figure ). This module is focusing on the height information that is com-
pletely missing in the Radar data and the local BEV features that are scarce in the Radar data. L2R
module consists of two feature fusion blocks: the query-based L2R height feature fusion and the
query-based L2R BEV feature fusion, in which they generate the pseudo height features and the
pseudo local BEV features, respectively. The grouped LiDAR raw points are aggregated to formu-
late pseudo-Radar height features, and the grouped LiDAR BEYV features are aggregated to produce
pseudo-Radar BEV features. Specifically, for each nonempty grid cell on the Radar feature map,
they query and group the nearby LiDAR data (including both raw points and BEV features) to ob-
tain more detailed Radar features. Further generated pseudo-Radar height and BEV features are
fused to the Radar BEV features through concatenation.

3 METHOD

Since both LiDARs and Radars operate in 3D space and they are more reliable than cameras un-
der adverse environmental conditions, we first do their prefusion [Yingjie Wang et al.| (2023). Our
pipeline inherits the advantage of the Lidar-to-Radar prefusion mechanism of Bi-LRFusion. We use
a specific transformation for a particular sensor to represent the extracted feature in the BEV.

Encoding of LiDAR Features. This process consists of the following steps: voxelization of LiDAR
points; taking all points in the same voxel as input and using a multi - layer perception (MLP) to
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Figure 4: Part of the Bi-LRFusion pipeline — LiDAR-to-Radar (L2R) fusion |Yingjie Wang et al.|

(2023).

extract pointwise features; max pooling to obtain the locally aggregated features for each voxel; 3D
Voxel Backbone composed of 3D sparse convolutional layers and 3D sub-manifold convolutional

layers (2018); producing a LIDAR BEV feature map by stacking volume features along
the Z-axis;

Radar Feature Encoding. By utilizing the Pillar Feature Backbone [Lang et al.| (2019), the Radar
point cloud is converted into a series of pillars.

Camera Feature Encoding. As in BEVFusion, for each image pixel we predict the discrete depth
distribution. It forms frustum features (see figure[I)) — camera feature point cloud of size NHW D,
where N is the number of cameras, (H, W) is the size of camera feature map. Then we use BEV
pooling operation to flat the features along z-axis.

The figures [5] and [f] illustrate the concept of our pipeline. The LiDAR-to-Radar step enriches the
Radar features similar to|Yingjie Wang et al.| (2023).

b D o -y | O |y -— /'Z -—
Backbone -
Camera Features Camera-to-BEV Camera Features
Wul-View RGB Images View Transform (in BEV)
LIDAR ﬁ? 3
Feature Stream > NEe = Q\ﬁ '
LIDAR Features Flatten to BEV ~ LiDAR Features
LiDAR point cloud \ (in BEV)
@\R to RQ - ‘
Radar /
3 f— ada / Radar Features

Feature Stream (in BEV)

radar points

Figure 5: This is the first part of the pipeline. Transformation of raw LiDAR, Radar points, and
images into a BEV representation.

Because BEV features can be spatially misaligned, we use a BEV encoder consisting of several
convolutions and residual blocks (see figure [6). As a BEVFusion, this pipeline can be used for
different tasks such as segmentation and 3D object detection.
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Figure 6: We concatenate all the BEV representations together, encode the result and then send it to
specific heads.

4 EXPERIMENTS

The Nuscenes Dataset is widely used dataset for vision-centric perception with six calibrated cam-
eras covering a 360-degree horizontal FOV, 1 LiDAR and 5 Radars. The camera image resolution is
1600x900. Nuscenes consists of 1000 scenes, each one of them is 20 seconds long. 850 scenes are
for training/validation and 150 for testing.

The most commonly used criterion for BEV Detection is average precision (AP) and the mean
average precision (mAP) over different classes. The Average Precision (AP) metric is extended
from 2D to the 3D space:

1
AP = / max {p(r' | ¥ >r)}dr (3)
0

where p(r) is the precision-recall curve. The difference between 2D AP and 3D AP is the matching
criteria between ground truth and predictions when calculating precision and recall.

Instead of IoU to select TP, NuScenes proposes A Pe..nier Where a predicted object is matched to a
ground truth object if the distance of their center locations on the ground (BEV) plane is below a
certain threshold d. The AP.eye, is calculated under different distance thresholds: D = {0.5,1,2,4}
meters. The mAP is computed by averaging the A P.eper Over all matching thresholds and all classes
C : mAP = m ZCE(C > deD AP, 4. NuScenes Detection Score (NDS) is further proposed to

take both APy, and the error of other parameters, i.e. size, heading, velocity, into consideration.

In our experiments we compared BEVFusion [Liu et al.| (2023) and BiFusion [Yingjie Wang et al.
(2023) with our method (see the Table[2).

Table 2: Results of expirements. L, ’C” and "R” represent LIDAR, Camera, and Radar modalities.

Model mAP | NDS
Bi-LRFusion (R + L) | 62.3 65.54
BEVFusion (C + L) 68.57 | 71.40
CBILR(C+R+L) | 71.09 | 73.36

Experiments show that it is important to use all modalities in a clever way. Combining different
modalities helps to overcome the limitations of individual sensors.

5 CONCLUSION

This work has demonstrated CBILR, a promising multi-sensor fusion framework that aims to im-
prove perception robustness for autonomous vehicles. It has addressed the critical challenge of lim-
ited sensor performance in adverse weather conditions, a significant hurdle on the path to achieving
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truly autonomous navigation. CBILR aims to overcome the limitations of existing fusion meth-
ods by using the Bi-LRFusion module. This module promotes a mutually beneficial LiDAR/radar
relationship, allowing each to benefit from the other’s strengths.

The experiments show that using multiple sensors for fusion increases reliability in challenging
weather conditions. Previous works uniformly combine all sensors together. They do not consider
the weaknesses of different sensors. By utilizing Bi-LRFusion and promoting a thorough under-
standing of the environment, CBILR strives to lead the way into a new era of strong and adaptable
perception. This effort aims to bring autonomous vehicles closer to the ultimate goal of safe and
reliable operation in all conditions.
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