
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMIZING LEARNING FOR ROBUST HYPERBOLIC
DEEP LEARNING IN COMPUTER VISION

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperbolic deep learning has become a growing research direction in computer
vision for the unique properties afforded by the alternate embedding space. The
negative curvature and exponentially growing distance metric provide a natural
framework for capturing hierarchical relationships between datapoints and allowing
for finer separability between their embeddings. However, these methods are still
computationally expensive and prone to instability, especially when attempting to
learn the negative curvature that best suits the task and the data. Current Rieman-
nian optimizers do not account for changes in the manifold which greatly harms
performance and forces lower learning rates to minimize projection errors. Our
paper focuses on curvature learning by introducing an improved schema for popular
learning algorithms and providing a novel normalization approach to constrain
embeddings within the variable representative radius of the manifold. Additionally,
we introduce a novel formulation for Riemannian AdamW, and alternative hybrid
encoder techniques and foundational formulations for current convolutional hy-
perbolic operations, greatly reducing the computational penalty of the hyperbolic
embedding space. Our approach demonstrates consistent performance improve-
ments across both direct classification and hierarchical metric learning tasks while
allowing for larger hyperbolic models.

1 INTRODUCTION

With the recent rise in the use of hyperbolic manifolds for deep representation learning, there is a
growing need for efficient, flexible components that can fully exploit these spaces without sacrificing
stability. This has led researchers to focus on two main derivations of hyperbolic space: the Poincaré
manifold and the hyperboloid. The Poincaré ball, equipped with a gyrovector space, supports various
well-defined operations, including generalized vector addition and multiplication, but it suffers
from significant stability issues. On the other hand, the hyperboloid, or Lorentz space, lacks these
operations but offers much better operation stability, as demonstrated in the study by Mishne et al.
(2022).

To address this gap, previous works have sought to provide Lorentzian definitions for common deep
learning operations such as the feed-forward layer (Chen et al., 2022; Dai et al., 2021; Ganea et al.,
2018), convolutional layer (Chen et al., 2022; Qu & Zou, 2023; Dai et al., 2021), and MLRs (Bdeir
et al., 2024). This increased focus on hyperbolic modeling has led to its gradual integration into
computer vision architectures, as detailed in the survey by Mettes et al. (2023). Specifically, the
hyperboloid model has been employed as a sampling space for VAEs (Nagano et al., 2019), a decoder
space for vision tasks in hybrid settings (Guo et al., 2022; Liu et al., 2020; Khrulkov et al., 2020;
Qu & Zou, 2022), and ultimately for fully hyperbolic Lorentzian vision encoders (Bdeir et al., 2024)
simultaneously with its Poincaré counterpart (van Spengler et al., 2023).

This paper furthers the development of hyperbolic learning for vision tasks, specifically for the Lorentz
manifold. Our primary focus is on the challenge of learning the manifold’s negative curvature.
The driving principle behind this, is that the model embeddings may exhibit varying degrees of
hyperbolicity depending on the innate hierarchies in the datapoints themselves, the problem task that
is being considered, and the specific locations of hyperbolic operation integrations. To accomodate
for this, we can adjust the embedding space’s hyperbolic metric to be less or more Euclidean which

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

accounts for the modeling requirements. We also build on the idea of separate manifolds for separate
main blocks in the architecture further increasing representative flexibility.

We also recognize that despite recent advances, Lorentz models continue to struggle with issues of
high computational costs. We attempt to isolate and alleviate the main factors leading to numerical
inaccuracies and computational overhead overall, and more particularly when modeling data in
higher-dimensional embedding spaces and when learning the curvatures. Our contributions can then
be summed up as:

1. We propose a formulation for Riemannian AdamW and an alternative schema for Riemannian
optimizers that accounts for manifold curvature learning.

2. We propose the use of our maximum distance rescaling function to restrain hyperbolic
vectors within the representative radius of accuracy afforded by the number precision, even
allowing for fp16 precision.

3. We provide a more efficient convolutional layer approach that is able to leverage the highly
optimized existing implementations.

4. We empirically show the effectiveness of combining these approaches using classical image
classification tasks and hierarchical metric learning problems.

2 RELATED WORK

Hyperbolic Embeddings in Computer Vision With the success of employing hyperbolic manifolds
in NLP models (Zhu et al., 2021; Dhingra et al., 2018; Tifrea et al., 2018) hyperbolic embeddings have
extended to the computer vision domain. Initially, many of the works relied on a hybrid architecture,
utilizing Euclidean encoders and hyperbolic decoders (Mettes et al., 2023). This was mainly due to
the high computational cost of hyperbolic operations in the encoder, as well as the lack of well-defined
alternatives for Euclidean operations. However, this trend has begun to shift towards the utilization of
fully hyperbolic encoders as can be seen in the hyperbolic Resnets by Bdeir et al. (2024) and van
Spengler et al. (2023). Both works offer hyperbolic definitions for 2D convolutional layer, batch
normalization layer, and an MLR for the final classification head. Bdeir et al. (2024) even attempt
to hybridize the encoder by employing the Lorentz manifold in blocks that exhibit higher output
hyperbolicity. While this has led to notable performance improvements, both models suffer from
upscaling issues. Attempting to replicate these approaches for larger datasets or bigger architectures
becomes much less feasible in terms of time and memory requirements. Instead, our approach places
higher focus on efficient components to leverage the beneficial hyperbolic properties of the model
while minimizing the memory and computational footprint.

Curvature Learning Previous work in hyperbolic spaces has explored various approaches to curva-
ture learning. In their studies, Gu et al. (2018) and Giovanni et al. (2022) achieve this by using a radial
parametrization that implicitly models variable curvature embeddings under an explicitly defined,
fixed 1-curve manifold. This method enables them to simulate K-curve hyperbolic and spherical
operations under constant curvature for the mixed-curve manifold specifically, a combination of the
Euclidean, spherical, and Poincaré manifold. Other approaches, such as the one by Kochurov et al.
(2020), simply set the curvature to a learnable parameter but do not account for the manifold changes
in the Riemannian optimizers. This leads to hyperbolic vectors being updated with mismatched
curvatures and others being inaccurately reprojected, resulting in instability and accuracy degradation.
Additionally, some methods, like the one by Kim et al. (2023), store all manifold parameters as
Euclidean vectors and project them before use. While this approach partially mitigates the issue
of mismatched curvature operations, it remains less accurate and more computationally expensive.
In comparison, our proposed optimization schema maintains the parameters on the manifold and
optimizes them directly by performing the necessary operations to transition between the variable
curvature spaces.

Metric Learning Metric learning relies on the concept of structuring the distribution in the em-
bedding space so that related data points are positioned closer together, while less related points
are placed further apart. To facilitate this process, numerous studies have introduced additional loss
functions that explicitly encourage this behavior. Contrastive losses, for instance, operate on pairs

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

of data points and propose a penalty that is proportional to the distances between negative pairs
and inversely proportional to the distance between positive pairs (Chopra et al., 2005). Triplet loss
extends this idea by considering sets of three points: an anchor, a positive sample, and a negative
sample (Wang et al., 2014). Instead of changing the distances between points absolutely, it ensures
that the distance between the anchor and the positive sample is less than the distance between the
anchor and the negative sample, plus a margin, thus enforcing a relational criterion.

These approaches have also been adapted to hierarchical problem settings under hyperbolic manifolds
(Yang et al., 2022; Kim et al., 2023). Notably, Kim et al. (2023) developed a method for learning
continuous hierarchical representations using a deep learning, data-mining-like approach that relies
on the innate relationships of the embeddings rather than their labels. They employ a proxy-based
method that models the data on the Poincaré ball, facilitating a more natural extension to hierarchical
tasks. Building on this, we extend the approach by modeling the loss function in the Lorentz manifold
and incorporating a learnable curvature to better handle data with varying levels of hierarchy.

3 METHODOLOGY

Hyperbolic embeddings offer significant advantages for computer vision tasks that benefit from
hierarchical structure modeling, but their effectiveness is hindered by practical challenges, including
mathematical inconsistencies in curvature learning, the absence of a Riemannian AdamW optimizer,
stability issues with float32 precision, and high computational costs from inefficient convolutions.

To address these issues, the following sections introduce four key advancements: a more stable
curvature learning method, a Riemannian AdamW optimizer, a normalization scheme for improved
float32 precision stability, and efficient hyperbolic convolutions to reduce memory and computational
costs.

3.1 BACKGROUND

The hyperbolic space is a Riemannian manifold with a constant negative sectional curvature c < 0.
There are many conformal models of hyperbolic space but we focus our work on the hyperboloid,
or Lorentz manifold. The n-dimensional Lorentz model Ln

K = (Ln, gKx) is defined with Ln :=
{x ∈ Rn+1 | ⟨x,x⟩L = −1

K , xt > 0} where −1
K = c, and with the Riemannian metric gKx =

diag(−1, 1, . . . , 1). This models the upper sheet of a two-sheeted hyperboloid centered at 0 =

[
√
K, 0, · · · , 0]T . We inherit the terminology of special relativity and refer to the first dimension of a

Lorentzian vector as the time component xt and the remainder of the vector, the space dimension xs.
The Lorentzian inner product then becomes ⟨x,y⟩L := −xtyt + xT

s ys = xTdiag(−1, 1, · · · , 1)y.
We now define the common hyperbolic operations in the Lorentz space.

Distance Distance in hyperbolic space is the magnitude of the geodesic forming the shortest
path between two points. Let x,y ∈ Ln

K , the distance between them is given by dL(x,y) =√
K cosh−1(−⟨x,y⟩L

K). We also define the square distance by Law et al. (2019) as d2L(x,y) =

||x− y||2L = −2K − 2⟨x,y⟩L.

Exponential and Logarithmic Maps Seeing as the Lorentz space is a Riemannian manifold,
it is locally Euclidean. This can best be described through the tangent space TxM, a first-order
approximation of the manifold at a given point x. The exponential map, expKx (z) : TxLn

K → Ln
K

is then the operation that maps a tangent vector TxLn
K onto the manifold through expKx (z) =

cosh(α)x + sinh(α) zα , with α =
√

1/K||z||L, ||z||L =
√
⟨z, z⟩L. The logarithmic map is the

inverse of this mapping and can be described as logKx (y) = cosh−1(β)√
β2−1

· (y − βx), with β =

− 1
K ⟨x,y⟩L.

3.2 RIEMANNIAN OPTIMIZATION

On the Stability of Curvature Learning In the hyperbolic learning library GeoOpt, Kochurov et al.
(2020) introduce the curvature of hyperbolic space as a learnable parameter. However, no subsequent

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) At a random point (b) At the origin

Figure 1: Tangent planes of a hyperboloid with curvature -1 relative to another hyperboloid with
curvature -0.7. Tangential properties between manifolds are better respected at the origin where
tangents remain parallel.

work has fully leveraged this feature, and our empirical testing reveals that this approach often leads
to instability and performance decline. We attribute these issues to the simplistic implementation of
the curvature updates, which neglects to update the hyperbolic operations after updating the curvature.

In the current Riemannian optimization approach, Euclidean gradients and their momentums are
projected onto the Riemannian manifold and then used to update the hyperbolic parameters. These
operations inherently depend on the curvature of the space. However, when the curvature is adjusted
during learning, the projections, gradients, and hyperbolic parameters can become inconsistent, as
they mix the projection and update operations from the new curvature with vectors defined under the
previous curvature.

To illustrate this, Figure 1 shows two manifolds with different curvatures. It is evident that points
defined on the first manifold do not lie on the second, and the tangent planes of the first manifold are
not aligned with those of the second. Thus, using the new curvature operations on points from the old
model is not mathematically sound practice. This inconsistency introduces instability, undermining
the reliability of curvature learning and often leading to invalid values during the parameter updates.
To address this, we propose a method that tracks both the old and new curvature values throughout
updates. Specifically, all updates are applied under the old curvature, after which the hyperbolic
vectors are mapped from the old manifold to the new one.

While GeoOpt does not address the optimization challenges involved in learning manifold curvature,
it does implement an ”N-stabilize step”. This step aims to reduce instability by recalculating the
time component of the hyperbolic parameters every N-steps to ensure they remain on the manifold.
However, this approach fails to prevent invalid parameter values before the update steps and suffers
from high inaccuracies due to the mathematically flawed parameter optimization.

Moreover, the time re-calculation projection used in the stabilize step alters the relative magnitudes of
the hyperbolic vectors and gradients, and even the directions of the momentums, which can degrade
performance and lead to training instability. Instead, we recommend projecting points onto the
tangent space at the old origin using the logarithmic map and then projecting back after the curvature
update. Gradients and their momentum can be similarly projected or parallel transported to the
tangent space. Parallel transport is chosen here because it preserves the vectors’ directions which is
important for the optimization procedure.

Additionally, when the curvature changes, the tangent space at the origin remains relatively stable,
as shown in Figure 1. Moving onto the new manifold is then a simple exponential map and parallel
transport back operation. This preserves the vector norms and their hyperbolic distances to the origin
since D(expK1

0
(y) ,0)K1 = ||y|| = D(expK2

0
(y) ,0)K2 where y ∈ T0M. No changes are needed

for the tangent vector during the move between tangent spaces of different curvatures since these
spaces are parallel, making the transition a simple translation along the time axis.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

It is important to emphasize that our proposed optimization scheme is compatible with existing
curvature learning and meta-learning methods. Rather than being an alternative, it serves as a
guideline for updating manifold parameters during curvature changes, aimed at maintaining learning
stability throughout the process.

Riemannian AdamW Optimizer Recent works, particularly with transformers, commonly use the
AdamW optimizer introduced by Loshchilov & Hutter (2019). As of current, there is no established
Riemannian variant of this optimizer. We attempt to derive AdamW for the Lorentz manifold and
argue a similar approach could be extended to the Poincaré ball. The main difference between
AdamW and Adam is the direct weight regularization. This is more difficult to perform in the Lorentz
space given the lack of an intuitive subtraction operation on the manifold. To resolve this, we reframe
the parameter regularization in the original AdamW as a weighted centroid with the origin O

θt−1 − γλθt−1 = (1− γλ)θt−1 + γλO

where γ is the learning rate and λ is the weight decay value. The centroid operation is well defined in
the Lorentz space which now allows for a direct translation of AdamW. The regularization schema
becomes:

θt =

{
µL([θt−1,0],ν = [1− γλ, γλ]) if θ ∈ L
θt−1 − γθt−1λ otherwise

where µL is the Lorentz centroid, and ν are the weights. By removing the later gradient decay and
introducing this operation, we adapt AdamW for use in the Lorentz space.

Algorithm 1 Curvature Learning Aware Opti-
mization

Given parameters θ = [θeuclid,θL,θK]
and gradients denoted G
procedure OPTIMIZER STEP(θ)

for p in θL do
Vanilla Riemannian Optimizer Step

end for
for p in θeuclid ∪ θK do

Vanilla Eucldiean Optimizer Step
end for
MoveParameters()

end procedure
procedure MOVE PARAMETERS

for p in θL do
Gtemp = PT

Kt−1

p→0t−1
(G)

z = log
Kt−1

0t−1
(p)

p = expKt

0t
(z)

G = PTKt

0t→p
(Gtemp)

end for
end procedure

Maximum Distance Rescaling Vectors in the hy-
perboloid models can be defined as x = [xt,xs]

T ∈
Ln
K where xt =

√
||xs||2 +K, K = −1/c and c

is the manifold curvature. As such, Lorentzian pro-
jections and operations rely on the ability to accu-
rately calculate the corresponding time component
xt for the hyperbolic vectors. Under Float64 preci-
sion, Mishne et al. (2022) derive a maximum value
for the time component xtmax = 108. Values above
this push vectors off the Lorentz manifold and onto
the cone defined by x2

t =
∑

x2
s. Based on the above,

and given a specific K, we can derive a maximum
representational radius for the model as

DK
0max

= arccosh(
xtmax√

K
) ·

√
K (1)

Under Float32 precision, and to account for values
of K < 1 we use a limit value of xtmax = 2 · 103.
When projected onto the tangent space of the origin,
and with K = 1, this translates to || log10(x)|| =
D1

0max
= 9.1. This value changes considerably as

the value of K changes. Vectors outside this radius
lead to instability and performance degradation due
to inaccurate approximation. This problem is only
exacerbated as the dimensionality of the hyperbolic
vector increases. Higher dimensional vectors tend to

have larger norms which limits hyperbolic models’ abilities to scale up.

To constrain hyperbolic vectors within a specified maximum distance, either a normalization function
or a parameter clipping method is required. Parameter clipping can be challenging to train, as it
may lead to information loss and introduce non-smooth gradients. On the other hand, common
normalization functions like tanh and the sigmoid function tend to saturate quickly, limiting their
effectiveness as seen in the sigmoid implementation by Chen et al. (2022). To address these issues,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

we introduce a modified scaling function, designed to provide finer control over both the maximum
values and the slope of the curve. A visualization of this function is provided in Figure 3, and the
formulation is presented below:

yrescaled =
y

∥y∥
·m · tanh(∥y∥ · atanh(0.99)

s ·m
) (2)

where y ∈ Rd, m is our desired maximum value, and s controls the slope of the curve. We now
have a maximum distance value to adhere to and a flexible distance normalizing function. To apply
this to the hyperbolic vectors, we suggest performing the scaling on the tangent plane of the origin.
However, this is an expensive operation to perform often, as such we derive in appendix A.2 the
equivalent factorized form for the scaling of the space values:

xsrescaled
= xs ×

e
D(x,0)Krescaled√

K − e
−D(x,0)Krescaled√

K

e
D(x,0)K√

K − e
−D(x,0)K√

K

(3)

where D(x,0)krescaled is the scaled distances by plugging in D(x,0) and DK
0max

in Eq.2. The time
component of the vector is then recalculated based on the norm of its spatial components. This gives
us a complete scaling operation for the Lorentz space. We apply this tanh scaling when moving
parameters across different manifolds. This includes transitions from the Euclidean space to the
Lorentz space, as well as between Lorentz spaces of different curvatures. Additionally, we use
this scaling after Lorentz Boosts and direct Lorentz concatenations (Qu & Zou, 2022). We also
incorporate it following the variance-based rescaling in the batch normalization layer, since variance
adjustments during this operation can push points outside the radius during the operation and often
lead to invalid values.

3.3 TOWARDS EFFICIENT ARCHITECTURAL COMPONENTS

Lorentz Convolutional Layer In their work, Bdeir et al. (2024) proposed a fully hyperbolic
2D convolutional layer by breaking down the convolution operation into a window-unfolding step
followed by a modified version of the Lorentz Linear Layer from Chen et al. (2022). This approach
ensured that the convolution outputs remained on the hyperboloid. However, the manual patch
creation combined with matrix multiplication made the computation extremely expensive, as it
prevented the use of highly optimized CUDA implementations for convolutions.

To address this issue, we adopt an alternative definition of the Lorentz Linear layer from Dai et al.
(2021), which decomposes the transformation into a Lorentz boost and a Lorentz rotation. Using
this definition, we replace the matrix multiplication employed by Bdeir et al. (2024) for the spatial
dimensions and time component projection with a learned rotation operation and a Lorentz boost.
Additionally, we can achieve the rotation operation using a parameterization of the convolution
weights while still relying on the CUDA convolution implementations, significantly improving
computational efficiency.

A rotation is any operation that modifies the directions of transformed vectors while preserving their
magnitudes. This can be achieved using a matrix Ŵ ∈ S. Where

S(n′, n) = M ∈ R(n′·n) : MTM = I (4)

represents the Stiefel manifold. The condition n ≤ n′ ensures that the columns of the weight matrix
are orthogonal, thereby preserving the norms along the rows of the input matrix, which correspond to
the individual embeddings in this context.

To apply this concept to the convolution operation, the convolution weights, after unfolding, must
form a rotation matrix. We define the dimensions of this matrix as n = (channelsin · kernelwidth ·
kernelheight) and n′ = channelsout respectively. However, the condition for orthogonal columns
is not always satisfied as there will be instances where n > n′. For these cases we use the norm-
preserving transformation z = W Tx · ∥x∥

∥WT x∥ where W ∈ R(n′·n). This formulation allows us to
utilize existing efficient implementations of the convolution operation by directly parameterizing

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the kernel weights before passing them into the convolutional layer. Finally, we formalize the new
Lorentz Convolution as:

out = LorentzBoost(TanhScaling(RotationConvolution(x))) (5)

where TanhRescaling is the operation described in Eq.3 and RotationConvolution is a normal convolu-
tion parameterized through the procedure in Algorithm 2, where Orthogonalize is a Cayley projection
similar to (Helfrich et al., 2018) or the norm-preserving transformation above. We specifically use
the Cayley projection because it always produces an orthonormal matrix with a positive determinant,
ensuring that the rotated point remains on the upper sheet of the hyperboloid and avoids being mapped
to the lower sheet.

Algorithm 2 Lorentz Convolution Parametarization

W ∈ RCin,Cout,Kwidth,Klength

procedure ADAPTWEIGHT(W)
if Kwidth ·Klength · Cin > Cout then

return W
else

W = W .reshape(Kwidth ·Klength · Cin, Cout)

Ŵcore = Orthogonalize (W)
return Ŵ .reshape(Cin, Cout,Kwidth,Klength)

end if
end procedure

Ŵcore can also be learned directly on
the SPD manifold similar to Dai et al.
(2021). This definition of the con-
volution operation allows to use the
existing efficient implementations of
2D convolutions, saving both memory
and runtime.

Lorentz-Core Bottleneck Block
To build on the concept of hybrid
hyperbolic encoders introduced by
(Bdeir et al., 2024), we developed
the Lorentz Core Bottleneck blocks
for hyperbolic ResNet-based models.
These blocks are similar to standard
Euclidean bottleneck blocks but
replace the internal 3x3 convolutional
layer with our efficient convolutional layer as illustrated in figure 2. This design allows us to
incorporate hyperbolic structuring of the embeddings within each block while retaining the flexibility
and computational efficiency of Euclidean models. We interpret this integration as a form of
hyperbolic bias, enabling ResNets to leverage hyperbolic representations without requiring fully
hyperbolic modeling.

4 EXPERIMENTS

4.1 HIERARCHICAL METRIC LEARNING PROBLEM

Euclidean 1x1 Conv

Manifold Switcher + Scale

Hyperbolic 3x3 Conv

Manifold Switcher + Scale

Euclidean 1x1 Conv

BN + ReLU

Hyper BN + ReLU

Figure 2: Lorentz-Core Bottle-
neck Block

In their paper Kim et al. (2023) take on the problem of hierarchical
clustering using an unsupervised hyperbolic loss regularizer they
name HIER. This method relies on the use of hierarchical proxies
as learnable ancestors of the embedded data points in hyperbolic
space. Given a triplet of points xi, xj, xk where xi and xj are
determined to be related by a reciprocal nearest neighbor measure,
and xk is an unrelated point, the HIER loss regularizer is then
calculated as

LHIER(t) = [DB(xi, ρij)−DB(xi, ρijk) + δ]+

+ [DB(xj , ρij)−DB(xj , ρijk) + δ]+

+ [DB(xk, ρijk)−DB(xk, ρij) + δ]+,

(6)

where DB denotes the hyperbolic distance on the Poincaré ball,
and ρij is the most likely least common ancestor of points xi and
xj . This encourages a smaller hyperbolic distance between xi, xj ,
and ρij , and a larger distance with ρijk. The opposite signal is then applied in the case of xk, the
irrelevant data point. Kim et al. (2023) show substantial performance uplifts for the HIER loss when
applied to a variety of network architectures.

In the following experiment, we extend HIER to the Lorentz model (LHIER) and compare against
the results provided by Kim et al. (2023).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Experimental Setup We follow the experimental setup in Kim et al. (2023) and rely on four
main datasets: CUB-200-2011 (CUB)(Welinder et al., 2010), Cars-196 (Cars)(Krause et al., 2013),
Stanford Online Product (SOP)(Song et al., 2016), and In-shop Clothes Retrieval (InShop)(Liu et al.,
2016). Performance is measured using Recall@k which is the fraction of queries with one or more
relevant samples in their k-nearest neighbors. Additionally, all model backbones are pre-trained on
Imagenet to ensure fair comparisons with the previous work.

Moving to Lorentz Space To adapt the HIER model to the hyperboloid we first replace the Eu-
clidean linear layer with a Lorentzian linear layer in the model neck and implement our max distance
scaling operation after. We then set the hierarchical proxies as learnable hyperbolic parameters and
optimize them directly on the manifold using our Lorentzian AdamW. Finally, we change the Poincaré
distance to the Lorentz distance for the LHIER loss and set the hierarchical proxies to be scaled
beforehand. We continue to use FP16 precision during curvature learning to evaluate the stability
of the new optimization scheme. Our experiments also include both CNN-based and transformer
models to assess whether differences in architecture affect the performance of the hyperbolic heads.

Results As shown in table 1, our HIER+ model manages to improve the performance of mainly the
CNN-based models with improvements ranging in recall@1 from 1-2.3%. In contrast, transformer
models exhibit marginal gains in most cases and even show slight declines in other scenarios. This
indicates that the proposed components do not better fully exploit the advantages of transformer
architectures compared to other hyperbolic methods. The reasons may include architectural limitations
or insufficient hyperparameter tuning. Notably, Kim et al. (2023) employed an extensive set of
hyperparameters for model training, which we kept at default values to ensure fair comparisons and
avoid costly hyperparameter searches.

4.2 STANDARD CLASSIFICATION PROBLEM

Experimental Setup We follow the experimental setup and hyperparameters of Bdeir et al. (2024)
and rely on three main datasets: CIFAR10, CIFAR100, and Mini-Imagenet. We denote HCNN+ as the
fully hyperbolic model from Bdeir et al. (2024), updated with efficient convolution implementations
and our proposed scaling function. This experiment aims to boost model efficiency and address the
performance inconsistencies observed in the original version.

For ResNet-18, we employ HECNN+, following the structure outlined in Bdeir et al. (2024) with
alternating Euclidean and hyperbolic blocks, and integrate our efficient convolution operation. While
we do not expect similar efficiency gains to those seen in fully hyperbolic models, our focus here is
on enhancing scalability. In the case of ResNet-50, we adapt HECNN+ by replacing all blocks with
the Lorentz-Core bottleneck block, where we anticipate the most significant efficiency improvements
due to the larger model size. Our goal is to evaluate if the Lorentz-Core block can maintain strong
performance under these conditions.

For both ResNet-18 and ResNet-50, we use Riemannian SGD with our improved learning scheme
and curvature learning. We also decouple the encoder and decoder manifolds, allowing each to
independently learn its own curvature for enhanced model flexibility.

Results For the ResNet-18 experiments, Table 2 shows that the new architectures achieve com-
parable or better results across almost all cases. The smallest improvements are observed with the
hybrid models, likely due to the reduced impact of the hyperbolic components compared to a fully
hyperbolic model. However, we see a significant performance gap between the fully hyperbolic
models, where our proposed architecture now matches the performance of the hybrid encoders. We
hypothesize that the improved scaling helps mitigate the previous performance inconsistencies, with
the whole model being two times more memory efficient.

In the ResNet-50 experiments in Table 3, we observe that HECNN+ significantly outperforms the
Euclidean model across all datasets, including Tiny-ImageNet, where other models typically begin
to show a drop in accuracy. This improvement is likely due to the tighter integration of hyperbolic
components and the enhanced scaling, which helps manage the challenges of higher-dimensional
embeddings.

We evaluate the impact of our efficient convolution and Lorentz-Core block in Table 3. We see a
∼ 48% reduction in memory usage and ∼ 66% reduction in runtime. We attribute this improvement

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Performance of metric learning methods on the four datasets as provided by (Kim et al.,
2023). All architecture backbones are pretrained and tested with the new LHIER loss. Superscripts
denote their embedding dimensions and † indicates models using larger input images. As in (Kim
et al., 2023), network architectures are abbreviated as, R–ResNet50 (He et al., 2016), B–Inception
with BatchNorm (Ioffe & Szegedy, 2015), De–DeiT (Touvron et al., 2021), DN–DINO (Caron et al.,
2021) and V–ViT (Dosovitskiy et al., 2021)

Methods Arch.

CUB Cars SOP

R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100

Backbone architecture: CNN

NSoftmax (Zhai & Wu, 2018) R128 56.5 69.6 79.9 81.6 88.7 93.4 75.2 88.7 95.2
MIC (Roth et al., 2019) R128 66.1 76.8 85.6 82.6 89.1 93.2 77.2 89.4 94.6
XBM (Wang et al., 2020) R128 - - - - - - 80.6 91.6 96.2

XBM (Wang et al., 2020) B512 65.8 75.9 84.0 82.0 88.7 93.1 79.5 90.8 96.1
HTL (Ge et al., 2018) B512 57.1 68.8 78.7 81.4 88.0 92.7 74.8 88.3 94.8
MS (Wang et al., 2019) B512 65.7 77.0 86.3 84.1 90.4 94.0 78.2 90.5 96.0
SoftTriple (Qian et al., 2019) B512 65.4 76.4 84.5 84.5 90.7 94.5 78.6 86.6 91.8
PA (Kim et al., 2020) B512 68.4 79.2 86.8 86.1 91.7 95.0 79.1 90.8 96.2
NSoftmax (Zhai & Wu, 2018) R512 61.3 73.9 83.5 84.2 90.4 94.4 78.2 90.6 96.2
†ProxyNCA++ (Teh et al., 2020) R512 69.0 79.8 87.3 86.5 92.5 95.7 80.7 92.0 96.7
Hyp (Ermolov et al., 2022) R512 65.5 76.2 84.9 81.9 88.8 93.1 79.9 91.5 96.5
HIER (Kim et al., 2023) R512 70.1 79.4 86.9 88.2 93.0 95.6 80.2 91.5 96.6
LHIER (ours) R512 72.4 81.5 88.4 89.1 93.5 96.1 81.3 92.1 96.8

Backbone architecture: ViT

IRTR (El-Nouby et al., 2021) De128 72.6 81.9 88.7 - - - 83.4 93.0 97.0
Hyp (Ermolov et al., 2022) De128 74.7 84.5 90.1 82.1 89.1 93.4 83.0 93.4 97.5
HIER (Kim et al., 2023) De128 75.2 84.2 90.0 85.1 91.1 95.1 82.5 92.7 97.0
LHIER (ours) De128 75.5 84.7 90.6 85.4 91.7 95.6 82.7 93.5 97.4
Hyp (Ermolov et al., 2022) DN128 78.3 86.0 91.2 86.0 91.9 95.2 84.6 94.1 97.7
HIER (Kim et al., 2023) DN128 78.5 86.7 91.5 88.4 93.3 95.9 84.9 94.2 97.5
LHIER (ours) DN128 78.8 87.0 91.9 88.9 93.2 96.4 85.1 94.9 98.2
Hyp (Ermolov et al., 2022) V128 84.0 90.2 94.2 82.7 89.7 93.9 85.5 94.9 98.1
HIER (Kim et al., 2023) V128 84.2 90.1 93.7 86.4 91.9 95.1 85.6 94.6 97.8
LHIER (ours) V128 84.6 90.2 93.9 86.7 92.0 95.3 85.9 95.0 98.0

IRTR (El-Nouby et al., 2021) De384 76.6 85.0 91.1 - - - 84.2 93.7 97.3
DeiT-S (Touvron et al., 2021) De384 70.6 81.3 88.7 52.8 65.1 76.2 58.3 73.9 85.9
Hyp (Ermolov et al., 2022) De384 77.8 86.6 91.9 86.4 92.2 95.5 83.3 93.5 97.4
HIER (Kim et al., 2023) De384 78.7 86.8 92.0 88.9 93.9 96.6 83.0 93.1 97.2
LHIER (ours) De384 78.3 86.2 91.8 88.7 93.4 96.4 82.8 92.9 96.9
DINO (Caron et al., 2021) DN384 70.8 81.1 88.8 42.9 53.9 64.2 63.4 78.1 88.3
Hyp (Ermolov et al., 2022) DN384 80.9 87.6 92.4 89.2 94.1 96.7 85.1 94.4 97.8
HIER (Kim et al., 2023) DN384 81.1 88.2 93.3 91.3 95.2 97.1 85.7 94.6 97.8
LHIER (ours) DN384 81.3 88.4 93.3 91.5 95.1 97.6 85.9 95.0 98.1
ViT-S (Dosovitskiy et al., 2021) V384 83.1 90.4 94.4 47.8 60.2 72.2 62.1 77.7 89.0
Hyp (Ermolov et al., 2022) V384 85.6 91.4 94.8 86.5 92.1 95.3 85.9 94.9 98.1
HIER (Kim et al., 2023) V384 85.7 91.3 94.4 88.3 93.2 96.1 86.1 95.0 98.0
LHIER (ours) V384 86.2 92.1 95.2 88.6 93.6 96.3 86.7 95.3 98.3

to the efficient closed-source convolution operations we can now leverage. Similar gains are also
observed in generation tasks and classification with smaller models. However, there remains sig-
nificant room for further optimization when compared to the Euclidean baseline. A key remaining
performance bottleneck identified is the batch normalization step, which contributes approximately
60% of the runtime and around 30% of the memory usage. The next step would be to factorize the
extensive parallel transports and tangent mappings involved in this operation, potentially alleviating
the associated overhead.

4.3 VAE IMAGE GENERATION

Experimental Setup Previous research has highlighted the ability of hyperbolic neural networks to
perform better when using lower dimensional embeddings due to the more expressive space (Nagano

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Classification accuracy (%) of ResNet-18 models. We estimate the mean and standard
deviation from five runs. The best performance is highlighted in bold (higher is better).

CIFAR-10 CIFAR-100 VRAM/tepoch Tiny-ImageNet
(δrel = 0.26) (δrel = 0.23) For Cifar100 (δrel = 0.20)

Euclidean (He et al., 2016) 95.14±0.12 77.72±0.15 1.2GB - 12s 65.19±0.12

Hybrid Poincaré (Guo et al., 2022) 95.04±0.13 77.19±0.50 - 64.93±0.38

Hybrid Lorentz (Bdeir et al., 2024) 94.98±0.12 78.03±0.21 - 65.63±0.10

Poincaré ResNet (van Spengler et al., 2023) 94.51±0.15 76.60±0.32 - 62.01±0.56

HECNN Lorentz (Bdeir et al., 2024) 95.16±0.11 78.76±0.24 4.3GB - 100s 65.96±0.18

HECNN+ (ours) 95.15±0.07 78.80±0.12 3GB - 80s 65.98±0.11

HCNN Lorentz (Bdeir et al., 2024) 95.15±0.08 78.07±0.17 10GB - 175s 65.71±0.13

HCNN+ (ours) 95.17±0.09 78.81±0.19 5GB - 140s 66.12±0.14

Table 3: Classification accuracy (%) of ResNet-50 models. The best performance is highlighted in
bold (higher is better).

CIFAR-10 CIFAR-100 VRAM/tepoch Tiny-ImageNet
(δrel = 0.26) (δrel = 0.23) - (δrel = 0.20)

Euclidean (He et al., 2016) 95.14 78.52 4.5GB - 30s 66.23
Hybrid Lorentz (Bdeir et al., 2024) 95.38 79.35 - 66.01
HECNN (Bdeir et al., 2024) 95.42 79.83 15.6GB - 300s 66.30
HCNN+ w Bottleneck Conv. (ours) 95.46 80.86 8.1GB - 100s 67.18

et al., 2019; Mathieu et al., 2019; Ovinnikov, 2019; Hsu et al., 2020). A natural extension to this
would be implementing the models for VAEs which rely on smaller latent embedding dimensions
to encode the inputs. Bdeir et al. (2024) perform this study on image generation and reconstruction
for their fully hyperbolic models. In the following section, we reproduce the experimental setup and
re-implement the fully hyperbolic VAE using our new efficient convolution and transpose convolution
layers. We also use curvature learning with our adjusted Riemannian SGD learning scheme.

Results We see in table 4 that our implementation of the fully hyperbolic VAE achieves better
performance on both datasets. It should also be noted that this is achieved with around 2.5x less
memory and at 3x greater training speed. This helps demonstrate both the effectiveness of our
proposed curvature learning process and our efficient model components.

Table 4: Reconstruction and generation FID of manifold VAEs across five runs (lower is better).

CIFAR-100 CelebA

Rec. FID Gen. FID Rec. FID Gen. FID

Euclidean 63.81±0.47 103.54±0.84 54.80±0.29 79.25±0.89

Hybrid Poincaré (Mathieu et al., 2019) 62.64±0.43 98.19±0.57 54.62±0.61 81.30±0.56

Hybrid Lorentz (Nagano et al., 2019) 62.14±0.35 98.34±0.62 54.64±0.34 82.78±0.93

HCNN Lorentz (Bdeir et al., 2024) 61.44±0.64 100.27±0.84 54.17±0.66 78.11±0.95

HCNN+ Lorentz (Ours) 57.69±0.52 98.14±0.44 52.73±0.27 77.98±0.32

5 CONCLUSION

In our work, we present many new components and schemas for the use of hyperbolic deep learning
in hyperbolic vision. We test these components in three vision tasks and prove the potential of these
new components even in float16 conditions.

However, there is still significant room for improvement. Further optimizations to the batch nor-
malization layers could enhance the efficiency of hyperbolic models. Additionally, a key challenge
remains with the hyperbolic linear layers when reducing dimensionality. Currently, we match norms
to simulate a rotation operation, but we encourage exploring alternative approaches that align more
naturally with the mathematical properties of the manifold.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. Fully hyperbolic convolutional neural
networks for computer vision, 2024.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proc. IEEE
International Conference on Computer Vision (ICCV), 2021.

Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
Fully hyperbolic neural networks, 2022.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application
to face verification. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2005.

Jindou Dai, Yuwei Wu, Zhi Gao, and Yunde Jia. A hyperbolic-to-hyperbolic graph convolutional
network, 2021.

Bhuwan Dhingra, Christopher J. Shallue, Mohammad Norouzi, Andrew M. Dai, and George E. Dahl.
Embedding text in hyperbolic spaces, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In Proc. International
Conference on Learning Representations (ICLR), 2021.

Alaaeldin El-Nouby, Natalia Neverova, Ivan Laptev, and Hervé Jégou. Training vision transformers
for image retrieval. arXiv preprint arXiv:2102.05644, 2021.

Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Oseledets. Hyper-
bolic vision transformers: Combining improvements in metric learning. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.

Octavian Ganea, Gary Becigneul, and Thomas Hofmann. Hyperbolic neural networks. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
dbab2adc8f9d078009ee3fa810bea142-Paper.pdf.

Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R. Scott. Deep metric learning with
hierarchical triplet loss. In Proc. European Conference on Computer Vision (ECCV), 2018.

Francesco Di Giovanni, Giulia Luise, and Michael Bronstein. Heterogeneous manifolds for curvature-
aware graph embedding, 2022.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representations
in product spaces. In International Conference on Learning Representations, 2018. URL https:
//api.semanticscholar.org/CorpusID:108328651.

Y. Guo, X. Wang, Y. Chen, and S. X. Yu. Clipped hyperbolic classifiers are super-hyperbolic
classifiers. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–10, Los Alamitos, CA, USA, jun 2022. IEEE Computer Society. doi: 10.
1109/CVPR52688.2022.00010. URL https://doi.ieeecomputersociety.org/10.
1109/CVPR52688.2022.00010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with scaled
cayley transform, 2018.

11

https://proceedings.neurips.cc/paper/2018/file/dbab2adc8f9d078009ee3fa810bea142-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dbab2adc8f9d078009ee3fa810bea142-Paper.pdf
https://api.semanticscholar.org/CorpusID:108328651
https://api.semanticscholar.org/CorpusID:108328651
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00010
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00010

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Joy Hsu, Jeffrey Gu, Gong-Her Wu, Wah Chiu, and Serena Yeung. Capturing implicit hierarchical
structure in 3d biomedical images with self-supervised hyperbolic representations, 2020. URL
https://arxiv.org/abs/2012.01644.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proc. International Conference on Machine Learning (ICML),
2015.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky.
Hyperbolic image embeddings. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric
learning. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Sungyeon Kim, Boseung Jeong, and Suha Kwak. Hier: Metric learning beyond class labels via
hierarchical regularization, 2023.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch,
2020.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In Proceedings of the IEEE International Conference on Computer Vision
Workshops, pp. 554–561, 2013.

Marc Law, Renjie Liao, Jake Snell, and Richard Zemel. Lorentzian distance learning for hyperbolic
representations. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 3672–3681. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/law19a.html.

Shaoteng Liu, Jingjing Chen, Liangming Pan, Chong-Wah Ngo, Tat-Seng Chua, and Yu-Gang
Jiang. Hyperbolic visual embedding learning for zero-shot recognition. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9270–9278, 2020. doi:
10.1109/CVPR42600.2020.00929.

Shu Liu, Xiaojuan Qi, Jianping Shi, Hong Zhang, and Jiaya Jia. Multi-scale patch aggregation (MPA)
for simultaneous detection and segmentation. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, and Yee Whye Teh. Continuous
hierarchical representations with poincaré variational auto-encoders, 2019. URL https://
arxiv.org/abs/1901.06033.

Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel, Jeffrey Gu, and Serena Yeung. Hyperbolic
deep learning in computer vision: A survey, 2023.

Gal Mishne, Zhengchao Wan, Yusu Wang, and Sheng Yang. The numerical stability of hyperbolic
representation learning, 2022. URL https://arxiv.org/abs/2211.00181.

Valter Moretti. The interplay of the polar decomposition theorem and the lorentz group, 2002. URL
https://arxiv.org/abs/math-ph/0211047.

Yoshihiro Nagano, Shoichiro Yamaguchi, Yasuhiro Fujita, and Masanori Koyama. A wrapped normal
distribution on hyperbolic space for gradient-based learning, 2019. URL https://arxiv.
org/abs/1902.02992.

Ivan Ovinnikov. Poincaré wasserstein autoencoder. 2019. doi: 10.48550/ARXIV.1901.01427. URL
https://arxiv.org/abs/1901.01427.

Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong Jin. Softtriple loss: Deep metric
learning without triplet sampling. In Proc. IEEE International Conference on Computer Vision
(ICCV), 2019.

12

https://arxiv.org/abs/2012.01644
https://proceedings.mlr.press/v97/law19a.html
https://proceedings.mlr.press/v97/law19a.html
https://arxiv.org/abs/1901.06033
https://arxiv.org/abs/1901.06033
https://arxiv.org/abs/2211.00181
https://arxiv.org/abs/math-ph/0211047
https://arxiv.org/abs/1902.02992
https://arxiv.org/abs/1902.02992
https://arxiv.org/abs/1901.01427

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Eric Qu and Dongmian Zou. Lorentzian fully hyperbolic generative adversarial network, 2022. URL
https://arxiv.org/abs/2201.12825.

Eric Qu and Dongmian Zou. Hyperbolic convolution via kernel point aggregation, 2023.

Karsten Roth, Biagio Brattoli, and Bjorn Ommer. Mic: Mining interclass characteristics for improved
metric learning. In Proc. IEEE International Conference on Computer Vision (ICCV), 2019.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted struc-
tured feature embedding. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Eu Wern Teh, Terrance DeVries, and Graham W Taylor. Proxynca++: Revisiting and revitalizing
proxy neighborhood component analysis. In European Conference on Computer Vision (ECCV).
Springer, 2020.

Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincaré glove: Hyperbolic word
embeddings, 2018.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In Proc.
International Conference on Machine Learning (ICML), 2021.

Max van Spengler, Erwin Berkhout, and Pascal Mettes. Poincaré resnet, 2023.

Jiang Wang, Yang Song, T. Leung, C. Rosenberg, Jingbin Wang, J. Philbin, Bo Chen, and Ying Wu.
Learning fine-grained image similarity with deep ranking. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. Multi-similarity loss
with general pair weighting for deep metric learning. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R Scott. Cross-batch memory for embedding
learning. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
6388–6397, 2020.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

Zhibo Yang, Muhammet Bastan, Xinliang Zhu, Douglas Gray, and Dimitris Samaras. Hierarchical
proxy-based loss for deep metric learning. 2022.

Andrew Zhai and Hao-Yu Wu. Classification is a strong baseline for deep metric learning. arXiv
preprint arXiv:1811.12649, 2018.

Yudong Zhu, Di Zhou, Jinghui Xiao, Xin Jiang, Xiao Chen, and Qun Liu. Hypertext: Endowing
fasttext with hyperbolic geometry, 2021.

A APPENDIX

A.1 OPERATIONS IN HYPERBOLIC GEOMETRY

Parallel Transport A parallel transport operation PTK
x→y (v) describes the mapping of a vector

on the manifold v from the tangent space of x ∈ L to the tangent space of y ∈ L. This operation is
given as PTK

x→y (v) = v + ⟨y,v⟩L
K−⟨x,y⟩L (x+ y).

Lorentzian Centroid (Law et al., 2019) Also denoted as µL, is the weighted centroid be-
tween points on the manifold based on the Lorentzian square distance. Given the weights ν,
µ =

∑m
i=1 νixi√

1/K|||∑m
i=1 νixi||L| .

13

https://arxiv.org/abs/2201.12825

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lorentz Transformations In the Lorentz model, linear transformations preserving the structure
of spacetime are termed Lorentz transformations. A matrix A(n+1)×(n+1) is defined as a Lorentz
transformation if it provides a linear mapping from Rn+1 to Rn+1 that preserves the inner product,
i.e., ⟨Ax,Ay⟩L = ⟨x,y⟩L for all x,y ∈ Rn+1. The collection of these matrices forms an orthogonal
group, denoted O(1, n), which is commonly referred to as the Lorentz group.

In this model, we restrict attention to transformations that preserve the positive time orientation,
operating within the upper sheet of the two-sheeted hyperboloid. Accordingly, the transformations we
consider lie within the positive Lorentz group, denoted O+(1, n) = A ∈ O(1, n) : a11 > 0, ensuring
preservation of the time component sign xt for any x ∈ Ln

K . Specifically, in this context, Lorentz
transformations satisfy the relation

O+(1, n) = A ∈ R(n+1)×(n+1)|∀x ∈ Ln
K : ⟨Ax,Ax⟩L = − 1

K
, (Ax)0 > 0). (7)

Each Lorentz transformation can be decomposed via polar decomposition into a Lorentz rotation and
a Lorentz boost, expressed as A = RB Moretti (2002). The rotation matrix R is designed to rotate
points around the time axis and is defined as

R =

[
1 0T

0 R̃

]
, (8)

where 0 represents a zero vector, R̃ satisfies R̃
T

R̃ = I, and det(R̃) = 1. This structure shows that
Lorentz rotations on the upper hyperboloid sheet belong to a special orthogonal subgroup, SO+(1, n),
which preserves orientation, with R̃ ∈ SO(n).

In contrast, the Lorentz boost applies shifts along spatial axes given a velocity vector v ∈ Rn with
||v|| < 1, without altering the time axis.

B =

[
γ −γvT

−γv I + γ2

1+γvv
T

]
, (9)

with γ = 1√
1−||v||2

. However, this can also be any operation that scales the norms of the space values

without changing the vector orientation.

A.2 SCALING LORENTZIAN VECTORS

Tanh Scaling We show the output of the tanh scaling function in Figure 3. By changing the
transformation parameters we are able to fine-tune the maximum output and the slope to match our
desired function response.

Hyperbolic Scaling We isolate the transformation of the expK
0
(y) operation on the space values

of y as:

xs =
√
K × sinh(

∥y∥L√
K

)
y

∥y∥L
(10)

where y ∈ Rd = logK0 (x). However, at the tangent plane of the origin, the first element y0 becomes
0. As such ∥y∥L = ∥y∥E =

∑d
i=2 y

2
i . This gives us:

xs =
√
K × sinh(

∥y∥E√
K

)
y

∥y∥E
(11)

We can now scale the norm of the Euclidean vector y bay a value a and find the equivalent value for
the hyperbolic space elements:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 3: The output of the proposed flexible tanh function. Here the maximum value m is set to 9.1
in the vanilla version with an alternate value of m=18 and the slope s is set to 2.6 with an alternate
value of 3.5

aL =
xsrescaled

xs
=

sinh(a×∥y∥E√
K

)

sinh(∥y∥E√
K

)
=

e
a×∥y∥E√

K − e
−a×∥y∥E√

K

e
∥y∥E√

K − e
−∥y∥E√

K

(12)

Additionally, we know that the hyperbolic distance from the origin of the manifold to any point
is equal to the norm of the projected vector onto the tangent plane. Supposing that we want
a×D(x,0)K = D(x,0)Krescaled, we get the final equation:

xsrescaled
= xs ×

e
D(x,0)Krescaled√

K − e
−D(x,0)Krescaled√

K

e
D(x,0)K√

K − e
−D(x,0)K√

K

(13)

A.3 ABLATIONS

We test the effect of individual model components in table 5. Each subsequent model involves the
default architecture presented in the experimental setup minus the mentioned component. As we
can see, the best results are achieved when all the architectural components are included. In the
case of attempting to learn the curvature without the proposed optimizer schema, the model breaks
completely down due to excessive numerical inaccuracies. One other benefit that we find from
learning the curvature is quicker convergence. The model is able to reach convergence in 130 epochs
vs the 200 epochs required by a static curve model.

Table 5: Ablation experiments for Resnet-50 mod-
els on Cifar-100.

CIFAR-100

HCNN+ - Default 80.86
HCNN+ - fixed curve 79.6
HCNN+ - no scaling 80.13
HCNN+ - no optim scheme NaaN

15

	Introduction
	Related Work
	Methodology
	Background
	Riemannian Optimization
	Towards Efficient Architectural Components

	Experiments
	Hierarchical Metric Learning Problem
	Standard Classification Problem
	VAE Image Generation

	Conclusion
	Appendix
	Operations in hyperbolic geometry
	Scaling Lorentzian Vectors
	Ablations

