
ClickDiff: Click to Induce Semantic Contact Map for Controllable
Grasp Generation with Diffusion Models

Peiming Li∗
State Key Laboratory of General
Artificial Intelligence, Peking

University, Shenzhen Graduate School
Shenzhen, China

lipeiming1001@stu.pku.edu.cn

Ziyi Wang∗
State Key Laboratory of General
Artificial Intelligence, Peking

University, Shenzhen Graduate School
Shenzhen, China

ziyiwang@stu.pku.edu.cn

Mengyuan Liu†
State Key Laboratory of General
Artificial Intelligence, Peking

University, Shenzhen Graduate School
Shenzhen, China

nkliuyifang@gmail.com

Hong Liu
State Key Laboratory of General
Artificial Intelligence, Peking

University, Shenzhen Graduate School
Shenzhen, China

hongliu@pku.edu.cn

Chen Chen
Center for Research in Computer

Vision, University of Central Florida
Orlando, USA

chen.chen@crcv.ucf.edu

ABSTRACT
Grasp generation aims to create complex hand-object interactions
with a specified object. While traditional approaches for hand gener-
ation have primarily focused on visibility and diversity under scene
constraints, they tend to overlook the fine-grained hand-object
interactions such as contacts, resulting in inaccurate and undesired
grasps. To address these challenges, we propose a controllable grasp
generation task and introduce ClickDiff, a controllable conditional
generation model that leverages a fine-grained Semantic Contact
Map (SCM). Particularly when synthesizing interactive grasps, the
method enables the precise control of grasp synthesis through either
user-specified or algorithmically predicted Semantic Contact Map.
Specifically, to optimally utilize contact supervision constraints and
to accurately model the complex physical structure of hands, we
propose a Dual Generation Framework. Within this framework, the
Semantic Conditional Module generates reasonable contact maps
based on fine-grained contact information, while the Contact Condi-
tional Module utilizes contact maps alongside object point clouds to
generate realistic grasps.We evaluate the evaluation criteria applica-
ble to controllable grasp generation. Both unimanual and bimanual
generation experiments on GRAB and ARCTIC datasets verify the
validity of our proposed method, demonstrating the efficacy and
robustness of ClickDiff, even with previously unseen objects. Our
code is available at https://github.com/adventurer-w/ClickDiff.
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1 INTRODUCTION
In recent years, the modeling of hand-object interactions [1, 2, 5,
7, 11, 15, 24, 25, 30, 34, 38] has gained substantial importance due
to its significant role in applications across human-computer in-
teraction [39], virtual reality [13, 39, 40], robotics [3, 37, 45], and
animation [27]. Addressing the specific needs for hand-object inter-
action modeling emerges as a paramount concern. How do hands
interact with a bowl? One can envision a variety of interaction
types (e.g., "grabbing/holding") and numerous possible interaction
locations (e.g., "rim/bottom"). The diversity of these interactions
largely stems from the layouts of hands and objects, making the
generation of accurate interactions challenging. An accurate gen-
erative model should account for factors such as which areas of
the object will be touched and which parts of the hand will make
contact. In contrast, a lack of thorough and precise modeling may
result in unnatural and unrealistic interactions.

Traditional approaches [15, 24] for hand generation have primar-
ily focused on visibility and diversity under scene constraints. Most
existing controllably generated hand-object interaction images rely
on simple textual scene understandings, such as "a hand holding
a cup" for input synthesis, failing to generate precise hand-object
interactions due to the lack of fine-grained information. Methods
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Figure 1: Previous works face issues of contact ambiguity,
where an input object could lead tomultiple undesired grasps,
such as when a bowl is expected to be grabbed from the bot-
tom, revealing the importance of controllable grasp genera-
tion. By manually determining contact points and specifying
contact fingers, one can obtain SCM (each color represents
the contact area of a different finger) by traversing the area
around the clicked point. Finally, by utilizing SCM, it’s possi-
ble to achieve accurate user-expected grasp.

[44] utilizing contact information often depend on contact mapping
applied to object point clouds to indicate contact points. However,
relying solely on information learned from contact maps as con-
straints still leaves the issue of which areas of the hand to use for
touching unaddressed. Moreover, providing contact maps for both
the object and the hand simultaneously is almost an impossible
task in real-world applications.

Previous efforts in grasp generation have emphasized achieving
visibility and diversity, often overlooking the fine-grained hand-
object interactions such as contacts. This oversight has led to a
notable deficit in both accuracy and practicality of generated grips,
especially in scenarios requiring precise and controllable synthesis.
To address these challenges, we propose a controllable grasp gen-
eration task, which can realize the generation through manually
specified hand and object contact point pairs. Our key insight is
that the movements of hand joints are largely driven by the geome-
try of fingers. Explicitly modeling the contact between fingers and
object sampling points during training and inference can serve as
a powerful proxy guide. Employing this guidance to link the move-
ments of hands and objects can result in more realistic and precise
interactions. What’s more, grip generation guided by artificially
defined contact is more practical.

Fig. 1 demonstrates the contact ambiguity issues present in past
generation methods compared to controllable generation task with

artificially designated contact points. To better model the artificially
defined fine-grained contacts shown in Fig. 1, we introduce a novel,
simple and easily specified contact representation method called
Semantic Contact Map. By processing point clouds of objects and
hands, it obtains representations of points on the object that are
touched and the fingers touching those points, specifically provid-
ing: (1) The points on the object that are touched. (2) The number
of the finger touching the point. A significant advantage is that one
can click to customize the Semantic Contact Map to achieve user-
controlled interactive generation. We show that utilizing Semantic
Contact Map can achieve more natural and precise generation re-
sults than conventional methods that rely solely on contact map.
Furthermore, to better utilize a human-specified SCM in contact
supervision constraints, we propose a Dual Generation Framework
based on conditional diffusion model [12, 19, 36, 43]. The denoising
process of the diffusion model inherently involves constraints on
the parameters of both hands, reducing unnatural and unrealistic
interactions between them. Building on the aforementioned obser-
vations, this paper introduces the ClickDiff based on Semantic Con-
tact Map to realize controllable grasp generation, which is divided
into two parts: (1) We explicitly model the contact between fingers
and object sampling points by specifying the locations of contact
points on the object and the finger numbers contacting those points,
guiding the interactions between hands and objects. Benefit from
previous work utilizing contact map [6, 10, 15, 24, 33], to embed
Semantic Contact Map into the feature space for easy learning and
utilization by the network, we propose the Semantic Conditional
Module, which can generate plausible contact maps based on speci-
fied Semantic Contact Map and object point clouds. (2) Inspired by
the grasps generation method in the RGB image domain [10], we
propose the Contact Conditional Module, which synthesizes hand
grasps based on generated contact maps and object point cloud
information as conditions. To better utilize Semantic Contact Map,
we propose Tactile-Guided Constraint. Tactile-Guided Constraint
can extract pairs in the SCM that represents touching and integrate
contact information into the Contact Conditional Module by calcu-
lating the distance between the centroid of each finger’s predefined
set of points and the contact point on the object. Specifically, we
provide a Dual Generation Framework that allows using Semantic
Contact Map on a given object as a condition for generating contact
maps, which then serve as a condition for generating grasps.

In summary, our contributions are as follows:
• We are the first to propose the controllable grasp generation
task. We introduce a new contact representation method,
named Semantic Contact Map. Our method enables more
precise generation through user-specified or algorithmically
predicted Semantic Contact Map.

• We propose a Dual Generation Framework composed of Se-
mantic Conditional Module and Contact Conditional Module.
The former generates contact maps using Semantic Con-
tact Map as conditions. The latter uitilizes Tactile-Guided
Constraint, addressing the contact ambiguity issue in direct
contact map generation.

• We evaluate the evaluation criteria applicable to controllable
grasp generation. Our approach outperforms general grasp
generation baselines on the GRAB and ARCTIC datasets.
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Figure 2: Overview of ClickDiff: The model initially takes an object’s point cloud as input and predicts the contact map
conditioned on the Semantic Contact Map within the Semantic Conditional Module. Subsequently, the predicted contact map is
fed into the Contact Conditional Module, where grasping is generated under the guidance of TGC and contact map.

Additionally, we verify its robustness for unseen and out-of-
domain objects.

2 RELATEDWORK
2.1 Controllable Human-Object Interaction
In recent years, there have been attempts to model fine-grained
interactions between the human and objects. Recent methods have
shifted focus towards the prediction of static human poses that are
congruent with environmental constraints, particularly in scenarios
involving affordances and hand-object interactions. For instance,
COUCH [44] presents a comprehensive model and dataset designed
to facilitate the synthesis of controllable, contact-based interactions
between humans and chairs. Furthermore, there has been notable
exploration into the generation of motion conditional on external
stimuli, such as music [23]. TOHO [22] exemplifies this by generat-
ing realistic and continuous task-oriented human-object interaction
motions through prompt-based mechanisms. Additionally, advance-
ments in custom diffusion guidance have significantly enhanced
both the controllability [14, 16, 28] and physical plausibility [41]
of generated interactions. EgoEgo [21] fed head pose to a condi-
tional diffusion model to generate the full-body pose. Nevertheless,
a gap remains in concerning methods that specifically address fine-
grained interactions, particularly the nuanced contacts involved in
hand-object interactions. Inspired by the aforementioned methods,
our method enables a more precise prediction and control of grasp-
ing through user-specified or algorithmically predicted contacts.

2.2 Grasp Generation
The task of generating object grasps has undergone significant
evolution, greatly benefitting from the introduction of novel 3D
datasets. Taheri et al. [33] notably extended this research through
the development of the GRAB dataset, which not only delineates

the hand’s contact map but also incorporates the entire human
body’s interaction with objects. ARCTIC [9] introduces a dataset
of two hands that dexterously manipulate objects. It contains bi-
manual articulation of objects such as scissors or laptops, where
hand poses and object states evolve jointly in time. To ensure the
generated grasps with both physical plausibility and diversity, the
majority of existing models employ a Conditional Variational Au-
toencoder (CVAE) framework to sample hand MANO parameters
[15, 29, 32, 33, 35] or hand joints [17], thus modeling the grasp
variability primarily within the hand’s parameter space. Given an
input object, liu et al. propose a novel approach utilizing a condi-
tional generative model based on CVAE, named ContactGen [24],
which, coupled with model-based optimization, predicts diverse
and geometrically feasible grasps. Meanwhile, GraspTTA [15] in-
troduces an innovative self-supervised task leveraging consistency
constraints, allowing for the dynamic adjustment of the genera-
tion model even during testing time. Despite these advances, the
CVAE models often overfit to prevalent grasp patterns due to the
human hand’s high degree of freedom, leading to the production
of unrealistic contacts and shapes. To address these challenges, our
work employs a conditional diffusion model framework, which
uniquely focuses on improving the fidelity of generation through
user-specified contacts.

3 OVERVIEW
In this work, we primarily aim to answer two questions: (1) How
can we characterize fine-grained contact information simply and
efficiently to achieve controllable grasp generation? (2) How can we
better utilize the related contact information to guide grasp genera-
tion? To address question (1), in Sec. 4.1, we propose a controllable
contact representation Semantic Contact Map (SCM), which simul-
taneously represents the fine-grained contacts between fingers and
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Figure 3: Illustration of the Semantic Contact Map. The fin-
gers are divided into five parts, represented by different col-
ors. The SCM indicates the points on the object that are be-
ing touched and the finger parts touching these points. Each
point may be touched by more than one finger.

objects. In Sec. 4.2 and Sec. 4.3, we propose a Dual Generation
Framework and Tactile-Guided Constraints (TGC), using SCM to
solve the contact ambiguity problem, thereby addressing question
(2). Fig. 2 summarizes our process for generating grasps.

4 METHOD
4.1 Semantic Contact Map (SCM)
Following [9], the contact map 𝐶 ∈ R𝑁×1 represented by heatmap,
each 𝑐𝑖 ∈ 𝐶 ranges between [0, 1], represents the distance to the
nearest finger point at each object point. Intuitively, a contact map
shows which part of an object might be touched by a hand. How-
ever, relying solely on contact maps is insufficient for modeling
complex grasps due to ambiguity about how and where the hands
touch the object. To overcome this issue caused by the lack of fine-
grained contact representations, inspired by [18, 24], we propose
the following Semantic Contact Map:

𝑆𝐶𝑀𝑜×𝑓 = 𝐹𝑖𝑛𝑔𝑒𝑟𝑡𝑜𝑢𝑐ℎ𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (𝑂,𝐻 ) ∈ R𝑁×5, (1)

where 𝑜 represents object sampling points ∈ 𝑅2048, 𝑓 represents
finger indices ∈ 𝑅5, 𝑂 represents the object point clouds ∈ 𝑅2048×3,
𝐻 represents the hand point clouds ∈ 𝑅778×3.

Different from the part map (one-hot vector whose value is the
nearest hand labels) proposed by ContactGen [24] for the entire
hand reliant only on the SDF, in our understanding, the contact
relationship between fingers and object points can be many-to-
many. Moreover, utilizing finger control and emphasizing the finger
number rather than the hand part is more convenient and flexible
for user-defined controllable generation. Therefore, we heuristi-
cally represent finger-object point pairs with a distance below the
threshold in SCM as 0. At the same time, Tactile-Guided Constraint
designed for SCM is used to better learn embedding conditions.
Fig. 3 shows an example of SCM. By processing point clouds of
objects and hands, SCM contains information on whether points on

the object are touched and the numbering of the fingers touching
those points, which is more important for interactive grasp con-
trol. Apart from being generated through Fingertouch-Analysis,
the most important aspect of SCM is that it can be customized by
the user by clicking and traversing the precalculated weights of the
area around the clicked points, hence we can achieve controllable
grasp generation.

4.2 Dual Generation Framework
Inspired by controllable contact-based method [10, 44], we use
conventional contact maps during generation to ensure that the
model learns the correct distribution. However, it’s challenging to
provide realistic contact maps in practical applications and relying
solely contact maps introduces ambiguity regarding which part
of the hand touches and how it makes contact. Furthermore, past
research [15, 18, 24] has shown that single-stage models struggle
to generate high-quality grasps. Therefore, we propose a Dual Gen-
eration Framework, comprising a Semantic Conditional Module
and a Contact Conditional Module. We first use Semantic Contact
Map to infer the most probable contact maps based on SCM, then
generate controllable grasps under the guidance of Tactile-Guided
Constraint. As a result, we achieve controllable generation by start-
ing from a user-defined SCM. Fig. 2 summarizes our process for
training and testing.

4.2.1 Training: In Semantic Conditional Module, the parameters
𝑪 ∈ R2048 are composed of the object’s contact map parameters. We
use a conditional generation model to infer probable contact maps
𝐶 based on user-specified or algorithmically predicted Semantic
Contact Maps. The process is as follows:

𝐶0 = CGM(𝐶𝑛 |𝑆𝐶𝑀,𝑂), (2)

where 𝐶𝑛 denotes the contact map at noise level n, 𝑂 denotes
the object point clouds and CGM denotes conditional generation
model. In Contact Conditional Module, MANO parameters [29]
𝑴 ∈ R61 are composed of the hand’s MANO parameters. We also
use a conditional generationmodel based on contact maps predicted
by the Semantic Conditional Module and constrained by Semantic
Contact Maps to infer MANO parameters. The training of two
modules can be carried out independently. To enable the model to
learn additional finger information from simple contact maps, we
design Tactile-Guided Constraint, which will be detailed in the next
section. The entire process can be represented as:

�̃�0 = CGM(�̃�𝑛 |𝐶0,𝑂), (3)

where𝑀𝑛 represents MANO parameters at nosie level n, 𝑂 repre-
sents object point clouds.

4.2.2 Testing: As shown in Fig. 2, in the denoising step n, we
combine the contact map predicted by the Semantic Conditional
Module, along with features extracted by PointNet, as input to
the Contact Conditional Module, and estimate 𝑀0, which can be
represented as:

𝐶𝑛−1 = CGM𝑠𝑒𝑚𝑎𝑛 (𝐶𝑛 |𝑆𝐶𝑀,𝑂), �̃�𝑛−1 = CGM𝑐𝑜𝑛𝑡 (�̃�𝑛 |𝐶0,𝑂),
... ... (4)

𝐶0 = CGM𝑠𝑒𝑚𝑎𝑛 (𝐶1 |𝑆𝐶𝑀,𝑂), 𝑀0 = CGM𝑐𝑜𝑛𝑡 (�̃�1 |𝐶0,𝑂) .
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4.3 Tactile-Guided Constraint (TGC)
In the Contact Conditional Module, simply utilizing contact map
as a condition introduces ambiguity regarding which part of the
hand is in contact with the object. Based on the Semantic Contact
Map, we tailored Tactile-Guided Constraint as follows:

L𝑇𝐺𝐶 =

𝑁∑︁
𝑘=1

∥𝑂 (𝑖𝑘 ) − 𝐻 ( 𝑗𝑘 )∥2, (5)

where (𝑖𝑘 , 𝑗𝑘 ) represents 𝑘𝑡ℎ pair of indices in the SCM that repre-
sents touching. 𝑖𝑘 denotes the index of points. 𝑗𝑘 denotes the index
of fingers. 𝑂 (𝑖𝑘 ) denotes coordinates of the object point. 𝐻 ( 𝑗𝑘 )
denotes coordinates of the centroid for each touched finger. For
each finger, we predefine a set of contact points that are weighted
differently depending on the distance to the inner surface of the
finger. Then a centroid selection algorithm computes the weighted
average value from the set to determine the touch centroid for that
finger. 𝑁 denotes the number of contact pairs designated within
the SCM.

The Tactile-Guided Constraint loss (L𝑇𝐺𝐶 ) specifically targets
the vertices within the finger sets proximal to the object’s surface,
ensuring that fingers accurately align with the designated ground-
truth contact areas by accurately indexing the point pairs in the
SCM and calculating the distance between the centroid of each
finger’s predefined set of points and the contact point on the object.
We adopt the 𝐿2 distance to compute the distance error between
object and hand point clouds.

We denote the reconstruction loss in the training of Semantic
Conditional Module between the predicted contact map and the
ground-truth as:

L𝑅 = | |𝐶 −𝐶 | |22 . (6)
The reconstruction loss on MANO parameters in the training of
Contact Conditional Module is defined in a similar way as:

L𝑅 = | |�̃� −𝑀 | |22 . (7)

At the same time, we design a contact-map-based loss for Semantic
Conditional Module training, followed as:

𝐵𝑜 =

{
0 if 𝐶𝑜 < 𝜏threshold,

1 otherwise.
(8)

L𝐶 =
∑︁

| (1 − 𝐵) ⊙ 𝐶 |, (9)

where 𝐵𝑜 represents the binary map’s value when the distance 𝐶𝑜
between a sampled point on the hand and a corresponding object
point 𝑜 is less than the predefined threshold 𝜏threshold and ⊙ denotes
matrix dot product. The efficacy of theL𝐶 loss function is attributed
to its focus on hand-object point pairs, which are systematically
selected based on the contact map during the training phase.

Furthermore, to enhance the accuracy of hand posture modeling
within Contact Conditional Module, we employ a loss function that
measures the discrepancy between predicted vertices �̃� and the
ground-truth vertices 𝑉 , which is mathematically represented as:

L𝑉 = | |�̃� −𝑉 | |22 . (10)

In a short summary, the whole loss for training the Semantic Con-
ditional Module is:

L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = 𝜆𝛼 · L𝑅 + 𝜆𝛽 · L𝐶 . (11)

And the training loss of Contact Conditional Module is defined as:

L𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝜆𝛼 · L𝑅 + 𝜆𝛽 · L𝑉 + 𝜆𝜃 · L𝑇𝐺𝐶 . (12)

5 EXPERIMENT
5.1 Experimental Details
5.1.1 Datasets: We employ the GRAB dataset [33] to train the
ClickDiff and assess the efficacy of our proposed approach in a
unimanual grip scenario. The GRAB [33], which comprises real
human grasp data for 51 objects across 10 different subjects, is
instrumental in our analysis. Notably, the dataset’s test set consists
of six objects that are not encountered during training, presenting
an opportunity to assess the model’s generalization capabilities.
Furthermore, ARCTIC [9] is a dataset of dexterously bimanual
manipulating articulated objects. It facilitates our exploration into
the realm of dexterous bimanual manipulation.

5.1.2 Implementation Details: The ClickDiff is trained on the
GRAB [33] and ARCTIC [9] datasets, which takes N = 2048 points
sampled from GRAB object surface and N = 600 points sampled
from ARCTIC object surface as input. We extract object features
using PointNet [4] and adopt the standard Adam optimizer [20]
with a learning rate of 1× 10−5 and betas of 0.9 and 0.999. We train
our model with batch size of 256 for 600k steps. The loss weights
are 𝜆𝛼 = 2, 𝜆𝛽 = 0.5 and 𝜆𝜃 = 1. The network is implemented in
PyTorch and trained on a single NVIDIA RTX 3090 GPU.

5.1.3 Evaluation Metrics: Our objective is to synthesize highly
accurate, contact-based, fine-grained hand grips on objects to achieve
controllable grasp generation. Thus, we evaluate the evaluation
criteria applicable to controllable grasp generation. To evaluate the
performance of our model, following [8, 9, 26, 31, 42], we use three
metrics previously utilized (MPJPE, MRRPE, CDev) along with a
custom metric (Success Rate). To ensure that contacts made by
hands touching or holding objects are controllable and accurate,
we measure precision using metrics known as Contact Deviation
(CDev) and Success Rate. Moreover, capturing the correct posture
of the hand and the position of its bones accurately when the hand
moves or interacts with an object is crucial. We check these details
utilizing Mean Per-Joint Position Error (MPJPE) and Mean Relative-
Root Position Error (MRRPE). The definitions are as follows:

• Mean Per-Joint Position Error (MPJPE): The 𝐿2 distance
between the 21 predicted and ground-truth joints for each
hand after subtracting its root.

• Mean Relative-Root Position Error (MRRPE): Measures
the root translation between the hand and object:

MRRPE𝑎→𝑏 =

(J𝑎 − J𝑏
)
−
(
Ĵ𝑎 − Ĵ𝑏

)
2
, (13)

where 𝑎, 𝑏 ∈ {𝑙, 𝑟 , 𝑜}, with 𝑙, 𝑟 , 𝑜 representing the left hand,
right hand, and the object, respectively, J ∈ IR3 is the ground-
truth root joint position and Ĵ is the predicted one. We only
adopt this metric on the ARCTIC dataset to measure the
bimanual grasps.
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Figure 4: Qualitative comparison results on GRAB dataset [33]. While GA and CG produce unnatural distortions and huge
contact deviations, our method produces more plausible and accurate grasps for unseen objects.

• Contact Deviation (CDev): Measures the deviation be-
tween the vertices of the hand and the assumed contact
vertices on the object.

1
𝐶

∑𝐶
𝑖=1 | |ĥ𝑖 − ô𝑖 | |, (14)

where {(h𝑖 , o𝑖 )}𝐶𝑖=1 are 𝐶 pairs of in-contact hand-object
vertices with distance less than 3mm, and {(ĥ𝑖 , ô𝑖 )}𝐶𝑖=1 are
the corresponding predictions.

• Success Rate: Success rate is defined as the ratio of the size
of the union of the point set 𝐴 in the generated hand point
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Table 1: Quantitative comparison results of state-of-the-art methods and ours on the GRAB dataset [33] on different out-of-
domain objects. GN denotes GrabNet [33], GL denotes GOAL [32], GA denotes GraspTTA [15] and CG denotes ContactGen [24].

MPJPE (mm) ↓ CDev (mm) ↓ Success Rate (%) ↑
GN [33] GA [15] GL [32] CG [24] GN [33] GA [15] GL [32] CG [24] GN [33] GA [15] GL [32] CG [24]
ECCV ICCV CVPR ICCV Ours ECCV ICCV CVPR ICCV Ours ECCV ICCV CVPR ICCV Ours
2020 2021 2022 2023 2020 2021 2022 2023 2020 2021 2022 2023

Binoculars 87.26 64.31 80.56 82.92 40.09 103.14 78.67 87.21 98.15 43.42 46.85 63.57 46.02 33.35 75.69
Camera 79.6 5 62.55 75.82 80.44 29.98 85.87 77.22 95.96 78.02 48.91 55.23 67.55 59.30 40.19 76.29
Frying pan 72.17 55.12 73.76 67.31 45.40 90.44 64.28 72.41 122.83 76.35 71.60 84.17 70.77 67.54 75.73
Mug 75.11 58.67 67.12 77.78 51.53 96.47 80.21 86.83 84.24 53.26 50.03 67.79 55.88 46.54 72.45
Toothpaste 81.83 59.82 72.95 68.62 29.34 93.72 81.34 92.73 68.72 46.33 49.56 81.34 52.43 47.57 71.54
Wineglass 88.09 64.46 83.62 83.68 44.26 95.70 98.30 85.28 75.27 46.11 58.26 58.73 61.67 53.41 68.55
Average 80.35 61.36 75.96 78.32 40.57 93.95 81.90 86.28 84.59 52.05 55.90 66.78 57.46 46.95 72.85

Table 2: Quantitative comparison results of state-of-the-art methods and ours on the ARCTIC dataset [9].

Method in/out-of domain Hand MPJPE (mm) ↓ MRRPE (mm) ↓ CDev (mm) ↓ Success Rate (%) ↑left right

GraspTTA [15]
in ✔ 61.57 1183.05 1174.30 53.41
in ✔ 54.13 678.45 657.08 50.64
in ✔ ✔ 57.85 930.75 915.69 52.03

Ours (w/o SCM)
in ✔ 48.65 75.72 77.67 78.46
in ✔ 43.35 69.54 78.97 79.23
in ✔ ✔ 46.00 72.63 78.32 78.85

Ours (SCM)
in ✔ 39.48 66.79 70.27 81.44
in ✔ 37.58 65.02 65.16 82.78
in ✔ ✔ 38.53 65.91 67.75 82.11

GraspTTA [15]
out-of ✔ 51.53 876.59 1007.14 58.89
out-of ✔ 57.61 612.74 571.70 50.72
out-of ✔ ✔ 54.57 749.15 789.42 54.81

Ours (w/o SCM)
out-of ✔ 51.78 119.20 112.35 79.16
out-of ✔ 53.39 90.36 102.12 70.68
out-of ✔ ✔ 52.59 104.78 107.24 74.92

Ours (SCM)
out-of ✔ 47.16 102.54 92.06 84.01
out-of ✔ 48.21 84.60 92.10 72.87
out-of ✔ ✔ 47.69 93.57 92.08 78.44

clouds that are in contact with the target object to the size
of the point set 𝐵 in the real hand point cloud that are in
contact with the object, relative to the size of set 𝐴. This
metric aims to quantify the contact quality of the generated
hand grasps.

5.2 Experimental Results
5.2.1 Results on GRAB dataset. We evaluate the generalization
capability of our models on the GRAB dataset [33]. The dataset’s
testset, consisting of six objects not previously encountered during
training, serves as a benchmark to evaluate our model’s adaptability
to new scenarios. Tab. 1 shows comparison of our method with
GrabNet [33], GOAL [32], ContactGen [24] and GraspTTA [15] on
the GRAB dataset [33], our method achieves performance in each
metric on almost all objects. Fig. 4 illustrates a significant reduction

in contact deviation when implementing the Semantic Contact
Map, revealing the importance of controllable grasp generation. As
GraspTTA struggles to produce valid grasps for unseen objects, the
contact deviation is substantial while ContactGen often produces
unnatural distortions. The results reveal that the hands produced
by both GraspTTA and ContactGen lack coordination and deviate
significantly from the expected contact areas. In comparison to
them, our method achieves notably lower penetration and better
stability, which is the closest to ground-truth.

5.2.2 Results on ARCTIC dataset. Tab. 2 shows comparison of
our method with GraspTTA [15] on the ARCTIC dataset, exam-
ining performance on both in-domain and out-of-domain objects.
When the unimanual generation method is applied to the bimanual
generation, the metric between two hands has a huge gap and in-
congruous effect, and tends to fail. On the contrary, our approach
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Table 4: Impact of dual framework on the GRAB dataset [33],
BM denotes binary map and GM denotes guassian map.

Frame Contact Condtion MPJPE (mm) ↓ CDev (mm) ↓ SR (%) ↑BM GM SCM

Single

✘ ✘ ✘ 45.92 71.07 66.34
✔ ✘ ✘ 44.74 66.28 66.96
✘ ✔ ✘ 44.81 62.02 67.88
✘ ✘ ✔ 42.54 59.91 68.23

Dual ✘ ✘ ✔ 40.57 52.05 72.85

Table 5: Impact of loss selection on the GRAB dataset [33].

Loss MPJPE (mm) ↓ CDev (mm) ↓ SR (%) ↑L𝑇𝐺𝐶 L𝑉 L𝐶

✘ ✘ ✘ 44.11 59.35 68.76
✔ ✘ ✘ 42.02 53.24 71.87
✘ ✔ ✘ 40.83 60.88 68.87
✘ ✘ ✔ 41.58 66.62 68.92
✔ ✔ ✔ 40.57 52.05 72.85

demonstrates superior performance in coordinating both hands, un-
derscoring the efficacy of our dual-frame strategy and the diffusion
model’s inherent constraints, which facilitate the synchronized gen-
eration of bimanual parameters. Our method consistently achieves
the lowest joint position deviation and the highest success rate.
Notably, the implementation of the Semantic Contact Map further
enhances qualitative metrics.

Table 3: Impact of different contact condition in Semantic
Conditional Module on the GRAB dataset [33], BM denotes
binary map and GM denotes guassian map.

Contact Condtion MPJPE (mm) ↓ CDev (mm) ↓ SR (%) ↑BM GM SCM

✘ ✘ ✘ 44.87 70.92 66.35
✔ ✘ ✘ 46.13 68.71 67.97
✘ ✔ ✘ 43.17 62.77 68.47
✘ ✘ ✔ 40.57 52.05 72.85

5.3 Ablation Study
We first perform ablation studies on GRAB dataset [33] for eval-
uating the proposed Semantic Contact Map in sec 5.3.1. We then
analyse designs of Dual Generation Framework in sec 5.3.2. Finally,
we compare different loss selection in sec 5.3.3.

5.3.1 Impact of contact condition. We compare three different
kinds of representations for contact conditions within the Semantic
Conditional Module, as summarized in Tab. 3. Initially, the first
model employs a binary map that represents whether points on the
object are touched. Subsequently, the second model enhances this
binary map with a gaussian kernel. Our third model introduces our
novel Semantic Contact Map (SCM). Additionally, we examine a
model variant devoid of any contact conditions like previous work.
The results in the Tab. 3 show that the model utilizing SCM can
perform better in both hand posture and contact position, espe-
cially with a 18.87mm reduction in Contact Deviation (CDev). The

absence of specific contact information results in a challenging one-
to-many mapping problem in grasp prediction. The quantitative
results verify the effectiveness of employing the Semantic Contact
Map for controllable grasp generation.

5.3.2 Impact of dual framework. In our assessment of the Dual
Generation Framework, we explore five distinct strategies: (1) em-
ploying a binary map as the condition in a single-stage generation
model to directly synthesize grasps; (2) using a gaussian-kernel-
processed binary map as the condition in a single-stage generation
model; (3) integrating our SCM within a single-stage generation
model; (4) implementing a single-stage generation model with-
out any conditions; and (5) applying SCM in conjunction with a
Dual Generation Framework. The experiments presented in Tab. 4
show that the strategy with Dual Generation Framework is very
superior quantitatively, as evidenced by an increase of 4.62% in
Success Rate and a decrease of 7.86mm in CDev. Previous work
[15, 24] has shown that single-stage generation exhibits limitations
in accurately generating both hand posture and contact position.
This analysis confirms the effectiveness of our Dual Generation
Framework, particularly when augmented by SCM.
5.3.3 Impact of loss selection. We conduct another ablation
study to assess the contribution of different losses. The results are
shown in Tab. 5. Applying the Tactile-Guided Constraint L𝑇𝐺𝐶

effectively ensures that the fingers alignwith the designated ground-
truth contact regions. Notably, the introduction of L𝑇𝐺𝐶 results in
a significant reduction in joint displacement and improvements in
contact metrics, exemplified by a 6.11 mm decrease in Contact Devi-
ation (CDev). Experiments demonstrate that our L𝑇𝐺𝐶 constrains
the contact position of fingers in the Contact Conditional Module,
which solves the contact ambiguity problem well. After adopting
the vertice loss L𝑉 , joint and finger related posture metrics, e.g.,
MPJPE stability decrease. Meanwhile, adding the contact map loss
L𝐶 for Semantic Conditional Module improves contact and dis-
placement related metrics, e.g., CDev and Success Rate, attributable
to its focus on hand-object point pairings during training. These re-
sults imply that L𝑇𝐺𝐶 , L𝑉 and L𝐶 , in concert, improve the grasp
generation, in alignment with the intended design of these loss
functions.

5.3.4 Impact of controllable generation on time. We analyze
the influence of the addition of controllable contact conditions on
time. In terms of total time, our controllable grasp generation time
has increased by only 30% (from 13.5 hours to 17.5 hours) compared
to the model devoid of any contact conditions with batch size of
128 for 600k steps on a single NVIDIA RTX 3090 GPU.

6 CONCLUSION
In this work, we introduce ClickDiff: Click to Induce Semantic Con-
tact Map for Controllable Grasp Generation with Diffusion Models.
To solve the contact ambiguity problem and achieve controllable
grasp generation, we propose a simple and efficient Semantic Con-
tact Map that can be defined by users by clicking. At the same time,
Dual Generation Framework and Tactile-Guided Constraint are
proposed to utilize SCM. Our method demonstrates superior per-
formance to existing grasp generation methods, both qualitatively
and quantitatively.
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