
Published as a conference paper at ICLR 2023

VIPER: PROVABLY EFFICIENT ALGORITHM FOR OF-
FLINE RL WITH NEURAL FUNCTION APPROXIMATION

Thanh Nguyen-Tang
Department of Computer Science
Johns Hopkins University
Baltimore, MD 21218, USA
nguyent@cs.jhu.edu

Raman Arora
Department of Computer Science
Johns Hopkins University
Baltimore, MD 21218, USA
arora@cs.jhu.edu

ABSTRACT

We propose a novel algorithm for offline reinforcement learning called Value Iter-
ation with Perturbed Rewards (VIPeR), which amalgamates the pessimism prin-
ciple with random perturbations of the value function. Most current offline RL
algorithms explicitly construct statistical confidence regions to obtain pessimism
via lower confidence bounds (LCB), which cannot easily scale to complex prob-
lems where a neural network is used to estimate the value functions. Instead,
VIPeR implicitly obtains pessimism by simply perturbing the offline data multi-
ple times with carefully-designed i.i.d. Gaussian noises to learn an ensemble of
estimated state-action value functions and acting greedily with respect to the min-
imum of the ensemble. The estimated state-action values are obtained by fitting a
parametric model (e.g., neural networks) to the perturbed datasets using gradient
descent. As a result, VIPeR only needsO(1) time complexity for action selection,
while LCB-based algorithms require at least Ω(K2), where K is the total number
of trajectories in the offline data. We also propose a novel data-splitting technique
that helps remove a factor involving the log of the covering number in our bound.
We prove that VIPeR yields a provable uncertainty quantifier with overparameter-
ized neural networks and enjoys a bound on sub-optimality of Õ(κH5/2d̃/

√
K),

where d̃ is the effective dimension, H is the horizon length and κ measures the
distributional shift. We corroborate the statistical and computational efficiency
of VIPeR with an empirical evaluation on a wide set of synthetic and real-world
datasets. To the best of our knowledge, VIPeR is the first algorithm for offline
RL that is provably efficient for general Markov decision processes (MDPs) with
neural network function approximation.

1 INTRODUCTION

Offline reinforcement learning (offline RL) (Lange et al., 2012; Levine et al., 2020) is a practical
paradigm of RL for domains where active exploration is not permissible. Instead, the learner can
access a fixed dataset of previous experiences available a priori. Offline RL finds applications in
several critical domains where exploration is prohibitively expensive or even implausible, including
healthcare (Gottesman et al., 2019; Nie et al., 2021), recommendation systems (Strehl et al., 2010;
Thomas et al., 2017), and econometrics (Kitagawa & Tetenov, 2018; Athey & Wager, 2021), among
others. The recent surge of interest in this area and renewed research efforts have yielded several
important empirical successes (Chen et al., 2021; Wang et al., 2023; 2022; Meng et al., 2021).

A key challenge in offline RL is to efficiently exploit the given offline dataset to learn an optimal
policy in the absence of any further exploration. The dominant approaches to offline RL address
this challenge by incorporating uncertainty from the offline dataset into decision-making (Buckman
et al., 2021; Jin et al., 2021; Xiao et al., 2021; Nguyen-Tang et al., 2022a; Ghasemipour et al., 2022;
An et al., 2021; Bai et al., 2022). The main component of these uncertainty-aware approaches to
offline RL is the pessimism principle, which constrains the learned policy to the offline data and leads
to various lower confidence bound (LCB)-based algorithms. However, these methods are not easily
extended or scaled to complex problems where neural function approximation is used to estimate

1

Published as a conference paper at ICLR 2023

the value functions. In particular, it is costly to explicitly compute the statistical confidence regions
of the model or value functions if the class of function approximator is given by overparameterized
neural networks. For example, constructing the LCB for neural offline contextual bandits (Nguyen-
Tang et al., 2022a) and RL (Xu & Liang, 2022) requires computing the inverse of a large covariance
matrix whose size scales with the number of parameters in the neural network. This computational
cost hinders the practical application of these provably efficient offline RL algorithms. Therefore, a
largely open question is how to design provably computationally efficient algorithms for offline RL
with neural network function approximation.

In this work, we present a solution based on a computational approach that combines the pessimism
principle with randomizing the value function (Osband et al., 2016; Ishfaq et al., 2021). The algo-
rithm is strikingly simple: we randomly perturb the offline rewards several times and act greedily
with respect to the minimum of the estimated state-action values. The intuition is that taking the min-
imum from an ensemble of randomized state-action values can efficiently achieve pessimism with
high probability while avoiding explicit computation of statistical confidence regions. We learn the
state-action value function by training a neural network using gradient descent (GD). Further, we
consider a novel data-splitting technique that helps remove the dependence on the potentially large
log covering number in the learning bound. We show that the proposed algorithm yields a provable
uncertainty quantifier with overparameterized neural network function approximation and achieves
a sub-optimality bound of Õ(κH5/2d̃/

√
K), where K is the total number of episodes in the offline

data, d̃ is the effective dimension, H is the horizon length, and κ measures the distributional shift.
We achieve computational efficiency since the proposed algorithm only needsO(1) time complexity
for action selection, while LCB-based algorithms require O(K2) time complexity. We empirically
corroborate the statistical and computational efficiency of our proposed algorithm on a wide set of
synthetic and real-world datasets. The experimental results show that the proposed algorithm has
a strong advantage in computational efficiency while outperforming LCB-based neural algorithms.
To the best of our knowledge, ours is the first offline RL algorithm that is both provably and compu-
tationally efficient in general MDPs with neural network function approximation.

2 RELATED WORK

Randomized value functions for RL. For online RL, Osband et al. (2016; 2019) were the first
to explore randomization of estimates of the value function for exploration. Their approach was
inspired by posterior sampling for RL (Osband et al., 2013), which samples a value function from
a posterior distribution and acts greedily with respect to the sampled function. Concretely, Osband
et al. (2016; 2019) generate randomized value functions by injecting Gaussian noise into the training
data and fitting a model on the perturbed data. Jia et al. (2022) extended the idea of perturbing re-
wards to online contextual bandits with neural function approximation. Ishfaq et al. (2021) obtained
a provably efficient method for online RL with general function approximation using the perturbed
rewards. While randomizing the value function is an intuitive approach to obtaining optimism in
online RL, obtaining pessimism from the randomized value functions can be tricky in offline RL.
Indeed, Ghasemipour et al. (2022) point out a critical flaw in several popular existing methods for
offline RL that update an ensemble of randomized Q-networks toward a shared pessimistic temporal
difference target. In this paper, we propose a simple fix to obtain pessimism properly by updating
each randomized value function independently and taking the minimum over an ensemble of ran-
domized value functions to form a pessimistic value function.

Offline RL with function approximation. Provably efficient offline RL has been studied exten-
sively for linear function approximation. Jin et al. (2021) were the first to show that pessimistic
value iteration is provably efficient for offline linear MDPs. Xiong et al. (2023); Yin et al. (2022)
improved upon Jin et al. (2021) by leveraging variance reduction. Xie et al. (2021) proposed a
Bellman-consistency assumption with general function approximation, which improves the bound
of Jin et al. (2021) by a factor of

√
d when realized to finite action space and linear MDPs. Wang

et al. (2021); Zanette (2021) studied the statistical hardness of offline RL with linear function ap-
proximation via exponential lower bound, and Foster et al. (2021) suggested that only realizability
and strong uniform data coverage are not sufficient for sample-efficient offline RL. Beyond linearity,
some works study offline RL for general function approximation, both parametric and nonparamet-
ric. These approaches are either based on Fitted-Q Iteration (FQI) (Munos & Szepesvári, 2008; Le

2

Published as a conference paper at ICLR 2023

et al., 2019; Chen & Jiang, 2019; Duan et al., 2021a;b; Hu et al., 2021; Nguyen-Tang et al., 2022b)
or the pessimism principle (Uehara & Sun, 2022; Nguyen-Tang et al., 2022a; Jin et al., 2021). While
pessimism-based algorithms avoid the strong assumptions of data coverage used by FQI-based algo-
rithms, they require an explicit computation of valid confidence regions and possibly the inverse of a
large covariance matrix which is computationally prohibitive and does not scale to complex function
approximation setting. This limits the applicability of pessimism-based, provably efficient offline
RL to practical settings. A very recent work Bai et al. (2022) estimates the uncertainty for construct-
ing LCB via the disagreement of bootstrapped Q-functions. However, the uncertainty quantifier is
only guaranteed in linear MDPs and must be computed explicitly.

We provide a more detailed discussion of our technical contribution in the context of existing litera-
ture in Section C.1.

3 PRELIMINARIES

In this section, we provide basic background on offline RL and overparameterized neural networks.

3.1 EPISODIC TIME-INHOMOGENOUS MARKOV DECISION PROCESSES (MDPS)

A finite-horizon Markov decision process (MDP) is denoted as the tupleM = (S,A,P, r,H, d1),
where S is an arbitrary state space, A an arbitrary action space, H the episode length, and d1 the
initial state distribution. We assume that SA := |S||A| is finite but arbitrarily large, e.g., it can
be as large as the total number of atoms in the observable universe ≈ 1082. Let P(S) denote
the set of probability measures over S. A time-inhomogeneous transition kernel P = {Ph}Hh=1,
where Ph : S × A → P(S) maps each state-action pair (sh, ah) to a probability distribution
Ph(·|sh, ah). Let r = {rh}Hh=1 where rh : S × A → [0, 1] is the mean reward function at step
h. A policy π = {πh}Hh=1 assigns each state sh ∈ S to a probability distribution, πh(·|sh), over
the action space and induces a random trajectory s1, a1, r1, . . . , sH , aH , rH , sH+1 where s1 ∼ d1,
ah ∼ πh(·|sh), sh+1 ∼ Ph(·|sh, ah). We define the state value function V π

h ∈ RS and the action-
state value function Qπ

h ∈ RS×A at each timestep h as Qπ
h(s, a) = Eπ[

∑H
t=h rt|sh = s, ah = a],

and V π
h (s) = Ea∼π(·|s) [Q

π
h(s, a)], where the expectation Eπ is taken with respect to the random-

ness of the trajectory induced by π. Let Ph denote the transition operator defined as (PhV)(s, a) :=
Es′∼Ph(·|s,a)[V (s′)]. For any V : S → R, we define the Bellman operator at timestep h as
(BhV)(s, a) := rh(s, a) + (PhV)(s, a). The Bellman equations are given as follows. For any
(s, a, h) ∈ S ×A× [H],

Qπ
h(s, a) = (BhV

π
h+1)(s, a), V

π
h (s) = ⟨Qπ

h(s, ·), πh(·|s)⟩A, V π
H+1(s) = 0,

where [H] := {1, 2, . . . ,H}, and ⟨·, ·⟩A denotes the summation over all a ∈ A. We define an
optimal policy π∗ as any policy that yields the optimal value function, i.e. V π∗

h (s) = supπ V
π
h (s)

for any (s, h) ∈ S × [H]. For simplicity, we denote V π∗

h and Qπ∗

h as V ∗
h and Q∗

h, respectively. The
Bellman optimality equation can be written as

Q∗
h(s, a) = (BhV

∗
h+1)(s, a), V

∗
h (s) = max

a∈A
Q∗

h(s, a), V
∗
H+1(s) = 0.

Define the occupancy density as dπh(s, a) := P((sh, ah) = (s, a)|π) which is the probability that we
visit state s and take action a at timestep h if we follow the policy π. We denote dπ

∗

h by d∗h.

Offline regime. In the offline regime, the learner has access to a fixed dataset D =

{(sth, ath, rth, sth+1)}
t∈[K]
h∈[H] generated a priori by some unknown behaviour policy µ = {µh}h∈[H].

Here, K is the total number of trajectories, and ath ∼ µh(·|sth), sth+1 ∼ Ph(·|sth, ath) for any
(t, h) ∈ [K] × [H]. Note that we allow the trajectory at any time t ∈ [K] to depend on the tra-
jectories at previous times. The goal of offline RL is to learn a policy π̂, based on (historical data)
D, such that π̂ achieves small sub-optimality, which we define as

SubOpt(π̂) := Es1∼d1 [SubOpt(π̂; s1)] , where SubOpt(π̂; s1) := V π∗

1 (s1)− V π̂
1 (s1).

3

Published as a conference paper at ICLR 2023

Algorithm 1 Value Iteration with Perturbed Rewards (VIPeR)

1: Input: Offline data D = {(skh, akh, rkh)}
k∈[K]
h∈[H], a parametric function family F = {f(·, ·;W) :

W ∈ W} ⊂ {X → R} (e.g. neural networks), perturbed variances {σh}h∈[H], number of
bootstraps M , regularization parameter λ, step size η, number of gradient descent steps J , and
cutoff margin ψ, split indices {Ih}h∈[H] where Ih := [(H − h)K ′ + 1, . . . , (H − h+ 1)K ′]

2: Initialize ṼH+1(·)← 0 and initialize f(·, ·;W) with initial parameter W0

3: for h = H, . . . , 1 do
4: for i = 1, . . . ,M do
5: Sample {ξk,ih }k∈Ih

∼ N (0, σ2
h) and ζih = {ζj,ih }j∈[d] ∼ N (0, σ2

hId)

6: Perturb the dataset D̃i
h ← {skh, akh, rkh + Ṽh+1(s

k
h+1) + ξk,ih }k∈Ih

▷ Perturbation
7: Let W̃ i

h ← GradientDescent(λ, η, J, D̃i
h, ζ

i
h,W0) (Algorithm 2) ▷ Optimization

8: end for
9: Compute Q̃h(·, ·)← min{mini∈[M]f(·, ·; W̃ i

h), (H − h+ 1)(1 + ψ)}+ ▷ Pessimism
10: π̃h ← argmaxπh

⟨Q̃h, πh⟩ and Ṽh ← ⟨Q̃h, π̃h⟩ ▷ Greedy
11: end for
12: Output: π̃ = {π̃h}h∈[H].

Notation. For simplicity, we write xth = (sth, a
t
h) and x = (s, a). We write Õ(·) to hide logarith-

mic factors of the problem parameters (d,H,K,m, 1/δ) in the standard Big-Oh notation. We use
Ω(·) as the standard Omega notation. We write u ≲ v if u = O(v) and write u ≳ v if v ≲ u. We
write A ⪯ B iff B −A is a positive definite matrix. Id denotes the d× d identity matrix.

3.2 OVERPARAMETERIZED NEURAL NETWORKS

In this paper, we consider neural function approximation setting where the state-action value func-
tion is approximated by a two-layer neural network. For simplicity, we denoteX := S×A and view
it as a subset of Rd. Without loss of generality, we assume X ⊂ Sd−1 := {x ∈ Rd : ∥x∥2 = 1}.
We consider a standard two-layer neural network: f(x;W, b) = 1√

m

∑m
i=1 biσ(w

T
i x), where m

is an even number, σ(·) = max{·, 0} is the ReLU activation function (Arora et al., 2018), and
W = (wT

1 , . . . , w
T
m)T ∈ Rmd. During the training, we initialize (W, b) via the symmetric initial-

ization scheme (Gao et al., 2019) as follows: For any i ≤ m
2 , wi = wm

2 +i ∼ N (0, Id/d), and
bm

2 +i = −bi ∼ Unif({−1, 1}).1 During the training, we optimize over W while the bi are kept
fixed, thus we write f(x;W, b) as f(x;W). Denote g(x;W) = ∇W f(x;W) ∈ Rmd, and let W0 be
the initial parameters of W . We assume that the neural network is overparameterized, i.e, the width
m is sufficiently larger than the number of samples K. Overparameterization has been shown to
be effective in studying the convergence and the interpolation behaviour of neural networks (Arora
et al., 2019; Allen-Zhu et al., 2019; Hanin & Nica, 2020; Cao & Gu, 2019; Belkin, 2021). Under
such an overparameterization regime, the dynamics of the training of the neural network can be
captured using the framework of the neural tangent kernel (NTK) (Jacot et al., 2018).

4 ALGORITHM

In this section, we present the proposed algorithm called Value Iteration with Perturbed Rewards, or
VIPeR; see Algorithm 1 for the pseudocode. The key idea underlying VIPeR is to train a parametric
model (e.g., a neural network) on a perturbed-reward dataset several times and act pessimistically
by picking the minimum over an ensemble of estimated state-action value functions. In particular, at
each timestep h ∈ [H], we drawM independent samples of zero-mean Gaussian noise with variance
σh. We use these samples to perturb the sum of the observed rewards, rkh, and the estimated value
function with a one-step lookahead, i.e., Ṽh+1(s

k
h+1) (see Line 6 of Algorithm 1). The weights W̃ i

h

are then updated by minimizing the perturbed regularized squared loss on {D̃i
h}i∈[M] using gradient

descent (Line 7). We pick the value function pessimistically by selecting the minimum over the
finite ensemble. The chosen value function is truncated at (H − h+ 1)(1 + ψ) (see Line 9), where

1This symmetric initialization scheme makes f(x;W0) = 0 and ⟨g(x;W0),W0⟩ = 0 for any x.

4

Published as a conference paper at ICLR 2023

ψ ≥ 0 is a small cutoff margin (more on this when we discuss the theoretical analysis). The returned
policy is greedy with respect to the truncated pessimistic value function (see Line 10).

Algorithm 2 GradientDescent(λ, η, J, D̃i
h, ζ

i
h,W0)

1: Input: Regularization parameter λ, step
size η, number of gradient descent steps
J , perturbed dataset D̃i

h = {skh, akh, rkh +

Ṽh+1(s
k
h+1) + ξt,ih }k∈Ih

, regularization per-
turber ζih, initial parameter W0

2: L(W) := 1
2

∑
k∈Ih

(f(skh, a
k
h;W) − (rkh +

Ṽh+1(s
k
h+1) + ξk,ih))2 + λ

2 ∥W + ζih −W0∥22
3: for j = 0, . . . , J − 1 do
4: Wj+1 ←Wj − η∇L(Wj)
5: end for
6: Output: WJ .

It is important to note that we split the trajec-
tory indices [K] evenly into H disjoint buckets
[K] = ∪h∈[H]Ih, where Ih = [(H − h)K ′ +

1, . . . , (H − h + 1)K ′] for K ′ := ⌊K/H⌋2,
as illustrated in Figure 1. The estimated Q̃h is
thus obtained only from the offline data with
(trajectory) indices from Ih along with Ṽh+1.
This novel design removes the data dependence
structure in offline RL with function approxi-
mation (Nguyen-Tang et al., 2022b) and avoids
a factor involving the log of the covering num-
ber in the bound on the sub-optimality of Algo-
rithm 1, as we show in Section D.1.

To deal with the non-linearity of the underly-
ing MDP, we use a two-layer fully connected
neural network as the parametric function fam-
ily F in Algorithm 1. In other words, we approximate the state-action values: f(x;W) =
1√
m

∑m
i=1 biσ(w

T
i x), as described in Section 3.2. We use two-layer neural networks to simplify

the computational analysis. We utilize gradient descent to train the state-action value functions
{f(·, ·; W̃ i

h)}i∈[M], on perturbed rewards. The use of gradient descent is for the convenience of
computational analysis, and our results can be extended to stochastic gradient descent by leveraging
recent advances in the theory of deep learning (Allen-Zhu et al., 2019; Cao & Gu, 2019), albeit with
a more involved analysis.

Existing offline RL algorithms utilize estimates of statistical confidence regions to achieve pes-
simism in the offline setting. Explicitly constructing these confidence bounds is computationally
expensive in complex problems where a neural network is used for function approximation. For ex-
ample, the lower-confidence-bound-based algorithms in neural offline contextual bandits (Nguyen-
Tang et al., 2022a) and RL (Xu & Liang, 2022) require computing the inverse of a large covariance
matrix with the size scaling with the number of network parameters. This is computationally pro-
hibitive in most practical settings. Algorithm 1 (VIPeR) avoids such expensive computations while
still obtaining provable pessimism and guaranteeing a rate of Õ(1√

K
) on the sub-optimality, as we

show in the next section.

5 SUB-OPTIMALITY ANALYSIS

h=1 h=2 h=H...

k=1

k=K'

k=K

...

......

Figure 1: Data splitting.

Next, we provide a theoretical guarantee on the sub-optimality of VIPeR
for the function approximation class, F , represented by (overparameter-
ized) neural networks. Our analysis builds on the recent advances in gen-
eralization and optimization of deep neural networks (Arora et al., 2019;
Allen-Zhu et al., 2019; Hanin & Nica, 2020; Cao & Gu, 2019; Belkin,
2021) that leverage the observation that the dynamics of the neural param-
eters learned by (stochastic) gradient descent can be captured by the cor-
responding neural tangent kernel (NTK) space (Jacot et al., 2018) when
the network is overparameterized.

Next, we recall some definitions and state our key assumptions, formally.

Definition 1 (NTK (Jacot et al., 2018)). The NTK kernel Kntk : X × X → R is defined as

Kntk(x, x
′) = Ew∼N (0,Id/d)⟨xσ

′(wTx), x′σ′(wTx′)⟩,

where σ′(u) = 1{u ≥ 0}.

2Without loss of generality, we assume K/H ∈ N.

5

Published as a conference paper at ICLR 2023

Let Hntk denote the reproducing kernel Hilbert space (RKHS) induced by the NTK, Kntk.
SinceKntk is a universal kernel (Ji et al., 2020), we have that Hntk is dense in the space of con-
tinuous functions on (a compact set) X = S ×A (Rahimi & Recht, 2008).

Definition 2 (Effective dimension). For any h ∈ [H], the effective dimension of the NTK matrix on
data {xkh}k∈Ih

is defined as

d̃h :=
logdet(IK′ +Kh/λ)

log(1 +K ′/λ)
,

where Kh := [Kntk(x
i
h, x

j
h)]i,j∈Ih

is the Gram matrix of Kntk on the data {xkh}k∈Ih
. We further

define d̃ := maxh∈[H] d̃h.

Remark 1. Intuitively, the effective dimension d̃h measures the number of principal dimensions
over which the projection of the data {xkh}k∈Ih

in the RKHSHntk is spread. It was first introduced
by Valko et al. (2013) for kernelized contextual bandits and was subsequently adopted by Yang &
Wang (2020) and Zhou et al. (2020) for kernelized RL and neural contextual bandits, respectively.
The effective dimension is data-dependent and can be bounded by d̃ ≲ K ′(d+1)/(2d) in the worst
case (see Section B for more details).3

Definition 3 (RKHS of the infinite-width NTK). Define Q∗ := {f(x) =
∫
Rd c(w)

Txσ′(wTx)dw :

supw
∥c(w)∥2

p0(w) < B}, where c : Rd → Rd is any function, p0 is the probability density function of
N (0, Id/d), and B is some positive constant.

We make the following assumption about the regularity of the underlying MDP under function
approximation.

Assumption 5.1 (Completeness). For any V : S → [0, H + 1] and any h ∈ [H], BhV ∈ Q∗.4

Assumption 5.1 ensures that the Bellman operator Bh can be captured by an infinite-width neural
network. This assumption is mild as Q∗ is a dense subset of Hntk (Gao et al., 2019, Lemma C.1)
when B = ∞, thus Q∗ is an expressive function class when B is sufficiently large. Moreover,
similar assumptions have been used in many prior works on provably efficient RL with function
approximation (Cai et al., 2019; Wang et al., 2020; Yang et al., 2020; Nguyen-Tang et al., 2022b).

Next, we present a bound on the suboptimality of the policy π̃ returned by Algorithm 1. Recall that
we use the initialization scheme described in Section 3.2. Fix any δ ∈ (0, 1).

Theorem 1. Let σh = σ := 1 + λ
1
2B + (H + 1)

[
d̃ log(1 +K ′/λ) + 2 + 2 log(3H/δ)

] 1
2 . Let

m = poly(K ′, H, d,B, d̃, λ, δ) be some high-order polynomial of the problem parameters, λ =

1 + H
K , η ≲ (λ +K ′)−1, J ≳ K ′ log(K ′(H

√
d̃ + B)), ψ = 1, and M = log HSA

δ / log 1
1−Φ(−1) ,

where Φ(·) is the cumulative distribution function of the standard normal distribution. Then, under
Assumption 5.1, with probability at least 1−MHm−2 − 2δ, for any s1 ∈ S, we have that

SubOpt(π̃; s1) ≤ σ(1 +
√
2 log(MSAH/δ)) · Eπ∗

[
H∑

h=1

∥g(sh, ah;W0)∥Λ−1
h

]
+ Õ(1

K ′)

where Λh := λImd +
∑

k∈Ih
g(skh, a

k
h;W0)g(s

k
h, a

k
h;W0)

T ∈ Rmd×md.

Remark 2. Theorem 1 shows that the randomized design in our proposed algorithm yields a
provable uncertainty quantifier even though we do not explicitly maintain any confidence regions
in the algorithm. The implicit pessimism via perturbed rewards introduces an extra factor of
1 +

√
2 log(MSAH/δ) into the confidence parameter β.

We build upon Theorem 1 to obtain an explicit bound using the following data coverage assumption.

Assumption 5.2 (Optimal-Policy Concentrability). ∃κ <∞, sup(h,sh,ah)
d∗
h(sh,ah)

dµ
h(sh,ah)

≤ κ.

3Note that this is the worst-case bound, and the effective dimension can be significantly smaller in practice.
4We consider V : S → [0, H + 1] instead of V : S → [0, H] due to the cutoff margin ψ in Algorithm 1.

6

Published as a conference paper at ICLR 2023

work bound i.i.d? explorative data? finite spectrum? matrix inverse? opt

Jin et al. (2021) Õ
(

d
3/2
lin H2

√
K

)
no yes yes yes analytical

Yang et al. (2020) Õ
(

H2
√

d̃2+d̃ñ√
K

)
no – no yes oracle

Xu & Liang (2022) Õ
(

d̃H2
√
K

)
yes yes yes yes oracle

This work Õ
(

κH5/2d̃√
K

)
no no no no GD

Table 1: State-of-the-art results for offline RL with function approximation. The third and the fourth
columns ask if the corresponding result needs the data to be i.i.d, and well-explored, respectively;
the fifth column asks if the induced RKHS needs to have a finite spectrum; the sixth column asks if
the algorithm needs to invert a covariance matrix and the last column presents the optimizer being
used. Here ñ is the log of the covering number.

Assumption 5.2 requires any positive-probability trajectory induced by the optimal policy to be
covered by the behavior policy. This data coverage assumption is significantly milder than the uni-
form coverage assumptions in many FQI-based offline RL algorithms (Munos & Szepesvári, 2008;
Chen & Jiang, 2019; Nguyen-Tang et al., 2022b) and is common in pessimism-based algorithms
(Rashidinejad et al., 2021; Nguyen-Tang et al., 2022a; Chen & Jiang, 2022; Zhan et al., 2022).
Theorem 2. For the same parameter settings and the same assumption as in Theorem 1, we have
that with probability at least 1−MHm−2 − 5δ,

SubOpt(π̃) ≤ 2σ̃κH√
K ′

√2d̃ log(1 +K ′/λ) + 1 +

√
log H

δ

λ

+
16H

3K ′ log
log2(K

′H)

δ
+ Õ(1

K ′),

where σ̃ := σ(1 +
√
2 log(SAH/δ)).

Remark 3. Theorem 2 shows that with appropriate parameter choice, VIPeR achieves a sub-

optimality of Õ
(

κH3/2
√

d̃·max{B,H
√

d̃}√
K

)
. Compared to Yang et al. (2020), we improve by a factor

of K
2

dγ−1 for some γ ∈ (0, 1) at the expense of
√
H . When realized to a linear MDP in Rdlin ,

d̃ = dlin and our bound reduces into Õ
(

κH5/2dlin√
K

)
which improves the bound Õ(d3/2linH

2/
√
K)

of PEVI (Jin et al., 2021, Corollary 4.6) by a factor of
√
dlin. We provide the result summary and

comparison in Table 1 and give a more detailed discussion in Subsection B.1.

6 EXPERIMENTS

In this section, we empirically evaluate the proposed algorithm VIPeR against several state-of-the-art
baselines, including (a) PEVI (Jin et al., 2021), which explicitly constructs lower confidence bound
(LCB) for pessimism in a linear model (thus, we rename this algorithm as LinLCB for convenience
in our experiments); (b) NeuraLCB (Nguyen-Tang et al., 2022a) which explicitly constructs an
LCB using neural network gradients; (c) NeuraLCB (Diag), which is NeuraLCB with a diagonal
approximation for estimating the confidence set as suggested in NeuraLCB (Nguyen-Tang et al.,
2022a); (d) Lin-VIPeR which is VIPeR realized to the linear function approximation instead of
neural network function approximation; (e) NeuralGreedy (LinGreedy, respectively) which uses
neural networks (linear models, respectively) to fit the offline data and act greedily with respect to
the estimated state-action value functions without any pessimism. Note that when the parametric
class, F , in Algorithm 1 is that of neural networks, we refer to VIPeR as Neural-VIPeR. We do not
utilize data splitting in the experiments. We provide further algorithmic details of the baselines in
Section H.

We evaluate all algorithms in two problem settings: (1) the underlying MDP is a linear MDP whose
reward functions and transition kernels are linear in some known feature map (Jin et al., 2020), and
(2) the underlying MDP is non-linear with horizon length H = 1 (i.e., non-linear contextual ban-
dits) (Zhou et al., 2020), where the reward function is either synthetic or constructed from MNIST

7

Published as a conference paper at ICLR 2023

Figure 2: Empirical results of sub-optimality (in log scale) on linear MDPs.

dataset (LeCun et al., 1998). We also evaluate (a variant of) our algorithm and show its strong per-
formance advantage in the D4RL benchmark (Fu et al., 2020) in Section A.3. We implemented all
algorithms in Pytorch (Paszke et al., 2019) on a server with Intel(R) Xeon(R) Gold 6248 CPU @
2.50GHz, 755G RAM, and one NVIDIA Tesla V100 Volta GPU Accelerator 32GB Graphics Card.5

6.1 LINEAR MDPS

We first test the effectiveness of pessimism implicit in VIPeR (Algorithm 1). To that end, we
construct a hard instance of linear MDPs (Yin et al., 2022; Min et al., 2021); due to page lim-
itation, we defer the details of our construction to Section A.1. We test for different values of
H ∈ {20, 30, 50, 80} and report the sub-optimality of LinLCB, Lin-VIPeR, and LinGreedy, av-
eraged over 30 runs, in Figure 2. We find that LinGreedy, which is uncertainty-agnostic, fails
to learn from offline data and has poor performance in terms of sub-optimality when compared
to pessimism-based algorithms LinLCB and Lin-VIPeR. Further, LinLCB outperforms Lin-VIPeR
when K is smaller than 400, but the performance of the two algorithms matches for larger sample
sizes. Unlike LinLCB, Lin-VIPeR does not construct any confidence regions or require computing
and inverting large (covariance) matrices. The Y-axis is in log scale; thus, Lin-VIPeR already has
small sub-optimality in the first K ≈ 400 samples. These show the effectiveness of the randomized
design for pessimism implicit in Algorithm 1.

6.2 NEURAL CONTEXTUAL BANDITS

(a) (b) (c)
Figure 3: Sub-optimality (on log-scale) vs. sample size (K) for neural contextual bandits with fol-
lowing reward functions: (a) r(s, a)=cos(3sT θa), (b) r(s, a)=exp(−10(sT θa)2), and (c) MNIST.

Next, we compare the performance and computational efficiency of various algorithms against
VIPeR when neural networks are employed. For simplicity, we consider contextual bandits, a spe-
cial case of MDPs with horizon H = 1. Following Zhou et al. (2020); Nguyen-Tang et al. (2022a),
we use the bandit problems specified by the following reward functions: (a) r(s, a) = cos(3sT θa);
(b) r(s, a) = exp(−10(sT θa)2), where s and θa are generated uniformly at random from the unit
sphere Sd−1 with d = 16 and A = 10; (c) MNIST, where r(s, a) = 1 if a is the true label
of the input image s and r(s, a) = 0, otherwise. To predict the value of different actions from
the same state s using neural networks, we transform a state s ∈ Rd into dA-dimensional vec-
tors s(1) = (s, 0, . . . , 0), s(2) = (0, s, 0, . . . , 0), . . . , s(A) = (0, . . . , 0, s) and train the network to
map s(a) to r(s, a) given a pair of data (s, a). For Neural-VIPeR, NeuralGreedy, NeuraLCB, and
NeuraLCB (Diag), we use the same neural network architecture with two hidden layers of width
m = 64 and train the network with Adam optimizer (Kingma & Ba, 2015). Due to page limita-
tions, we defer other experimental details and hyperparameter setting to Section A.2. We report the

5Our code is available here: https://github.com/thanhnguyentang/neural-offline-rl.

8

https://github.com/thanhnguyentang/neural-offline-rl

Published as a conference paper at ICLR 2023

sub-optimality averaged over 5 runs in Figure 3. We see that algorithms that use a linear model, i.e.,
LinLCB and Lin-VIPeR significantly underperform neural-based algorithms, i.e., NeuralGreedy,
NeuraLCB, NeuraLCB (Diag) and Neural-VIPeR, attesting to the crucial role neural representations
play in RL for non-linear problems. It is also interesting to observe from the experimental results
that NeuraLCB does not always outperform its diagonal approximation, NeuraLCB (Diag) (e.g., in
Figure 3(b)), putting a question mark on the empirical effectiveness of NTK-based uncertainty for
offline RL. Finally, Neural-VIPeR outperforms all algorithms in the tested benchmarks, suggesting
the effectiveness of our randomized design with neural function approximation.

(a) (b)

Figure 4: Elapsed time (in seconds) for action selection in the contextual bandits problem with
r(s, a) = 10(sT θa)

2: (a) Runtime of action selection versus the number of (offline) data points K,
and (b) runtime of action selection versus the network width m (for K = 500).

Figure 5: Sub-optimality of Neural-
VIPeR versus different values of M .

Figure 4 shows the average runtime for action selection of
neural-based algorithms NeuraLCB, NeuraLCB (Diag), and
Neural-VIPeR. We observe that algorithms that use explicit
confidence regions, i.e., NeuraLCB and NeuraLCB (Diag),
take significant time selecting an action when either the num-
ber of offline samples K or the network width m increases.
This is perhaps not surprising because NeuraLCB and Neu-
raLCB (Diag) need to compute the inverse of a large covari-
ance matrix to sample an action and maintain the confidence
region for each action per state. The diagonal approximation
significantly reduces the runtime of NeuraLCB, but the run-
time still scales with the number of samples and the network
width. In comparison, the runtime for action selection for
Neural-VIPeR is constant. Since NeuraLCB, NeuraLCB (Diag), and Neural-VIPeR use the same
neural network architecture, the runtime spent training one model is similar. The only difference is
that Neural-VIPeR trains M models while NeuraLCB and NeuraLCB (Diag) train a single model.
However, as the perturbed data in Algorithm 1 are independent, trainingM models in Neural-VIPeR
is embarrassingly parallelizable.

Finally, in Figure 5, we study the effect of the ensemble size on the performance of Neural-VIPeR.
We use different values of M ∈ {1, 2, 5, 10, 20, 30, 50, 100, 200} for sample size K = 1000. We
find that the sub-optimality of Neural-VIPeR decreases graciously as M increases. Indeed, the
grid search from the previous experiment in Figure 3 also yields M = 10 and M = 20 from the
search space M ∈ {1, 10, 20} as the best result. This suggests that the ensemble size can also
play an important role as a hyperparameter that can determine the amount of pessimism needed in a
practical setting.

7 CONCLUSION

We propose a novel algorithmic approach for offline RL that involves randomly perturbing value
functions and pessimism. Our algorithm eliminates the computational overhead of explicitly main-
taining a valid confidence region and computing the inverse of a large covariance matrix for pes-
simism. We bound the suboptimality of the proposed algorithm as Õ

(
κH5/2d̃/

√
K
)
. We support

our theoretical claims of computational efficiency and the effectiveness of our algorithm with exten-
sive experiments.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

This research was supported, in part, by DARPA GARD award HR00112020004, NSF CAREER
award IIS-1943251, an award from the Institute of Assured Autonomy, and Spring 2022 workshop
on “Learning and Games” at the Simons Institute for the Theory of Computing.

REFERENCES

Yasin Abbasi-yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochas-
tic bandits. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. In International Conference on Learning Representations,
2018.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019.

Susan Athey and Stefan Wager. Policy learning with observational data. Econometrica, 89(1):
133–161, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and Zhao-
ran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. In
International Conference on Learning Representations, 2022.

Peter L Bartlett, Olivier Bousquet, and Shahar Mendelson. Local rademacher complexities. The
Annals of Statistics, 33(4):1497–1537, 2005.

Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the
prism of interpolation. Acta Numerica, 30:203–248, 2021.

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. Advances in Neural
Information Processing Systems, 32, 2019.

Jacob Buckman, Carles Gelada, and Marc G Bellemare. The importance of pessimism in fixed-
dataset policy optimization. In International Conference on Learning Representations, 2021.

Qi Cai, Zhuoran Yang, Jason D Lee, and Zhaoran Wang. Neural temporal-difference learning con-
verges to global optima. Advances in Neural Information Processing Systems, 32, 2019.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and
deep neural networks. Advances in Neural Information Processing Systems, 32:10836–10846,
2019.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning.
In International Conference on Machine Learning, pp. 1042–1051. PMLR, 2019.

Jinglin Chen and Nan Jiang. Offline reinforcement learning under value and density-ratio realizabil-
ity: the power of gaps. In Uncertainty in Artificial Intelligence, pp. 378–388. PMLR, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

10

Published as a conference paper at ICLR 2023

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning, pp. 844–853. PMLR, 2017.

Yaqi Duan, Chi Jin, and Zhiyuan Li. Risk bounds and rademacher complexity in batch reinforcement
learning. In International Conference on Machine Learning, pp. 2892–2902. PMLR, 2021a.

Yaqi Duan, Mengdi Wang, and Martin J Wainwright. Optimal policy evaluation using kernel-based
temporal difference methods. arXiv preprint arXiv:2109.12002, 2021b.

Dylan J Foster, Akshay Krishnamurthy, David Simchi-Levi, and Yunzong Xu. Offline rein-
forcement learning: Fundamental barriers for value function approximation. arXiv preprint
arXiv:2111.10919, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
data-driven reinforcement learning. CoRR, abs/2004.07219, 2020.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, 2021.

Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, and Jason D Lee. Convergence
of adversarial training in overparametrized neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Seyed Kamyar Seyed Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic?
estimating uncertainties for offline RL through ensembles, and why their independence matters.
arXiv preprint arXiv:2205.13703, 2022.

Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Finale
Doshi-Velez, and Leo Anthony Celi. Guidelines for reinforcement learning in healthcare. Nature
medicine, 25(1):16–18, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. In
International Conference on Learning Representations, 2020.

Yichun Hu, Nathan Kallus, and Masatoshi Uehara. Fast rates for the regret of offline reinforce-
ment learning. In Mikhail Belkin and Samory Kpotufe (eds.), Conference on Learning Theory,
COLT 2021, 15-19 August 2021, Boulder, Colorado, USA, volume 134 of Proceedings of Machine
Learning Research, pp. 2462. PMLR, 2021.

Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup,
and Lin Yang. Randomized exploration in reinforcement learning with general value function
approximation. In International Conference on Machine Learning, pp. 4607–4616. PMLR, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Ziwei Ji, Matus Telgarsky, and Ruicheng Xian. Neural tangent kernels, transportation mappings,
and universal approximation. In International Conference on Learning Representations, 2020.

Yiling Jia, Weitong ZHANG, Dongruo Zhou, Quanquan Gu, and Hongning Wang. Learning neural
contextual bandits through perturbed rewards. In International Conference on Learning Repre-
sentations, 2022.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137–2143.
PMLR, 2020.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

11

Published as a conference paper at ICLR 2023

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Toru Kitagawa and Aleksey Tetenov. Who should be treated? empirical welfare maximization
methods for treatment choice. Econometrica, 86(2):591–616, 2018.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

Hoang Minh Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In
ICML, volume 97 of Proceedings of Machine Learning Research, pp. 3703–3712. PMLR, 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Linghui Meng, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li, Weinan Zhang, Ying Wen,
Haifeng Zhang, Jun Wang, and Bo Xu. Offline pre-trained multi-agent decision transformer: One
big sequence model conquers all starcraftii tasks. arXiv preprint arXiv:2112.02845, 2021.

Yifei Min, Tianhao Wang, Dongruo Zhou, and Quanquan Gu. Variance-aware off-policy evaluation
with linear function approximation. Advances in neural information processing systems, 34, 2021.

Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. J. Mach. Learn.
Res., 9:815–857, 2008.

Thanh Nguyen-Tang, Sunil Gupta, A. Tuan Nguyen, and Svetha Venkatesh. Offline neural con-
textual bandits: Pessimism, optimization and generalization. In International Conference on
Learning Representations, 2022a.

Thanh Nguyen-Tang, Sunil Gupta, Hung Tran-The, and Svetha Venkatesh. On sample complexity
of offline reinforcement learning with deep reLU networks in besov spaces. Transactions on
Machine Learning Research, 2022b. ISSN 2835-8856.

Thanh Nguyen-Tang, Ming Yin, Sunil Gupta, Svetha Venkatesh, and Raman Arora. On instance-
dependent bounds for offline reinforcement learning with linear function approximation. In Pro-
ceedings of the Thirty Seventh AAAI Conference on Artificial Intelligence, 2023.

Xinkun Nie, Emma Brunskill, and Stefan Wager. Learning when-to-treat policies. Journal of the
American Statistical Association, 116(533):392–409, 2021.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) efficient reinforcement learning via
posterior sampling. Advances in Neural Information Processing Systems, 26, 2013.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. In International Conference on Machine Learning, pp. 2377–2386. PMLR, 2016.

Ian Osband, Benjamin Van Roy, Daniel J Russo, Zheng Wen, et al. Deep exploration via randomized
value functions. J. Mach. Learn. Res., 20(124):1–62, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

12

Published as a conference paper at ICLR 2023

Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In 2008
46th Annual Allerton Conference on Communication, Control, and Computing, pp. 555–561,
2008.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. Advances in Neural Information
Processing Systems, 34, 2021.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimiza-
tion in the bandit setting: No regret and experimental design. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning, ICML’10, pp. 1015–1022,
Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science & Business
Media, 2008.

Alex Strehl, John Langford, Lihong Li, and Sham M Kakade. Learning from logged implicit explo-
ration data. Advances in neural information processing systems, 23, 2010.

Philip S. Thomas, Georgios Theocharous, Mohammad Ghavamzadeh, Ishan Durugkar, and Emma
Brunskill. Predictive off-policy policy evaluation for nonstationary decision problems, with ap-
plications to digital marketing. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, AAAI’17, pp. 4740–4745. AAAI Press, 2017.

Joel Tropp. Freedman’s inequality for matrix martingales. Electronic Communications in Probabil-
ity, 16:262–270, 2011.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under
partial coverage. In International Conference on Learning Representations, 2022.

Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time anal-
ysis of kernelised contextual bandits. In Proceedings of the Twenty-Ninth Conference on Un-
certainty in Artificial Intelligence, UAI’13, pp. 654–663, Arlington, Virginia, USA, 2013. AUAI
Press.

Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, and Dongsheng Li. Bootstrapped
transformer for offline reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value
function approximation: Provably efficient approach via bounded eluder dimension. Advances in
Neural Information Processing Systems, 33:6123–6135, 2020.

Ruosong Wang, Dean Foster, and Sham M. Kakade. What are the statistical limits of offline RL
with linear function approximation? In International Conference on Learning Representations,
2021.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua M. Susskind, Jian Zhang, Ruslan Salakhutdinov,
and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. In ICML,
volume 139 of Proceedings of Machine Learning Research, pp. 11319–11328. PMLR, 2021.

Chenjun Xiao, Yifan Wu, Jincheng Mei, Bo Dai, Tor Lattimore, Lihong Li, Csaba Szepesvari, and
Dale Schuurmans. On the optimality of batch policy optimization algorithms. In International
Conference on Machine Learning, pp. 11362–11371. PMLR, 2021.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in neural information processing systems,
34, 2021.

13

Published as a conference paper at ICLR 2023

Wei Xiong, Han Zhong, Chengshuai Shi, Cong Shen, Liwei Wang, and Tong Zhang. Nearly min-
imax optimal offline reinforcement learning with linear function approximation: Single-agent
MDP and markov game. In International Conference on Learning Representations, 2023.

Tengyu Xu and Yingbin Liang. Provably efficient offline reinforcement learning with trajectory-wise
reward. arXiv preprint arXiv:2206.06426, 2022.

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.
In International Conference on Machine Learning, pp. 6995–7004. PMLR, 2019.

Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and
regret bound. In International Conference on Machine Learning, pp. 10746–10756. PMLR, 2020.

Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I. Jordan. On function approx-
imation in reinforcement learning: Optimism in the face of large state spaces. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, NIPS’20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Ming Yin, Yaqi Duan, Mengdi Wang, and Yu-Xiang Wang. Near-optimal offline reinforcement
learning with linear representation: Leveraging variance information with pessimism. Interna-
tional Conference on Learning Representations, 2022.

Ming Yin, Mengdi Wang, and Yu-Xiang Wang. Offline reinforcement learning with differentiable
function approximation is provably efficient. In International Conference on Learning Represen-
tations, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: Model-based offline policy optimization. Advances in Neural
Information Processing Systems, 33:14129–14142, 2020.

Andrea Zanette. Exponential lower bounds for batch reinforcement learning: Batch RL can be
exponentially harder than online RL. In International Conference on Machine Learning, pp.
12287–12297. PMLR, 2021.

Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason D. Lee. Offline reinforcement
learning with realizability and single-policy concentrability. In Po-Ling Loh and Maxim Raginsky
(eds.), Conference on Learning Theory, 2-5 July 2022, London, UK, volume 178 of Proceedings
of Machine Learning Research, pp. 2730–2775. PMLR, 2022.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with UCB-based explo-
ration. In International Conference on Machine Learning, pp. 11492–11502. PMLR, 2020.

14

Published as a conference paper at ICLR 2023

A EXPERIMENT DETAILS

A.1 LINEAR MDPS

In this subsection, we provide further details to the experiment setup used in Subsection 6.1. We
describe in detail a variant of the hard instance of linear MDPs (Yin et al., 2022) used in our experi-
ment. The linear MDP has S = {0, 1},A = {0, 1, · · · , 99}, and the feature dimension d = 10. Each
action a ∈ [99] = {1, . . . , 99} is represented by its binary encoding vector ua ∈ R8 with entry being
either −1 or 1. The feature mapping ϕ(s, a) is given by ϕ(s, a) = [uTa , δ(s, a), 1− δ(s, a)]T ∈ R10,
where δ(s, a) = 1 if (s, a) = (0, 0) and δ(s, a) = 0 otherwise. The true measure νh(s) is given
by νh(s) = [0, · · · , 0, (1 − s) ⊕ αh, s ⊕ αh] where {αh}h∈[H] ∈ {0, 1}H are generated uni-
formly at random and ⊕ is the XOR operator. We define θh = [0, · · · , 0, r, 1 − r]T ∈ R10 where
r = 0.99. Recall that the transition follows Ph(s

′|s, a) = ⟨ϕ(s, a), νh(s′)⟩ and the mean reward
rh(s, a) = ⟨ϕ(s, a), θh⟩. We generated a priori K ∈ {1, . . . , 1000} trajectories using the behav-
ior policy µ, where for any h ∈ [H] we set µh(0|0) = p, µh(1|0) = 1 − p, µh(a|0) = 0,∀a >
1;µh(0|1) = p, µh(a|1) = (1− p)/99,∀a > 0, where we set p = 0.6.

We run over K ∈ {1, . . . , 1000} and H ∈ {20, 30, 50, 80}. We set λ = 0.01 for all algorithms.
For Lin-VIPeR, we grid searched σh = σ ∈ {0.0, 0.1, 0.5, 1.0, 2.0} and M ∈ {1, 2, 10, 20}. For
LinLCB, we grid searched its uncertainty multiplier β ∈ {0.1, 0.5, 1, 2}. The sub-optimality metric
is used to compare algorithms. For each H ∈ {20, 30, 50, 80}, each algorithm was executed for 30
times and the averaged results (with std) are reported in Figure 2.

A.2 NEURAL CONTEXTUAL BANDITS

In this subsection, we provide in detail the experimental and hyperparameter setup in our exper-
iment in Subsection 6.2. For Neural-VIPeR, NeuralGreedy, NeuraLCB and NeuraLCB (Diag),
we use the same neural network architecture with two hidden layers whose width m = 64, train
the network with Adam optimizer (Kingma & Ba, 2015) with learning rate being grid-searched
over {0.0001, 0.001, 0.01} and batch size of 64. For NeuraLCB, NeuraLCB (Diag), and LinLCB,
we grid-searched β over {0.001, 0.01, 0.1, 1, 5, 10}. For Neural-VIPeR and Lin-VIPeR, we grid-
searched σh = σ over {0.001, 0.01, 0.1, 1, 5, 10} andM over {1, 10, 20}. We did not run NeuraLCB
in MNIST as the inverse of a full covariance matrix in this case is extremely expensive. We fixed the
regularization parameter λ = 0.01 for all algorithms. Offline data is generated by the (1−ϵ)-optimal
policy which generates non-optimal actions with probability ϵ and optimal actions with probability
1 − ϵ. We set ϵ = 0.5 in our experiments. To estimate the expected sub-optimality, we randomly
obtain 1, 000 novel samples (i.e. not used in training) to compute the average sub-optimality and
keep these same samples for all algorithms.

A.3 EXPERIMENT IN D4RL BENCHMARK

In this subsection, we evaluate the effectiveness of the reward perturbing design of VIPeR in the
Gym domain in the D4RL benchmark (Fu et al., 2020). The Gym domain has three environ-
ments (HalfCheetah, Hopper, and Walker2d) with five datasets (random, medium, medium-replay,
medium-expert, and expert), making up 15 different settings.

Design. To adapt the design of VIPeR to continuous control, we use the actor-critic framework.
Specifically, we have M critics {Qθi}i∈[M] and one actor πϕ, where {θi}i∈[M] and ϕ are the learn-
able parameters for the critics and actor, respectively. Note that in the continuous domain, we
consider discounted MDP with discount factor γ, instead of finite-time episode MDP as we initially
considered in our setting in the main paper. In the presence of the actor πϕ, there are two modifica-
tions to Algorithm 1. The first modification is that when training the critics {Qi

θ}i∈[M], we augment
the training loss in Algorithm 2 with a new penalization term. Specifically, the critic loss for Qθi on
a training sample τ := (s, a, r, s′) (sampled from the offline data D) is

L(θi; τ) = (Qθi(s, a)− (r + γQθ̄i(s′) + ξ))
2
+ β Ea′∼πϕ(·|s)

[
(Qθi(s, a′)− Q̄(s, a′))2

]︸ ︷︷ ︸
penalization term R(θi;s,ϕ)

, (1)

15

Published as a conference paper at ICLR 2023

where θ̄i has the same value of the current θi but is kept fixed, Q̄ = 1
M

∑M
i=1Qθi and ξ ∼ N (0, σ2)

is Gaussian noise, and β is a penalization parameter (note that β here is totally different from the
β in Theorem 1). The penalization term R(θi; s, ϕ) discourages overestimation in the value func-
tion estimate Qθi for out-of-distribution (OOD) actions a′ ∼ πϕ(·|s). Our design of R(θi; s, ϕ)
is initially inspired by the OOD penalization in Bai et al. (2022) that creates a pessimistic pseudo
target for the values at OOD actions. Note that we do not need any penalization for OOD actions
in our experiment for contextual bandits in Section 6.2. This is because in the contextual bandit
setting in Section 6.2 the action space is finite and not large, thus the offline data often sufficiently
cover all good actions. In the continuous domain such as the Gym domain of D4RL, however, it is
almost certain that there are actions that are not covered by the offline data since the action space
is continuous. We also note that the inclusion of the OOD action penalization term R(θi; s, ϕ) in
this experiment does not contradict our guarantee in Theorem 1 since in the theorem we consider
finite action space while in this experiment we consider continuous action space. We argue that the
inclusion of some regularization for OOD actions (e.g., R(θi; s, ϕ)) is necessary for the continuous
domain. 6

The second modification to Algorithm 1 for the continuous domain is the actor training, which is
the implementation of policy extraction in line 10 of Algorithm 1. Specifically, to train the actor πϕ
given the ensemble of critics {Qi

θ}i∈[M], we use soft actor update in Haarnoja et al. (2018) via

max
ϕ

{
Es∼D,a′∼πϕ(·|s)

[
min
i∈[M]

Qθi(s, a′)− log πϕ(a
′|s)
]}

, (2)

which is trained using gradient ascent in practice. Note that in the discrete action domain, we do not
need such actor training as we can efficiently extract the greedy policy with respect to the estimated
action-value functions when the action space is finite. Also note that we do not use data splitting
and value truncation as in the original design of Algorithm 1.

Hyperparameters. For the hyper-parameters of our training, we set M = 10 and the noise vari-
ance σ = 0.01. For β, we decrease it from 0.5 to 0.2 by linear decay for the first 50K steps and
exponential decay for the remaining steps. For the other hyperparameters of actor-critic training, we
fix them the same as in Bai et al. (2022). Specifically, the Q-network is the fully connected neural
network with three hidden layers all of which has 256 neurons. The learning rate for the actor and
the critic are 10−4 and 3× 10−4, respectively. The optimizer is Adam.

Results. We compare VIPeR with several state-of-the-art algorithms, including (i) BEAR (Kumar
et al., 2019) that use MMD distance to constraint policy to the offline data, (ii) UWAC (Wu et al.,
2021) that improves BEAR using dropout uncertainty, (iii) CQL (Kumar et al., 2020) that mini-
mizes Q-values of OOD actions, (iv) MOPO (Yu et al., 2020) that uses model-based uncertainty via
ensemble dynamics, (v) TD3-BC (Fujimoto & Gu, 2021) that uses adaptive behavior cloning, and
(vi) PBRL (Bai et al., 2022) that use uncertainty quantification via disagreement of bootstrapped
Q-functions. We follow the evaluation protocol in Bai et al. (2022). We run our algorithm for five
seeds and report the average final evaluation scores with standard deviation. We report the scores
of our method and the baselines in Table 2. We can see that our method has a strong advantage of
good performance (highest scores) in 11 out of 15 settings, and has good stability (small std) in all
settings. Overall, we also have the strongest average scores aggregated over all settings.

B EXTENDED DISCUSSION

Here we provide extended discussion of our result.

B.1 COMPARISON WITH OTHER WORKS AND DISCUSSION

We provide further discussion regarding comparison with other works in the literature.

6In our experiment, we also observe that without this penalization term, the method struggles to learn any
good policy. However, using only the penalization term without the first term in Eq. (1), we observe that the
method cannot learn either.

16

Published as a conference paper at ICLR 2023

BEAR UWAC CQL MOPO TD3-BC PBRL VIPeR

R
an

do
m HalfCheetah 2.3 ±0.0 2.3 ±0.0 17.5 ±1.5 35.9 ±2.9 11.0 ±1.1 11.0 ±5.8 14.5 ±2.1

Hopper 3.9 ±2.3 2.7 ±0.3 7.9 ±0.4 16.7 ±12.2 8.5 ±0.6 26.8 ±9.3 31.4 ±0.0
Walker2d 12.8 ±10.2 2.0 ±0.4 5.1 ±1.3 4.2 ±5.7 1.6 ±1.7 8.1 ±4.4 20.5 ±0.5

M
ed

iu
m HalfCheetah 43.0 ±0.2 42.2 ±0.4 47.0 ±0.5 73.1 ±2.4 48.3 ±0.3 57.9 ±1.5 58.5 ±1.1

Hopper 51.8 ±4.0 50.9 ±4.4 53.0 ±28.5 38.3 ±34.9 59.3 ±4.2 75.3 ±31.2 99.4 ±6.2
Walker2d -0.2 ±0.1 75.4 ±3.0 73.3 ±17.7 41.2 ±30.8 83.7 ±2.1 89.6 ±0.7 89.6 ±1.2

M
ed

iu
m

R
ep

la
y HalfCheetah 36.3 ±3.1 35.9 ±3.7 45.5 ±0.7 69.2 ±1.1 44.6 ±0.5 45.1 ±8.0 45.0 ±8.6

Hopper 52.2 ±19.3 25.3 ±1.7 88.7 ±12.9 32.7 ±9.4 60.9 ±18.8 100.6 ±1.0 100.2 ±1.0
Walker2d 7.0 ±7.8 23.6 ±6.9 81.8 ±2.7 73.7 ±9.4 81.8 ±5.5 77.7 ±14.5 83.1 ±4.2

M
ed

iu
m

E
xp

er
t HalfCheetah 46.0 ±4.7 42.7 ±0.3 75.6 ±25.7 70.3 ±21.9 90.7 ±4.3 92.3 ±1.1 94.2 ±1.2

Hopper 50.6 ±25.3 44.9 ±8.1 105.6 ±12.9 60.6 ±32.5 98.0 ±9.4 110.8 ±0.8 110.6 ±1.0
Walker2d 22.1 ±44.9 96.5 ±9.1 107.9 ±1.6 77.4 ±27.9 110.1 ±0.5 110.1 ±0.3 109.8 ±0.5

E
xp

er
t HalfCheetah 92.7 ±0.6 92.9 ±0.6 96.3 ±1.3 81.3 ±21.8 96.7 ±1.1 92.4 ±1.7 97.4 ±0.9

Hopper 54.6 ±21.0 110.5 ±0.5 96.5 ±28.0 62.5 ±29.0 107.8 ±7 110.5 ±0.4 110.8 ±0.4
Walker2d 106.6 ±6.8 108.4 ±0.4 108.5 ±0.5 62.4 ±3.2 110.2 ±0.3 108.3 ±0.3 108.3 ±0.2
Average 38.78 ±10.0 50.41 ±2.7 67.35 ±9.1 53.3 ±16.3 67.55 ±3.8 74.37 ±5.3 78.2 ±1.9

Table 2: Average normalized score and standard deviation of all algorithms over five seeds in the
Gym domain in the “v2” dataset of D4RL (Fu et al., 2020). The scores for all the baselines are from
Table 1 of Bai et al. (2022). The highest scores are highlighted.

Comparing to Jin et al. (2021). When the underlying MDP reduces into a linear MDP, if we
use the linear model as the plug-in parametric model in Algorithm 1, our bound reduces into
Õ
(

κH5/2dlin√
K

)
which improves the bound Õ(d3/2linH

2/
√
K) of PEVI (Jin et al., 2021, Corollary 4.6)

by a factor of
√
dlin and worsen by a factor of

√
H due to the data splitting. Thus, our bound is more

favorable in the linear MDPs with high-dimensional features. Moreover, our bound is guaranteed
in more practical scenarios where the offline data can have been adaptively generated and is not
required to uniformly cover the state-action space. The explicit bound Õ(d3/2linH

2/
√
K) of PEVI

(Jin et al., 2021, Corollary 4.6) is obtained under the assumption that the offline data have uniform
coverage and are generated independently on the episode basis.

Comparing to Yang et al. (2020). Though Yang et al. (2020) work in the online regime, it shares
some part of the literature with our work in function approximation for RL. Besides different learn-
ing regimes (offline versus online), we offer three key distinctions which can potentially be used
in the online regime as well: (i) perturbed rewards, (ii) optimization, and (iii) data split. Regard-
ing (i), our perturbed reward design can be applied to online RL with function approximation to
obtain a provably efficient online RL that is computationally efficient and thus remove the need of
maintaining explicit confidence regions and performing the inverse of a large covariance matrix.
Regarding (ii), we incorporate the optimization analysis into our algorithm which makes our algo-
rithm and analysis more practical. We also note that unlike (Yang et al., 2020), we do not make
any assumption on the eigenvalue decay rate of the empirical NTK kernel as the empirical NTK
kernel is data-dependent. Regarding (iii), our data split technique completely removes the factor√
logN∞(H, 1/K,B) in the bound at the expense of increasing the bound by a factor of

√
H . In

complex models, such log covering number can be excessively larger than the horizon H , making
the algorithm too optimistic in the online regime (optimistic in the offline regime, respectively). For
example, the target function class is RKHS with a γ-polynomial decay, the log covering number
scales as (Yang et al., 2020, Lemma D1),√

logN∞(H, 1/K,B) ≲ K
2

αγ−1 ,

for some α ∈ (0, 1). In the case of two-layer ReLU NTK, γ = d (Bietti & Mairal, 2019), thus√
logN∞(H, 1/K,B) ≲ K

2
αd−1 which is much larger than

√
H when the size of dataset is large.

Note that our data-splitting technique is general that can be used in the online regime as well.

Comparing to Xu & Liang (2022). Xu & Liang (2022) consider a different setting where per-
timestep rewards are not available and only the total reward of the whole trajectory is given. Used

17

Published as a conference paper at ICLR 2023

with neural function approximation, they obtain Õ(DeffH
2/
√
K) where Deff is their effective di-

mension. Note that Xu & Liang (2022) do not use data splitting and still achieve the same order of
Deff as our result with data splitting. It at first might appear that our bound is inferior to their bound
as we pay the cost of

√
H due to data splitting. However, to obtain that bound, they make three crit-

ical assumptions: (i) the offline data trajectories are independently and identically distributed (i.i.d.)
(see their Assumption 3), (ii) the offline data is uniformly explorative over all dimensions of the fea-
ture space (also see their Assumption 3), and (iii) the eigenfunctions of the induced NTK RKHS has
finite spectrum (see their Assumption 4). The i.i.d. assumption under the RKHS space with finite
dimensions (due to the finite spectrum assumption) and the well-explored dataset is critical in their
proof to use a matrix concentration that does not incur an extra factor of

√
Deff as it would normally

do without these assumptions (see Section E, the proof of their Lemma 2). Note that the celebrated
ReLU NTK does not satisfy the finite spectrum assumption (Bietti & Mairal, 2019). Moreover, we
do not make any of these three assumptions above for our bound to hold. That suggests that our
bound is much more general. In addition, we do not need to compute any confidence regions nor
perform the inverse of a large covariance matrix.

Comparing to Yin et al. (2023). During the submission of our work, a concurrent work of Yin
et al. (2023) appeared online. Yin et al. (2023) study provably efficient offline RL with a general
parametric function approximation that unifies the guarantees of offline RL in linear and generalized
linear MDPs, and beyond with potential applications to other classes of functions in practice. We
remark that the result in Yin et al. (2023) is orthogonal/complementary to our paper since they
consider the parametric class with third-time differentiability which cannot apply to neural networks
(not necessarily overparameterized) with non-smooth activation such as ReLU. In addition, they do
not consider reward perturbing in their algorithmic design or optimization errors in their analysis.

B.2 WORSE-CASE RATE OF EFFECTIVE DIMENSION

In the main paper, we prove an Õ
(

κH5/2d̃√
K

)
sub-optimality bound which depends on the notion of

effective dimension defined in Definition 2. Here we give a worst-case rate of the effective dimension
d̃ for the two-layer ReLU NTK. We first briefly review the background of RKHS.

LetH be an RKHS defined on X ⊆ Rd with kernel function ρ : X ×X → R. Let ⟨·, ·⟩H : H×H →
R and ∥ · ∥H : H → R be the inner product and the RKSH norm on H. By the reproducing
kernel property of H, there exists a feature mapping ϕ : X → H such that f(x) = ⟨f, ϕ(x)⟩H
and ρ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H. We assume that the kernel function ρ is uniformly bounded, i.e.
supx∈X ρ(x, x) <∞. Let L2(X) be the space of square-integral functions on X with respect to the
Lebesgue measure and let ⟨·, ·⟩L2 be the inner product on L2(X). The kernel function ρ induces an
integral operator Tρ : L2(X)→ L2(X) defined as

Tρf(x) =

∫
X
ρ(x, x′)f(x′)dx′.

By Mercer’s theorem (Steinwart & Christmann, 2008), Tρ has countable and positive eigenvalues
{λi}i≥1 and eigenfunctions {νi}i≥1. The kernel function andH can be expressed as

ρ(x, x′) =

∞∑
i=1

λiνi(x)νi(x
′),

H = {f ∈ L2(X) :
∞∑
i=1

⟨f, νi⟩L2

λi
<∞}.

Now consider the NTK defined in Definition 1:

Kntk(x, x
′) = Ew∼N (0,Id/d)⟨xσ

′(wTx), x′σ′(wTx′)⟩.

It follows from (Bietti & Mairal, 2019, Proposition 1) that λi ≍ i−d. Thus, by (Srinivas et al., 2010,
Theorem 5), the data-dependent effective dimension ofHntk can be bounded in the worst case by

d̃ ≲ K ′(d+1)/(2d).

18

Published as a conference paper at ICLR 2023

We remark that this is the worst-case bound that considers uniformly over all possible realizable of
training data. The effective dimension d̃ is on the other hand data-dependent, i.e. its value depends
on the specific training data at hand thus d̃ can be actually much smaller than the worst-case rate.

C PROOF OF THEOREM 1 AND THEOREM 2

In this section, we provide both the outline and detailed proofs of Theorem 1 and Theorem 2.

C.1 TECHNICAL REVIEW AND PROOF OVERVIEW

Technical Review. In what follows, we provide more detailed discussion when placing our tech-
nical contribution in the context of the related literature. Our technical result starts with the value
difference lemma in Jin et al. (2021) to connect bounding the suboptimality of an offline algorithm
to controlling the uncertainty quantification in the value estimates. Thus, our key technical contri-
bution is to provably quantify the uncertainty of the perturbed value function estimates which were
obtained via reward perturbing and gradient descent. This problem setting is largely different from
the current analysis of overparameterized neural networks for supervised learning which does not
require uncertainty quantification.

Our work is not the first to consider uncertainty quantification with overparameterized neural net-
works, since it has been studied in Zhou et al. (2020); Nguyen-Tang et al. (2022a); Jia et al. (2022).
However, there are significant technical differences between our work and these works. The work in
Zhou et al. (2020); Nguyen-Tang et al. (2022a) considers contextual bandits with overparameterized
neural networks trained by (S)GD and quantifies the uncertainty of the value function with explicit
empirical covariance matrices. We consider general MDP and use reward perturbing to implicitly
obtain uncertainty, thus requiring different proof techniques.

Jia et al. (2022) is more related to our work since they consider reward perturbing with overparam-
eterized neural networks (but they consider contextual bandits). However, our reward perturbing
strategy is largely different from that in Jia et al. (2022). Specifically, Jia et al. (2022) perturbs each
reward only once while we perturb each reward multiple times, where the number of perturbing
times is crucial in our work and needs to be controlled carefully. We show in Theorem 1 that our re-
ward perturbing strategy is effective in enforcing sufficient pessimism for offline learning in general
MDP and the empirical results in Figure 2, Figure 3, Figure 5, and Table 2 are strongly consistent
with our theoretical suggestion. Thus, our technical proofs are largely different from those of Jia
et al. (2022).

Finally, the idea of perturbing rewards multiple times in our algorithm is inspired by Ishfaq et al.
(2021). However, Ishfaq et al. (2021) consider reward perturbing for obtaining optimism in online
RL. While perturbing rewards are intuitive to obtain optimism for online RL, for offline RL, under
distributional shift, it can be paradoxically difficult to properly obtain pessimism with randomization
and ensemble (Ghasemipour et al., 2022), especially with neural function approximation. We show
affirmatively in our work that simply taking the minimum of the randomized value functions after
perturbing rewards multiple times is sufficient to obtain provable pessimism for offline RL. In addi-
tion, Ishfaq et al. (2021) do not consider neural network function approximation and optimization.
Controlling the uncertainty of randomization (via reward perturbing) under neural networks with ex-
tra optimization errors induced by gradient descent sets our technical proof significantly apart from
that of Ishfaq et al. (2021).

Besides all these differences, in this work, we propose an intricately-designed data splitting tech-
nique that avoids the uniform convergence argument and could be of independent interest for study-
ing sample-efficient RL with complex function approximation.

Proof Overview. The key steps for proving Theorem 1 and Theorem 2 are highlighted in Subsec-
tion C.2 and Subsection C.3, respectively. Here, we discuss an overview of our proof strategy. The
key technical challenge in our proof is to quantify the uncertainty of the perturbed value function
estimates. To deal with this, we carefully control both the near-linearity of neural networks in the
NTK regime and the estimation error induced by reward perturbing. A key result that we use to con-
trol the linear approximation to the value function estimates is Lemma D.3. The technical challenge

19

Published as a conference paper at ICLR 2023

Parameters Meaning/Expression

m Network width

λ Regularization parameter

η Learning rate

M Number of bootstraps

{σh}h∈[H] Noise variances

J Number of GD steps

ψ Cutoff margin

K Number of offline episodes

R Radius parameter

δ Failure level

K ′ bucket size, K/H

Ih index buckets, [(H − h)K ′ + 1, (H − h)K ′ + 2, . . . , (H − h+ 1)K ′]

B Parameter radius of the Bellman operator

γh,1 c1σh
√

log(KM/δ)

γh,2 c2σh
√
d log(dKM/δ)

B1 λ−1
√

2K(H + ψ)2 + 8CgR4/3m−1/6
√
logm

√
KCgR

1/3m−1/6
√
logm

B̃1 λ−1
√

2K ′(H + ψ + γh,1)2 + λγ2h,2 + 8CgR4/3m−1/6
√
logm

√
K ′CgR

1/3m−1/6
√
logm

B̃2 λ−1K ′CgR
4/3m−1/6

√
logm

ι0 Bm−1/2(2
√
d+

√
2 log(3H/δ))

ι1 CgR
4/3m−1/6

√
logm+ Cg

(
B̃1 + B̃2 + λ−1(1− ηλ)J

(
K ′(H + ψ + γh,1)

2 + λγ2h,2

))
ι2 CgR

4/3m−1/6
√
logm+ Cg

(
B1 + B̃2 + λ−1(1− ηλ)JK ′(H + ψ)2

)
ι ι0 + ι1 + 2ι2

β

BK′
√
m
(2
√
d+

√
2 log(3H/ δ))λ−1/2Cg + λ1/2B

+(H + ψ)

[√
d̃h log(1 +

K′

λ) +K ′ log λ+ 2 log(3H/δ)

]
Table 3: The problem parameters and the additional parameters that we introduce for our proofs.
Here c1, c2, and Cg are some absolute constants independent of the problem parameters.

20

Published as a conference paper at ICLR 2023

in establishing Lemma D.3 is how to carefully control and propagate the optimization error incurred
by gradient descent. The complete proof of Lemma D.3 is provided in Section E.3.

The implicit uncertainty quantifier induced by the reward perturbing is established in Lemma D.1
and Lemma D.2, where we carefully design a series of intricate auxiliary loss functions and establish
the anti-concentrability of the perturbed value function estimates. This requires a careful design of
the variance of the noises injected into the rewards.

To deal with removing a potentially large covering number when we quantify the implicit uncer-
tainty, we propose our data splitting technique which is validated in the proof of Lemma D.1 in
Section E.1. Moreover, establishing Lemma D.1 in the overparameterization regime induces an ad-
ditional challenge since a standard analysis would result in a vacuous bound that scales with the
overparameterization. We avoid this issue by carefully incorporating the use of the effective dimen-
sion in Lemma D.1.

C.2 PROOF OF THEOREM 1

In this subsection, we present the proof of Theorem 1. We first decompose the suboptimality
SubOpt(π̃; s) and present the main lemmas to bound the evaluation error and the summation of the
implicit confidence terms, respectively. The detailed proof of these lemmas are deferred to Section
D. For proof convenience, we first provide the key parameters that we use consistently throughout
our proofs in Table 3.

We define the model evaluation error at any (x, h) ∈ X × [H] as

errh(x) = (BhṼh+1 − Q̃h)(x), (3)

where Bh is the Bellman operator defined in Section 3, and Ṽh and Q̃h are the estimated (action-)
state value functions returned by Algorithm 1. Using the standard suboptimality decomposition (Jin
et al., 2021, Lemma 3.1), for any s1 ∈ S,

SubOpt(π̃; s1) = −
H∑

h=1

Eπ̃ [errh(sh, ah)] +

H∑
h=1

Eπ∗ [errh(sh, ah)]

+

H∑
h=1

Eπ∗

[
⟨Q̃h(sh, ·), π∗

h(·|sh)− π̃h(·|sh)⟩A
]

︸ ︷︷ ︸
≤0

,

where the third term is non-positive as π̃h is greedy with respect to Q̃h. Thus, for any s1 ∈ S, we
have

SubOpt(π̃; s1) ≤ −
H∑

h=1

Eπ̃ [errh(sh, ah)] +

H∑
h=1

Eπ∗ [errh(sh, ah)] . (4)

In the following main lemma, we bound the evaluation error errh(s, a). In the rest of the proof, we
consider an additional parameter R and fix any δ ∈ (0, 1).
Lemma C.1. Let

m = Ω
(
d3/2R−1 log3/2(

√
m/R)

)
R = O

(
m1/2 log−3m

)
,

m = Ω
(
K ′10(H + ψ)2 log(3K ′H/δ)

)
λ > 1

K ′C2
g ≥ λR ≥ max{4B̃1, 4B̃2, 2

√
2λ−1K ′(H + ψ + γh,1)2 + 4γ2h,2},

η ≤ (λ+K ′C2
g)

−1,

ψ > ι,

σh ≥ β,∀h ∈ [H],

(5)

21

Published as a conference paper at ICLR 2023

where B̃1, B̃2, γh,1, γh,2, and ι are defined in Table 3,Cg is a absolute constant given in Lemma G.1,
and R is an additional parameter. Let M = log HSA

δ / log 1
1−Φ(−1) where Φ(·) is the cumulative

distribution function of the standard normal distribution. With probability at least 1−MHm−2−2δ,
for any (x, h) ∈ X × [H], we have

−ι ≤ errh(x) ≤ σh(1 +
√

2 log(MSAH/δ)) · ∥g(x;W0)∥Λ−1
h

+ ι

where Λh := λImd +
∑

k∈Ih
g(xkh;W0)g(x

k
h;W0)

T ∈ Rmd×md.

Now we can prove Theorem 1.

Proof of Theorem 1. Theorem 1 can directly follow from substituting Lemma C.1 into Equation (4).
We now only need to simplify the conditions in Equation (5). To satisfy Equation (5), it suffices to
set 

λ = 1 + H
K

ψ = 1 > ι

σh = β

8CgR
4/3m−1/6

√
logm ≤ 1

λ−1K ′H2 ≥ 2

B̃1 ≤
√
2K ′(H + ψ + γh,1)2 + λγ2h,2 + 1

√
K ′CgR

1/3m−1/6
√
logm ≤ 1

B̃2 ≤ K ′CgR
4/3m−1/6

√
logm ≤ 1.

Combining with Equation 5, we have

λ = 1 + H
K

ψ = 1 > ι

σh = β

η ≲ (λ+K ′)−1

m ≳ max
{
R8 log3m,K ′10(H + 1)2 log(3K ′H/δ), d3/2R−1 log3/2(

√
m/R),K ′6R8 log3m

}
m ≳ [2K ′(H + 1 + β

√
log(K ′M/δ))2 + λβ2d log(dK ′M/δ) + 1]3K ′3R log3m

4
√
K ′(H + 1 + β

√
log(K ′M/δ)) + 4β

√
d log(dK ′M/δ) ≤ R ≲ K ′.

(6)

Note that with the above choice of λ = 1 + H
K , we have

K ′ log λ = log(1 +
1

K ′)
K′
≤ log 3 < 2.

We further set that m ≳ B2K ′2d log(3H/δ), we have

β =
BK ′
√
m

(2
√
d+

√
2 log(3H/ δ))λ−1/2Cg + λ1/2B

+ (H + ψ)

[√
d̃h log(1 +

K ′

λ
) +K ′ log λ+ 2 log(3H/δ)

]

≤ 1 + λ1/2B + (H + 1)

[√
d̃h log(1 +

K ′

λ
) + 2 + 2 log(3H/δ)

]
= o(
√
K ′).

Thus,

4
√
K ′(H + 1 + β

√
log(K ′M/δ)) + 4β

√
d log(dK ′M/δ) << K ′

for K ′ large enough. Therefore, there exists R that satisfies Equation (6). We now only need to
verify ι < 1. We have

ι0 = Bm−1/2(2
√
d+

√
2 log(3H/δ)) ≤ 1/3,

22

Published as a conference paper at ICLR 2023

ι1 = CgR
4/3m−1/6

√
logm+ Cg

(
B̃1 + B̃2 + λ−1(1− ηλ)J

(
K ′(H + 1 + γh,1)

2 + λγ2h,2
))

≲ 1/3

if

(1− ηλ)J
[
K ′(H + 1 + β

√
log(K ′M/δ))2 + λβ2d log(dK ′M/δ)

]
≲ 1. (7)

Note that

(1− ηλ)J ≤ e−ηλJ ,

K ′(H + 1 + β
√
log(K ′M/δ))2 + λβ2d log(dK ′M/δ) ≲ K ′H2λβ2d log(dK ′M/δ).

Thus, Equation (7) is satisfied if

J ≳ ηλ log
(
K ′H2λβ2d log(dK ′M/δ)

)
.

Finally note that ι2 ≤ ι1. Rearranging the derived conditions here gives the complete parameter con-
ditions in Theorem 1. Specifically, the polynomial form of m is m ≳ max{R8 log3m,K ′10(H +

1)2 log(3K ′H/δ), d3/2R−1 log3/2(
√
m/R),K ′6R8 log3m, B2K ′2d log(3H/δ)}, m ≳ [2K ′(H +

1 + β
√
log(K ′M/δ))2 + λβ2d log(dK ′M/δ) + 1]3K ′3R log3m.

C.3 PROOF OF THEOREM 2

In this subsection, we give a detailed proof of Theorem 2. We first present intermediate lemmas
whose proofs are deferred to Section D. For any h ∈ [H] and k ∈ Ih = [(H − h)K ′ +1, . . . , (H −
h+ 1)K ′], we define the filtration

Fk
h = σ

(
{(sth′ , ath′ , rth′)}t≤k

h′∈[H] ∪ {(s
k+1
h′ , ak+1

h′ , rk+1
h′)}h′≤h−1 ∪ {(sk+1

h , ak+1
h)}

)
.

Let

Λk
h := λI +

∑
t∈Ik,t≤k

g(xth;W0)g(x
t
h;W0)

T ,

β̃ := β(1 + 2
√

log(SAH/δ)).

In the following lemma, we connect the expected sub-optimality of π̃ to the summation of the un-
certainty quantifier at empirical data.
Lemma C.2. Suppose that the conditions in Theorem 1 all hold. With probability at least 1 −
MHm−2 − 3δ,

SubOpt(π̃) ≤ 2β̃

K ′

H∑
h=1

∑
k∈Ih

Eπ∗

[
∥g(xh;W0)∥(Λk

h)
−1

∣∣∣∣Fk−1
h , sk1

]
+

16

3K ′H log(log2(K
′H)/δ)

+
2

K ′ + 2ι,

Lemma C.3. Under Assumption 5.2, for any h ∈ [H] and fixed W0, with probability at least 1− δ,∑
k∈Ih

Eπ∗

[
∥g(xh;W0)∥(Λk

h)
−1

∣∣∣∣Fk−1, s
k
1

]
≤
∑
k∈Ih

κ∥g(xh;W0)∥(Λk
h)

−1 + κ

√
K ′ log(1/δ)

λ
.

Lemma C.4. If λ ≥ C2
g and m = Ω(K ′4 log(K ′H/δ)), then with probability at least 1− δ, for any

h ∈ [H], we have ∑
k∈Ih

∥g(xh;W0)∥2(Λk
h)

−1 ≤ 2d̃h log(1 +K ′/λ) + 1.

where d̃h is the effective dimension defined in Definition 2.

Proof of Theorem 2. Theorem 2 directly follows from Lemma C.2-C.3-C.4 using the union bound.

23

Published as a conference paper at ICLR 2023

D PROOF OF LEMMA C.1

In this section, we provide the proof for Lemma C.1. We set up preparation for all the results in the
rest of the paper and provide intermediate lemmas that we use to prove Lemma C.1. The detailed
proofs of these intermediate lemmas are deferred to Section E.

D.1 PREPARATION

To prepare for the lemmas and proofs in the rest of the paper, we define the following quantities.
Recall that we use abbreviation x = (s, a) ∈ X ⊂ Sd−1 and xkh = (skh, a

k
h) ∈ X ⊂ Sd−1. For any

h ∈ [H] and i ∈ [M], we define the perturbed loss function

L̃i
h(W) :=

1

2

∑
k∈Ih

(
f(xkh;W)− ỹi,kh)

)2
+
λ

2
∥W + ζih −W0∥22, (8)

where

ỹi,kh := rkh + Ṽh+1(s
k
h+1) + ξi,kh ,

Ṽh+1 is computed by Algorithm 1 at Line 10 for timestep h+1, and {ξi,kh } and ζih are the Gaussian
noises obtained at Line 5 of Algorithm 1.

Here the subscript h and the superscript i in L̃i
h(W) emphasize the dependence on the ensemble

sample i and timestep h. The gradient descent update rule of L̃i
h(W) is

W̃
i,(j+1)
h = W̃

i,(j)
h − η∇L̃i

h(W), (9)

where W̃ i,(0)
h =W0 is the initialization parameters. Note that

W̃ i
h = GradientDescent(λ, η, J, D̃i

h, ζ
i
h,W0) = W̃

i,(J)
h ,

where W̃ i
h is returned by Line 7 of Algorithm 1. We consider a non-perturbed auxiliary loss function

Lh(W) :=
1

2

∑
k∈Ih

(
f(xkh;W)− ykh)

)2
+
λ

2
∥W −W0∥22, (10)

where

ykh := rkh + Ṽh+1(s
k
h+1).

Note that Lh(W) is simply a non-perturbed version of L̃i
h(W) where we drop all the noises {ξi,kh }

and {ζih}. We consider the gradient update rule for Lh(W) as follows

Ŵ
(j+1)
h = Ŵ

(j)
h − η∇Lh(W), (11)

where Ŵ (0)
h =W0 is the initialization parameters. To correspond with W̃ i

h, we denote

Ŵh := Ŵ
(J)
h . (12)

We also define the auxiliary loss functions for both non-perturbed and perturbed data in the linear
model with feature g(·;W0) as follows

L̃i,lin
h (W) :=

1

2

∑
k∈Ih

(
⟨g(xkh;W0),W ⟩ − ỹi,kh

)2
+
λ

2
∥W + ζih −W0∥22, (13)

Llin
h (W) :=

1

2

∑
k∈Ih

(
⟨g(xkh;W0),W ⟩ − ykh

)2
+
λ

2
∥W −W0∥22. (14)

We consider the auxiliary gradient updates for L̃i,lin
h (W) as

W̃
i,lin,(j+1)
h = W̃

i,lin,(j)
h − η∇L̃i,lin

h (W), (15)

24

Published as a conference paper at ICLR 2023

Ŵ
lin,(j+1)
h = Ŵ

lin,(j)
h − η∇L̃lin

h (W), (16)

where W̃ i,lin,(0)
h = Ŵ

i,lin,(0)
h = W0 for all i, h. Finally, we define the least-square solutions to the

auxiliary perturbed and non-perturbed loss functions for the linear model as follows

W̃ i,lin
h = argmin

W∈Rmd

L̃i,lin
h (W), (17)

Ŵ lin
h = argmin

W∈Rmd

Llin
h (W). (18)

For any h ∈ [H], we define the auxiliary covariance matrix Λh as follows

Λh := λImd +
∑
k∈Ih

g(xkh;W0)g(x
k
h;W0)

T . (19)

It is worth remarking that Algorithm 1 only uses Equation (8) and (9) thus it does not actually require
any of the auxiliary quantities defined in this subsection during its run time. The auxiliary quantities
here are only for our theoretical analysis.

D.2 PROOF OF LEMMA C.1

In this subsection, we give detailed proof of Lemma C.1. To prepare for proving Lemma C.1, we
first provide the following intermediate lemmas. The detailed proofs of these intermediate lemmas
are deferred to Section E.

In the following lemma, we bound the uncertainty f(x; Ŵh) in estimating the Bellman operator at
the estimated state-value function BhṼh+1.
Lemma D.1. Let 

m = Ω
(
K ′10(H + ψ)2 log(3K ′H/δ)

)
λ > 1

K ′C2
g ≥ λ

With probability at least 1−Hm−2 − 2δ, for any x ∈ Sd−1, and any h ∈ [H],

|f(x; Ŵh)− (BhṼh+1)(x)| ≤ β · ∥g(x;W0)∥Λ−1
h

+ ι2 + ι0,

where Ṽh+1 is computed by Algorithm 1 for timestep h+ 1, Ŵh is defined in Equation (12), and β,
ι2 and ι0 are defined in Table 3.

In the following lemma, we establish the anti-concentration of Q̃h.
Lemma D.2. Let

m = Ω
(
d3/2R−1 log3/2(

√
m/R)

)
R = O

(
m1/2 log−3m

)
,

η ≤ (λ+K ′C2
g)

−1,

R ≥ max{4B̃1, 4B̃2, 2
√
2λ−1K ′(H + ψ + γh,1)2 + 4γ2h,2},

(20)

where B̃1, B̃2, γh,1 and γh,2 are defined in Table 3, and Cg is a constant given in Lemma G.1. Let
M = log HSA

δ / log 1
1−Φ(−1) where Φ(·) is the cumulative distribution function of the standard nor-

mal distribution andM is the number of bootstrapped samples in Algorithm 1. Then with probability
1−MHm−2 − δ, for any x ∈ Sd−1 and h ∈ [H],

Q̃h(x) ≤ max{⟨g(x;W0), Ŵ
lin
h −W0⟩ − σh∥g(x;W0)∥Λ−1

h
+ ι1 + ι2, 0},

where Ŵ lin
h is defined in Equation (18), Q̃h is computed by Line 9 of Algorithm 1, and ι1 and ι2 are

defined in Table 3.

25

Published as a conference paper at ICLR 2023

We prove the following linear approximation error lemma.
Lemma D.3. Let

m = Ω
(
d3/2R−1 log3/2(

√
m/R)

)
R = O

(
m1/2 log−3m

)
,

η ≤ (λ+K ′C2
g)

−1,

R ≥ max{4B̃1, 4B̃2, 2
√
2λ−1K ′(H + ψ + γh,1)2 + 4γ2h,2},

(21)

where B̃1, B̃2, γh,1 and γh,2 are defined in Table 3, and Cg is a constant given in Lemma G.1. With
probability at least 1−MHm−2 − δ, for any (x, i, j, h) ∈ Sd−1 × [M]× [J]× [H],

|f(x; W̃ i,(j)
h)− ⟨g(x;W0), W̃

i,lin
h −W0⟩| ≤ ι1,

where W̃ i,(j)
h , W̃ i,lin

h , and ι1 are defined in Equation (9), Equation (17), and Table 3, respectively.

In addition, with probability at least 1−Hm−2, for any for any (x, j, h) ∈ Sd−1 × [J]× [H],

|f(x; Ŵ (j)
h)− ⟨g(x;W0), Ŵ

lin
h −W0⟩| ≤ ι2,

where Ŵ (j)
h , Ŵ lin

h , and ι2 are defined in Equation (11), Equation (18), and Table 3, respectively.

We now can prove Lemma C.1.

Proof of Lemma C.1. Note that the first fourth conditions in Equation (5) of Lemma C.1 satisfy
Equation (21). Moreover, the event in which the inequality in Lemma D.3 holds already implies the
event in which the inequality in Lemma D.1 holds (see the proofs of Lemma D.3 and Lemma D.1
in Section D). Now in the rest of the proof, we consider the joint event in which both the inequality
of Lemma D.3 and that of Lemma D.1 hold. Then, we also have the inequality in Lemma D.1.
Consider any x ∈ X , h ∈ [H].

It follows from Lemma D.1 that

(BhṼh+1)(x) ≥ f(x; Ŵh)− β · ∥g(x;W0)∥Λ−1
h
− ι0 − ι2. (22)

It follows from Lemma D.2 that

Q̃h(x) ≤ max{⟨g(x;W0), Ŵ
lin
h −W0⟩ − σh∥g(x;W0)∥Λ−1

h
+ ι1 + ι2, 0}. (23)

Note that Q̃h(x) ≥ 0. If ⟨g(x;W0), Ŵ
lin
h −W0⟩ − σh∥g(x;W0)∥Λ−1

h
+ ι1 + ι2 ≤ 0, Equation (23)

implies that Q̃h(x) = 0 and thus

errh(x) = (BhṼh+1)(x)− Q̃h(x)

= (BhṼh+1)(x) ≥ 0.

Otherwise, if ⟨g(x;W0), Ŵ
lin
h −W0⟩−σh∥g(x;W0)∥Λ−1

h
+ ι1+ ι2 > 0, Equation (23) implies that

Q̃h(x) ≤ ⟨g(x;W0), Ŵ
lin
h −W0⟩ − σh∥g(x;W0)∥Λ−1

h
+ ι1 + ι2. (24)

Thus, combining Equation (22), (24) and Lemma D.3, with the choice σh ≥ β, we have

errh(x) := (BhṼh+1)(x)− Q̃h(x) ≥ −(ι0 + ι1 + 2ι2) = −ι.

As ι ≥ 0, in either case, we have

errh(x) := (BhṼh+1)(x)− Q̃h(x) ≥ −ι. (25)

Note that due to Equation (25), we have

Q̃h(x) ≤ (BhṼh+1)(x) + ι ≤ H − h+ 1 + ι < H − h+ 1 + ψ,

26

Published as a conference paper at ICLR 2023

where the last inequality holds due to the choice ψ > ι. Thus, we have

Q̃h(x) = min{min
i∈[M]

f(x; W̃ i
h), H − h+ 1 + ψ}+ = max{min

i∈[M]
f(x; W̃ i

h), 0}. (26)

Substituting Equation (26) into the definition of errh(x), we have

errh(x) = (BhṼh+1)(x)− Q̃h(x)

≤ (BhṼh+1)(x)− min
i∈[M]

f(x; W̃ i
h)

= (BhṼh+1)(x)− f(x; Ŵh) + f(x; Ŵh)− min
i∈[M]

f(x; W̃ i
h)

≤ β · ∥g(x;W0)∥Λ−1
h

+ ι0 + ι2 + f(x; Ŵh)− min
i∈[M]

f(x; W̃ i
h)

≤ β · ∥g(x;W0)∥Λ−1
h

+ ι0 + ι2 + ⟨g(x;W0), Ŵ
lin
h −W0⟩+ ι2

− min
i∈[M]

⟨g(x;W0), W̃
i,lin
h −W0⟩+ ι1

= β · ∥g(x;W0)∥Λ−1
h

+ ι0 + ι2 + max
i∈[M]

⟨g(x;W0), Ŵ
lin
h − W̃ i,lin

h ⟩+ ι1 + ι2

≤ β · ∥g(x;W0)∥Λ−1
h

+ ι0 + ι2 +
√
2 log(MSAH/δ)σh∥g(x;W0)∥Λ−1

h
+ ι1 + ι2

where the first inequality holds due to Equation (26), the second inequality holds due to Lemma D.1,
the third inequality holds due to Lemma D.3, and the last inequality holds due to Lemma E.2 and
Lemma G.3 via the union bound.

D.3 PROOF OF LEMMA C.2

Proof of Lemma C.2. Let Zk := β̃
∑H

h=1 Eπ∗

[
1{k ∈ Ih}∥g(xh;W0)∥(Λk

h)
−1 |sk1 ,Fk−1

h

]
where

1{} is the indicator function. Under the event in which the inequality in Theorem 1 holds, we
have

SubOpt(π̃) ≤ min

{
H, β̃ · Eπ∗

[
H∑

h=1

∥g(xh;W0)∥Λ−1
h

]
+ 2ι

}

≤ min

{
H, β̃Eπ∗

[
H∑

h=1

∥g(xh;W0)∥Λ−1
h

]}
+ 2ι

=
1

K ′

K∑
k=1

min

{
H, β̃Eπ∗

[
H∑

h=1

1{k ∈ Ih}∥g(xh;W0)∥Λ−1
h

]}
+ 2ι

≤ 1

K ′

K∑
k=1

min

{
H, β̃Eπ∗

[
H∑

h=1

1{k ∈ Ih}∥g(xh;W0)∥(Λk
h)

−1 |Fk−1
h

]}
+ 2ι

=
1

K ′

K∑
k=1

min
{
H,E[Zk|Fk−1

h]
}
+ 2ι

≤ 1

K ′

K∑
k=1

E
[
min{H,Zk}|Fk−1

h

]
+ 2ι, (27)

where the first inequality holds due to Theorem 1 and that SubOpt(π̃; s1) ≤ H,∀s1 ∈ S , the
second inequality holds due to min{a, b + c} ≤ min{a, b} + c, the third inequality holds due to
that Λ−1

h ⪯ (Λk
h)

−1, the fourth inequality holds due to Jensen’s inequality for the convex function
f(x) = min{H,x}. It follows from Lemma G.9 that with probability at least 1− δ,

K∑
k=1

E [min{H,Zk}|Fk−1] ≤ 2

K∑
k=1

Zk +
16

3
H log(log2(KH)/δ) + 2. (28)

27

Published as a conference paper at ICLR 2023

Substituting Equation (28) into Equation (27) and using the union bound complete the proof.

D.4 PROOF OF LEMMA C.3

Proof of Lemma C.3. Let Zk
h := 1{k ∈ Ih} d

∗
h(x

k
h)

dµ
h(x

k
h)
∥g(xkh;W0)∥(Λk

h)
−1 . We have Zk

h is Fk
h -

measurable, and by Assumption 5.2, we have,

|Zk
h | ≤

d∗h(x
k
h)

dµh(x
k
h)
∥g(xkh;W0))∥2

√
∥(Λk

h)
−1∥ ≤ 1/

√
λ
d∗h(x

k
h)

dµh(x
k
h)

<∞,

E
[
Zk
h |Fk−1

h , sk1
]
= Exh∼dµ

h

[
1{k ∈ Ih}

d∗h(xh)

dµh(xh)
∥g(xh;W0)∥(Λk

h)
−1

∣∣∣∣Fk−1
h , sk1

]
.

Thus, by Lemma G.4, for any h ∈ [H], with probability at least 1− δ, we have:

K∑
k=1

Ex∼d∗
h

[
1{k ∈ Ih}∥g(xh;W0)∥(Λk

h)
−1

∣∣∣∣Fk−1
h , sk1

]

=

K∑
k=1

Exh∼dµ
h)

[
1{k ∈ Ih}

d∗h(xh)

dµh(xh)
∥ϕh(xh)∥(Λk

h)
−1

∣∣∣∣Fk−1
h , sk1

]

≤
K∑

k=1

1{k ∈ Ih}
d∗h(x

k
h)

dµh(x
k
h)
∥g(xkh;W0)∥(Λk

h)
−1 +

√
1

λ
log(1/δ)

√√√√ K∑
k=1

1{k ∈ Ih}
(
d∗h(x

k
h)

dµh(x
k
h)

)2

≤ κ
K∑

k=1

1{k ∈ Ih}∥g(xh;W0)∥(Λk
h)

−1 + κ

√
K ′ log(1/δ)

λ

= κ
∑
k∈Ih

∥g(xh;W0)∥(Λk
h)

−1 + κ

√
K ′ log(1/δ)

λ

D.5 PROOF OF LEMMA C.4

Proof of Lemma C.4. For any fixed h ∈ [H], let

U = [g(xkh;W0)]k∈Ih
∈ Rmd×K′

.

By the union bound, with probability at least 1− δ, for any h ∈ [H], we have∑
k∈Ih

∥g(xh;W0)∥2(Λk
h)

−1 ≤ 2 log
detΛh

det(λI)

= 2 logdet

(
I +

∑
k∈Ih

g(xkh;W0)g(x
k
h;W0)

T /λ

)
= 2 logdet(I + UUT /λ)

= 2 logdet(I + UTU/λ)

= 2 logdet(I +Kh/λ+ (UTU −Kh)/λ)

≤ 2 logdet(I +Kh/λ) + 2 tr
(
(I +Kh/λ)

−1(UTU −Kh)/λ
)

≤ 2 logdet(I +Kh/λ) + 2∥(I +Kh/λ)
−1∥F ∥UTU −Kh∥F

≤ 2 logdet(I +Kh/λ) + 2
√
K ′∥UTU −Kh∥F

≤ 2 logdet(I +Kh/λ) + 1

= 2d̃h log(1 +K ′/λ) + 1

28

Published as a conference paper at ICLR 2023

where the first inequality holds due to λ ≥ C2
g and (Abbasi-yadkori et al., 2011, Lemma 11), the

third equality holds due to that logdet(I +AAT) = logdet(I +ATA), the second inequality holds
due to that logdet(A + B) ≤ logdet(A) + tr(A−1B) as the result of the convexity of logdet, the
third inequality holds due to that tr(A) ≤ ∥A∥F , the fourth inequality holds due to 2

√
K ′∥UTU −

Kh∥F ≤ 1 by the choice of m = Ω(K ′4 log(K ′H/δ)), Lemma G.2 and the union bound, and the
last equality holds due to the definition of d̃h.

E PROOFS OF LEMMAS IN SECTION D

E.1 PROOF OF LEMMA D.1

In this subsection, we give detailed proof of Lemma D.1. For this, we first provide a lemma about
the linear approximation of the Bellman operator. In the following lemma, we show that BhṼh+1

can be well approximated by the class of linear functions with features g(·;W0) with respect to
l∞-norm.

Lemma E.1. Under Assumption 5.1, with probability at least 1 − δ over w1, . . . , wm drawn i.i.d.
from N (0, Id), for any h ∈ [H], there exist c1, . . . , cm where ci ∈ Rd and ∥ci∥2 ≤ B

m such that

Q̄h(x) :=

m∑
i=1

cTi xσ
′(wT

i x),

∥BhṼh+1 − Q̄h∥∞ ≤
B√
m
(2
√
d+

√
2 log(H/δ))

Moreover, Q̄h(x) can be re-written as

Q̄h(x) = ⟨g(x;W0), W̄h⟩,
W̄h :=

√
m[a1c

T
1 , . . . , amc

T
m]T ∈ Rmd, and ∥W̄h∥2 ≤ B. (29)

We now can prove Lemma D.1.

Proof of Lemma D.1. We first bound the difference ⟨g(x;W0), W̄h⟩ − ⟨g(x;W0), Ŵ
lin
h −W0⟩:

⟨g(x;W0), W̄h⟩ − ⟨g(x;W0), Ŵ
lin
h −W0⟩ = g(x;W0)

T W̄h − g(x;W0)
TΛ−1

h

∑
k∈Ih

g(xkh;W0)y
k
h

= g(x;W0)
T W̄h − g(x;W0)

TΛ−1
h

∑
k∈Ih

g(xkh;W0) · (BhṼh+1)(x
k
h)︸ ︷︷ ︸

I1

+ g(x;W0)
TΛ−1

h

∑
k∈Ih

g(xkh;W0) ·
[
(BhṼh+1)(x

k
h)− (rkh + Ṽh+1(s

k
h+1))

]
︸ ︷︷ ︸

I2

.

For bounding I1, it follows from Lemma E.1 that with probability at least 1 − δ/3, for any for any
x ∈ Sd−1 and any h ∈ [H],

|(BhṼh+1)(x)− ⟨g(x;W0), W̄h⟩| ≤ ι0,

where ι0 is defined in Table 3. where W̄h is defined in Lemma E.1. Thus, with probability at least
1− δ/3, for any for any x ∈ Sd−1 and any h ∈ [H],

I1 = g(x;W0)
T W̄h − g(x;W0)

TΛ−1
h

∑
k∈Ih

g(xkh;W0) ·
[
(BhṼh+1)(x

k
h)− g(xkh;W0)

T W̄h

]
− g(x;W0)

T W̄h + λg(x;W0)
TΛ−1

h W̄h

29

Published as a conference paper at ICLR 2023

≤ ∥g(x;W0)
T ∥Λ−1

h

∑
k∈Ih

ι0∥g(xkh;W0)
T ∥Λ−1

h
+ λ∥g(x;W0)∥Λ−1

h
∥W̄h∥Λ−1

h

≤ ∥g(x;W0)∥Λ−1
h

[
K ′ι0λ

−1/2Cg + λ1/2B
]
, (30)

where the first equation holds due to the definition of Λh, and the last inequality holds due to Step I

with ∥W̄h∥Λ−1
h
≤
√
∥Λ−1

h ∥2 · ∥W̄h∥2 ≤ λ−1/2B.

For bounding I2, we have

I2 ≤

∥∥∥∥∥∑
k∈Ih

g(xkh;W0)
[
(BhṼh+1)(x

k
h)− rkh − Ṽh+1(s

k
h+1)

]∥∥∥∥∥
Λ−1

h︸ ︷︷ ︸
I3

∥g(x;W0)∥Λ−1
h
. (31)

If we directly apply the result of Jin et al. (2021) in linear MDP, we would get

I2 ≲ dmH
√
log(2dmK ′H/δ) · ∥g(x;W0)∥Λ−1

h
,

which gives a vacuous bound as m is sufficiently larger than K in our problem. Instead, in the
following, we present an alternate proof that avoids such vacuous bound.

For notational simplicity, we write

ϵkh := (BhṼh+1)(x
k
h)− rkh − Ṽh+1(s

k
h+1),

Eh := [(ϵkh)k∈Ih
]T ∈ RK′

.

We denote Kinit
h := [⟨g(xih;W0), g(x

j
h;W0)⟩]i,j∈Ih

as the Gram matrix of the empirical NTK
kernel on the data {xkh}k∈[K]. We denote

G0 :=
(
g(xkh;W0)

)
k∈Ih

∈ Rmd×K′
,

Kint
h := GT

0G0 ∈ RK′×K′
.

Recall the definition of the Gram matrix Kh of the NTK kernel on the data {xkh}k∈Ih
. It follows

from Lemma G.2 and the union bound that if m = Ω(ϵ−4 log(3K ′H/δ)) with probability at least
1− δ/3, for any h ∈ [H],

∥Kh −Kinit
h ∥F ≤

√
K ′ϵ. (32)

We now can bound I3. We have

I23 =

∥∥∥∥∥∑
k=Ih

g(xkh;W0)ϵ
k
h

∥∥∥∥∥
2

Λ−1
h

= ET
hG

T
0 (λImd +G0G

T
0)

−1G0Eh

= ET
hG

T
0G0(λIK′ +GT

0G0)
−1Eh

= ET
hKinit

h (Kinit
h + λIK)−1Eh

= ET
hKh(Kh + λIK′)−1Eh︸ ︷︷ ︸

I5

+ET
h

(
Kh(Kh + λIK′)−1 −Kinit

h (Kint
h + λIK′)−1Eh

)︸ ︷︷ ︸
I4

. (33)

We bound each I4 and I5 separately. For bounding I4, applying Lemma G.1, with 1 −Hm−2, for
any h ∈ [H],

I4 ≤
∥∥Kh(Kh + λIK′)−1 −Kinit

h (Kint
h + λIK′)−1

∥∥
2
∥Eh∥22

=
∥∥(Kh −Kinit

h)(Kh + λIK′)−1 +Kinit
h

(
(Kh + λIK′)−1 − (Kint

h + λIK′)−1
)∥∥

2
∥Eh∥22

≤ ∥Kh −Kinit
h ∥2/λ+ ∥Kinit

h ∥2 · ∥Kh −Kinit
h ∥2/λ2∥Eh∥22

30

Published as a conference paper at ICLR 2023

≤
λ+K ′C2

g

λ2
∥Kh −Kinit

h ∥2∥Eh∥22

≤ 2K ′C2
gK

′(H + ψ)2∥Kh −Kinit
h ∥2, (34)

where the first inequality holds due to the triangle inequality, the second inequality holds due to
the triangle inequality, Lemma G.7, and ∥(Kh + λIK′)−1∥2 ≤ λ−1, the third inequality holds due
to ∥Kinit

h ∥2 ≤ ∥G0∥22 ≤ ∥G0∥2F ≤ K ′C2
g due to Lemma G.1, the fourth inequality holds due to

∥Eh∥2 ≤
√
K ′(H + ψ), λ ≥ 1, and K ′C2

g ≥ λ.

Substituting Equation (32) in Equation (34) using the union bound, with probability 1−Hm−2−δ/3,
for any h ∈ [H],

I4 ≤ 2K ′C2
gK

′(H + ψ)2
√
K ′ϵ ≤ 1, (35)

where the last inequality holds due to the choice of ϵ = 1/2K ′−5/2(H + ψ)−2C−2
g and thus

m = Ω(ϵ−4 log(3K ′H/δ)) = Ω
(
K ′10(H + ψ)2 log(3K ′H/δ)

)
.

For bounding I5, as λ > 1, we have

I5 = ET
hKh(Kh + λIK′)−1Eh

≤ ET
h (Kh + (λ− 1)IK)(Kh + λIK′)−1Eh

= ET
h

[
(Kh + (λ− 1)IK′)−1 + IK′

]−1
Eh. (36)

Let σ(·) be the σ-algebra induced by the set of random variables. For any h ∈ [H] and k ∈ Ih =
[(H − h)K ′ + 1, . . . , (H − h+ 1)K ′], we define the filtration

Fk
h = σ

(
{(sth′ , ath′ , rth′)}t≤k

h′∈[H] ∪ {(s
k+1
h′ , ak+1

h′ , rk+1
h′)}h′≤h−1 ∪ {(sk+1

h , ak+1
h)}

)
which is simply all the data up to episode k + 1 and timestep h but right before rk+1

h and sk+1
h+1 are

generated (in the offline data). 7 Note that for any k ∈ Ih, we have (skh, a
k
h, r

k
h, s

k
h+1) ∈ Fk

h , and

Ṽh+1 ∈ σ
(
{(skh′ , akh′ , rkh′)}k∈Ih′

h′∈[h+1,...,H]

)
⊆ Fk−1

h ⊆ Fk
h .

Thus, for any k ∈ Ih, we have

ϵkh = (BhṼh+1)(x
k
h)− rkh − Ṽh+1(s

k
h+1) ∈ Fk

h .

The key property in our data split design is that we nicely have that

Ṽh+1 ∈ σ
(
{(skh′ , akh′ , rkh′)}k∈Ih′

h′∈[h+1,...,H]

)
⊆ Fk−1

h .

Thus, conditioned on Fk−1
h , Ṽh+1 becomes deterministic. This implies that

E
[
ϵkh|Fk−1

h

]
=
[
(BhṼh+1)(s

k
h, a

k
h)− rkh − Ṽh+1(s

k
h+1)|Fk−1

h

]
= 0.

Note that this is only possible with our data splitting technique. Otherwise, ϵkh is not zero-mean due
to the data dependence structure induced in offline RL with function approximation (Nguyen-Tang
et al., 2022b). Our data split technique is a key to avoid the uniform convergence argument with the
log covering number that is often used to bound this term in Jin et al. (2021), which is often large
for complex models. For example, in a two-layer ReLU NTK, the eigenvalues of the induced RKHS
has d-polynomial decay (Bietti & Mairal, 2019), thus its log covering number roughly follows, by
(Yang et al., 2020, Lemma D1),

logN∞(Hntk, ϵ, B) ≲

(
1

ϵ

) 4
αd−1

,

7To be more precise, we need to include into the filtration the randomness from the generated noises {ξk,ih }
and {ζih} but since these noises are independent of any other randomness, they do not affect any derivations
here but only complicate the notations and representations.

31

Published as a conference paper at ICLR 2023

for some α ∈ (0, 1).

Therefore, for any h ∈ [H], {ϵkh}k∈Ih
is adapted to the filtration {Fk

h}k∈Ih
. Applying Lemma G.5

with Zt = ϵht ∈ [−(H +ψ), H +ψ], σ2 = (H +ψ)2, ρ = λ− 1, for any δ > 0, with probability at
least 1− δ/3, for any h ∈ [H],

ET
h

[
(Kh + (λ− 1)IK′)−1 + I

]−1
Eh ≤ (H + ψ)2 logdet (λIK′ +Kh) + 2(H + ψ)2 log(3H/δ)

(37)

Substituting Equation (37) into Equation (36), we have

I5 ≤ (H + ψ)2 logdet(λIK′ +Kh) + 2(H + ψ)2 log(H/δ)

= (H + ψ)2 logdet(IK′ +Kh/λ) + (H + ψ)2K ′ log λ+ 2(H + ψ)2 log(H/δ)

= (H + ψ)2d̃h log(1 +K ′/λ) + (H + ψ)2K ′ log λ+ 2(H + ψ)2 log(H/δ), (38)

where the last equation holds due to the definition of the effective dimension.

Combining Equations (38), (35), (33), (31), and (30) via the union bound, with probability at least
1−Hm−2 − δ, for any x ∈ Sd−1 and any h ∈ [H],

|⟨g(x;W0), W̄h⟩ − ⟨g(x;W0), Ŵ
lin
h −W0⟩| ≤ β · ∥g(x;W0)∥Λ−1

h
,

where

β := K ′ι0λ
−1/2Cg + λ1/2B + (H + ψ)

[√
d̃h log(1 +K ′/λ) +K ′ log λ+ 2 log(3H/δ)

]
.

(39)

Combing with Lemma D.3 using the union bound, with probability at least 1−Hm−2−2δ, for any
x ∈ Sd−1, and any h ∈ [H],

f(x; Ŵh)− (BhṼh+1)(x) ≤ ⟨g(x;W0), Ŵ
lin
h −W0⟩+ ι2 − ⟨g(x;W0), W̄h⟩+ ι0

≤ β · ∥g(x;W0)∥Λ−1
h

+ ι2 + ι0,

= β · ∥g(x;W0)∥Λ−1
h

+ ι2 + ι0

where ι2, and β are defined in Table 3.

Similarly, it is easy to show that

(BhṼh+1)(x)− f(x; Ŵh) ≤ β · ∥g(x;W0)∥Λ−1
h

+ ι2 + ι0.

E.2 PROOF OF LEMMA D.2

Before proving Lemma D.2, we prove the following intermediate lemmas. The detailed proofs of
these intermediate lemmas are deferred to Section F.
Lemma E.2. Conditioned on all the randomness except {ξk,ih } and {ζih}, for any i ∈ [M],

W̃ i,lin
h − Ŵ lin

h ∼ N (0, σ2
hΛ

−1
h).

Lemma E.3. If we set M = log HSA
δ / log 1

1−Φ(−1) where Φ(·) is the cumulative distribution func-
tion of the standard normal distribution, then with probability at least 1−δ, for any (x, h) ∈ X×[H],

min
i∈[M]

⟨g(x;W0), W̃
i,lin
h ⟩ ≤ ⟨g(x;W0), Ŵ

lin
h ⟩ − σh∥g(x;W0)∥Λ−1

h
.

We are now ready to prove Lemma D.2.

32

Published as a conference paper at ICLR 2023

Proof of Lemma D.2. Note that the parameter condition in Equation (20) of Lemma D.2 satisfies
Equation (21) of Lemma D.3, thus given the parameter condition Lemma D.2, Lemma D.3 holds.
For the rest of the proof, we consider under the joint event in which both the inequality of Lemma
D.3 and that of Lemma E.3 hold. By the union bound, probability that this joint event holds is at
least 1−MHm−2 − δ. Thus, for any x ∈ Sd−1, h ∈ [H], and i ∈ [M],

min
i∈[M]

f(x; W̃ i
h)− f(x; Ŵh) ≤ min

i∈[M]
⟨g(x;W0), W̃

i,lin
h −W0⟩ − ⟨g(x;W0), Ŵ

lin
h −W0⟩+ ι1 + ι2

≤ −σh∥g(x;W0)∥Λ−1
h

+ ι1 + ι2

where the first inequality holds due to Lemma D.3, and the second inequality holds due to Lemma
E.3. Thus, we have

Q̃h(x) = min{min
i∈[M]

f(x; W̃ i
h), H − h+ 1 + ψ}+ ≤ max{min

i∈[M]
f(x; W̃ i

h), 0}

≤ max{⟨g(x;W0), Ŵ
lin
h −W0⟩ − σh∥g(x;W0)∥Λ−1

h
+ ι1 + ι2, 0}.

E.3 PROOF OF LEMMA D.3

In this subsection, we provide a detailed proof of Lemma D.3. We first provide intermediate lemmas
that we use for proving Lemma D.3. The detailed proofs of these intermediate lemmas are deferred
to Section F.

The following lemma bounds the the gradient descent weight of the perturbed loss function around
the linear weight counterpart.
Lemma E.4. Let

m = Ω
(
d3/2R−1 log3/2(

√
m/R)

)
R = O

(
m1/2 log−3m

)
,

η ≤ (λ+K ′C2
g)

−1,

R ≥ max{4B̃1, 4B̃2, 2
√
2λ−1K ′(H + ψ + γh,1)2 + 4γ2h,2},

(40)

where B̃1, B̃2, γh,1 and γh,2 are defined in Table 3 and Cg is a constant given in Lemma G.1. With
probability at least 1−MHm−2 − δ, for any (i, j, h) ∈ [M]× [J]× [H], we have

• W̃ i,(j)
h ∈ B(W0;R),

• ∥W̃ i,(j)
h − W̃ i,lin

h ∥2 ≤ B̃1 + B̃2 + λ−1(1− ηλ)j
(
K ′(H + ψ + γh,1)

2 + λγ2h,2

)
Similar to Lemma E.4, we obtain the following lemma for the gradient descent weights of the non-
perturbed loss function.
Lemma E.5. Let 

m = Ω
(
d3/2R−1 log3/2(

√
m/R)

)
R = O

(
m1/2 log−3m

)
,

η ≤ (λ+K ′C2
g)

−1,

R ≥ max{4B1, 4B̃2, 2
√
2λ−1K ′(H + ψ)},

(41)

where B1, B̃2, γh,1 and γh,2 are defined in Table 3 and Cg is a constant given in Lemma G.1. With
probability at least 1−MHm−2 − δ, for any (i, j, h) ∈ [M]× [J]× [H], we have

• Ŵ (j)
h ∈ B(W0;R),

• ∥Ŵ (j)
h − Ŵ lin

h ∥2 ≤ B1 + B̃2 + λ−1(1− ηλ)jK ′(H + ψ)2

33

Published as a conference paper at ICLR 2023

We now can prove Lemma D.3.

Proof of Lemma D.3. Note that Equation (21) implies both Equation (40) of Lemma E.4 and Equa-
tion (41) of Lemma E.5, thus both Lemma E.4 and Lemma E.5 holds under Equation (21). Thus, by
the union bound, with probability at least 1 −MHm−2 − δ, for any (i, j, h) ∈ [M] × [J] × [H],
and x ∈ Sd−1,

|f(x; W̃ i,(j)
h)− ⟨g(x;W0), W̃

i,lin
h −W0⟩|

≤ |f(x; W̃ i,(j)
h)− ⟨g(x;W0), W̃

i,(j)
h −W0⟩|+ |⟨g(x;W0), W̃

i,(j)
h − W̃ i,lin

h ⟩|

≤ CgR
4/3m−1/6

√
logm+ Cg

(
B̃1 + B̃2 + λ−1(1− ηλ)j

(
K ′(H + ψ + γh,1)

2 + λγ2h,2
))

= ι1,

where the first inequality holds due to the triangle inequality, the second inequality holds due to
Cauchy-Schwarz inequality, Lemma G.1, and Lemma E.4.

Similarly, by the union bound, with probability at least 1−Hm−2, for any (i, j, h) ∈ [M]×[J]×[H],
and x ∈ Sd−1,

|f(x; Ŵ (j)
h)− ⟨g(x;W0), Ŵ

lin
h −W0⟩| ≤ |f(x; Ŵ (j)

h)− ⟨g(x;W0), Ŵ
(j)
h −W0⟩|

+ |⟨g(x;W0), Ŵ
(j)
h − Ŵ lin

h ⟩|

≤ CgR
4/3m−1/6

√
logm+ Cg

(
B1 + B̃2 + λ−1(1− ηλ)jK ′(H + ψ)2

)
= ι2,

where the first inequality holds due to the triangle inequality, the second inequality holds due to
Cauchy-Schwarz inequality, Lemma E.5, and Lemma G.1.

F PROOFS OF LEMMAS IN SECTION E

In this section, we provide the detailed proofs of Lemmas in Section E.

F.1 PROOF OF LEMMA E.1

Proof of Lemma E.1. As BhṼh+1 ∈ Q∗ by Assumption 5.1, where Q∗ is defined in Section 5, we
have

BhṼh+1 =

∫
Rd

c(w)Txσ′(wTx)dw,

for some c : Rd → Rd such that supw
∥c(w)∥2

p0(w) ≤ B. The lemma then directly follows from
approximation by finite sum (Gao et al., 2019).

F.2 PROOF OF LEMMA E.2

Proof of Lemma E.2. Let W̄ :=W + ζih and

L̄i
h(W̄) :=

∑
k∈Ih

(
⟨g(xkh;W0), W̄ ⟩ − ȳi,kh

)2
+ λ∥W̄∥22,

where ȳkh = rkh + Ṽh+1(s
k
h+1) + ξk,ih + ⟨g(xkh;W0), ζ

i
h⟩. We have L̃i,lin

h (W) = L̄i
h(W̄) and

argmaxW L̃i,lin
h (W) = argmaxW̄ L̄i

h(W̄) − ζih as both L̃i,lin
h (W) and L̄i

h are convex. Using
the regularized least-squares solution,

argmax
W̄

L̄i
h(W̄) = Λ−1

h

∑
k∈Ih

g(xkh;W0)ȳ
k
h

= Λ−1
h

[∑
k∈Ih

g(xkh;W0)(r
k
h + Ṽh+1(s

k
h+1) + ξk,ih) +

∑
k∈Ih

g(xkh;W0)⟨g(xkh;W0), ζ
i
h⟩

]

34

Published as a conference paper at ICLR 2023

= Λ−1
h

[∑
k∈Ih

g(xkh;W0)(r
k
h + Ṽh+1(s

k
h+1) + ξk,ih) +

∑
k∈Ih

g(xkh;W0)g(x
k
h;W0)

T ζih

]

= Λ−1
h

[∑
k∈Ih

g(xkh;W0)(r
k
h + Ṽh+1(s

k
h+1) + ξk,ih) + (Λh − λImd)ζ

i
h

]
.

Thus, we have

W̃ i
h = argmax

W
L̃i,lin
h (W) = argmax

W̄

L̄i
h(W̄)− ζih

= Λ−1
h

[∑
k∈Ih

g(xkh;W0)(r
k
h + Ṽh+1(s

k
h+1) + ξk,ih) + (Λh − λImd)ζ

i
h

]
− ζih

= Λ−1
h

[∑
k∈Ih

g(xkh;W0)(r
k
h + Ṽh+1(s

k
h+1) + ξk,ih)− λζih

]

= Ŵh + Λ−1
h

[∑
k∈Ih

g(xkh;W0)ξ
k,i
h − λζ

i
h

]
By direct computation, it is easy to see that

W̃ i
h − Ŵh = Λ−1

h

[∑
k∈Ih

g(xkh;W0)ξ
k,i
h − λζ

i
h

]
∼ N (0, σ2

hΛ
−1
h).

F.3 PROOF OF LEMMA E.3

In this subsection, we provide a proof for E.3. We first provide a bound for the perturbed noises
used in Algorithm 1 in the following lemma.
Lemma F.1. There exist absolute constants c1, c2 > 0 such that for any δ > 0, event E(δ) holds
with probability at least 1− δ, for any (k, h, i) ∈ [K]× [H]× [M],

|ξk,ih | ≤ c1σh
√
log(K ′HM/δ) =: γh,1,

∥ζih∥2 ≤ c2σh
√
d log(dK ′HM/δ) =: γh,2.

Proof of Lemma F.1. It directly follows from the Gaussian concentration inequality in Lemma G.3
and the union bound.

We now can prove Lemma E.3.

Proof of Lemma E.3. By Lemma E.2,

W̃ i,lin
h − Ŵ lin

h ∼ N (0, σ2
hΛ

−1
h).

Using the anti-concentration of Gaussian distribution, for any x = (s, a) ∈ S ×A and any i ∈ [M],

P
(
⟨g(x;W0), W̃

i,lin
h ⟩ ≤ ⟨g(x;W0), Ŵ

lin
h ⟩ − σh∥g(x;W0)∥Λ−1

h

)
= Φ(−1) ∈ (0, 1).

As {W̃ i,lin
h }i∈[M] are independent, using the union bound, with probability at least 1 − SAH(1 −

Φ(−1))M , for any x = (s, a) ∈ S ×A, and h ∈ [H],

min
i∈[M]

⟨g(x;W0), W̃
i,lin
h ⟩ ≤ ⟨g(x;W0), Ŵ

lin
h ⟩ − σh∥g(x;W0)∥Λ−1

h
.

Setting δ = SAH(1− Φ(−1))M completes the proof.

35

Published as a conference paper at ICLR 2023

F.4 PROOF OF LEMMA E.4

In this subsection, we provide a detailed proof of Lemma E.4. We first prove the following interme-
diate lemma whose proof is deferred to Subsection F.5.
Lemma F.2. Let {

m = Ω
(
d3/2R−1 log3/2(

√
m/R)

)
R = O

(
m1/2 log−3m

)
.

and additionally let {
η ≤ (K ′C2

g + λ/2)−1,

η ≤ 1
2λ .

Then with probability at least 1 −MHm−2 − δ, for any (i, j, h) ∈ [M] × [J] × [H], if W̃ i,(j)
h ∈

B(W0;R) for any j′ ∈ [j], then

∥fj′ − ỹ∥2 ≲
√
K ′(H + ψ + γh,1)2 + λγ2h,2 + (λη)−2R4/3m−1/6

√
logm.

We now can prove Lemma E.4.

Proof of Lemma E.4. To simplify the notations, we define

∆j := W̃
i,(j)
h − W̃ i,lin,(j)

h ∈ Rmd,

Gj :=
(
g(xkh; W̃

i,(j)
h)

)
k∈Ih

∈ Rmd×K′
,

Hj := GjG
T
j ∈ Rmd×md,

fj :=
(
f(xkh; W̃

i,(j)
h)

)
k∈Ih

∈ RK′

ỹ :=
(
ỹi,kh

)
k∈Ih

∈ RK′
.

The gradient descent update rule for W̃ i,(j)
h in Equation (9) can be written as:

W̃
i,(j+1)
h = W̃

i,(j)
h − η

[
Gj(fj − ỹ) + λ(W̃

i,(j)
h + ζih −W0)

]
.

The auxiliary updates in Equation (15) can be written as:

W̃
i,lin,(j+1)
h = W̃

i,lin,(j)
h − η

[
G0

(
GT

0 (W̃
i,lin,(j)
h −W0)− ỹ

)
+ λ(W̃

i,lin,(j)
h + ζih −W0)

]
.

Step 1: Proving W̃ i,(j)
h ∈ B(W0;R) for all j. In the first step, we prove by induction that with

probability at least 1−MHm−2 − δ, for any (i, j, h) ∈ [M]× [J]× [H], we have

W̃
i,(j)
h ∈ B(W0;R).

In the rest of the proof, we consider under the event that Lemma F.2 holds. Note that the condition
in Lemma E.4 satisfies that of Lemma F.2 and under the above event of Lemma F.2, Lemma G.1 and
Lemma F.1 both hold. It is trivial that

W̃
i,(0)
h =W0 ∈ B(W0;R).

For any fix j ≥ 0, we assume that

W̃
i,(j′)
h ∈ B(W0;R),∀j′ ∈ [j]. (42)

We will prove that W̃ i,(j+1)
h ∈ B(W0;R). We have

∥∆j+1∥2

36

Published as a conference paper at ICLR 2023

=

∥∥∥∥(1− ηλ)∆j − η
[
G0(fj −GT

0 (W̃
i,(j)
h −W0)) +G0G

T
0 (W̃

i,(j)
h − W̃ i,lin,(j)

h) + (fj − ỹ)(Gj −G0)
] ∥∥∥∥

2

≤ ∥(I − η(λI +H0))∆j∥2︸ ︷︷ ︸
I1

+ η∥fj − ỹ∥2∥Gj −G0∥2︸ ︷︷ ︸
I2

+ η∥G0∥2∥fj −GT
0 (W̃

i,(j)
h −W0)∥2︸ ︷︷ ︸

I3

.

We bound I1, I2 and I3 separately.

Bounding I1. For bounding I1,

I1 = ∥(I − η(λI +H0))∆j∥2
≤ ∥I − η(λI +H0)∥2∥∆j∥2
≤ (1− η(λ+K ′C2

g))∥∆j∥2
≤ (1− ηλ)∥∆j∥2

where the first inequality holds due to the spectral norm inequality, the second inequality holds due
to

η(λI +H0) ⪯ η(λ+ ∥G0∥2)I ⪯ η(λ+K ′C2
g)I ⪯ I,

where the first inequality holds due to that H0 ⪯ ∥H0∥2I ⪯ ∥G0∥22I , the second inequality holds
due to that ∥G0∥2 ≤

√
KCg due to Lemma G.1, and the last inequality holds due to the choice of η

in Equation (40).

Bounding I2. For bounding I2,

I2 = η∥fj − ỹ∥2∥Gj −G0∥2
≤ η∥fj − ỹ∥2 max

k∈Ih

√
K ′∥g(xkh; W̃

i,(j)
h)− g(xkh;W0)∥2

≤ η∥fj − ỹ∥2
√
K ′CgR

1/3m−1/6
√

logm

≤ η
√
2K ′(H + ψ + γh,1)2 + λγ2h,2 + 8CgR4/3m−1/6

√
logm)

√
K ′CgR

1/3m−1/6
√
logm

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due
to the induction assumption in Equation (42) and Lemma G.1, and the third inequality holds due to
Lemma F.2 and the induction assumption in Equation (42).

Bounding I3. For bounding I3,

I3 = η∥G0∥2∥fj −GT
0 (W̃

i,(j)
h −W0)∥2

≤ η
√
K ′Cg

√
K ′ max

k∈Ih

|f(xkh; W̃
i,(j)
h)− g(xkh;W0)

T (W̃
i,(j)
h −W0)|

≤ ηK ′CgR
4/3m−1/6

√
logm,

where the first inequality holds due to Cauchy-Schwarz inequality and due to that ∥G0∥2 ≤
√
K ′Cg

and the second inequality holds due to the induction assumption in Equation (42) and Lemma G.1.

Combining the bounds of I1, I2, I3 above, we have

∥∆j+1∥2 ≤ (1− ηλ)∥∆j∥2 + I2 + I3.

Recursively applying the inequality above for all j, we have

∥∆j∥2 ≤
I2 + I3
ηλ

≤ R

4
+
R

4
=
R

2
, (43)

where the second inequality holds due the choice specified in Equation (40). We also have

λ∥W̃ i,lin,(j+1)
h + ζih −W0∥22 ≤ 2L̃i,lin

h (W̃
i,lin,(j+1)
h)

≤ 2L̃i,lin
h (W̃

i,lin,(0)
h)

37

Published as a conference paper at ICLR 2023

= 2L̃i,lin
h (W0)

=
∑
k∈Ih

⟨g(xkh;W0),W0⟩︸ ︷︷ ︸
=0

−ỹi,kh

2

+ λ∥ζih∥22

=
∑
k∈Ih

(ỹi,kh)2 + λ∥ζih∥22

≤ K ′(H + ψ + γh,1)
2 + λγ2h,2, (44)

where the first inequality holds due the the definition of L̃i,lin
h (W̃

i,lin,(j+1)
h), the second inequality

holds due to the monotonicity of L̃i,lin
h (W) on the gradient descent updates {W̃ i,lin,(j′)

h }j′ for the
squared loss on a linear model, the third equality holds due to ⟨g(xkh;W0),W0⟩ = 0 from the
symmetric initialization scheme, and the last inequality holds due to Lemma F.1. Thus, we have

∥W̃ i,lin,(j+1)
h −W0∥2 ≤

√
2∥W̃ i,lin,(j+1)

h + ζih −W0∥22 + ∥ζih∥22

≤
√

2λ−1K ′(H + ψ + γh,1)2 + 4γ2h,2

≤ R

2
, (45)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due
to Equation (44) and Lemma F.1, and the last inequality holds due to the choice specified in Equation
(40).

Combining Equation (43) and Equation (45), we have

∥W̃ i,(j+1)
h −W0∥2 ≤ ∥W̃ i,(j+1)

h − W̃ i,lin,(j+1)
h ∥2 + ∥W̃ i,lin,(j+1)

h −W0∥2

≤ R

2
+
R

2
= R,

where the first inequality holds due to the triangle inequality.

Step 2: Bounding ∥W̃ i,(j)
h − W̃ i,lin

h ∥2. By the standard result of gradient descent on ridge linear
regression, W̃ i,(j)

h converges to W̃ i,lin
h with the convergence rate,

∥W̃ i,lin,(j)
h − W̃ i,lin

h ∥22 ≤ (1− ηλ)j 2
λ
(L̃(W0)− L̃(W̃ i,lin

h))

≤ (1− ηλ)j 2
λ
L̃(W0)

≤ λ−1(1− ηλ)j
(
K ′(H + ψ + γh,1)

2 + λγ2h,2
)
.

Thus, for any j, we have

∥W̃ i,(j)
h − W̃ i,lin

h ∥2 ≤ ∥W̃ i,(j)
h − W̃ i,lin,(j)

h ∥2 + ∥W̃ i,lin,(j)
h − W̃ i,lin

h ∥2
≤ (ηλ)−1(I2 + I3) + λ−1(1− ηλ)j

(
K ′(H + ψ + γh,1)

2 + λγ2h,2
)
, (46)

where the first inequality holds due to the triangle inequality, the second inequality holds due to
Equation (43) and Equation (46).

F.5 PROOF OF LEMMA F.2

Proof of Lemma F.2. We bound this term following the proof flow of (Zhou et al., 2020, Lemma C.3)
with modifications for different neural parameterization and noisy targets. Suppose that for some
fixed j,

W̃
i,(j′)
h ∈ B(W0;R),∀j′ ∈ [j]. (47)

Let us define

G(W) :=
(
g(xkh;W)

)
k∈Ih

∈ Rmd×K′
,

38

Published as a conference paper at ICLR 2023

f(W) :=
(
f(xkh;W)

)
k∈Ih

∈ RK′
,

e(W ′,W) := f(W ′)− f(W)−G(W)T (W ′ −W) ∈ R.

To further simplify the notations in this proof, we drop i, h in L̃i
h(W) defined in Equation (8) to

write L̃i
h(W) as L̃(W) and write Wj =W

i,(j)
h , where

L̃(W) =
1

2

∑
k∈Ih

(
f(xkh;W)− ỹi,kh)

)2
+
λ

2
∥W + ζih −W0∥22

=
1

2
∥f(W)− ỹ∥22 +

λ

2
∥W + ζih −W0∥22.

Suppose that W ∈ B(W0;R). By that ∥ · ∥22 is 1-smooth,

L̃(W ′)− L̃(W) ≤ ⟨f(W)− ỹ, f(W ′)− f(W)⟩+ 1

2
∥f(W ′)− f(W)∥22

+ λ⟨W + ζih −W0,W
′ −W ⟩+ λ

2
∥W ′ −W∥22

= ⟨f(W)− ỹ, G(W)T (W ′ −W) + e(W ′,W)⟩+ 1

2
∥G(W)T (W ′ −W) + e(W ′,W)∥22

+ λ⟨W + ζih −W0,W
′ −W ⟩+ λ

2
∥W ′ −W∥22

= ⟨∇L̃(W),W ′ −W ⟩

+ ⟨f(W)− ỹ, e(W ′,W)⟩+ 1

2
∥G(W)T (W ′ −W) + e(W ′,W)∥22 +

λ

2
∥W ′ −W∥22︸ ︷︷ ︸

I1

. (48)

For bounding I1,

I1 ≤ ∥f(W)− ỹ∥2∥e(W ′,W)∥2 +K ′C2
g∥W ′ −W∥22 + ∥e(W ′,W)∥22 +

λ

2
∥W ′ −W∥22

= ∥f(W)− ỹ∥2∥e(W ′,W)∥2 + (K ′C2
g + λ/2)∥W ′ −W∥22 + ∥e(W ′,W)∥22, (49)

where the first inequality holds due to Cauchy-Schwarz inequality,W ∈ B(W0;R) and Lemma G.1.
Substituting Equation (49) into Equation (48) with W ′ =W − η∇L̃(W),

L̃(W ′)− L̃(W) ≤ −η(1− (KC2
g + λ/2)η)∥∇L̃(W)∥22 + ∥f(W)− ỹ∥2∥e(W ′,W)∥2

+ ∥e(W ′,W)∥22. (50)

By the 1-strong convexity of ∥ · ∥22, for any W ′,

L̃(W ′)− L̃(W) ≥ ⟨f(W)− ỹ, f(W ′)− f(W)⟩+ λ⟨W + ζih −W0,W
′ −W ⟩+ λ

2
∥W ′ −W∥22

= ⟨f(W)− ỹ, G(W)T (W ′ −W) + e(W ′,W)⟩+ λ⟨W + ζih −W0,W
′ −W ⟩+ λ

2
∥W ′ −W∥22

= ⟨∇L̃(W),W ′ −W ⟩+ ⟨f(W)− ỹ, e(W ′,W)⟩+ λ

2
∥W ′ −W∥22

≥ −∥∇L̃(W)∥22
2λ

− ∥f(W)− ỹ∥2∥e(W ′,W)∥2, (51)

where the last inequality holds due to Cauchy-Schwarz inequality.

Substituting Equation (51) into Equation (50), for any W ′,

L̃(W − η∇L̃(W))− L̃(W)

≤ 2λη(1− (KC2
g + λ/2)η)︸ ︷︷ ︸

α

(
L̃(W ′)− L̃(W) + ∥f(W)− ỹ∥2∥e(W ′,W)∥2

)
+ ∥f(W)− ỹ∥2∥e(W − η∇L̃(W),W)∥2 + ∥e(W − η∇L̃(W),W)∥22

39

Published as a conference paper at ICLR 2023

≤ α
(
L̃(W ′)− L̃(W) +

γ1
2
∥f(W)− ỹ∥22 +

1

2γ1
∥e(W ′,W)∥22

)
+
γ2
2
∥f(W)− ỹ∥22 +

1

2γ2
∥e(W − η∇L̃(W),W)∥22 + ∥e(W − η∇L̃(W),W)∥22

≤ α
(
L̃(W ′)− L̃(W) + γ1L̃(W) +

1

2γ1
∥e(W ′,W)∥22

)
+ γ2L̃(W) +

1

2γ2
∥e(W − η∇L̃(W),W)∥22 + ∥e(W − η∇L̃(W),W)∥22, (52)

where the second inequality holds due to Cauchy-Schwarz inequality for any γ1, γ2 > 0, and the
third inequality holds due to ∥f(W)− ỹ∥22 ≤ 2L̃(W).

Rearranging terms in Equation (52) and setting W =Wj , W ′ =W0, γ1 = 1
4 , γ2 = α

4 ,

L̃(Wj+1)− L̃(W0) ≤ (1− α+ αγ1 + γ2)L̃(Wj)− (1− α

2
)L̃(W0) +

α

2
L̃(W0)

+
α

2γ1
∥e(W0,Wj)∥22 +

1

2γ2
∥e(Wj+1,Wj)∥22 + ∥e(Wj+1,Wj)∥22

= (1− α

2
)
(
L̃(Wj)− L̃(W0)

)
+
α

2
L̃(W0) + 2α∥e(W0,Wj)∥22

+ (1 +
2

α
)∥e(Wj+1,Wj)∥22

≤ (1− α

2
)
(
L̃(Wj)− L̃(W0)

)
+
α

2
L̃(W0) + (1 +

2

α
+ 2α)e, (53)

where e := CgR
4/3m−1/6

√
logm, the last inequality holds due to Equation (47) and Lemma G.1.

Applying Equation (53), we have

L̃(Wj)− L̃(W0) ≤
2

α

(
α

2
L̃(W0) + (1 +

2

α
+ 2α)e

)
.

Rearranging the above inequality,

L̃(Wj) ≤ 2L̃(W0) + (
2

α
+

4

α2
+ 4)e

where the last inequality holds due to the choice of η. Finally, we have

∥fj − ỹ∥22 ≤ 2L̃(Wj)

and L̃(W0) =
1
2∥ỹ∥

2
2 +

λ
2 ∥ζ

i
h∥22 ≤ K′

2 (H + ψ + γh,1)
2 + λ

2 γ
2
h,2 due to Lemma F.1.

G SUPPORT LEMMAS

Lemma G.1. Let m = Ω
(
d3/2R−1 log3/2(

√
m/R)

)
and R = O

(
m1/2 log−3m

)
. With probabil-

ity at least 1 − e−Ω(log2 m) ≥ 1 − m−2 with respect to the random initialization, it holds for any
W,W ′ ∈ B(W0;R) and x ∈ Sd−1 that

∥g(x;W)∥2 ≤ Cg,

∥g(x;W)− g(x;W0)∥2 ≤ O
(
CgR

1/3m−1/6
√

logm
)
,

|f(x;W)− f(x;W ′)− ⟨g(x;W ′),W −W ′⟩| ≤ O
(
CgR

4/3m−1/6
√
logm

)
,

where Cg = O(1) is a constant independent of d and m. Moreover, without loss of generality, we
assume Cg ≤ 1.

Proof of Lemma G.1. Due to (Yang et al., 2020, Lemma C.2) and (Cai et al., 2019, Lemma F.1, F.2),
we have the first two inequalities and the following:

|f(x;W)− ⟨g(x;W0),W −W0⟩| ≤ O
(
CgR

4/3m−1/6
√
logm

)
.

40

Published as a conference paper at ICLR 2023

For any W,W ′ ∈ B(W0;R),
f(x;W)− f(x;W ′)− ⟨g(x;W ′),W −W ′⟩
= f(x;W)− ⟨g(x;W0),W −W0⟩ − (f(x;W ′)− ⟨g(x;W0),W

′ −W0⟩)
+ ⟨g(x;W0)− g(x;W ′),W0 −W ′⟩.

Thus,
|f(x;W)− f(x;W ′)− ⟨g(x;W ′),W −W ′⟩|
≤ |f(x;W)− ⟨g(x;W0),W −W0⟩|+ |f(x;W ′)− ⟨g(x;W0),W

′ −W0⟩|

+ ∥g(x;W0)− g(x;W ′)∥2∥W0 −W ′∥2 ≤ O
(
CgR

4/3m−1/6
√
logm

)
.

Lemma G.2 ((Arora et al., 2019, Theorem 3)). If m = Ω(ϵ−4 log(1/δ)), then for any x, x′ ∈ X ⊂
Sd−1, with probability at least 1− δ,

|⟨g(x;W0), g(x
′,W0)⟩ −Kntk(x, x

′)| ≤ 2ϵ.

Lemma G.3. Let X ∼ N (0, aΛ−1) be a d-dimensional normal variable where a is a scalar. There
exists an absolute constant c > 0 such that for any δ > 0, with probability at least 1− δ,

∥X∥Λ ≤ c
√
da log(d/δ).

For d = 1, c =
√
2.

Lemma G.4 (A variant of Hoeffding-Azuma inequality). Suppose {Zk}∞k=0 is a real-valued
stochastic process with corresponding filtration {Fk}∞k=0, i.e. ∀k, Zk is Fk-measurable. Suppose
that for any k, E[|Zk|] < ∞ and |Zk − E [Zk|Fk−1] | ≤ ck almost surely. Then for all positive n
and t, we have:

P

(∣∣∣∣ n∑
k=1

Zk −
n∑

k=1

E [Zk|Fk−1]

∣∣∣∣ ≥ t
)
≤ 2 exp

(
−t2∑n
i=1 c

2
i

)
.

Lemma G.5 ((Chowdhury & Gopalan, 2017, Theorem 1)). Let H be an RKHS defined over X ⊆
Rd. Let {xt}∞t=1 be a discrete time stochastic process adapted to filtration {Ft}∞t=0. Let {Zk}∞k=1
be a real-valued stochastic process such that Zk ∈ Fk, and Zk is zero-mean and σ-sub Gaussian
conditioned on Fk−1. LetEk = (Z1, . . . , Zk−1)

T ∈ Rk−1 andKk be the Gram matrix ofH defined
on {xt}t≤k−1. For any ρ > 0 and δ ∈ (0, 1), with probability at least 1− δ,

ET
k

[
(Kk + ρI)−1 + I

]−1
Ek ≤ σ2 logdet [(1 + ρ)I +Kk] + 2σ2 log(1/δ).

Lemma G.6. For any matrices A and B where A is invertible,
logdet(A+B) ≤ logdet(A) + tr(A−1B).

Lemma G.7. For any invertible matrices A,B,

∥A−1 −B−1∥2 ≤
∥A−B∥2

λmin(A)λmin(B)
.

Proof of Lemma G.7. We have:
∥A−1 −B−1∥2 = ∥(AB)−1(AB)(A−1 −B−1)∥2

= ∥(AB)−1(ABA−1 −A)∥2
≤ ∥(AB)−1∥2∥ABA−1 −A∥2
= ∥(AB)−1∥2∥ABA−1 −AAA−1∥2
= ∥(AB)−1∥2∥A(B −A)A−1∥2
= ∥(AB)−1∥2∥B −A∥2
≤ λmax(A

−1)λmax(B
−1)∥2∥B −A∥2.

41

Published as a conference paper at ICLR 2023

Lemma G.8 (Freedman’s inequality (Tropp, 2011)). Let {Xk}nk=1 be a real-valued martin-
gale difference sequence with the corresponding filtration {Fk}nk=1, i.e. Xk is Fk-measurable
and E[Xk|Fk−1] = 0. Suppose for any k, |Xk| ≤ M almost surely and define V :=∑n

k=1 E
[
X2

k |Fk−1

]
. For any a, b > 0, we have:

P

(
n∑

k=1

Xk ≥ a, V ≤ b

)
≤ exp

(
−a2

2b+ 2aM/3

)
.

In an alternative form, for any t > 0, we have:

P

(
n∑

k=1

Xk ≥
2Mt

3
+
√
2bt, V ≤ b

)
≤ e−t.

Lemma G.9 (Improved online-to-batch argument Nguyen-Tang et al. (2023)). Let {Xk} be any
real-valued stochastic process adapted to the filtration {Fk}, i.e. Xk is Fk-measurable. Suppose
that for any k, Xk ∈ [0, H] almost surely for some H > 0. For any K > 0, with probability at least
1− δ, we have:

K∑
k=1

E [Xk|Fk−1] ≤ 2

K∑
k=1

Xk +
16

3
H log(log2(KH)/δ) + 2.

Proof of Lemma G.9 . Let Zk = Xk−E [Xk|Fk−1] and f(K) =
∑K

k=1 E [Xk|Fk−1]. We have Zk

is a real-valued difference martingale with the corresponding filtration {Fk} and that

V :=

K∑
k=1

E
[
Z2
k |Fk−1

]
≤

K∑
k=1

E
[
X2

k |Fk−1

]
≤ H

K∑
k=1

E [Xk|Fk−1] = Hf(K).

Note that |Zk| ≤ H and f(K) ∈ [0,KH] and let m = log2(KH). Also note that f(K) =∑K
k=1Xk−

∑K
k=1 Zk ≥ −

∑K
k=1 Zk. Thus if

∑K
k=1 Zk ≤ −1, we have f(K) ≥ 1. For any t > 0,

leveraging the peeling technique (Bartlett et al., 2005), we have:

P

(
K∑

k=1

Zk ≤ −
2Ht

3
−
√
4Hf(K)t− 1

)

= P

(
K∑

k=1

Zk ≤ −
2Ht

3
−
√
4Hf(K)t− 1, f(K) ∈ [1,KH]

)

≤
m∑
i=1

P

(
K∑

k=1

Zk ≤ −
2Ht

3
−
√
4Hf(K)t− 1, f(K) ∈ [2i−1, 2i)

)

≤
m∑
i=1

P

(
K∑

k=1

Zk ≤ −
2Ht

3
−
√
4H2i−1t− 1, V ≤ H2i, f(K) ∈ [2i−1, 2i)

)

≤
m∑
i=1

P

(
K∑

k=1

Zk ≤ −
2Ht

3
−
√
2H2it, V ≤ H2i

)

≤
m∑
i=1

e−t = me−t,

where the first equation is by that
∑K

k=1 Zk ≤ − 2Ht
3 −

√
4Hf(K)t − 1 ≤ −1 thus f(K) ≥ 1,

the second inequality is by that V ≤ Hf(K), and the last inequality is by Lemma G.8. Thus, with
probability at least 1−me−t, we have:

K∑
k=1

Xk − f(K) =

K∑
k=1

Zk ≥ −
2Ht

3
−
√

4Hf(K)t− 1.

The above inequality implies that f(K) ≤ 2
∑K

k=1Xk + 4Ht/3 + 2 + 4Ht, due to the simple
inequality: if x ≤ a

√
x+ b, x ≤ a2 + 2b. Then setting t = log(m/δ) completes the proof.

42

Published as a conference paper at ICLR 2023

H BASELINE ALGORITHMS

For completeness, we give the definition of linear MDPs as follows.
Definition 4 (Linear MDPs (Yang & Wang, 2019; Jin et al., 2020)). An MDP has a linear structure
if for any (s, a, s′, h), we have:

rh(s, a) = ϕh(s, a)
T θh,Ph(s

′|s, a) = ϕh(s, a)
Tµh(s

′),

where ϕ : S ×A → Rdlin is a known feature map, θh ∈ Rdlin is an unknown vector, and µh : S →
Rdlin are unknown signed measures.

We also give the details of the baseline algorithms: LinLCB in Algorithm 3, LinGreedy in Algorithm
4, Lin-VIPeR in Algorithm 5, NeuraLCB in Algorithm 6 and NeuralGreedy in Algorithm 7. For
simplicity, we do not use data split in these algorithms presented here.

Algorithm 3 LinLCB (Jin et al., 2021)

1: Input: Offline dataD = {(skh, akh, rkh)}
k∈[K]
h∈[H], uncertainty multiplier β, regularization parameter

λ.
2: Initialize ṼH+1(·)← 0
3: for h = H, . . . , 1 do
4: Λh ←

∑K
k=1 ϕ(s

k
h, a

k
h)ϕ(s

k
h, a

k
h)

T + λI

5: θ̂h ← Σ−1
h

∑K
k=1 ϕh(s

k
h, a

k
h) · (rkh + V̂h+1(s

k
h+1))

6: bh(·, ·)← β · ∥ϕh(·, ·)∥Σ−1
h

.

7: Q̂h(·, ·)← min{⟨ϕh(·, ·), θ̂h⟩ − bh(·, ·), H − h+ 1}+.
8: π̂h ← argmaxπh

⟨Q̂h, πh⟩ and V̂ k
h ← ⟨Q̂k

h, π
k
h⟩.

9: end for
10: Output: π̂ = {π̂h}h∈[H]

Algorithm 4 LinGreedy

1: Input: Offline data D = {(skh, akh, rkh)}
k∈[K]
h∈[H], perturbed variances {σh}h∈[H], number of boot-

straps M , regularization parameter λ.
2: Initialize ṼH+1(·)← 0
3: for h = H, . . . , 1 do
4: θ̂h ← Σ−1

h

∑K
k=1 ϕh(s

k
h, a

k
h) · (rkh + V̂h+1(s

k
h+1))

5: Q̂h(·, ·)← min{⟨ϕh(·, ·), θ̂h⟩, H − h+ 1}+.
6: π̂h ← argmaxπh

⟨Q̂h, πh⟩ and V̂ k
h ← ⟨Q̂k

h, π
k
h⟩.

7: end for
8: Output: π̂ = {π̂h}h∈[H]

43

Published as a conference paper at ICLR 2023

Algorithm 5 Lin-VIPeR

1: Input: Offline data D = {(skh, akh, rkh)}
k∈[K]
h∈[H], perturbed variances {σh}h∈[H], number of boot-

straps M , regularization parameter λ.
2: Initialize ṼH+1(·)← 0
3: for h = H, . . . , 1 do
4: Λh ←

∑K
k=1 ϕ(s

k
h, a

k
h)ϕ(s

k
h, a

k
h)

T + λI
5: for i = 1, . . . ,M do
6: Sample {ξτ,ih }τ∈[K] ∼ N (0, σ2

h) and ζih = {ζj,ih }j∈[d] ∼ N (0, σ2
hId)

7: Solve the perturbed regularized least-squares regression:

θ̃ih ← argmax
θ∈Rd

K∑
k=1

(
⟨ϕ(skh, akh), θ⟩ − (rkh + Ṽh+1(s

k
h+1) + ξk,ih)

)2
+ λ∥θ + ζih∥22,

8: end for
9: Compute Q̃h(·, ·)← min{mini∈[M]⟨ϕ(·, ·), θ̃ih⟩, H − h+ 1}+

10: π̃h ← argmaxπh
⟨Q̃h, πh⟩ and Ṽh ← ⟨Q̃h, π̃h⟩

11: end for
12: Output: π̃ = {π̃h}h∈[H]

Algorithm 6 NeuraLCB (a modification of (Nguyen-Tang et al., 2022a))

1: Input: Offline data D = {(skh, akh, rkh)}
k∈[K]
h∈[H], neural networks F = {f(·, ·;W) : W ∈ W} ⊂

{X → R}, uncertainty multiplier β, regularization parameter λ, step size η, number of gradient
descent steps J

2: Initialize ṼH+1(·)← 0 and initialize f(·, ·;W) with initial parameter W0

3: for h = H, . . . , 1 do
4: Ŵh ← GradientDescent(λ, η, J, {(skh, akh, rkh)}k∈[K], 0,W0) (Algorithm 2)
5: Λh = λI +

∑K
k=1 g(s

k
h, a

k
h; Ŵh)g(x

k
h; Ŵh)

T

6: Compute Q̂h(·, ·)← min{f(·, ·; Ŵh)− β∥g(·, ·; Ŵh)∥Λ−1
h
, H − h+ 1}+

7: π̂h ← argmaxπh
⟨Q̂h, πh⟩ and V̂h ← ⟨Q̂h, π̂h⟩

8: end for
9: Output: π̂ = {π̂h}h∈[H].

Algorithm 7 NeuralGreedy

1: Input: Offline data D = {(skh, akh, rkh)}
k∈[K]
h∈[H], neural networks F = {f(·, ·;W) : W ∈ W} ⊂

{X → R}, uncertainty multiplier β, step size η, number of gradient descent steps J
2: Initialize ṼH+1(·)← 0 and initialize f(·, ·;W) with initial parameter W0

3: for h = H, . . . , 1 do
4: Ŵh ← GradientDescent(λ, η, J, {(skh, akh, rkh)}k∈[K], 0,W0) (Algorithm 2)
5: Compute Q̂h(·, ·)← min{f(·, ·; Ŵh), H − h+ 1}+
6: π̂h ← argmaxπh

⟨Q̂h, πh⟩ and V̂h ← ⟨Q̂h, π̂h⟩
7: end for
8: Output: π̂ = {π̂h}h∈[H].

44

	Introduction
	Related Work
	Preliminaries
	Episodic time-inhomogenous Markov decision processes (MDPs)
	Overparameterized Neural Networks

	Algorithm
	Sub-optimality Analysis
	Experiments
	Linear MDPs
	Neural Contextual Bandits

	Conclusion
	Experiment Details
	Linear MDPs
	Neural Contextual Bandits
	Experiment in D4RL Benchmark

	Extended Discussion
	Comparison with other works and discussion
	Worse-Case Rate of Effective Dimension

	Proof of Theorem 1 and Theorem 2
	Technical Review and Proof Overview
	Proof of Theorem 1
	Proof of Theorem 2

	Proof of Lemma C.1
	Preparation
	Proof of Lemma C.1
	Proof of Lemma C.2
	Proof of Lemma C.3
	Proof of Lemma C.4

	Proofs of Lemmas in Section D
	Proof of Lemma D.1
	Proof of Lemma D.2
	Proof of Lemma D.3

	Proofs of Lemmas in Section E
	Proof of Lemma E.1
	Proof of Lemma E.2
	Proof of Lemma E.3
	Proof of Lemma E.4
	Proof of Lemma F.2

	Support Lemmas
	Baseline algorithms

