
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROBE PRUNING: ACCELERATING LLMS THROUGH
DYNAMIC PRUNING VIA MODEL-PROBING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Probe Pruning (PP), a novel framework for online, dynamic, struc-
tured pruning of Large Language Models (LLMs) applied in a batch-wise manner.
PP leverages the insight that not all samples and tokens contribute equally to the
model’s output, and probing a small portion of each batch effectively identifies
crucial weights, enabling tailored dynamic pruning for different batches. It com-
prises three main stages: probing, history-informed pruning, and full inference.
In the probing stage, PP selects a small yet crucial set of hidden states, based on
residual importance, to run a few model layers ahead. During the history-informed
pruning stage, PP strategically integrates the probing states with historical states.
Subsequently, it structurally prunes weights based on the integrated states and the
PP importance score, a metric developed specifically to assess the importance of
each weight channel in maintaining performance. In the final stage, full inference is
conducted on the remaining weights. A major advantage of PP is its compatibility
with existing models, as it operates without requiring additional neural network
modules or fine-tuning. Comprehensive evaluations of PP on LLaMA-2/3 and
OPT models reveal that even minimal probing—using just 1.5% of FLOPs—can
substantially enhance the efficiency of structured pruning of LLMs. For instance,
when evaluated on LLaMA-2-7B with WikiText2, PP achieves a 2.56× lower
ratio of performance degradation per unit of runtime reduction compared to the
state-of-the-art method at a 40% pruning ratio.

1 INTRODUCTION

Large Language Models (LLMs) Vaswani et al. (2017); Zhang et al. (2022); Touvron et al. (2023);
Diao et al. (2024) have recently achieved significant success, leading to the development of numerous
applications OpenAI (2023); Anand et al. (2023). However, the inference for these models, often
containing billions of parameters, presents challenges. These challenges primarily arise from the
substantial computational demands and the risk of high latency Ma et al. (2023).

Structured pruning is a promising hardware-friendly approach to reduce computational consumption
and accelerate inference Yuan et al. (2021). It removes complete structures from models, such as
weight channels and attention heads. Compared with other methods like unstructured pruning Frantar
& Alistarh (2023); Sun et al. (2023) and quantization Dettmers et al. (2022); Lin et al. (2023); Frantar
et al. (2022), structured pruning reduces computational resources and speeds up inference without
requiring specific hardware. However, when applied to LLMs, structured pruning often results in a
performance gap compared to dense models Wang et al. (2024).

A major factor contributing to the performance gap in LLMs may be the emergence of significant
outlier phenomena in internal representations Dettmers et al. (2022); Liu et al. (2024); Sun et al.
(2024). Current advanced structured pruning methods typically utilize calibration datasets to assess
the importance of weights using pruning metrics. For example, the FLAP method An et al. (2024)
uses a calibration dataset to compute fluctuation metrics for each input feature and its corresponding
channel in attention or MLP block weight matrices, specifically in the output projection (O) or fully
connected layer 2 (FC2). Similarly, LLM-Pruner Ma et al. (2023) employs approximated second-
order Taylor expansions of the error function, calculated using a calibration dataset, to eliminate
the least important coupled structures. Although the calibration dataset provides valuable insights
for pruning by identifying non-critical weights, this approach overlooks the batch-dependent nature
of outlier properties in LLMs Liu et al. (2023b); Song et al. (2023); Liu et al. (2024); Sun et al.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(2024), which vary across different input batches and cannot be accurately predicted prior to inference.
Consequently, pruning decisions based solely on calibration dataset may fail to address these dynamic
outliers during real-time inference, resulting in suboptimal model performance. Fine-tuning can serve
as a method to recover model performance Wang et al. (2024), but it is resource-intensive and may be
impractical for certain real-world applications.

To effectively handle batch-dependent outliers and reduce the performance gap between pruned and
dense models without extensive fine-tuning, we propose Probe Pruning (PP). PP is an online dynamic
structured pruning framework that prunes the model during inference based on each batch’s hidden
states. Notably, PP relies solely on the original model structure and hidden states, without requiring
additional neural network modules or fine-tuning. We overcome two key challenges:

• Leveraging Calibration Dataset may Introduce Biases: Relying exclusively on the
calibration dataset may introduce biases, as the pruned channels are entirely determined by
the calibration dataset. For example, when FLAP used the WikiText2 validation set as a
calibration dataset, it achieved a perplexity of 18.5 on the WikiText2 test set of LLaMA-
2-7B with a 40% pruning ratio. In contrast, using the C4 dataset as a calibration dataset,
the perplexity increased to 38.9 on the WikiText2 test set. We propose history-informed
pruning with importance-scaled fusion to leverage the benefits of the calibration dataset
while minimizing associated biases.

• Dynamic Pruning Without Access to Intermediate Hidden States: Deciding online
which channels to prune during inference for each batch is challenging. Without gradients,
calculating pruning metrics for attention and MLP blocks requires intermediate hidden states,
which are the input tensors to the attention output projection and MLP’s FC2 layer. These
states are unavailable when the input hidden states initially enter these blocks. Moreover,
not all samples and tokens contribute equally to the model’s output, and large-magnitude
outliers in LLMs often have a significant impact on the model’s behavior. Therefore, we
propose a probing method that selects key samples and tokens from the input hidden states,
runs a few model layers ahead, and obtains intermediate hidden state information. Without
such probing, accessing intermediate hidden states requires significant computational costs.

Specifically, PP leverages a small yet crucial segment of hidden states to run a few model layers ahead
and capture the probe’s intermediate hidden states, which contain essential information for guiding
pruning decisions within the attention or MLP blocks of the current batch. By strategically integrating
the probing states with historical states, we can dynamically determine which channels to prune.
After pruning the weight channels, we run full inference on the remaining weights. Furthermore, our
probing is minimal yet effective: for example, it operates with only 5% of the samples and 50% of
the tokens, utilizing just 1.5% of the floating point operations (FLOPs) of dense model inference, and
yet it has proven effective. Experimental results confirm that this minimal probe effectively captures
critical intermediate hidden state information.

2 RELATED WORK

Pruning with Calibration Dataset. Pruning methods can be broadly classified into two cate-
gories Yuan et al. (2021): unstructured pruning and structured pruning. Unstructured pruning LeCun
et al. (1989); Hassibi et al. (1993); Han et al. (2015); Diao et al. (2023); Liu et al. (2023a) removes
individual weights, whereas structured pruning Li et al. (2016); Liu et al. (2017); He et al. (2019);
Fang et al. (2023) removes complete structures from the model, such as channels and attention heads.
Pruning LLMs often involves calibration datasets due to the emergence of outliers in their internal
representations. For unstructured pruning, SparseGPT Frantar & Alistarh (2023) uses synchronized
second-order Hessian updates to solve row-wise weight reconstruction problems and update weights.
Wanda Sun et al. (2023) introduces a pruning metric that considers both the magnitude of weights
and activation values to determine which weights to prune. For structured pruning, FLAP An et al.
(2024) introduces a fluctuation metric to decide which weight channels to prune. LLM-Pruner Ma
et al. (2023) employs approximated second-order Taylor expansions of the error function to remove
the least important coupled structures and then applies fine-tuning to recover model performance.
LoRA-Prune Zhang et al. (2023) uses a LoRA Hu et al. (2021)-guided pruning metric that leverages
the weights and gradients of LoRA to direct the iterative process of pruning and tuning. However,
the fine-tuning process requires substantial computational resources Hoffmann et al. (2022), and we

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2. Probe Run
Model

1. Probe
Generation

Layer-Normalized
Hidden States

N
orm

Residuals(1) Probing

Residual
Importance

4 2
3 0

1
1

5 2

1 1
1 0

(2) Pruning & Full Inference

N
orm

1 1
1 0

4. Full Inference

Layer-Normalized
Hidden States

3 1
0 2

2.5 1
2 2.6

3. History-Informed
Pruning

Historical
States

1 1
2 3

Probing
States

Figure 1: Probe Pruning (PP) is executed in four stages: (1) PP selects key samples and tokens
from the layer-normalized hidden states, based on residual importance, to create a small yet crucial
probe. (2) PP deploys this probe to run a few model layers ahead and obtains the probe’s intermediate
hidden states. (3) PP integrates the probing states with historical states and uses the integrated states
to calculate the pruning metric and prune weight channels. (4) PP performs full inference on the
remaining weights.

have found that fine-tuning might cause LLMs to lose their generalizability; for example, they may
perform worse on certain downstream tasks, such as commonsense reasoning tasks.

Large-Magnitude Outliers of LLMs. Unlike small neural networks, LLMs exhibit large-
magnitude outlier features Kovaleva et al. (2021); Dettmers et al. (2022; 2023); Schaeffer et al.
(2024); Sun et al. (2024). LLM.int8() Dettmers et al. (2022) shows that these large-magnitude
features begin to emerge when the size of LLMs exceeds 6.7 billion parameters, and these outlier
features are concentrated in certain channels. The phenomenon of massive activations Sun et al.
(2024); Liu et al. (2024) has been observed, where a few activations exhibit significantly larger values
than others, potentially leading to the concentration of attention probabilities on their corresponding
tokens. These emergent properties suggest the need to customize the pruning of channels for different
batches to maintain model performance. This observation motivates us to propose Probe Pruning.

3 NOTATIONS AND PRELIMINARIES

An LLM M consists of L blocks, each of which can be either an attention block or a Multi-Layer
Perceptron (MLP) block. Each attention block is characterized by four linear projections: Query (Q),
Key (K), Value (V), and Output (O). Similarly, each MLP block includes two linear layers: Fully
Connected layer 1 (FC1) and Fully Connected layer 2 (FC2).

Each block l transforms the input hidden state Xl ∈ RN×S×D into the output hidden state Xl+1 ∈
RN×S×D. Here, N , S, and D denote the batch size, sequence length, and feature dimension,
respectively. The transformations in each block l can be expressed as:

Xl+1 = Xl + F l(Xl), (1)
where F l encompasses all transformations within block l. This function can be further decomposed
as:

F l(Xl) = Xl,int(W l,final)T , Xl,int = T l(Xl), (2)

where T l represents all intermediate transformations applied to the input hidden state Xl, excluding
the final weight matrix W l,final ∈ RCout×Cin . The final weight matrix is either the Output projection
(O) in an attention block or FC2 in an MLP block. The intermediate hidden state Xl,int ∈ RN×S×Cin

results from applying these intermediate transformations to Xl.

In structured pruning of LLMs, entire coupled structures are pruned Ma et al. (2023); An et al. (2024).
Specifically, in block l, the preceding weight matrices are adjusted by pruning their output channels,
which correspond one-to-one with the input channels pruned by the final weight matrix. For example,
in an MLP block, the weight matrices are adjusted based on the set of unpruned channel indices
Cl ⊆ {1, 2, . . . , Cin} as follows:

W̃ l,FC1 = W l,FC1[Cl, :], W̃ l,FC2 = W l,FC2[:,Cl], (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where W̃ l,FC1 ∈ R|Cl|×Cin and W̃ l,FC2 ∈ RCout×|Cl|. The notation |Cl| represents the cardinality of
Cl. Similarly, in the attention block, attention heads can be treated as coupled structures Ma et al.
(2023); An et al. (2024), and entire attention heads are pruned.

4 METHODOLOGY

The objective of Probe Pruning (PP) is to implement online dynamic structured pruning in a batch-
wise manner. The main idea of our work is illustrated in Figure 1. Our core strategy involves: (1)
Probing (Sections 4.1 and 4.2), which consists of two steps: first, generating a probe based on residual
importance; second, using the probe to run the unpruned model to gather valuable intermediate hidden
state information. (2) History-informed pruning (Section 4.3), which carefully merges the probing
states with historical states using importance-scaled fusion to capture the essential characteristics
of each batch. Afterward, we prune the model using a novel pruning metric (Section 4.4) that more
effectively selects channels for pruning than existing metrics.

4.1 PROBING

We introduce a novel concept called probing, which leverages the existing model structure and hidden
states to form a predictive mechanism. Specifically, when the input hidden states reach block l,
probing first utilizes residual importance to select key samples and tokens, forming the probe Pl

from LNl(Xl). LNl represents the layer normalization at block l. The process of probe generation
is detailed in the next section. It then runs the intermediate transformation in block l, denoted by
T l(Pl). Notably, effective probing consumes few computational resources and can obtain important
intermediate-state information to guide pruning decisions.

Upper Bound of Probing. As an alternative, we can generate the probe by using all the input
hidden states in the current batch, Pl = LNl(Xl), a method we refer to as Full-Batch Probing. By
utilizing the entire batch without reducing the dimensions N or S, Full-Batch Probing captures the
complete intermediate hidden state information, which could potentially lead to optimal pruning
performance. However, this approach significantly increases computational resource requirements
and latency. Therefore, Full-Batch Probing serves as a theoretical upper bound for our method. Our
aim for PP is to select pruning channels similar to those chosen by Full-Batch Probing. We believe
that a higher proportion of common pruning channels between PP and Full-Batch Probing indicates
better model performance and higher quality of the probe.

Why Does Probing Work? Probing is effective because not all samples and tokens contribute
equally to the model’s output, and large-magnitude outliers in LLMs significantly influence the
model’s behavior. In natural language sequences, certain tokens carry more semantic or syntactic
significance than others Xiao et al. (2023); Sun et al. (2024); Liu et al. (2024). By selecting key
samples and tokens based on residual importance, the probe focuses on the most informative parts
within the batch. This targeted approach allows the probe to capture essential intermediate hidden
state information that is most influential in determining which channels can be pruned. Consequently,
even though the probe processes a reduced subset of the batch, it provides sufficient insight to guide
pruning decisions, potentially achieving results comparable to Full-Batch Probing with significantly
lower computational costs.

Computational Complexity. Only minimal computational complexity is required for probing.
Specifically, for an LLM characterized by six linear transformations per attention and MLP block
(Q/K/V/O and FC1/FC2) that incorporate weight transformations and the attention mechanism, the
dense matrix computational complexity for an LLM totals O(4NSCinCout +2NS2Cin). For probing,
by reducing the batch size to x% and the sequence length to y% of their original sizes, the complexity
reduces to O(4x% · y% ·NSCinCout + 2x% · (y%)2 ·NS2Cin).

4.2 PROBE GENERATION

PP measures the residual importance of Xl to identify key samples and tokens. Once identified, these
key samples and tokens are selected from LNl(Xl) to generate a probe for block l, where LNl denotes

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: Probe Pruning
Input: An LLM M with L blocks, each containing the Transformation F l, the Intermediate

transformation T l, and Layer Normalization LNl; calibration dataset D; Inference batches B.
System executes:

Run the calibration dataset D using model M to obtain historical states V.
for t-th batch Bt do

Initialize the hidden state X0 for batch Bt.
for each block l = 0, . . . , L− 1 do

Generate a probe Pl from LNl(Xl), utilizing the residual importance (Section 4.2).
Use Pl to execute the intermediate transformation of block l and gather the resulting

intermediate hidden states, denoted as Xl,int,probe = T l(Pl).
Use importance-scaled fusion to integrate the probing states X′l,int,probe with historical states

(Section 4.3).
Compute the PPsp pruning metric from the integrated states (Section 4.4), and subsequently

prune the weight channels accordingly.
Execute full inference on Xl using the pruned weights W̃ l, denoted by F̃ l(Xl).

end
end

layer normalization at block l. We do not utilize the importance derived from LNl(Xl) to identify key
samples and tokens because layer normalization substantially alters the input hidden states.

To measure the residual importance of Xl along the target dimension, we compute the L2 norm across
non-target dimensions. The target dimension may be either the batch or sequence dimension.

Ul,batch
i = ∥Xl

i,:,:∥2, for i = 1, . . . , N, (4)

Ul,seq
j = ∥Xl

:,j,:∥2, for j = 1, . . . , S. (5)

After computing the importance scores, we sort them in descending order and store the indices in I:

Il,batch = argsort(−Ul,batch), (6)

Il,seq = argsort(−Ul,seq). (7)

Using the sorted indices, we then generate the probe by selecting the top x% of samples or y% of
tokens from the layer-normalized Xl:

Pl =

{
LNl(Xl)Il,batch

:x%
,:,: if selecting top x% of samples,

LNl(Xl)
:,Il,seq

:y%
,:

if selecting top y% of tokens.
(8)

This method ensures that the probe consists of the most significant samples and tokens, as ranked by
their importance scores.

PP implements a sequential approach to prune both sequence and batch dimensions effectively.
Initially, the top y% of tokens are selected from the residual Xl, guided by Eqs. (5) and (7), leveraging
the sequence distribution within the current batch: Xl

:,Il,seq
:y%

,:
. Subsequently, we apply this reduced

sequence set to determine the top x% of samples using Eqs. (4) and (6), resulting in the indices
Il,batch|seq. Finally, we select the key samples and tokens for probe generation as LNl(Xl)Il,batch|seq

:x%
,Il,seq

:y%
,:

.

4.3 HISTORY-INFORMED PRUNING WITH IMPORTANCE-SCALED FUSION

The intermediate hidden states of the probe, given by

Xl,int,probe = T l(Pl) (9)

contain crucial information that guides pruning decisions. However, when the probe is very small—for
instance, when N and S are reduced to 5%—they might lead to inappropriate pruning decisions due
to limited context. To address this issue and enhance performance, we introduce history-informed
pruning with importance-scaled fusion.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To simplify notation, we omit the superscript l, which denotes the block number, in this section. For
intermediate hidden states Xint of shape (N,S,Cin), the following relationship holds:

S∑
j=1

N∑
i=1

(Xint
i,j,k)

2 =

S∑
j=1

||Xint
:,j,k||22 = ||Xint

:,:,k||22 (10)

We compress the batch dimension in the first step of Eq. 10 to store historical states because memory
limitations prevent storing the intermediate hidden states of all samples. We sum over the sequence
dimension in the second step of Eq. 10 to obtain the tensor in shape RCin , which is used to compute
the pruning metric (see Section 4.4).

As in previous studies Sun et al. (2023); An et al. (2024), we process the calibration dataset D using the
model M to obtain initial historical states. For each block, initial historical states are represented by
V|0 ∈ RS×Cin , computed as the first step of Eq. 10 to reduce the batch dimension: V|0 = ||Xint

:,j,k||22 =∑N
i=1(X

int
i,j,k)

2. Similarly, to reduce the batch dimension of probe’s intermediate hidden states

Xint,probe ∈ Rx%·N×y%·S×Cin , we calculate probing states as ||Xint,probe
:,j,k ||22 =

∑x%·N
i=1 (Xint,probe

i,j,k)2.

Importance-Scaled Fusion. Since probing can be performed with selected tokens, it is necessary
to align the sequence dimension. We define Vprobe = VIseq

:y%
,:, where Vprobe ∈ Ry%·S×Cin and Iseq

:y%,
obtained from Eq. 7, represents the indices of the top y% of tokens. We then apply importance-scaled
fusion to obtain integrated states:

X̂
int,probe

=
||Xint,probe

:,j,k ||22
||Xint,probe

:,j,k ||22 + Vprobe · ||Xint,probe
:,j,k ||22 +

Vprobe

||Xint,probe
:,j,k ||22 + Vprobe · Vprobe, (11)

where X̂
int,probe

∈ Ry%·S×Cin . Following the second step of Eq. 10, we sum X̂
int,probe

over the sequence

dimension to obtain
∑y%·S

j=1 X̂
int,probe
j,k . Note that without importance-scaled fusion,

∑y%·S
j=1 X̂

int,probe
j,k

can reduce to ∥Xint
:,:,k∥22. Then, we use W final and

∑y%·S
j=1 X̂

int,probe
j,k as a surrogate of ∥Xint

:,:,k∥22 to
calculate the pruning metric based on Eq. (15), and prune the weight channels accordingly. Finally,
we run full inference on the remaining weights.

Update Historical States with Full Inference. To enhance the tracking of intermediate hidden
state attributes, we implement an exponential moving average during full inference on the selected
weight channels C. The update formula is expressed as:

V:,C|t = λV:,C|t−1 + (1− λ)||X̃
int
:,j,C||22|t, (12)

The value of V is updated for t-th inference batch, and X̃
int

represents the intermediate hidden states
during full inference. We consistently set λ = 0.99 across all implementations.

4.4 PRUNING METRIC

We propose a new structured pruning metric named PPsp, where "sp" stands for structured pruning.
This metric more effectively selects channels for pruning compared to existing metrics. We adapt
the unstructured pruning metric Wanda Sun et al. (2023) to a structured pruning scenario. PPsp
introduces two enhancements: (1) we preserve the inherent importance of individual weights, as
represented by the squared value of the Wanda metric; and (2) we calculate the L2 norm of the
importance scores for MLP input channels and attention heads to determine the pruning structures’
importance, rather than summing these scores across pruning structures.

We introduce the pruning metric for a general scenario. To enhance clarity, we omit the superscript l,
which denotes the block number, in this section. At each block, given intermediate hidden states Xint

of shape (N,S,Cin), where N and S represent the batch and sequence dimensions respectively, and
the weight matrix W final of shape (Cout, Cin), Wanda Sun et al. (2023) defines the importance of the
individual weight W final

i,k as:

Ii,k = |W final
i,k | · ||Xint

:,:,k||2, (13)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where | · | denotes the absolute value operation, and ||Xint
:,:,k||2 evaluates the L2 norm of the kth

feature across the (N,S) dimensions. These two scalar values are then multiplied to produce the
final importance. However, as derived in Wanda Sun et al. (2023), the inherent importance of an
individual weight is defined by:

Ii,k = (|W final
i,k | · ||Xint

:,:,k||2)2 = |W final
i,k |2 · ||Xint

:,:,k||22. (14)

Wanda discards the squaring in Eq. (14) in local weight importance ordering, as the non-negative
nature of |W final

i,k | and ||Xint
:,:,j ||2 does not impact the relative ordering of importance. However, when

it comes to structured pruning, maintaining the inherent importance of individual weights is essential.
Thus, we square the Wanda metric and compute the Euclidean distance across the Cout dimension of
the input channel. The formula is given by:

Ik =

∥∥∥∥{|W final
i,k |2 · ||Xint

:,:,k||22
}Cout

i=0

∥∥∥∥
2

, (15)

where {·} signifies the set of elements, and I ∈ RCin .

5 EXPERIMENTAL SETUP

Table 1: Comparison of LLM structured pruning methods.

Method No Fine-tuning Time-Efficient Easy Integration Dynamic Pruning

Wanda-sp ✓ ✓ ✓ ✗
FLAP ✓ ✓ ✓ ✗

LLM-Pruner ✗ ✗ ✗ ✗
LoRAPrune ✗ ✗ ✗ ✗

PP ✓ ✓ ✓ ✓

We conduct three experiments using different random seeds for all tests and show the standard error
across these three seeds in brackets. We conduct all experiments on NVIDIA A100 GPUs.

Models and Evaluation. We evaluate PP on three popular model families: LLaMA-2 7B/13B Tou-
vron et al. (2023), LLaMA-3 8B Meta AI (2024), and OPT-13B Zhang et al. (2022). Following
previous work Sun et al. (2023); An et al. (2024), we evaluate the models on two zero-shot task
categories. We evaluate accuracy on commonsense reasoning tasks, including BoolQ Clark et al.
(2019), PIQA Bisk et al. (2020), HellaSwag Zellers et al. (2019), WinoGrande Sakaguchi et al. (2019),
ARC-Easy Clark et al. (2018), ARC-Challenge Clark et al. (2018), and OpenbookQA Mihaylov et al.
(2018). For evaluating perplexity on the text generation task, we use WikiText2 Merity et al. (2016).
We set the batch size to 20 for all tasks. For the commonsense reasoning tasks, our implementation
follows Gao et al. (2021), setting the sequence length of each batch to match its longest sample. For
the text generation task, we set the sequence length to 1024. For PP, we set the default probe size to
5% of the batch size and 50% of the sequence length, approximating 1.5% of the FLOPs cost relative
to dense model inference. Figure 3 shows ablation study results for various probe combinations,
indicating small probes enhance model performance. Ablation studies of the PP and FLAP are
available in Appendix B, and additional experimental results are available in Appendix C.

Baselines. We compare our method, PP, with four previous approaches: Wanda-sp An et al. (2024),
FLAP An et al. (2024), LoRAPrune Zhang et al. (2023), and LLM-Pruner Ma et al. (2023). We also
compare PP with its upper bound, Full-Batch Probing, as introduced in Section 4.1. Following Sun
et al. (2023); An et al. (2024), we use the C4 Raffel et al. (2020) dataset as the calibration dataset for
all methods. We use 2,000 calibration samples for PP, Wanda-sp, and FLAP, and 20,000 calibration
samples for tuning LoRAPrune and LLM-Pruner. We evaluate pruning ratios of 20% and 40%.

6 RESULTS

Main Results. We present the zero-shot performance, without fine-tuning, of four models on text
generation and commonsense reasoning tasks, as shown in Tables 2 and 3. Probe Pruning (PP)
consistently outperforms all baselines across various models and pruning ratios. For instance, on
WikiText2 at a 40% pruning ratio, PP achieves lower perplexities than competing methods: 16.8 with
LLaMA-2-7B, 11.3 with LLaMA-2-13B, and 26.7 with OPT-13B. Moreover, PP attains significantly
lower perplexities and higher reasoning task accuracies than both LLM-Pruner and LoRAPrune. For
example, on LLaMA-2-13B at a 40% pruning ratio, PP achieves an average accuracy of 61.0%,
significantly higher than 52.0% for LLM-Pruner and 48.1% for LoRAPrune. On LLaMA-3-8B,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Zero-shot performance of LLaMA-2-7B/13B and OPT-13B after pruning attention and MLP
blocks without fine-tuning: PP demonstrates superior performance in nearly all scenarios.

Text Generation ↓ Commonsense Reasoning ↑

Method Pruning Ratio LLaMA-2-7B LLaMA-2-13B OPT-13B LLaMA-2-7B LLaMA-2-13B OPT-13B

Dense 0% 6.0(0.1) 5.1(0.1) 11.6(0.1) 64.0 66.2 57.2

Full-Batch Probing 20% 7.3(0.1) 6.2(0.1) 12.6(0.1) 62.6 65.3 56.4
Wanda-sp 20% 10.6(0.1) 9.0(0.1) 17.4(0.1) 61.5 65.0 55.2

FLAP 20% 10.3(0.1) 7.5(0.1) 18.8(0.2) 61.4 64.6 54.9
LoRAPrune w/o LoRA 20% 22.7(0.9) 16.1(0.7) — 57.9 58.9 —
LLM-Pruner w/o LoRA 20% 17.5(1.6) 11.3(0.7) — 57.4 61.3 —

PP 20% 8.1(0.1) 6.7(0.1) 14.7(0.1) 62.8 65.3 56.5

Full-Batch Probing 40% 13.6(0.1) 8.9(0.1) 17.9(0.2) 58.7 62.9 54.0
Wanda-sp 40% 43.8(1.5) 21.6(0.4) 42.7(0.7) 54.8 56.6 50.5

FLAP 40% 38.9(1.3) 15.5(0.0) 51.0(0.7) 54.9 60.6 50.8
LoRAPrune w/o LoRA 40% 129.5(3.0) 74.8(6.4) — 45.4 48.1 —
LLM-Pruner w/o LoRA 40% 51.1(4.3) 34.5(2.4) — 47.8 52.0 —

PP 40% 16.8(0.1) 11.3(0.1) 26.7(0.3) 56.6 61.0 53.1

Table 3: Zero-shot performance of LLaMA-3-8B after pruning MLP blocks without fine-tuning: PP
demonstrates superior performance in nearly all scenarios.

Method Pruning Ratio WikiText2 ↓ BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average ↑

Dense 0% 6.8(0.0) 81.7(0.0) 79.5(0.0) 76.3(0.0) 72.5(0.0) 47.2(0.0) 61.7(0.0) 40.2(0.0) 65.6

Full-Batch Probing 20% 8.5(0.0) 79.0(0.0) 80.1(0.0) 74.8(0.0) 73.9(0.0) 44.9(0.0) 60.7(0.0) 40.2(0.0) 64.8
Wanda-sp 20% 10.0(0.0) 75.1(0.3) 78.5(0.0) 69.6(0.2) 71.4(0.4) 38.7(0.4) 56.9(0.4) 39.0(0.2) 61.3

FLAP 20% 10.0(0.0) 79.4(0.2) 78.7(0.1) 70.3(0.0) 71.4(0.5) 40.8(0.1) 57.8(0.0) 39.4(0.3) 62.5
PP 20% 9.3(0.0) 77.4(0.0) 78.5(0.0) 73.1(0.0) 72.5(0.3) 43.2(0.3) 59.1(0.2) 40.2(0.5) 63.4

Full-Batch Probing 40% 12.3(0.1) 73.1(0.0) 77.8(0.0) 70.5(0.0) 70.3(0.0) 42.9(0.0) 58.9(0.0) 39.8(0.0) 61.9
Wanda-sp 40% 18.4(0.1) 66.6(0.1) 73.4(0.2) 56.7(0.1) 63.2(0.2) 31.8(0.2) 47.0(0.5) 34.5(0.2) 53.3

FLAP 40% 18.5(0.2) 67.3(1.0) 73.5(0.0) 57.2(0.2) 66.7(0.5) 31.7(0.3) 44.6(0.3) 34.4(0.3) 53.6
PP 40% 14.9(0.1) 70.3(0.1) 76.3(0.2) 65.3(0.1) 67.2(0.2) 39.0(0.3) 57.4(0.1) 36.9(0.3) 58.9

PP surpasses Wanda-sp and FLAP in nearly all tasks, confirming its effectiveness and robustness.
For instance, at a 40% pruning ratio, PP achieves an average accuracy of 58.9%, outperforming
Wanda-sp (53.3%) and FLAP (53.6%). In Section 4.1, we stated that Full-Batch Probing represents
the upper bound of PP. Experimental results confirm that Full-Batch Probing excels in all tested
scenarios, supporting our hypothesis. Compared to Full-Batch Probing, which requires significant
extra computational resources—more than dense model inference—PP achieves comparable results
while utilizing minimal computational resources, only 1.5% of the FLOPs compared to dense model
inference. These results imply the effectiveness of PP and demonstrate that the probe’s intermediate
hidden states can help identify the important weights for processing different batches.

(a) Attention, WikiText2 (b) MLP, WikiText2 (c) Attention, ARC-e (d) MLP, ARC-e

Figure 2: Jaccard Index of common pruning channels: comparing PP and Full-Batch Probing, and
comparing fix-pruned model (without PP) and Full-Batch Probing for each batch.

Jaccard Index of Common Pruning Channels. To verify our assumption in Section 4.1 that a
greater overlap of pruning channels between PP and Full-Batch Probing correlates with enhanced
model performance and probe quality, we measure the Jaccard Index Jaccard (1912) of common
pruning channels in two comparisons: between PP and Full-Batch Probing, and between the fix-
pruned model (without PP) and Full-Batch Probing. The Jaccard Index is a statistical measure of the
similarity between two sets, defined as the size of their intersection divided by the size of their union.
We consistently apply the PPsp metric in all comparisons. As shown in Figure 2, PP consistently

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

selects pruning channels more similar to those selected by Full-Batch Probing across almost all
attention and MLP blocks, in contrast to the fix-pruned model (without PP). This increased alignment
of channels contributes to improved overall performance and indicates that the probe’s intermediate
hidden states can help guide pruning decisions.

(a) LLaMA-2-7B, WikiText2 (b) LLaMA-2-7B, ARC-e (c) OPT-13B, WikiText2 (d) OPT-13B, ARC-e

Figure 3: Performance of different probe combinations at a 40% pruning ratio.
Effect of Probe Combinations on Performance. We find that even a small probe can improve
model performance. The results are shown in Figure 3. We investigate how different probe sizes
affect PP’s performance by varying the probe batch size from 1 to 20 (specifically, 1, 5, and 20) and
the probe sequence ratio from 0.05 to 1.0 (specifically, 0.05, 0.1, 0.3, 0.5, 0.8, and 1.0). First, we
observe that once we apply PP, even a small probe with a batch size of 1 and a probe sequence ratio of
0.05 can yield performance improvements. For example, for LLaMA-2-7B, the perplexity drops from
29.8 to 21.7; for OPT-13B, it drops from 35.4 to 27.7. Furthermore, we observe that increasing both
the probe batch size and sequence ratio leads to improved performance. Interestingly, we find that the
initial increase in sequence ratio from 0.05 to 0.3 brings the most rapid performance improvement.
This indicates that sequence information becomes significantly effective for pruning once it exceeds a
certain size threshold relative to the current batch’s sequence length.
Computational Cost and Inference Speed. We use the DeepSpeed package Rasley et al. (2020)
to measure the FLOPs. The results in Table 4 show that the computational overhead of probing
is approximating 1.5% of the FLOPs of the dense model inference. This finding aligns with our
analyzed computational complexity in Section 4.1. Additionally, we evaluate each block’s end-to-end
runtime and the inference speedup at a 40% pruning ratio on NVIDIA A100 GPUs, similar to previous
studies Sun et al. (2023); Ma et al. (2023). The results for LLaMA-2-7B on WikiText2 are presented
in Table 5. We find that the inference speeds of PP are comparable to those of other structured pruning
baselines, yet it delivers superior performance. Specifically, in the attention block, PP achieves a
speedup of 1.46×, and in the MLP block, a speedup of 1.30×. The slight delay observed in the MLP
block can be attributed to inherent system costs, such as weight extraction. This gap narrows under
conditions with larger batch sizes or longer sequence lengths, leading to comparable speeds between
PP and the baselines.
Performance Runtime Ratio. To illustrate the trade-off between model performance and inference
speed, we introduce Performance Runtime Ratio (PRR), which quantifies the ratio of performance
degradation per unit of runtime reduction. Importantly, a smaller PRR value is preferable as it
indicates minimal performance degradation per unit of runtime reduction. The metric is defined as:

PRR =
|Perfdense − Perfpruned|

Runtimedense − Runtimepruned
, (16)

where Perfpruned and Runtimepruned denote the performance and runtime of the pruned model, re-
spectively, and Perfdense and Runtimedense denote the performance and runtime of the dense model,
respectively. As shown in Table 5, the PRR of PP is 37.37, indicating a increase of 37.37 in perplexity
per second of runtime reduction on the attention and MLP block. In comparison, FLAP and Wanda-sp
have PRR values of 95.65 and 106.48, respectively. PP’s PRR values are 2.56× (95.65 compared
to 37.37) and 2.85× (106.48 compared to 37.37) more efficient than those of FLAP and Wanda-sp,
respectively, indicating a significantly lower rate of performance degradation.
Compared with Fine-tuned Baselines. Table 6 compares the performance of PP with fine-
tuned baselines LoRAPrune and LLM-Pruner across different pruning ratios for text genera-
tion and commonsense reasoning tasks. Without fine-tuning, PP consistently outperforms or
closely matches the fine-tuned models. At a 20% pruning ratio, PP excels in both tasks across
LLaMA-2-7B and LLaMA-2-13B models. At a 40% pruning ratio, PP achieves compara-
ble perplexity and significantly higher reasoning task accuracies. For example, PP achieves
61 on LLaMA-2-13B, while LoRAPrune achieves 55.5 and LLM-Pruner achieves 54.7.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Comparison of FLOPs be-
tween dense model inference and
probing.

Method
Computational Cost

(TFLOPs)

WikiText2 ARC-c

Dense 4420 4377
Probing 66 (1.5%) 69 (1.6%)

Table 5: Breakdown of inference runtime per batch at a 40%
pruning ratio. The speedup is calculated by dividing the dense
model’s inference runtime by the methods’ inference runtime.

Method PRR Runtime (s)

Attention Speedup MLP Speedup

Dense - 0.612 - 0.416 -
FLAP 95.64 0.419 1.46× 0.265 1.57×

Wanda-sp 106.48 0.395 1.55× 0.278 1.50×
PP 37.37 0.420 1.46× 0.319 1.30×

Table 6: Comparison of PP with fine-tuned baselines on LLaMA-2-7B/13B models, with attention
and MLP layers pruned: PP consistently outperforms across scenarios without fine-tuning.

Text Generation ↓ Commonsense Reasoning ↑

Method Pruning Ratio Fine-tuning LLaMA-2-7B LLaMA-2-13B LLaMA-2-7B LLaMA-2-13B

Dense 0% ✗ 6.0(0.1) 5.1(0.1) 64.0 66.2

LoRAPrune w/ LoRA 20% ✓ 8.7(0.2) 7.4(0.0) 59.2 61.0
LLM-Pruner w/ LoRA 20% ✓ 10.2(0.3) 8.4(0.5) 58.7 62.1

PP 20% ✗ 8.1(0.1) 6.7(0.1) 62.8 65.3

LoRAPrune w/ LoRA 40% ✓ 13.6(0.4) 11.1(0.3) 52.1 55.5
LLM-Pruner w/ LoRA 40% ✓ 20.3(1.3) 15.3(0.7) 50.6 54.7

PP 40% ✗ 16.8(0.1) 11.3(0.1) 56.6 61.0

Figure 4: Importance-scaled
fusion studies.

Importance-Scaled Fusion. We compare importance-scaled fu-
sion to three fixed integration ratios—0.1, 0.5, and 0.9—which
assign a fixed ratio to the probing states during integration with his-
torical states. We conduct experiments on LLaMA-2-7B using the
WikiText2 dataset at a 40% pruning ratio, keeping the probe batch
size fixed at 1. The results in Figure 4 demonstrate that importance-
scaled fusion can leverage the benefits of the calibration dataset
while minimizing associated biases.

Pruning Metric. Our PPsp consistently outperforms both Wanda-
sp and FLAP across various pruning scenarios. We conduct experi-
ments on fix-pruned models, each uniquely generated by one of three evaluated metrics, using only
the calibration dataset. we evaluated three metrics at a uniform 40% pruning ratio across all blocks
on the WikiText2 dataset. As shown in Table 7, PPsp significantly reduces perplexity, achieving the
lowest scores of 29.7 and 35.5 on the LLaMA-2-7B and OPT-13B models, respectively, compared to
FLAP’s 38.2 and 41.1, and Wanda-sp’s 43.8 and 42.7.

Table 7: Perplexity of WikiText2 across different metrics on models pruned by the calibration dataset,
showing that PPsp performs best among the three metrics.

LLaMA-2-7B OPT-13B

Metric Formula Attention MLP All Attention MLP All

Wanda-sp
∑Cout

i=1 |W final
i,k | · ||Xint

:,:,k||2 21.1(0.2) 10.9(0.1) 43.8(1.5) 13.2(1.3) 27.5(0.4) 42.7(0.7)

FLAP 1
N−1

∑N
n=1 ||W final

:,k ||22 · (X
int
n,:,k − Xint

:,:,k)
2 17.7(0.3) 11.0(0.1) 38.2(0.3) 11.6(0.1) 27.3(0.0) 41.1(0.3)

PPsp
∥∥∥∥{|W final

i,k |2 · ||Xint
:,:,k||22

}Cout

i=0

∥∥∥∥
2

15.4(0.6) 10.9(0.1) 29.7(0.3) 12.9(1.0) 25.1(0.3) 35.5(0.3)

7 CONCLUSION
In this paper, we propose Probe Pruning (PP), a novel online dynamic pruning framework that
leverages a small yet crucial portion of hidden states to run the model and gain crucial pruning
information that can guide full inference. Notably, PP only relies on the original model structure and
hidden states, without requiring additional neural network modules, or fine-tuning. Furthermore,
PP consistently surpasses all baselines, including those with fine-tuning in almost all experimental
settings. Future research directions include refining probe generation and the probing process, as well
as integrating probe pruning with advanced decoding techniques. This area presents a promising field
for future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
pruning for large language models. Proceedings of the AAAI Conference on Artificial Intelligence,
2024.

Yuvanesh Anand, Zach Nussbaum, Brandon Duderstadt, Benjamin Schmidt, and Andriy Mulyar.
Gpt4all: Training an assistant-style chatbot with large scale data distillation from gpt-3.5-turbo.
GitHub, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/
N19-1300. URL https://aclanthology.org/N19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Enmao Diao, Ganghua Wang, Jiawei Zhan, Yuhong Yang, Jie Ding, and Vahid Tarokh. Pruning deep
neural networks from a sparsity perspective. arXiv preprint arXiv:2302.05601, 2023.

Enmao Diao, Qi Le, Suya Wu, Xinran Wang, Ali Anwar, Jie Ding, and Vahid Tarokh. Cola:
Collaborative adaptation with gradient learning. arXiv preprint arXiv:2404.13844, 2024.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
compression for generative pretrained transformers. arXiv preprint arXiv:2210.17323, 1, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, pp. 8, 2021.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 4340–4349, 2019.

11

https://aclanthology.org/N19-1300

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning filter pruning
criteria for deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 2009–2018, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Paul Jaccard. The distribution of the flora in the alpine zone. 1. New phytologist, 11(2):37–50, 1912.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. Bert busters: Outlier
dimensions that disrupt transformers. arXiv preprint arXiv:2105.06990, 2021.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Ruikang Liu, Haoli Bai, Haokun Lin, Yuening Li, Han Gao, Zhengzhuo Xu, Lu Hou, Jun Yao, and
Chun Yuan. Intactkv: Improving large language model quantization by keeping pivot tokens intact.
arXiv preprint arXiv:2403.01241, 2024.

Shiwei Liu, Tianlong Chen, Zhenyu Zhang, Xuxi Chen, Tianjin Huang, Ajay Jaiswal, and Zhangyang
Wang. Sparsity may cry: Let us fail (current) sparse neural networks together! arXiv preprint
arXiv:2303.02141, 2023a.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Meta AI. LLaMA-3. https://llama.meta.com/llama3/, 2024. Accessed: 2024-05-15.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
3505–3506, 2020.

12

https://llama.meta.com/llama3/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale, 2019.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning.
Advances in neural information processing systems, 33:20378–20389, 2020.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024.

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. Powerinfer: Fast large language model serving
with a consumer-grade gpu. arXiv preprint arXiv:2312.12456, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin, Deng
Cai, and Xiaofei He. Model compression and efficient inference for large language models: A
survey. arXiv preprint arXiv:2402.09748, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse training
framework on the edge. Advances in Neural Information Processing Systems, 34:20838–20850,
2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, Bohan Zhuang, et al. Pruning
meets low-rank parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix for “Probe Pruning”

A IMPLEMENTATION DETAILS

For all methods, we leave the first three layers unchanged, similar to Ma et al. (2023); Zhang et al.
(2023), because pruning parameters in these layers has a substantial impact on the model. The
pruning ratio represents the average pruning ratio across all attention and MLP blocks in the model.
For instance, when targeting pruning ratios of 20% and 40% for LLaMA-2-7B, we prune 22% and
44% from attention and MLP blocks 4 to 32, respectively.

For a fair comparison, we utilize the exact same subset of the C4 Raffel et al. (2020) dataset as the
calibration dataset.

For PP, FLAP An et al. (2024), and Wanda-sp An et al. (2024), we use 2,000 samples with sequence
lengths of 1,024 tokens as the calibration dataset for the text generation task, and 2,000 samples with
sequence lengths of 512 tokens for the commonsense reasoning task.

For LLM-Pruner Ma et al. (2023), we follow the original implementation details in Ma et al. (2023).
We use 10 randomly selected samples, each truncated to a length of 128 tokens, to build importance
metrics, and 20,000 samples with sequence lengths of 256 tokens for recovery retraining. Specifically,
in the recovery stage, we employ the AdamW He et al. (2020) optimizer with 100 warmup steps,
set the LoRA Hu et al. (2021) rank r to 8, use a learning rate of 1× 10−4, a batch size of 64, and
perform recovery retraining for 2 epochs.

For LoRAPrune Zhang et al. (2023), we follow the original implementation details in Zhang et al.
(2023). We randomly sample 20,000 sentences from the C4 dataset, each having a length of 512
tokens, according to the original calibration dataset preparation process. The training hyperparameters
include setting the LoRA rank to 8, a learning rate of 1× 10−4, a batch size of 128, and a total of 2
training epochs. When fusing pruning with fine-tuning, we employ a cubic sparsity scheduler Sanh
et al. (2020) to iteratively prune the model until we reach the target sparsity. When only pruning is
performed, with no tuning conducted to match other one-shot pruning methods, we use 10 selected
samples with sequence lengths of 512 tokens to estimate importance and perform one-shot pruning
with no weight updates. All training processes are optimized using the AdamW optimizer with a
linear learning rate decay.

B ABLATION STUDIES
In this section, we present various ablation studies. Section B.1 investigates how different calibra-
tion datasets influence the fix-pruned model, which relies exclusively on such calibration dataset.
Section B.2 evaluates the effect of manually squaring the attention metric in the FLAP model An
et al. (2024) versus not squaring it. Section B.3 studies the effectiveness of residual importance.
Section B.4 studies the integration of historical states and their influence on the performance of Probe
Pruning (PP). Section B.5 analyzes the discrepancies between pruning the attention and MLP blocks
at varying pruning ratios.

B.1 CALIBRATION DATASET

We present the performance of FLAP An et al. (2024) using different calibration datasets to test
WikiText2 Perplexity, as shown in Table 8. The results indicate that structured pruning methods, which
rely solely on calibration datasets, may introduce biases. For instance, when using the WikiText2
validation set as a calibration dataset, FLAP achieves a perplexity of 18.5 at a 40% pruning ratio on
WikiText2. However, with the C4 dataset as the calibration dataset, the perplexity deteriorates to 38.9.

Table 8: Comparison of FLAP performance at different pruning ratios and calibration datasets on
LLaMA-2-7B and LLaMA-2-13B models.

Method Pruning Ratio Calibration Dataset LLaMA-2-7B LLaMA-2-13B

FLAP

20% C4 10.30(0.1) 7.5(0.1)
20% WikiText2 - validation 7.9(0.1) 6.5(0.1)

40% C4 38.9(1.3) 15.5(0.0)
40% WikiText2 - validation 18.5(0.2) 10.5(0.1)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.2 MANUALLY SQUARING THE ATTENTION METRIC

In the FLAP implementation available at https://github.com/CASIA-IVA-Lab/FLAP,
the attention metric is manually squared. Table 9 demonstrates the impact of manually squaring the
attention metric in FLAP versus not squaring it. The findings indicate that squaring the metric results
in less aggressive pruning of attention blocks. For instance, with LLaMA-2-7B at a 20% overall
pruning ratio, the non-squared FLAP method prunes 17.8% of attention weights, in contrast to only
0.6% when squaring is implemented. This implies that squaring significantly mitigates attention
pruning.

Additionally, less aggressive pruning of attention blocks correlates with better model performance.
Specifically, on LLaMA-2-7B at a 40% overall pruning ratio, non-squared FLAP prunes 35.4% of
attention weights, resulting in a WikiText2 perplexity of 38.9. Conversely, squared FLAP prunes at
a reduced rate of 17.6%, achieving a lower perplexity of 29.1. These outcomes suggest that more
conservative pruning of attention blocks can enhance model performance.

Table 9: Comparasion of FLAP with and without squaring the attention metric, while keeping the
MLP metric consistently unsquared, on LLaMA-2-7B and LLaMA-2-13B Models.

LLaMA-2-7B LLaMA-2-13B

Method Pruning Ratio Attention Pruning Ratio MLP Pruning Ratio WikiText2 Attention Pruning Ratio MLP Pruning Ratio WikiText2

FLAP w/o square 20% 17.8%(0.1) 21.3%(0.1) 10.3(0.1) 24.7%(0.1) 18.0%(0.1) 7.5(0.1)
FLAP 20% 0.6%(0.1) 30.8%(0.1) 9.1(0.1) 0.0%(0.0) 31.5%(0.1) 7.7(0.1)

FLAP w/o square 40% 35.4%(0.1) 42.6%(0.1) 38.9(1.3) 37.5%(0.1) 41,0%(0.1) 15.5(0.0)
FLAP 40% 17.6%(0.1) 52.6%(0.1) 29.1(0.4) 11.4%(0.1) 55.6%(0.1) 13.6(0.1)

B.3 RESIDUAL IMPORTANCE

In the main text Section 4.2, we noted that layer normalization significantly alters the input hidden
states, thereby preventing their importance from accurately identifying key samples and tokens.
To validate this observation, Table 10 compares the effectiveness of identifying key samples and
tokens based on residual importance with identification based on the importance of layer-normalized
input hidden states (PP without residual importance). The experimental results demonstrate the
effectiveness of residual importance.

Table 10: Impact of residual importance on probe generation for LLaMA-2-7B. Applying residual
importance results in better probe performance.

Method Pruning Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

PP w/o residual importance 20% 10.3(0.0) 64.3(0.1) 74.2(0.2) 55.3(0.1) 53.4(0.5) 32.1(0.2) 55.6(0.1) 40.2(0.2) 53.6
PP 20% 8.1(0.1) 69.0(0.1) 78.1(0.0) 73.5(0.0) 66.7(0.3) 42.8(0.1) 68.5(0.0) 40.9(0.2) 62.8

PP w/o residual importance 40% 37.1(0.4) 62.1(0.0) 61.1(0.0) 31.0(0.0) 50.2(0.1) 20.4(0.2) 34.4(0.2) 36.7(0.3) 42.3
PP 40% 16.8(0.1) 62.7(0.2) 74.9(0.1) 63.6(0.0) 57.5(0.2) 35.5(0.1) 61.7(0.2) 40.3(0.4) 56.6

B.4 HISTORICAL STATES INTEGRATION

In Table 11, the results illustrate how incorporating historical states into the pruning decision process
enhances the effectiveness of PP. Specifically, when PP leverages historical states, there is a consistent
improvement in performance metrics across all models and pruning ratios compared to scenarios
where only probing states are utilized (PP w/o historical states). For instance, at a 40% pruning
ratio, using a probe generated from 5% of the batch and 50% of the sequence, PP with historical
states reduces the perplexity on WikiText2 from 20.1 to 16.9 and improves the average accuracy from
51.2% to 56.6%, compared to using only the current probing states without historical data.

B.5 DISCREPENCY BETWEEN PRUNING ATTENTION AND MLP.

We find that the pruning ratios for attention and MLP layers should be considered independently,
as they may reach saturation at different points. Table 12 demonstrates a clear discrepancy in
performance between pruning attention heads and MLPs, especially as the pruning ratios increase.
While lower pruning ratios (20%) result in similar performance impacts for both components, higher
ratios (40%, 60%) suggest that attention heads reach saturation, particularly in demanding tasks

15

https://github.com/CASIA-IVA-Lab/FLAP

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 11: Performance of integrating historical states under different probe combinations on LLaMA-
2-7B. historical states can enhance PP performance.

Method Probe Generation Pruning Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

PP w/o historical states 5% batch, 50% seq 20% 8.2(0.1) 68.4(0.0) 75.8(0.0) 70.4(0.0) 63.2(0.0) 38.9(0.0) 64.4(0.0) 42.2(0.0) 60.5
PP w/o historical states 10% batch 20% 7.9(0.1) 69.8(0.0) 75.7(0.0) 70.7(0.0) 63.7(0.0) 39.2(0.0) 64.9(0.0) 41.4(0.0) 60.8
PP w/o historical states 20% batch 20% 7.7(0.1) 69.3(0.0) 76.7(0.0) 70.9(0.0) 63.8(0.0) 40.1(0.0) 65.4(0.0) 40.2(0.0) 60.9

PP 5% batch, 50% seq 20% 8.2(0.1) 69.0(0.1) 78.1(0.0) 73.5(0.0) 66.7(0.3) 42.8(0.1) 68.5(0.0) 40.9(0.2) 62.8
PP 10% batch 20% 8.0(0.1) 67.3(0.1) 77.8(0.1) 73.7(0.0) 64.8(0.1) 41.5(0.1) 67.4(0.2) 41.3(0.3) 62
PP 20% batch 20% 7.8(0.1) 68.1(0.1) 77.5(0.1) 73.7(0.0) 66.7(0.3) 42.2(0.1) 68.2(0.1) 42.7(0.4) 62.7

PP w/o historical states 5% batch, 50% seq 40% 20.1(0.3) 57.4(0.0) 71.3(0.0) 55.7(0.0) 54.6(0.0) 31.7(0.0) 53.3(0.0) 34.6(0.0) 51.2
PP w/o historical states 10% batch 40% 17.2(0.4) 62.1(0.0) 72.1(0.0) 56.9(0.0) 58.3(0.0) 34.3(0.0) 57.9(0.0) 35.4(0.0) 53.9
PP w/o historical states 20% batch 40% 15.6(0.2) 63.8(0.0) 72.3(0.0) 57.6(0.0) 56.5(0.0) 33.5(0.0) 57.7(0.0) 36.0(0.0) 53.9

PP 5% batch, 50% seq 40% 16.9(0.1) 62.7(0.2) 74.9(0.1) 63.6(0.0) 57.5(0.2) 35.5(0.1) 61.7(0.2) 40.3(0.4) 56.6
PP 10% batch 40% 15.8(0.3) 64.3(0.1) 74.5(0.1) 64.2(0.1) 57.9(0.4) 37.6(0.1) 62.9(0.2) 40.7(1.1) 57.4
PP 20% batch 40% 15.1(0.2) 64.7(0.1) 74.3(0.1) 64.4(0.1) 58.1(0.3) 37.7(0.3) 62.5(0.1) 41.3(0.2) 57.6

Table 12: Performance of pruning attention heads versus MLPs at different ratios on LLaMA-2-7B,
comparing the effects of pruning only the attention heads or only the MLPs.

Pruning Ratio Text Generation ↓ Commonsense Reasoning ↑
Attention MLP All WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

0% 0% 0% 6.0(0.1) 74.6(0.0) 77.9(0.0) 75(0.0) 67.7(0.0) 42.7(0.0) 67.3(0.0) 42.6(0.0) 64.0

20% 0% 7% 6.8(0.1) 71.1(0.1) 78.6(0.1) 74.7(0.0) 66.3(0.1) 42.9(0.0) 69.0(0.1) 43.1(0.1) 63.7
0% 20% 13% 7.2(0.1) 68.4(0.1) 77.7(0.0) 74.3(0.0) 67.8(0.1) 41.8(0.2) 66.9(0.1) 41.3(0.1) 62.6

40% 0% 14% 10.0(0.0) 65.3(0.1) 77.2(0.1) 69.3(0.1) 58.4(0.2) 38.1(0.1) 64.9(0.0) 40.3(0.1) 59.1
0% 40% 25% 10.1(0.1) 65.9(0.0) 76.0(0.2) 69.4(0.1) 63.8(0.0) 36.5(0.2) 62.4(0.0) 40.3(0.6) 59.2

60% 0% 21% 33.5(0.4) 60.8(0.1) 71.4(0.1) 42.2(0.1) 51.8(0.3) 29.9(0.2) 49.8(0.1) 36.4(0.2) 49.0
0% 60% 39% 21.1(0.2) 62.8(0.1) 71.1(0.2) 55.3(0.1) 58.6(0.3) 31.4(0.2) 53.4(0.0) 34.8(0.2) 52.5

40% 20% 27% 11.9(0.1) 65.0(0.1) 76.4(0.1) 68.4(0.1) 59.3(0.4) 39.0(0.1) 64.8(0.2) 40.6(0.3) 59.1
20% 40% 33% 11.5(0.1) 67.7(0.1) 75.4(0.3) 69.1(0.0) 62.7(0.2) 38.3(0.1) 64.1(0.2) 41.0(0.4) 59.8

60% 20% 34% 38.4(0.3) 62.0(0.1) 72.6(0.2) 43.7(0.1) 51.0(0.2) 29.9(0.1) 52.3(0.2) 38.5(0.4) 50.0
20% 60% 46% 23.8(0.4) 62.5(0.1) 70.8(0.2) 55.6(0.1) 58.5(0.2) 33.2(0.2) 54.6(0.1) 36.2(0.1) 53.1

60% 40% 47% 44.3(0.5) 62.0(0.0) 70.8(0.2) 42.8(0.1) 51.0(0.4) 29.0(0.2) 51.2(0.2) 36.9(0.5) 49.1
40% 60% 53% 33.5(1.2) 60.6(0.1) 70.3(0.1) 50.7(0.0) 53.8(0.3) 30.1(0.5) 52.8(0.2) 35.9(0.1) 50.6

such as WikiText2 and HellaSwag. For example, at a 60% pruning ratio for attention, performance
on WikiText2 drops dramatically to 33.5, compared to 21.1 when the MLP is pruned at the same
level. Similarly, performance on HellaSwag decreases significantly to 42.2 when pruning attention,
compared to 55.3 when pruning the MLP at the same level. Additionally, considering each module’s
actual FLOPs reveals a larger performance gap, emphasizing the need for a strategic approach to
pruning neural network components.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present the detailed experimental results for each task. The performance without
fine-tuning is shown in Tables 13, 14, 15, and 16. The comparison of PP with fine-tuned baselines is
provided in Tables 17 and 18. PP consistently surpasses all baselines, including those with fine-tuning,
in almost all experimental settings.

Table 13: Zero-shot performance of LLaMA-2-7B after pruning attention and MLP blocks without
fine-tuning: PP demonstrates superior performance in nearly all scenarios.

Method Pruning Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

Dense 0% 6.0(0.1) 74.6(0.0) 77.9(0.0) 75(0.0) 67.7(0.0) 42.7(0.0) 67.3(0.0) 42.6(0.0) 64.0

Full-Batch 20% 7.3(0.1) 67.9(0.0) 77.0(0.0) 74.5(0.0) 65.9(0.0) 42.7(0.0) 67.2(0.0) 43.2(0.0) 62.6
Wanda-sp 20% 10.6(0.1) 65.3(0.1) 77.2(0.1) 74.1(0.0) 67.1(0.2) 41.1(0.1) 63.9(0.3) 41.8(0.2) 61.5

FLAP 20% 10.3(0.1) 67.3(0.5) 76.6(0.2) 73.0(0.1) 67.4(0.0) 40.6(0.3) 63.1(0.1) 42.0(0.1) 61.4
LoRAPrune 20% 22.7(0.9) 64.2(0.6) 74.6(0.3) 66.5(0.5) 58.8(1.2) 37.7(0.7) 63.9(0.6) 39.4(1.1) 57.9
LLM-Pruner 20% 17.5(1.6) 62.5(0.3) 75.3(0.8) 66.0(0.7) 57.2(1.7) 37.7(1.0) 62.4(0.7) 40.5(0.2) 57.4

PP 20% 8.1(0.1) 69.0(0.1) 78.1(0.0) 73.5(0.0) 66.7(0.3) 42.8(0.1) 68.5(0.0) 40.9(0.2) 62.8

Full-Batch 40% 13.6(0.1) 64.8(0.0) 74.9(0.0) 67.6(0.0) 59.0(0.0) 38.7(0.0) 64.7(0.0) 41.0(0.0) 58.7
Wanda-sp 40% 43.8(1.5) 62.5(0.1) 72.5(0.1) 63.3(0.0) 56.9(0.1) 33.4(0.2) 54.4(0.1) 40.8(0.4) 54.8

FLAP 40% 38.9(1.3) 63.5(0.1) 71.7(0.3) 63.3(0.1) 59.8(0.1) 33.8(0.6) 52.5(0.2) 40.0(0.6) 54.9
LoRAPrune 40% 129.5(3.0) 54.0(4.2) 65.0(0.5) 45.1(1.3) 52.1(0.3) 25.8(0.2) 43.6(0.7) 32.1(0.6) 45.4
LLM-Pruner 40% 51.1(4.3) 55.5(5.0) 69.8(1.1) 49.6(2.1) 51.2(0.3) 27.8(0.6) 46.0(2.0) 35.0(0.5) 47.8

PP 40% 16.8(0.1) 62.7(0.2) 74.9(0.1) 63.6(0.0) 57.5(0.2) 35.5(0.1) 61.7(0.2) 40.3(0.4) 56.6

Table 14: Zero-shot performance of LLaMA-2-13B after pruning attention and MLP blocks without
fine-tuning: PP demonstrates superior performance in nearly all scenarios.

Method Pruning Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

Dense 0% 5.1(0.1) 72.1(0.0) 79.6(0.0) 78.7(0.0) 70.7(0.0) 46.5(0.0) 71.3(0.0) 44.2(0.0) 66.2

Full-Batch 20% 6.2(0.1) 69.0(0.0) 78.7(0.0) 77.9(0.0) 70.1(0.0) 47.7(0.0) 71.1(0.0) 42.8(0.0) 65.3
Wanda-sp 20% 9.0(0.1) 70.4(1.0) 79.4(0.1) 78.4(0.0) 70.2(0.1) 44.3(0.6) 69.9(0.3) 42.5(0.2) 65.0

FLAP 20% 7.5(0.1) 71.1(0.5) 78.7(0.1) 77.3(0.0) 71.2(0.2) 44.6(0.1) 66.7(0.1) 42.5(0.2) 64.6
LoRAPrune 20% 16.1(0.7) 63.6(0.2) 75.4(0.1) 69.4(0.8) 63.6(0.3) 37.6(0.4) 62.6(0.7) 40.3(0.5) 58.9
LLM-Pruner 20% 11.3(0.7) 63.4(1.8) 77.7(0.1) 72.3(0.5) 63.0(1.1) 42.3(0.6) 67.8(0.3) 42.9(0.7) 61.3

PP 20% 6.7(0.1) 72.0(0.2) 79.5(0.1) 77.6(0.0) 68.5(0.1) 44.7(0.2) 71.5(0.1) 43.0(0.2) 65.3

Full-Batch 40% 8.9(0.1) 68.4(0.0) 77.7(0.0) 74.5(0.0) 65.4(0.0) 42.4(0.0) 69.3(0.0) 42.8(0.0) 62.9
Wanda-sp 40% 21.6(0.4) 62.4(0.0) 74.5(0.3) 68.0(0.0) 63.0(0.4) 34.8(0.5) 54.9(0.3) 38.9(0.4) 56.6

FLAP 40% 15.5(0.0) 62.9(0.1) 76.8(0.3) 72.4(0.1) 66.9(0.3) 40.4(0.4) 63.1(0.4) 41.8(0.1) 60.6
LoRAPrune 40% 74.8(6.4) 57.9(3.5) 66.8(0.9) 51.5(0.6) 53.6(0.5) 28.5(0.3) 46.0(0.8) 32.4(1.2) 48.1
LLM-Pruner 40% 34.5(2.4) 57.0(2.2) 72.5(1.1) 57.8(2.0) 54.2(0.8) 33.3(1.3) 51.5(1.9) 37.7(1.2) 52.0

PP 40% 11.3(0.1) 65.8(0.1) 77.1(0.2) 71.6(0.0) 61.3(0.4) 40.9(0.3) 67.9(0.1) 42.5(0.3) 61.0

Table 15: Zero-shot performance of OPT-13B after pruning attention and MLP blocks without
fine-tuning: PP demonstrates superior performance in nearly all scenarios.

Method Pruning Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

Dense 0% 11.6(0.1) 68.1(0.0) 75.3(0.0) 67.9(0.0) 66.8(0.0) 35(0.0) 51.1(0.0) 36.4(0.0) 57.2

Full-Batch 20% 12.6(0.1) 63.9(0.0) 75.7(0.0) 67.6(0.0) 67.0(0.0) 34.3(0.0) 50.7(0.0) 35.4(0.0) 56.4
Wanda-sp 20% 17.4(0.1) 66.0(0.2) 75.4(0.1) 63.0(0.1) 64.8(0.3) 33.7(0.0) 48.2(0.2) 35.0(0.1) 55.2

FLAP 20% 18.8(0.2) 68.1(0.4) 75.1(0.1) 62.5(0.2) 62.6(0.3) 31.8(0.3) 49.5(0.1) 34.5(0.1) 54.9
PP 20% 14.7(0.1) 67.4(0.1) 75.5(0.1) 65.7(0.0) 64.9(0.3) 33.8(0.1) 51.6(0.0) 36.5(0.2) 56.5

Full-Batch 40% 17.9(0.2) 52.1(0.0) 75.7(0.0) 64.8(0.0) 65.5(0.0) 32.8(0.0) 50.1(0.0) 36.8(0.0) 54
Wanda-sp 40% 42.7(0.7) 63.7(0.1) 71.8(0.3) 53.2(0.1) 57.6(0.2) 29.6(0.4) 43.3(0.1) 34.3(0.2) 50.5

FLAP 40% 51.0(0.7) 62.7(0.0) 72.4(0.0) 53.3(0.2) 58.3(0.5) 29.4(0.3) 45.2(0.4) 34.1(0.1) 50.8
PP 40% 26.7(0.3) 61.1(0.2) 74.3(0.1) 58.7(0.0) 59.3(0.1) 33.6(0.1) 49.7(0.1) 35.3(0.4) 53.1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 16: Zero-shot performance of pruning LLaMA-3-8B with MLP pruned. PP consistently
demonstrates superior performance across nearly all tested scenarios.

Method Pruning Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

Dense 0% 6.8(0.0) 81.7(0.0) 79.5(0.0) 76.3(0.0) 72.5(0.0) 47.2(0.0) 61.7(0.0) 40.2(0.0) 65.6

Full-Batch 20% 8.5(0.0) 79.0(0.0) 80.1(0.0) 74.8(0.0) 73.9(0.0) 44.9(0.0) 60.7(0.0) 40.2(0.0) 64.8
Wanda-sp 20% 10.0(0.0) 75.1(0.3) 78.5(0.0) 69.6(0.2) 71.4(0.4) 38.7(0.4) 56.9(0.4) 39.0(0.2) 61.3

FLAP 20% 10.0(0.0) 79.4(0.2) 78.7(0.1) 70.3(0.0) 71.4(0.5) 40.8(0.1) 57.8(0.0) 39.4(0.3) 62.5
PP 20% 9.3(0.0) 77.4(0.0) 78.5(0.0) 73.1(0.0) 72.5(0.3) 43.2(0.3) 59.1(0.2) 40.2(0.5) 63.4

Full-Batch 40% 12.3(0.1) 73.1(0.0) 77.8(0.0) 70.5(0.0) 70.3(0.0) 42.9(0.0) 58.9(0.0) 39.8(0.0) 61.9
Wanda-sp 40% 18.4(0.1) 66.6(0.1) 73.4(0.2) 56.7(0.1) 63.2(0.2) 31.8(0.2) 47.0(0.5) 34.5(0.2) 53.3

FLAP 40% 18.5(0.2) 67.3(1.0) 73.5(0.0) 57.2(0.2) 66.7(0.5) 31.7(0.3) 44.6(0.3) 34.4(0.3) 53.6
PP 40% 14.9(0.1) 70.3(0.1) 76.3(0.2) 65.3(0.1) 67.2(0.2) 39.0(0.3) 57.4(0.1) 36.9(0.3) 58.9

Table 17: Comparison of PP with fine-tuned baselines on LLaMA-2-7B model, with attention and
MLP layers pruned: PP consistently outperforms across scenarios without fine-tuning.

Method Pruning Ratio Fine-tuning WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

Dense 0% ✗ 6.0(0.1) 74.6(0.0) 77.9(0.0) 75(0.0) 67.7(0.0) 42.7(0.0) 67.3(0.0) 42.6(0.0) 64.0

LoRAPrune w/ LoRA 20% ✓ 8.7(0.2) 67.0(0.9) 76.5(0.2) 69.9(0.1) 63.2(0.3) 36.7(0.2) 58.9(0.9) 42.3(0.2) 59.2
LLM-Pruner w/ LoRA 20% ✓ 10.2(0.3) 66.6(1.3) 76.1(0.6) 68.4(0.5) 62.8(1.1) 36.3(0.4) 59.8(0.3) 40.7(0.7) 58.7

PP 20% ✗ 8.1(0.1) 69.0(0.1) 78.1(0.0) 73.5(0.0) 66.7(0.3) 42.8(0.1) 68.5(0.0) 40.9(0.2) 62.8

LoRAPrune w/ LoRA 40% ✓ 13.6(0.4) 62.9(0.2) 70.8(0.1) 58.6(0.1) 55.5(0.7) 30.9(0.4) 49.6(0.4) 36.7(0.4) 52.1
LLM-Pruner w/ LoRA 40% ✓ 20.3(1.3) 57.5(4.0) 71.3(1.2) 55.7(1.3) 53.1(0.5) 28.9(0.7) 50.4(0.5) 37.3(0.6) 50.6

PP 40% ✗ 16.8(0.1) 62.7(0.2) 74.9(0.1) 63.6(0.0) 57.5(0.2) 35.5(0.1) 61.7(0.2) 40.3(0.4) 56.6

Table 18: Comparison of PP with fine-tuned baselines on LLaMA-2-13B model, with attention and
MLP layers pruned: PP consistently outperforms across scenarios without fine-tuning.

Method Pruning Ratio Fine-tuning WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

Dense 0% ✗ 5.1(0.1) 72.1(0.0) 79.6(0.0) 78.7(0.0) 70.7(0.0) 46.5(0.0) 71.3(0.0) 44.2(0.0) 66.2

LoRAPrune w/ LoRA 20% ✓ 7.4(0.0) 64.4(0.5) 78.1(0.1) 74.8(0.2) 66.0(0.3) 40.4(0.3) 61.7(0.9) 41.6(0.2) 61.0
LLM-Pruner w/ LoRA 20% ✓ 8.4(0.5) 70.2(1.4) 78.3(0.3) 73.8(0.3) 65.8(1.3) 40.1(0.5) 64.2(0.4) 42.0(0.4) 62.1

PP 20% ✗ 6.7(0.1) 72.0(0.2) 79.5(0.1) 77.6(0.0) 68.5(0.1) 44.7(0.2) 71.5(0.1) 43.0(0.2) 65.3

LoRAPrune w/ LoRA 40% ✓ 11.1(0.3) 62.5(0.1) 74.1(0.4) 65.5(0.1) 60.4(0.3) 33.0(0.4) 53.9(0.7) 39.3(0.6) 55.5
LLM-Pruner w/ LoRA 40% ✓ 15.3(0.7) 63.9(0.4) 73.5(0.6) 62.4(1.4) 57.5(1.1) 33.2(1.2) 55.2(0.7) 37.5(0.8) 54.7

PP 40% ✗ 11.3(0.1) 65.8(0.1) 77.1(0.2) 71.6(0.0) 61.3(0.4) 40.9(0.3) 67.9(0.1) 42.5(0.3) 61.0

18

	Introduction
	Related Work
	Notations and Preliminaries
	Methodology
	Probing
	Probe Generation
	History-Informed Pruning with Importance-Scaled Fusion
	Pruning Metric

	Experimental Setup
	Results
	Conclusion
	Implementation Details
	Ablation Studies
	Calibration Dataset
	Manually Squaring the Attention Metric
	Residual Importance
	Historical States Integration
	Discrepency between Pruning Attention and MLP.

	Additional Experimental Results

