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Abstract

Understanding why deep neural networks are susceptible to adversarial attacks remains1

an open question. While several theories have been proposed, it is unclear which of these2

are more valid in practice and relevant for object recognition. Here, we propose using the3

newly discovered phenomenon of in-distribution adversarial attacks to compare different4

theories, and highlight one theory which can explain the presence of these more stringent5

attacks within the training distribution—the ground-truth boundary theory. The key insight6

behind this theory is that in high dimensions, most data points are close to the ground-truth7

class boundaries. While this has been shown in theory for some simple data distributions,8

it is unclear if these theories are relevant in practice for object recognition. Our results9

demonstrate the existence of in-distribution adversarial examples for object recognition,10

providing evidence supporting the ground-truth boundary theory—attributing adversarial11

examples to the proximity of data to ground-truth class boundaries, and calls into question12

other theories which do not account for this more stringent definition of adversarial attacks.13

These experiments are enabled by our novel gradient-free, evolutionary strategies (ES) based14

approach for finding in-distribution adversarial examples, which we call CMA-Search.15

1 Introduction16

Understanding the mechanisms enabling adversarial attacks on deep neural networks remains an open and17

elusive problem in machine learning. Despite a plethora of works attempting to explain these attacks, posited18

theories are largely disconnected and focus on specific considerations such as attributing adversarial attacks to19

the tilting (1) or the curvature (2) of the learned decision boundary, the dimension of the data manifold (3; 4),20

data distribution shifts (5), the presence of non-robust features (6; 7), lack of data (8), and computational21

complexity (9; 10), among others. It remains unclear which of these theories are more valid in practice and22

can fully explain adversarial attacks on object recognition models.23

Adversarial examples are usually defined as perturbed inputs which cause classification networks to make an24

error. However, there is no constraint enforced on the resulting adversarial example’s position with respect to25

the training data distribution. Recently, a strand of theoretical works have provided compelling evidence26

for adversarial examples that lie within the training distribution (11; 12; 13; 14; 15; 16). By enforcing that27

the resulting examples lie within the training data distribution, such in-distribution examples provide a28

more stringent definition of adversarial examples than the definition typically used in the theories mentioned29

above. This newly discovered phenomenon of in-distribution adversarial examples presents an opportunity to30

compare di�erent theories, and to validate which ones can explain these findings.31

The key insight at the heart of these theoretical works is that in high-dimensional data distributions most32

data points lie close to the ground-truth class boundaries. Thus, slight deviations between the learned and33

the ground-truth class boundaries can cause in-distribution adversarial examples given the proximity of these34

points to the class boundaries. For brevity, we refer to this theory as the ground-truth boundary theory. If35

true, this theory dictates that in-distribution adversarial examples must be isolated in the proximity of these36

class boundaries. This particular outcome would be an outcome of the slight deviations in the learned and37

ground-truth class boundaries, and characteristic of the ground-truth boundary theory.38
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Figure 1: In-distribution adversarial examples. This schematic highlights the di�erence between typical
(out-of-distribution) and in-distribution adversarial examples. We train object recognition models on a large
scale training data of 0.5 million images sampled from known, parametric distribution of camera and light
variations (depicted using ). Despite great success in correctly classifying newly sampled test points
from the training data distribution (X), our CMA-Search method shows that it is possible to find plenty
of adversarial examples which lie within the training distribution (XÕÕ). Unlike existing methods that add
noise to the image resulting in out-of-distribution adversarial examples (XÕÕ), CMA-Search searches within
the training distribution to find adversarial examples. We find a widespread presence of in-distribution
adversarial examples for object recognition.

In-distribution adversarial examples demonstrate that the phenomenon of adversarial examples runs far39

deeper than the added perturbations resulting in samples from outside the data distribution. However,40

these works investigating these more stringent adversarial examples make strong simplifying assumptions41

on the data distributions for mathematical rigor. This includes assuming that the data is generated from a42

smooth generative model (12), belongs to a Levy family (14), satisfies the W2 Talagrand transportation-cost43
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Figure 2: Sample in-distribution adversarial examples identified using CMA-Search with camera parameters.

Starting with the correctly predicted images, our evolutionary-strategy based method (CMA-Search) explores
the vicinity of camera parameters for subtle 3D perspective changes that lead to misclassification. These
in-distribution adversarial examples are often found very close to the correctly classified starting image. In
the figure we report the percentage of change in Camera Position and Camera Look At parameters necessary
to induce the misclassification.

inequality, lies on a uniform hypercube (13; 15), or on disjoint concentric shells (11). As noted in these44

papers, it is unclear whether these assumptions hold true for images of real-world objects, thus calling into45

question the relevance of the ground-truth boundary theory in practice. Here, we reconcile this disconnect by46

asking whether this theory extends to image data for object recognition. A positive answer would provide47

compelling evidence in support of the ground-truth boundary theory being the primary mechanism driving48

adversarial examples for object recognition.49

To find in-distribution adversarial examples for object recognition, we introduce a novel evolution-strategy50

based search method that we call CMA-Search. Most existing adversarial attack methods rely on derivative-51

based search which su�er from two problems. Firstly, they cannot e�ciently find in-distribution adversarial52

examples at low dimensions (11). Secondly, it is unclear if the adversarial sample found after noise addition53

still belongs to the training distribution. In contrast, starting with a correctly classified input CMA-Search54

searches the vicinity of input parameters to find in-distribution adversarial examples. To reflect this, we55

chose to name our approach an adversarial-search method, as opposed to an adversarial attack method.56

Inspired by recent works using computer graphics to create controlled datasets for investigating neural57
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networks (17; 18; 19; 20), we introduce a procedural computer graphics pipeline. Our pipeline allows us58

to generate a large-scale dataset with complete control over camera and lighting variations. This o�ers59

us explicit, parametric control over the training distribution similar to theoretical works, enabling us to60

investigate in-distribution adversarial examples with complex images of objects.61

These experiments lead us to our key finding—there is a widespread presence of adversarial images within62

the training distribution, as summarized in Fig. 1. To foreshadow our results, CMA-Search can find such63

an adversarial example for over 71% cases with an average change of only 1.83% in the camera position, in64

42% cases with an average change of only 6.52% in the lighting conditions. These examples are depicted in65

Fig. 2. We also extend our method in conjunction with a novel view synthesis pipeline (21) to find adversarial66

examples in the vicinity of ImageNet (22) images for a ResNet model and the recently released OpenAI67

CLIP model (23). Furthermore, we confirm these findings extend to another natural image dataset with the68

Common Objects in 3D (Co3D) dataset (24), where we show that despite a high test accuracy of 92%, we69

can find an in-distribution adversarial examples for over 48% cases within 1-5 frames of the multi-view object70

videos in Co3D. These results on in-distribution adversarial examples provide compelling evidence in support71

of theories attributing adversarial attacks to the proximity of data to ground-truth class boundaries. This new72

phenomenon also presents an opportunity to further refine and modify existing theories in order to explain73

this more stringent definition of adversarial attacks. Furthermore, in-distribution adversarial examples are74

highly concerning as unlike typical adversarial examples these do not require adding synthetically engineered75

perturbations by an external malicious agent since these examples are already within the training data76

distribution.77

To summarize, our primary contribution is providing compelling evidence in support of the ground-truth78

boundary theory being the primary mechanism driving adversarial attacks in object recognition. While past79

works have theorized such adversarial examples with simplistic and constrained data-distributions, it was80

unclear if these attacks can happen in the real world. Our work confirms this phenomenon in the real world81

for object recognition. This was achieved by using two techniques in conjunction. Firstly, we developed82

a novel evolutionary-search based adversarial search method (CMA-ES) which can find in-distribution83

adversarial examples for machine learning models at significantly lower dimensions than gradient based84

methods. Secondly, we constructed a dataset of complex real world object images with explicit control85

over the data distribution using computer graphics, which allowed us to investigate and demonstrate that86

the phenomenon of in-distribution adversarial examples extends to object recognition models. Finally, we87

confirmed all our findings extend to real world natural image data. All code to run these experiments can be88

found at https://github.com/in-dist-adversarials/in_distribution_adversarial_examples. Train-89

ing details including model architectures, optimization strategies and other hyper-parameters are reported in90

the supplement.91

2 Datasets with explicitly controlled data distributions92

Controlling the distribution of the training and testing datasets lies at the heart of our analysis. Controlling93

these distributions explicitly allows us to sample points from within the training distribution to find verifiably94

in-distribution adversarial examples. Below, we present controlled datasets at three levels of complexity which95

are used in our experiments.96

2.1 Generating simplistic parametrically controlled data97

We created a binary classification task by sampling data from two N -dimensional uniform distributions98

confined to disjoint ranges (a, b) and (c, d), as described in the following:99

xi ≥

Y
]

[
Unif(a, b, N); yi = 0

Unif(c, d, N); yi = 1

Z
^

\ . (1)

We set a = ≠10, b = 10, c = 20, d = 40 for experiments presented in Sec. 4.1. However, we observed that the100

exact choice of these parameters does not impact our findings. To measure in-distribution performance, we101

simply sample new data points from these same distributions.102
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Figure 3: 3D scene setup and resulting images. (a) Images in our dataset are completely parametrized by
the camera and light. Physical interpretation of the camera parameters is illustrated here. Analogously,
light is parametrized by the position, look at, 2D size and the RGB intensities. (b) Sample images for 4
object categories generated using our 3D scene setup. As can be seen, images contain complex viewpoints
and locations, multiple colors per object and complex artifacts like self-shadows.

2.2 Generating controlled rendered data of real world objects103

Most large-scale datasets for computer vision have been created by scraping pictures from the internet (22;104

25; 26; 27; 28). For experiments investigating in-distribution robustness, these datasets present two major105

challenges. Firstly, it is not possible to quantitatively define or control the distribution of these datasets in106

closed form. Secondly, investigating in-distribution robustness requires being able to sample new points from107

regions of interest within the data distribution, and to test model performance on these samples. This is not108

possible with internet scraped datasets.109

These problems have inspired the growing trend of research works using carefully designed synthetic data110

with controlled data distributions (29; 30; 17; 31; 32; 33). In a similar vein, our graphics pipeline (explained111

below) allows us to generate a large-scale, unbiased dataset of objects seen under varied camera and lighting112

conditions with complete control over the data distribution. Sample images from four categories are shown113

in Fig. 3(b). Each 3D model was rendered under 1000 di�erent camera and lighting conditions following114

the scene setup described below. We used multiple 3D models for every category, resulting in a total of 0.5115

million images for 11 categories i.e. 45, 000 images per category. In comparison, ImageNet contains 1.2 million116

training images for 1000 categories i.e. 1200 images per category. Thus, our training dataset is roughly 38117

times larger than ImageNet on a per-category basis. To ensure visual recognition models don’t overfit to the118

3D models shown during training, a second test was also constructed using new 3D models not shown during119

training. Details on the 3D scene setup, camera and lighting parameter sampling strategies, and the 3D120

models used to generate our dataset can be found in the supplement. Fig. S1 shows additional sample images121

from the dataset.122

All rendering was done using the open-source rendering pipeline Redner (34). Fig. 3(a) illustrates camera123

parameters used to describe the scene. Each scene contains one camera, one 3D model and 1-4 lights. Scenes124

are (11n + 10) dimensional, where n is the number of lights and there is a one-to-one mapping between the125

pixel space (rendered images) and this low dimensional scene representation. Additional rendering details can126

be found in supplementary Sec. S1, and additional samples can be found in Fig. S1.127
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2.3 Natural image datasets—ImageNet and Common Objects in 3D128

While above presented datasets provide complete control over the data distribution, the real litmus test for129

object recognition model behaviour is testing them on real world natural images. To ensure our findings hold130

true for natural images as well, we present results on two popular natural image datasets—ImageNet (35)131

and the Common Objects in 3D (Co3D) (24) dataset. A key challenge here is being able to test on images in132

the vicinity of the 3D viewpoint of a given image. For our rendering dataset presented above this was easily133

achieved by rendering a nearby view. Below we provide details on how we achieve views in the vicinity of a134

natural image for these real world datasets.135

2.3.1 Views in the vicinity of ImageNet images136

ImageNet contains only one viewpoint per object. While several variations of ImageNet have been proposed137

by adding noise in the form of corruptions and perturbations (30), these variations are designed to study138

the impact of out-of-distribution shifts on object recognition models. Like these variations, our camera139

manipulations correspond to transforming input images to study its impact on object recognition models.140

However, the key difference is that our work focuses on in-distribution adversarial examples, due to which141

these datasets designed for out-of-distribution shifts cannot be repurposed for our experiments. Thus, a major142

challenges in extending our results to ImageNet is generating natural images in the vicinity of a correctly143

classified image by slightly modifying the camera parameters. To do so for ImageNet is equivalent to novel144

view synthesis (NVS) from single images, which has been a long standing challenging task in computer145

vision. However, recent advances in NVS enable us to extend our method to natural image datasets like146

ImageNet (36; 37; 38; 21).147

To generate new views in the vicinity of ImageNet images, we rely on a single-view synthesis model based148

on multi-plane images (MPI) (21). The MPI model takes as input an image and the (x, y, z) o�sets which149

describe camera movement along the X, Y and Z axes. Note that unlike our renderer, it cannot introduce150

changes to the camera Look At, Up Vector, Field of View or lighting changes. An important limitation of151

this approach is that any noise added by the MPI model in image generation is a confounding variable which152

we cannot account for. This further highlights the importance of our rendered and Co3D experiments as153

these experiments do not suffer from such noise.154

2.3.2 Views in the vicinity of Co3D images155

As an additional control for any potential noise introduced by the novel view synthesis pipeline in generating156

nearby views for ImageNet images, we present additional results on the large-scale, multi-viewpoint Co3D (24)157

dataset. Co3D was created by capturing short videos of fixed objects placed on surface by a user moving a158

mobile phone around the object. Thus, nearby frames in the video represent views in the vicinity of an image.159

We utilize this to test in-distribution robustness in the vicinity of correctly classified images. The classification160

dataset is created by picking 5 categories—car, chair, handbag, laptop, and teddybear. We created the training161

data by uniformly sampling frames across the whole video for all videos for these categories amounting to162

187, 200 training images. Note that this amounts to roughly 38, 000 images per category, which is 32 times163

the ImageNet training set on a per category basis. An in-distribution test set of 68854 images is generated164

by sampling the remaining frames to measure overall accuracy of the trained models. We then search for165

in-distribution failures in the vicinity (i.e. nearby frames) from the remaining frames from these videos in the166

Co3D dataset. Thus, no novel view synthesis pipeline was used. Instead, pre-captured frames from the videos167

were used to search for in-distribution adversarial examples in the vicinity of viewpoints.168

3 CMA-Search: Finding in-distribution adversarial examples by searching the vicinity169

To investigate the in-distribution robustness of neural networks with respect to changes in camera and lighting,170

we propose a new, gradient-free search method to find incorrectly classified images. Starting with a correctly171

classified image, our method searches the vicinity by slightly modifying camera or light parameters to find an172

in-distribution error. While adversarial viewpoints and lighting have been reported before in the literature173
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(39; 20; 40), there are two major di�erences in our approach. First, these methods search for an adversarial174

image by adding a perturbation to the input scene parameter without constraining the resulting image to175

be within the training distribution. In comparison, our approach searches within the distribution to find176

in-distribution errors. Secondly, unlike our gradient-free search method, these methods often rely on gradient177

descent and thus require high dimensional representations of the scene to work well. For instance, these178

works often use neural rendering where network activations act as a high dimensional representation of the179

scene (20; 41), or use up-sampling of meshes to increase dimensionality (39).180

Algorithm 1 CMA-Search over camera parameters to find in-distribution adversarial examples.
1: Let x œ R10 denote the camera parameters.
2: Let Render and Network denote the rendering pipeline and classification network respectively.
3: function Fitness(x, Render, Network)
4: image = Render(x)
5: predicted_category, probability = Network(image)
6: return predicted_category, probability
7:
8: Let xinit denote initial camera parameters, ⁄ be number of o�spring per generation, and y be the image

category.
9:

10: procedure CMA-Search(xinit, ⁄, y)
11: initialize µ = xinit, C = I Û I denotes identity matrix.
12: while True do

13: for j = 1, ..., ⁄ do

14: xj = sample_multivariate_normal(µ, C) Û Generate mutated o�spring
15: yj , pj =FITNESS(xj , Render, Network) Û Calculate fitness of o�spring
16: if yj ”= y then

17: return xj Û Classification fails for image with camera parameters xj

18: x1...⁄ Ω xs(1)...s(⁄), with s(j) = argsort(pj) Û Pick best o�spring
19: µ, C Ω update_parameters(x1...⁄, µ, C)

We extend these approaches to work well with our low-dimensional scene representation by utilizing a181

gradient-free optimization method to search the space—Covariance Matrix Adaptation-Evolution Strategy182

(CMA-ES) (42; 43). We found that gradient descent with di�erentiable rendering struggled to find in-183

distribution errors in our scenes due to the low dimensionality of the optimization problem. CMA-ES has been184

found to work reliably well with non-smooth optimization problems and especially with local optimization185

(44), which made it a perfect fit for our search strategy. In contrast to gradient based methods requiring high186

dimensions, our approach works well for as low as 3 dimensions.187

Algorithm 2 provides an outline of using CMA-Search to find in-distribution adversarial examples by searching188

the vicinity of camera parameters. The algorithm for searching for adversarial examples using light parameters189

in rendered data, and within parametrically controlled unifrom data is analogous. In Fig. 2 we show examples190

of in-distribution adversarial examples found by our CMA-Search method over camera parameters. Starting191

with the correctly classified image (left), our method finds an image in the vicinity by slightly modifying192

camera parameters of the scene. As can be seen, subtle changes in 3D perspective can lead to drastic errors193

in classification. We also highlight the subtle changes in camera position (in black) and camera Look At (in194

blue) in the figure. To the best of our knowledge, this is the first evolutionary strategies based search method195

for finding in-distribution adversarial examples.196

Starting from the initial parameters, CMA-ES generates o�spring by sampling from a multivariate normal197

(MVN) distribution i.e. mutating the original parameters. These o�spring are then sorted based on the198

fitness function (classification probability), and the best ones are used to modify the mean and covariance199

matrix of the MVN for the next generation. The mean represents the current best estimate of the solution i.e.200

the maximum likelihood solution, while the covariance matrix dictates the direction in which the population201

should be directed in the next generation. The search is stopped either when a misclassification occurs,202
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or after 15 iterations over scene parameters. For the simplistic parametrically controlled data, we check203

for a misclassification till 1500 iterations. More details on the exact subroutines for parameter update and204

theoretical underpinnings of the CMA-ES algorithm can be found in the documentation for pycma (45) and205

the accompanying paper (43).206

3.1 Investigating in-distribution robustness using CMA-Search207

Below we provide details on the evaluation and visualization of in-distribution adversarial examples identified208

by CMA-Search.209

3.1.1 Quantifying in-distribution robustness using the Attack Rate210

To quantify the performance of CMA-Search and the prevalence of in-distribution adversarial examples211

we propose a new metric which we call the Attack Rate. To measure the Attack Rate we start from a212

correctly classified data point, and then search in the vicinity of this point for an in-distribution adversarial213

example. The Attack Rate is simply measured as the percentage of such correctly classified points for which214

an in-distribution adversarial example was found. For simplistic parametrically controlled data, the Attack215

Rate was measured by attacking 20, 000 correctly classified samples using CMA-Search. Due to our use of216

a physically based renderer that accurately models the physics of light in the 3D scene, generating images217

in the vicinity of the correctly classified image is a computational intensive process. Thus, for rendered218

data, the Attack Rate is measured by attacking 2, 000 correctly classified images for every architecture, and219

these numbers are reported in Table 3. As an additional control, we also measured the Attack Rate for220

the ResNet18 architecture with 20, 000 images, and found the rate to be unchanged (for more details, see221

Sec. 4). For the Co3D dataset, Attack Rate is measured on 116, 850 images. As explained in Sec. 2.3.1, we do222

not render/generate any new novel views for this dataset but only search through natural images already223

provided in the dataset. This also allows us to confirm that any in-distribution adversarial examples found224

this way are not an artifact of the view synthesis pipeline.225

3.1.2 Visualizing in-distribution adversarial examples using Church-window plots226

CMA-Search starts from a correctly classified point and provides an in-distribution adversarial example.227

We use this to define a unit vector in the adversarial direction, and fix this as one of basis vectors for the228

subspace the data occupies. Assuming data dimensionality to be D, we can calculate the corresponding229

D ≠ 1 orthonormal bases. Following the same protocol as past work (46), we randomly pick one of these230

orthonormal vectors as the orthogonal direction and define a grid of perturbations with fixed increments along231

the adversarial and the orthogonal directions. These perturbations are then added to the original sample and232

the model is evaluated at these perturbed samples. We plot correct classifications in white, in-distribution233

adversarial examples in red, and out-of-distribution samples in black.234

3.1.3 Quantifying the role of di�erent sources of stochasticity235

Table 1 reports the results of Attack Rates for models as sources of stochasticity are varied one at a time to236

investigate their impact on model robustness. For these experiments, we studied binary classification models237

trained on 100, 000 data points of 20-dimensional data. Below, we provide additional details on how these238

experiments were conducted.239

CMA-Search: As our method is based on evolutionary strategies, it is inherently stochastic. To ensure240

that model robustness is not due to CMA-Search failing stochastically, we repeat the attack on our robust241

model with CMA-Search 10 times and report the mean attack rates.242

Optimization (SGD): To investigate if the optimization process enables certain models to be robust, we243

use the exact same data points and model initialization as the identified robust model, and repeat the training244

procedure 10 times to obtain 10 di�erent models. These models di�er from each other only due to the245

stochasticity of SGD.246
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Sampling Bias: We ask if model robustness is a function of the specific training data sampled from the247

training distribution - is there a good training dataset that results in more robust models? We test this by248

using this exact same initialization and SGD seed as the robust model, and train models on newly data249

sampled from the training distribution. We ensure that the newly sampled dataset has the same size and250

distribution as the dataset used with the identified robust model.251

Model Initialization: To test if the model initialization is the underlying cause for model robustness, we252

train multiple models with the exact same training data as the robust model, but with di�erent random253

initialization (di�erent from the robust model) while using the same seed for SGD.254

4 Results on in-distribution robustness255

Here we present results on in-distribution robustness by training classification models on an explicity controlled256

data distribution, and then finding failures within that distribution using our proposed CMA-Search. These257

experiments are performed on detests across three levels of data complexity—(i) simplistic parametrically con-258

trolled data sampled from disjoint per-category uniform distributions (Sec. 4.1), (ii) parametric and controlled259

images of objects using our graphics pipeline (Sec. 4.2), and (iii) natural image data from ImageNet (22) and260

Common Objects in 3D (24) datasets(Sec. 4.3). Additional experimental details and hyperparameters are261

reported in the supplement in Sec.S2.262

For these datasets, we first report accuracies of classification models on held-out, in-distribution test data263

drawn from the training data distribution. Then, we measure the attack rate for each model using the264

approach highlighted in Sec. 3.1.1. Finally, we also visualize how these errors are distributed with respect265

to the training data distribution. The findings are consistent across all 4 datasets—there is widespread266

presence of in-distribution adversarial examples despite models having converged to a high accuracy on a267

held out test-set set. While this has been theorized, this phenomenon has never before been shown for object268

recognition, and presents compelling evidence in support of the ground-truth boundary theory being the269

primary mechanism driving adversarial attacks in object recognition.270

4.1 Ground-truth boundary theory explains in-distribution adversarial examples in simplistic271

parametrically controlled data272

273

We build on the same setup as previous work (11)—binary classification of data sampled from two high-274

dimensional, disjoint uniform distributions (see Sec. 2.1). This previous work relied on Projected Gradient275

Descent to find adversarial examples (12; 47), but this approach only works at high dimensions (> 60) (11).276

We present results using our evolutionary strategies based CMA-Search, as it can also find in-distribution277

adversarial examples in low dimensions as shown below. More details on the implementation of CMA-Search278

are provided in Sec. 3.279

In Fig. 4(d), we report our method’s attack rate for models with high accuracy (> 0.99). The attack rate280

measures the fraction of correctly classified points for which an in-distribution adversarial examples can be281

found in the vicinity using CMA-Search (see Sec. 3.1 for more details). These results demonstrate that despite282

a near perfect accuracy on a held-out, randomly sampled test set, in-distribution adversarial examples can be283

identified in the vicinity of all correctly classified test points using CMA-Search. This simplistic dataset is284

easily separable by most conventional machine learning models including a decision tree, which makes the285

presence of in-distribution adversarial examples both surprising and highly concerning.286

In Fig. 4(a) we report the attack rate for models trained with 20, 100 and 500 dimensional data. As can be287

seen, the attack rate of CMA-Search is nearly 1.0 till a very large dataset size. However, once a critical dataset288

size is reached, networks do start becoming robust. Unfortunately, the data complexity scales poorly with289

number of dimensions. While dimensionality grows five-fold from 20 to 100, the number of points required290

for robustness scales almost 100-fold. Furthermore, for 500 dimensions we were unable to identify the dataset291

size required for models to become robust despite trying 10 million training data points.292
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Figure 4: Hypotheses explaining in-distribution adversarial examples. (a) Attack rate of CMA-Search in
finding an in-distribution adversarial example starting with a correctly classified sample. Models start
becoming robust at high dataset sizes, however the sample complexity scales poorly with data dimensionality.
(b) Average Euclidean distance between the starting point and the identified in-distribution adversarial
sample. As dataset size increases, the average Euclidean distance from the starting point to in-distribution
adversarial example increases for all data dimensions. (c) Example of one-dimensional ground-truth function.
(d) Depiction of under-regularization learned boundary theory. (e) Depiction of ground-truth boundary theory.
(f) Church window plots depicting adversarial examples in the vicinity of category boundaries.
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Table 1: Role of stochasticity in in-distribution robustness. To isolate the source of high variance in model
robustness at high dataset sizes, we investigate four sources of stochasticity one at a time holding other
factors constant. These include—inherent stochasticity of CMA-Search, SGD, sampling bias, and model
initialization. Our results show that this variance is largely driven by model robustness, which has substantial
impact on model robustness.

Stochastic source varied Attack Rate

CMA-Search 0.14 ± 0.16

SGD 0.22 ± 0.09

Sampling Bias 0.08 ± 0.06

Model Initialization 0.99 ± 0.03

In Fig. 4(b) we report the average distance between the (correctly classified) start point and the in-distribution293

adversarial example. As can be seen, this distance increases as dataset size is increased. As critical dataset294

size is reached, adversarial examples are far enough from starting points that they are now not in-distribution.295

This results in a dip in the attack rate, as we only measure in-distribution adversarial examples. This suggests296

that for a fixed data dimensionality sample complexity does have a significant impact on in-distribution297

robustness.298

We also investigated the role of robust training on in-distribution robustness by including 20, 000 identified299

adversarial examples alongside 100, 000 training data points and retraining the model for the 100 dimensional300

case. We found that the attack rate continued to be 1.0, with no improvement in model robustness against301

CMA-Search. This is expected behaviour, as our identified adversarial examples lie within the training302

distribution, and robust training in this case essentially amounts to a marginal increase in the training dataset303

size.304

While models start becoming robust at high dataset sizes (Fig. 4(a),(b)), we found significant variance in this305

behaviour. Empirically, we found that the attack rates of models trained at high dataset sizes can also be306

high at times. This variance is also visible in the error bars in Fig. 4(a),(b). This result suggests that despite307

the same problem setup some models turn out to be robust, while others do not. To identify the underlying308

cause of this stochasticity in model robustness, we investigate how robustness changes as a function of four309

sources of stochasticity—inherent stochasticity of CMA-Search, optimization (SGD), sampling bias, and310

model initialization. For this analysis, we started by first identifying a robust model trained with 100, 000311

points for 20-dimensional data and then attacked the model again holding everything constant while varying312

one source of stochasticity at a time.313

Results are reported in Table 1. The mean attack rate remains low across multiple CMA-Search repetitions314

(0.14), and across multiple models trained from scratch (0.22). Thus, robustness is not due to the inherent315

stochasticity of CMA-Search, or SGD. Furthermore, new models trained with newly sampled data also resulted316

in a robust model with a low attack rate of 0.08, suggesting there is no good dataset which led to the models317

becoming robust. Interestingly, we find that models trained with new initializations are now non-robust and318

have a high attack rate of 0.99. Thus, what makes certain models robust and others non-robust depends on319

the model initialization. More details on these experiments are provided in Sec. 3.1.3.320

In summary, results in Fig. 4 and Table 1 together suggest that while there is widespread presence of321

adversarial examples within the training distribution, models can start becoming robust at critical (extremely322

large) dataset sizes. Furthermore, the deciding factor for which models will be robust at extreme sizes is323

strongly dependent on the model initialization.324

Despite evidence supporting the presence of adversarial examples lying within the training distribution,325

the mechanisms driving such examples remain unknown. There are two main potential hypotheses that326

can explain such in-distribution adversarial examples. Fig. 4(c) depicts the ground truth function as a one327
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dimensional binary step function for ease of visualization. Firstly, adversarial examples could be an outcome328

of the learned function being poorly regularized. We call this hypothesis under-regularized learned boundary,329

and depict it in Fig. 4(d) in one dimension. As can be seen, adversarial examples are spread across the330

entire range of inputs in this case. For such examples, better regularization can prevent ‘spikes’ in the331

predicted output and would lead to better in-distribution robustness. Secondly, in-distribution adversarial332

examples may be an outcome of the complexity of ground-truth boundaries at high dimensions. We call it333

the ground-truth boundary theory, and depict it in Fig. 4(e) in low dimensions for ease of comprehension. In334

this case, there are no high-frequency ‘spikes’ in the learned function. Instead, the learned function is simply335

wrong in estimating where the step function changes from 1 to 0 as the probability of sampling near the336

ground-truth boundary in the training data is infinitesimally small due to the training data being finite. In337

this case all errors are located in the vicinity of the function transition and better regularization would not338

help prevent these errors. As shown in previous works investigating this hypothesis (11; 12; 13; 14; 15; 16),339

the number of function transitions increases combinatorially with dimensionality, making it easier to find an340

in-distribution adversarial example in the vicinity of one of these transitions. Below, we assess these two341

hypotheses.342

To investigate which of the two hypotheses presented in Fig. 4 hold true for this dataset, we visualize the343

learned decision boundary in the vicinity of the category transition using church window plots (46). More344

details on how these are plotted is provided in Sec. 3.1.2. As can be seen in Fig. 4(f), there is a clean transition345

from correctly classified points (white) to in-distribution adversarial examples near the decision boundary346

(red), beyond which points become out of the distribution of samples belonging to a particular category347

(black). We observed this same behaviour across all church window plots made with multiple randomized348

samples and orthogonal vectors. In-distibution adversarial examples are isolated to a region close to the349

category boundary, and in a contiguous fashion. Errors resulting from poor regularization would not be350

expected to be contiguous, or isolated close to the ground-truth boundary. Thus, these results strongly suggest351

that these in-distribution adversarial examples occur due to the mechanism presented in Fig. 4(e)—due to352

ground-truth boundary complexity in high dimensions, as opposed to poor regularization.353

4.2 Widespread presence of in-distribution adversarial examples through subtle changes in 3D354

perspective and lighting355

356

To confirm that our findings about in-distribution adversarial attacks and the ground-truth boundary theory357

extend to images of real-world objects, we extend our investigations to parametric and controlled images358

of objects using our graphics pipeline. We use a computer graphics pipeline for generating and modifying359

images which ensures complete parametric control over the data distribution. Every image generated from360

our pipeline can be completely described by their lighting and camera parameters shown in Fig 3(a). To361

create a dataset with a fixed, known training distribution, we simply sample camera and lighting parameters362

from a fixed, uniform distribution, and render a subset of 3D models from ShapeNet (48) objects with these363

camera and lighting parameters.364

Using this approach, we create a large-scale (≥ 0.5 million images) and unbiased dataset of complex image365

data with a fixed, known distribution. Furthermore, sampling new points from this distribution is as simple366

as sampling more camera and light parameters from their known distribution. Our pipeline builds upon367

recent work by Li et al. (34). Fig. 3(b) shows sample images sampled from the known training distribution368

(additional examples from the dataset can be found in Fig. S1). As can be seen, this dataset contains objects369

seen across multiple viewpoints, scales, and shifted across the frame. Furthermore, we use physically based370

rendering (34; 49) to accurately simulate complex lighting artifacts including diverse lighting conditions like371

multiple colors and self-shadows which makes the dataset challenging for neural networks. We ensure that372

the following constraints are met: (1) uniformly distributed and unbiased training data, (2) 1000 images per373

3D object (total 0.5 million images), and (3) no spurious correlations between the scene parameters and the374

image labels. More details on dataset generation can be found in methods Sec. 2.2.375

We first investigate how well object recognition models perform across camera and lighting variations while376

ensuring an exact match between training and testing distributions. Both the train and the test sets are377
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Table 2: Performance of object recognition models on seen and new 3D models.

Accuracy ResNet

ResNet

(pre-

trained)

Anti-

Aliased

Networks

Truly Shift

Invariant
ViT DeIT

DeIT

Dis-

tilled

Seen models 0.75 0.76 0.82 0.80 0.58 0.63 0.64

New models 0.70 0.70 0.74 0.72 0.59 0.64 0.65

created by sampling uniformly across the range of camera and lighting parameters for this experiment. We378

evaluate both Convolutional Neural Networks (CNNs) and transformer-based models. Exact hyper-parameters379

and other details on model training are provided in methods Sec. S2380

The di�culty in classifying these images is corroborated in Table 2, as there is significant room for improvement381

for both CNNs and transformer-based models. Table 2 reports accuracy for several state-of-the-art CNNs382

(50; 51; 52) and transformer architectures including the vision transformer (ViT) (53), and the data e�cient383

transformer (DeIT) and its distilled version (DeIT Distilled) (54). We also report results on two specialized384

shift-invariant architectures - Anti-Aliased Networks (51), and the recent Truly Shift Invariant Network (52).385

While these networks do provide a boost in performance, they too are susceptible to camera and lighting386

variations. We also confirm that this is not an outcome of our neural networks overfitting by testing the387

network on new, unseen 3D models. The performance on these new 3D models also mirrors the same trend,388

as seen in Table 2.389

These results naturally raise the question—What images are these networks failing on? Are there certain390

lighting and camera conditions that the networks fail on? The one-to-one mapping between the pixel space391

(images) and our low-dimensional scene representation (i.e. camera and lighting parameters) allows us to392

answer these questions by visualizing and comparing correctly and incorrectly classified images in this low393

dimensional space. In Fig. 5 we show the distribution of camera parameters for images which were classified394

incorrectly. As can be seen, the errors seem well distributed across space—we found no clear, strong patterns395

which characterize the camera and light conditions of misclassified images. Note that regions in each of these396

parametric spaces represent human interpretable scenarios which have been known to impact human vision397

significantly. For instance, changes in camera position represent canonical vs non-canonical poses which398

significantly impact human vision (55; 56; 57). Similarly, changes in the up vector can represent upside-down399

objects which too impact human vision (58; 59; 60). In contrast, Fig. 5 shows that networks do not su�er in400

specific regions of the space. These results are consistent across multiple architectures. Supplemental Fig. S2401

shows examples of this phenomenon multiple object categories and neural network architectures.402

While above results prove the existence of adversarial examples within the training distribution, a key403

requirement for such examples is the imperceptibility of the change needed to introduce an error. To404

introduce such imperceptible changes, we propose an evolution-strategies based error search methodology for405

in-distribution, misclassified images which we call CMA-Search. Starting with a correctly classified image,406

our method searches within in the vicinity of the camera and lighting parameters to find an in-distribution407

image which is incorrectly classified. Note that unlike adversarial attacks, our method does not add noise and408

our constraints ensure that identified errors are in-distribution. CMA-search enables interpretable attacks409

by searching over the scene’s camera and light parameters, while only sampling from within the training410

distribution. For instance, it is possible to attack a model by searching over solely the camera position (3411

dimensions), while holding all other scene parameters constant. While previous works have attempted to find412

in-distribution adversarial examples by approximating the data distribution using generative models (47; 12),413

we provide first empirical evidence for in-distribution adversarial examples in object recognition.414

As shown in Table 3, CMA-Search finds small changes in 3D perspective and lighting which have a drastic415

impact on network performance. For example, starting with an image correctly classified by a ResNet18 (50)416

model, our method can find an error in its vicinity for 71% cases with an average change of 1.83% in the417

camera position. For transformers, the impact is far worse, with an attack rate of 85%. Similarly, with418

lighting changes CMA-Search can find a misclassification in 42% cases with an average change of 6.52%419
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Camera Positions
(Incorrect Predictions)

Look At
(Incorrect Predictions)

Up Vector
(Incorrect Predictions)

Field of View
(Incorrect Predictions)

(a) (b) (d)(c)

Figure 5: Distribution of errors across the scene parameter space. (a) Coordinates of camera positions, (b)
Coordinates of Look At, (c) Up Vector and (d) Histogram of errors across lens field of view (FOV). We found
no clear, strong patterns which characterize the camera and light conditions of misclassified images. This is
in contrast to human vision which is impacted by regions of camera positions (non-canonical viewpoints),
and up vector (upside-down orientations) among others.

Table 3: CMA-Search over camera and light parameters. Starting with new, correctly classified in-distribution
images, we use our method to search the vicinity of camera and light positions, starting with the original
image’s parameters. Attack Rate reports the percentage of times an in-distribution adversarial example was
found starting with a correctly classified image. We also report the mean and standard deviation of the
distance between the original image and the identified in-distribution adversarial example. This distance is
measured by calculating the L2 distance between the camera parameters of the original correctly classified
image and the parameters of the in-distribution adversarial example in its vicinity, and normalizing it by the
range of the camera parameters.

Model Architecture

CMA Cam CMA Light

Attack

Rate

(%)

Distance

(mean ±
std)

Attack

Rate

(%)

Distance

(mean ±
std)

ResNet18 (50) 71 1.83 ± 1.33 42 6.52 ± 5.68

ResNet18 (pretrained) (50) 58 1.79 ± 1.46 36 5.36 ± 3.70

Anti-Aliased Networks (51) 45 2.32 ± 2.09 40 7.03 ± 5.10

Truly Shift Invariant Network (52) 53 2.22 ± 2.16 25 6.72 ± 5.41

ViT (53) 85 1.34 ± 1.16 65 4.63 ± 3.49

DeIT (54) 85 1.27 ± 0.81 51 4.54 ± 2.75

DeIT Distilled (54) 86 1.22 ± 0.87 55 4.49 ± 2.27

for a ResNet18 model. These results are reported for various architectures in Table 3. As can be seen, we420

find that networks are most sensitive to changes in the Camera Position and the camera Look At—subtle,421

in-distribution 3D perspective changes. This behaviour is consistent across several architectures. In fact,422

even shift-invariant architectures specifically designed to be robust to 2D shifts are still highly susceptible to423

3D perspective changes. As an additional control, we also measured the Attack Rate for the ResNet18 model424

on a large test set of 20, 000 points. We found the attack rate to be 70% when measured on 20, 000 points,425

very similar to the 71% when measured on 2, 000 points reported in Table 3.426
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Figure 6: CMA-Search on ImageNet images. To replicate results on ImageNet, we replace our rendering
pipeline with the single view MPI (21) model to generate novel views of ImageNet images. Here we show results
using CMA-Search with the MPI model to find subtle 3D perspective changes which lead to misclassification
with ResNet18 and OpenAI’s CLIP model.

Thus, the space of camera and lighting variations is filled with in-distribution adversarial examples in the427

vicinity of correctly classified points. Unfortunately, church-window plots similar to Fig. 4.1 cannot be428

replicated for complex image data as the transition boundary between two object categories is hard to define.429

However, our results provide evidence in support of the ground-truth boundary theory as an explanation for430

adversarial examples in object recognition, and calls into question existing theories which attribute adversarial431

examples to systematic di�erences in the training and test distributions.432

4.3 In-distribution adversarial examples in the vicinity of natural images433

So far, our experiments have focused on synthetic datasets with complete control over the training distribution.434

To ensure our findings extend to natural images, we present additional results on ImageNet and the Common435

Objects in 3D datasets below.436

4.3.1 Results on ImageNet437

As ImageNet provides only one viewpoint per image, we approximate images in the vicinity of this viewpoint438

to find in-distribution adversarial examples for natural images (22). As described in Sec.2.3.1, this is achieved439

using the MPI (21) model for novel view synthesis. Specifically, we used CMA-Search to optimize the camera440

parameters, but instead of our renderer, we now use a novel view synthesis model (MPI (21)) for generating441

novel views of ImageNet images. More details on this procedure can be found in methods Sec. 2.3.1.442

Starting with a correctly predicted ImageNet image, we use CMA-Search in conjunction with the MPI443

model to find images in the vicinity with small, 3D perspective changes which can break ImageNet trained444

classification networks including ResNet18, and OpenAI’s transformer based CLIP model (23). Results for445

these experiments are reported in Fig. 6. We provide additional examples of misclassified ImageNet images446

found using CMA-Search in Supplementary Fig. S3. MPI model was not trained on ImageNet, and can447

at times fail to generate novel views, resulting in blurry images instead. We omit these images to only448

present results on adversarial examples due to small, 3D perspective changes. While these results present an449

interesting application on natural images, these results are only approximately in-distribution like previous450

works that also explored in-distriubtion adversarial examples (47; 12). We cannot be entirely sure that the451
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Figure 7: In-distribution errors in Co3D images. As an additional control to ensure that noise introduced
by novel view synthesis on ImageNet is not driving in-distribution adversarial errors in natural images, we
present in-distribution errors found in the Co3D dataset. These frames are all captured by the camera, and
thus there are no new views generated synthetically. As shown in Table 4, our results confirm that visual
recognition models trained with the Co3D dataset also suffer from in-distribution errors. Errors presented
here are the immediately next frames from the correctly classified images presented alongside.

Table 4: Results with Co3D dataset. Despite very high accuracy on a held out in-distribution training dataset,
all models suffer from high attack rates. This confirms the widespread presence of in-distribution adversarial
examples within the training distribution for object recognition models trained with natural images.

ResNet
Anti-Aliased

Networks
ViT DeIT

Test Accuracy 0.92 0.94 0.82 0.85

Attack Rate 0.51 0.39 0.72 0.72

images found by CMA-Search on ImageNet are indeed in-distribution, further justifying the necessity of our452

computer graphics based approach in the previous section.453

4.3.2 Results on Co3D454

As noted above, experiments with MPI introduce a confounding factor—potential noise introduced by the455

novel view synthesis network. Thus, as an additional control we provide results with the large-scale, multi-view456

Co3D dataset where we used frames captured by the camera as opposed to generating novel views. Additional457

details on train and test datasets, and how we search in the vicinity of a given 3D viewpoint are provided in458

Sec.2.3. We provide samples of in-distribution adversarial attacks for the Co3D dataset in Fig. 7. As can459

be seen in table 4, despite very high accuracy on a test set drown from inside the training distribution, all460

visual recognition models suffer from a very large attack rate. These experiments further confirm that our461

findings extend to natural images—there is widespread presence of adversarial examples within the training462

distribution for object recognition models trained on natural images as well.463

5 Discussion464

Recent theoretical works have presented results on in-distribution adversarial attacks, and posited an465

explanation for the origin of adversarial attacks, which we call the ground-truth boundary theory. This added466
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constraint requiring adversarial examples be in-distribution results in a more stringent definition of adversarial467

examples, which presents an opportunity to further scrutinize and update existing theories on the origin468

of adversarial examples. However, these works were restricted to simplistic, parametrically controlled data.469

Here we provided evidence that these in-distribution adversarial examples extend to images of objects. These470

results provide new, stronger evidence in support of the ground-truth boundary theory being the primary471

mechanism driving in-distribution adversarial examples.472

We also show that the current best practices for adversarial defense are insu�cient to address in-distribution473

adversarial examples. Most existing approaches revolve around the idea of robust training (61), i.e. including474

adversarial examples into the training set. As mentioned in Sec. 4.1, we confirmed that in-distribution errors475

could not be removed by robust training. This may be because finding adversarial examples is computationally476

costly and models start becoming robust only at extreme dataset sizes, and that this critical size increases477

exponentially with data dimensionality. This need for extreme dataset size can be explained by the ground-478

truth boundary theory. There is combinatorial increase in the number of ground-truth boundary transitions as479

data dimensionality increases, and thus a corresponding drop in the probability of a randomly sampled point480

being su�ciently close to the transition boundary as explained in Fig. 4. In this way, an increasingly large481

number of samples are needed to obtain samples from the boundary transitions as dimensionality increases.482

Recent work on scaling laws (62; 63) has investigated accuracy at extreme dataset sizes, but our finding483

suggests similar scaling laws could also be identified for model robustness.484

Based on our findings, we propose three potential directions which might help alleviate in-distribution485

adversarial examples. Firstly, reducing the data representation dimensionality. As dataset size needed for486

robustness scales poorly with dimensions, e�cient dimensionality reduction on data representation may487

help reduce samples needed to train a robust model. Secondly, better model initialization. We showed that488

once critical dataset size is reached, model robustness strongly depends on initialization, and thus future489

researchers may need to devise better initialization techniques which result in more robust models. Thirdly,490

casting object recognition as a smooth regression problem that reduces the number of ground-truth boundary491

transitions as these examples are located only in the vicinity of these boundaries (Fig. 4).492

In practice, the presence of these examples points to a highly worrisome problem—it bypasses the need for a493

malicious agent to add engineered noise to induce an error. In fact, our results show that the problem runs494

far deeper than previously thought as it is even possible to attack models trained with natural image datasets495

like ImageNet and Co3D datasets. Experiments with Co3D confirmed that changing camera configurations in496

real life will result in errors unexpectedly, even if the test accuracy of a model is near perfect. The major497

worry here is that these examples lie hidden within the data distribution in plain sight. Object recognition498

models are deployed all around us, and their susceptibility to in-distribution adversarial examples is not499

well-understood. In this work, not only do we identify this problem, but also present a tool in the form500

of CMA-Search which can help search for these failures and help future researchers evaluate any potential501

defense mechanisms. As object recognition models become ubiquitous, addressing this issue is of utmost502

importance to prevent potentially detrimental impacts of AI models on the society.503

In summary, we have provided empirical evidence of the widespread presence of in-distribution adversarial504

examples for complex image data, which is highly worrisome and has concerning ramifications for the origin505

of and defense against adversarial examples. By extending the phenomenon of in-distribution adversarial506

attacks to complex image data, we were able to scrutinize existing theories and provide compelling evidence507

in support of the ground-truth boundary theory. However, it is also possible that other existing theories may508

be modified to account for in-distribution adversarial examples. Thus, going forward, we hope that future509

researchers can combine theoretical and empirical investigations using the unified framework provided in our510

work, extend it to natural images, and help move the machine learning and computer vision communities511

towards a further, deeper understanding of the phenomenon we call adversarial examples.512

Empirical research to support or reject hypotheses is at the core of the sciences. By introducing a mathematical513

framework to parametrize object recognition data, we complement theoretical works by helping validate their514

proposed theories on complex, real world data. This methodology works in tandem with theoretical research,515

as an analytical tool to validate and refine theories. We hope that future works can extend this approach of516
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controlled datasets and empirical testing to validate theoretical works beyond object recognition, with new517

modalities such as Language or tabular data, among others.518

Data and Code Availability Statement519

Source code, data and demos are available anonymously on GitHub at https://github.com/520

in-dist-adversarials/in_distribution_adversarial_examples.521
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