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ABSTRACT

We introduce Probe Pruning (PP), a novel framework for online, dynamic, struc-
tured pruning of Large Language Models (LLMs) applied in a batch-wise manner.
PP leverages the insight that not all samples and tokens contribute equally to the
model’s output, and probing a small portion of each batch effectively identifies
crucial weights, enabling tailored dynamic pruning for different batches. It com-
prises three main stages: probing, history-informed pruning, and full inference.
In the probing stage, PP selects a small yet crucial set of hidden states, based on
residual importance, to run a few model layers ahead. During the history-informed
pruning stage, PP strategically integrates the probing states with historical states.
Subsequently, it structurally prunes weights based on the integrated states and the
PP importance score, a metric developed specifically to assess the importance of
each weight channel in maintaining performance. In the final stage, full inference is
conducted on the remaining weights. A major advantage of PP is its compatibility
with existing models, as it operates without requiring additional neural network
modules or fine-tuning. Comprehensive evaluations of PP on LLaMA-2/3 and
OPT models reveal that even minimal probing—using just 1.5% of FLOPs—can
substantially enhance the efficiency of structured pruning of LLMs. For instance,
when evaluated on LLaMA-2-7B with WikiText2, PP achieves a 2.56× lower
ratio of performance degradation per unit of runtime reduction compared to the
state-of-the-art method at a 40% pruning ratio.

1 INTRODUCTION

Large Language Models (LLMs) Vaswani et al. (2017); Zhang et al. (2022); Touvron et al. (2023);
Diao et al. (2024) have recently achieved significant success, leading to the development of numerous
applications OpenAI (2023); Anand et al. (2023). However, the inference for these models, often
containing billions of parameters, presents challenges. These challenges primarily arise from the
substantial computational demands and the risk of high latency Ma et al. (2023).

Structured pruning is a promising hardware-friendly approach to reduce computational consumption
and accelerate inference Yuan et al. (2021). It removes complete structures from models, such as
weight channels and attention heads. Compared with other methods like unstructured pruning Frantar
& Alistarh (2023); Sun et al. (2023) and quantization Dettmers et al. (2022); Lin et al. (2023); Frantar
et al. (2022), structured pruning reduces computational resources and speeds up inference without
requiring specific hardware. However, when applied to LLMs, structured pruning often results in a
performance gap compared to dense models Wang et al. (2024).

A major factor contributing to the performance gap in LLMs may be the emergence of significant
outlier phenomena in internal representations Dettmers et al. (2022); Liu et al. (2024); Sun et al.
(2024). Current advanced structured pruning methods typically utilize calibration datasets to assess
the importance of weights using pruning metrics. For example, the FLAP method An et al. (2024)
uses a calibration dataset to compute fluctuation metrics for each input feature and its corresponding
channel in attention or MLP block weight matrices, specifically in the output projection (O) or fully
connected layer 2 (FC2). Similarly, LLM-Pruner Ma et al. (2023) employs approximated second-
order Taylor expansions of the error function, calculated using a calibration dataset, to eliminate
the least important coupled structures. Although the calibration dataset provides valuable insights
for pruning by identifying non-critical weights, this approach overlooks the batch-dependent nature
of outlier properties in LLMs Liu et al. (2023b); Song et al. (2023); Liu et al. (2024); Sun et al.
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(2024), which vary across different input batches and cannot be accurately predicted prior to inference.
Consequently, pruning decisions based solely on calibration dataset may fail to address these dynamic
outliers during real-time inference, resulting in suboptimal model performance. Fine-tuning can serve
as a method to recover model performance Wang et al. (2024), but it is resource-intensive and may be
impractical for certain real-world applications.

To effectively handle batch-dependent outliers and reduce the performance gap between pruned and
dense models without extensive fine-tuning, we propose Probe Pruning (PP). PP is an online dynamic
structured pruning framework that prunes the model during inference based on each batch’s hidden
states. Notably, PP relies solely on the original model structure and hidden states, without requiring
additional neural network modules or fine-tuning. We overcome two key challenges:

• Leveraging Calibration Dataset may Introduce Biases: Relying exclusively on the
calibration dataset may introduce biases, as the pruned channels are entirely determined by
the calibration dataset. For example, when FLAP used the WikiText2 validation set as a
calibration dataset, it achieved a perplexity of 18.5 on the WikiText2 test set of LLaMA-
2-7B with a 40% pruning ratio. In contrast, using the C4 dataset as a calibration dataset,
the perplexity increased to 38.9 on the WikiText2 test set. We propose history-informed
pruning with importance-scaled fusion to leverage the benefits of the calibration dataset
while minimizing associated biases.

• Dynamic Pruning Without Access to Intermediate Hidden States: Deciding online
which channels to prune during inference for each batch is challenging. Without gradients,
calculating pruning metrics for attention and MLP blocks requires intermediate hidden states,
which are the input tensors to the attention output projection and MLP’s FC2 layer. These
states are unavailable when the input hidden states initially enter these blocks. Moreover,
not all samples and tokens contribute equally to the model’s output, and large-magnitude
outliers in LLMs often have a significant impact on the model’s behavior. Therefore, we
propose a probing method that selects key samples and tokens from the input hidden states,
runs a few model layers ahead, and obtains intermediate hidden state information. Without
such probing, accessing intermediate hidden states requires significant computational costs.

Specifically, PP leverages a small yet crucial segment of hidden states to run a few model layers ahead
and capture the probe’s intermediate hidden states, which contain essential information for guiding
pruning decisions within the attention or MLP blocks of the current batch. By strategically integrating
the probing states with historical states, we can dynamically determine which channels to prune.
After pruning the weight channels, we run full inference on the remaining weights. Furthermore, our
probing is minimal yet effective: for example, it operates with only 5% of the samples and 50% of
the tokens, utilizing just 1.5% of the floating point operations (FLOPs) of dense model inference, and
yet it has proven effective. Experimental results confirm that this minimal probe effectively captures
critical intermediate hidden state information.

2 RELATED WORK

Pruning with Calibration Dataset. Pruning methods can be broadly classified into two cate-
gories Yuan et al. (2021): unstructured pruning and structured pruning. Unstructured pruning LeCun
et al. (1989); Hassibi et al. (1993); Han et al. (2015); Diao et al. (2023); Liu et al. (2023a) removes
individual weights, whereas structured pruning Li et al. (2016); Liu et al. (2017); He et al. (2019);
Fang et al. (2023) removes complete structures from the model, such as channels and attention heads.
Pruning LLMs often involves calibration datasets due to the emergence of outliers in their internal
representations. For unstructured pruning, SparseGPT Frantar & Alistarh (2023) uses synchronized
second-order Hessian updates to solve row-wise weight reconstruction problems and update weights.
Wanda Sun et al. (2023) introduces a pruning metric that considers both the magnitude of weights
and activation values to determine which weights to prune. For structured pruning, FLAP An et al.
(2024) introduces a fluctuation metric to decide which weight channels to prune. LLM-Pruner Ma
et al. (2023) employs approximated second-order Taylor expansions of the error function to remove
the least important coupled structures and then applies fine-tuning to recover model performance.
LoRA-Prune Zhang et al. (2023) uses a LoRA Hu et al. (2021)-guided pruning metric that leverages
the weights and gradients of LoRA to direct the iterative process of pruning and tuning. However,
the fine-tuning process requires substantial computational resources Hoffmann et al. (2022), and we
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Figure 1: Probe Pruning (PP) is executed in four stages: (1) PP selects key samples and tokens
from the layer-normalized hidden states, based on residual importance, to create a small yet crucial
probe. (2) PP deploys this probe to run a few model layers ahead and obtains the probe’s intermediate
hidden states. (3) PP integrates the probing states with historical states and uses the integrated states
to calculate the pruning metric and prune weight channels. (4) PP performs full inference on the
remaining weights.

have found that fine-tuning might cause LLMs to lose their generalizability; for example, they may
perform worse on certain downstream tasks, such as commonsense reasoning tasks.

Large-Magnitude Outliers of LLMs. Unlike small neural networks, LLMs exhibit large-
magnitude outlier features Kovaleva et al. (2021); Dettmers et al. (2022; 2023); Schaeffer et al.
(2024); Sun et al. (2024). LLM.int8() Dettmers et al. (2022) shows that these large-magnitude
features begin to emerge when the size of LLMs exceeds 6.7 billion parameters, and these outlier
features are concentrated in certain channels. The phenomenon of massive activations Sun et al.
(2024); Liu et al. (2024) has been observed, where a few activations exhibit significantly larger values
than others, potentially leading to the concentration of attention probabilities on their corresponding
tokens. These emergent properties suggest the need to customize the pruning of channels for different
batches to maintain model performance. This observation motivates us to propose Probe Pruning.

3 NOTATIONS AND PRELIMINARIES

An LLM M consists of L blocks, each of which can be either an attention block or a Multi-Layer
Perceptron (MLP) block. Each attention block is characterized by four linear projections: Query (Q),
Key (K), Value (V), and Output (O). Similarly, each MLP block includes two linear layers: Fully
Connected layer 1 (FC1) and Fully Connected layer 2 (FC2).

Each block l transforms the input hidden state Xl ∈ RN×S×D into the output hidden state Xl+1 ∈
RN×S×D. Here, N , S, and D denote the batch size, sequence length, and feature dimension,
respectively. The transformations in each block l can be expressed as:

Xl+1 = Xl + F l(Xl), (1)
where F l encompasses all transformations within block l. This function can be further decomposed
as:

F l(Xl) = Xl,int(W l,final)T , Xl,int = T l(Xl), (2)

where T l represents all intermediate transformations applied to the input hidden state Xl, excluding
the final weight matrix W l,final ∈ RCout×Cin . The final weight matrix is either the Output projection
(O) in an attention block or FC2 in an MLP block. The intermediate hidden state Xl,int ∈ RN×S×Cin

results from applying these intermediate transformations to Xl.

In structured pruning of LLMs, entire coupled structures are pruned Ma et al. (2023); An et al. (2024).
Specifically, in block l, the preceding weight matrices are adjusted by pruning their output channels,
which correspond one-to-one with the input channels pruned by the final weight matrix. For example,
in an MLP block, the weight matrices are adjusted based on the set of unpruned channel indices
Cl ⊆ {1, 2, . . . , Cin} as follows:

W̃ l,FC1 = W l,FC1[Cl, :], W̃ l,FC2 = W l,FC2[:,Cl], (3)
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where W̃ l,FC1 ∈ R|Cl|×Cin and W̃ l,FC2 ∈ RCout×|Cl|. The notation |Cl| represents the cardinality of
Cl. Similarly, in the attention block, attention heads can be treated as coupled structures Ma et al.
(2023); An et al. (2024), and entire attention heads are pruned.

4 METHODOLOGY

The objective of Probe Pruning (PP) is to implement online dynamic structured pruning in a batch-
wise manner. The main idea of our work is illustrated in Figure 1. Our core strategy involves: (1)
Probing (Sections 4.1 and 4.2), which consists of two steps: first, generating a probe based on residual
importance; second, using the probe to run the unpruned model to gather valuable intermediate hidden
state information. (2) History-informed pruning (Section 4.3), which carefully merges the probing
states with historical states using importance-scaled fusion to capture the essential characteristics
of each batch. Afterward, we prune the model using a novel pruning metric (Section 4.4) that more
effectively selects channels for pruning than existing metrics.

4.1 PROBING

We introduce a novel concept called probing, which leverages the existing model structure and hidden
states to form a predictive mechanism. Specifically, when the input hidden states reach block l,
probing first utilizes residual importance to select key samples and tokens, forming the probe Pl

from LNl(Xl). LNl represents the layer normalization at block l. The process of probe generation
is detailed in the next section. It then runs the intermediate transformation in block l, denoted by
T l(Pl). Notably, effective probing consumes few computational resources and can obtain important
intermediate-state information to guide pruning decisions.

Upper Bound of Probing. As an alternative, we can generate the probe by using all the input
hidden states in the current batch, Pl = LNl(Xl), a method we refer to as Full-Batch Probing. By
utilizing the entire batch without reducing the dimensions N or S, Full-Batch Probing captures the
complete intermediate hidden state information, which could potentially lead to optimal pruning
performance. However, this approach significantly increases computational resource requirements
and latency. Therefore, Full-Batch Probing serves as a theoretical upper bound for our method. Our
aim for PP is to select pruning channels similar to those chosen by Full-Batch Probing. We believe
that a higher proportion of common pruning channels between PP and Full-Batch Probing indicates
better model performance and higher quality of the probe.

Why Does Probing Work? Probing is effective because not all samples and tokens contribute
equally to the model’s output, and large-magnitude outliers in LLMs significantly influence the
model’s behavior. In natural language sequences, certain tokens carry more semantic or syntactic
significance than others Xiao et al. (2023); Sun et al. (2024); Liu et al. (2024). By selecting key
samples and tokens based on residual importance, the probe focuses on the most informative parts
within the batch. This targeted approach allows the probe to capture essential intermediate hidden
state information that is most influential in determining which channels can be pruned. Consequently,
even though the probe processes a reduced subset of the batch, it provides sufficient insight to guide
pruning decisions, potentially achieving results comparable to Full-Batch Probing with significantly
lower computational costs.

Computational Complexity. Only minimal computational complexity is required for probing.
Specifically, for an LLM characterized by six linear transformations per attention and MLP block
(Q/K/V/O and FC1/FC2) that incorporate weight transformations and the attention mechanism, the
dense matrix computational complexity for an LLM totals O(4NSCinCout +2NS2Cin). For probing,
by reducing the batch size to x% and the sequence length to y% of their original sizes, the complexity
reduces to O(4x% · y% ·NSCinCout + 2x% · (y%)2 ·NS2Cin).

4.2 PROBE GENERATION

PP measures the residual importance of Xl to identify key samples and tokens. Once identified, these
key samples and tokens are selected from LNl(Xl) to generate a probe for block l, where LNl denotes

4
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Algorithm 1: Probe Pruning
Input: An LLM M with L blocks, each containing the Transformation F l, the Intermediate

transformation T l, and Layer Normalization LNl; calibration dataset D; Inference batches B.
System executes:

Run the calibration dataset D using model M to obtain historical states V.
for t-th batch Bt do

Initialize the hidden state X0 for batch Bt.
for each block l = 0, . . . , L− 1 do

Generate a probe Pl from LNl(Xl), utilizing the residual importance (Section 4.2).
Use Pl to execute the intermediate transformation of block l and gather the resulting

intermediate hidden states, denoted as Xl,int,probe = T l(Pl).
Use importance-scaled fusion to integrate the probing states X′l,int,probe with historical states

(Section 4.3).
Compute the PPsp pruning metric from the integrated states (Section 4.4), and subsequently

prune the weight channels accordingly.
Execute full inference on Xl using the pruned weights W̃ l, denoted by F̃ l(Xl).

end
end

layer normalization at block l. We do not utilize the importance derived from LNl(Xl) to identify key
samples and tokens because layer normalization substantially alters the input hidden states.

To measure the residual importance of Xl along the target dimension, we compute the L2 norm across
non-target dimensions. The target dimension may be either the batch or sequence dimension.

Ul,batch
i = ∥Xl

i,:,:∥2, for i = 1, . . . , N, (4)

Ul,seq
j = ∥Xl

:,j,:∥2, for j = 1, . . . , S. (5)

After computing the importance scores, we sort them in descending order and store the indices in I:

Il,batch = argsort(−Ul,batch), (6)

Il,seq = argsort(−Ul,seq). (7)

Using the sorted indices, we then generate the probe by selecting the top x% of samples or y% of
tokens from the layer-normalized Xl:

Pl =

{
LNl(Xl)Il,batch

:x%
,:,: if selecting top x% of samples,

LNl(Xl)
:,Il,seq

:y%
,:

if selecting top y% of tokens.
(8)

This method ensures that the probe consists of the most significant samples and tokens, as ranked by
their importance scores.

PP implements a sequential approach to prune both sequence and batch dimensions effectively.
Initially, the top y% of tokens are selected from the residual Xl, guided by Eqs. (5) and (7), leveraging
the sequence distribution within the current batch: Xl

:,Il,seq
:y%

,:
. Subsequently, we apply this reduced

sequence set to determine the top x% of samples using Eqs. (4) and (6), resulting in the indices
Il,batch|seq. Finally, we select the key samples and tokens for probe generation as LNl(Xl)Il,batch|seq

:x%
,Il,seq

:y%
,:

.

4.3 HISTORY-INFORMED PRUNING WITH IMPORTANCE-SCALED FUSION

The intermediate hidden states of the probe, given by

Xl,int,probe = T l(Pl) (9)

contain crucial information that guides pruning decisions. However, when the probe is very small—for
instance, when N and S are reduced to 5%—they might lead to inappropriate pruning decisions due
to limited context. To address this issue and enhance performance, we introduce history-informed
pruning with importance-scaled fusion.

5
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To simplify notation, we omit the superscript l, which denotes the block number, in this section. For
intermediate hidden states Xint of shape (N,S,Cin), the following relationship holds:

S∑
j=1

N∑
i=1

(Xint
i,j,k)

2 =

S∑
j=1

||Xint
:,j,k||22 = ||Xint

:,:,k||22 (10)

We compress the batch dimension in the first step of Eq. 10 to store historical states because memory
limitations prevent storing the intermediate hidden states of all samples. We sum over the sequence
dimension in the second step of Eq. 10 to obtain the tensor in shape RCin , which is used to compute
the pruning metric (see Section 4.4).

As in previous studies Sun et al. (2023); An et al. (2024), we process the calibration dataset D using the
model M to obtain initial historical states. For each block, initial historical states are represented by
V|0 ∈ RS×Cin , computed as the first step of Eq. 10 to reduce the batch dimension: V|0 = ||Xint

:,j,k||22 =∑N
i=1(X

int
i,j,k)

2. Similarly, to reduce the batch dimension of probe’s intermediate hidden states

Xint,probe ∈ Rx%·N×y%·S×Cin , we calculate probing states as ||Xint,probe
:,j,k ||22 =

∑x%·N
i=1 (Xint,probe

i,j,k )2.

Importance-Scaled Fusion. Since probing can be performed with selected tokens, it is necessary
to align the sequence dimension. We define Vprobe = VIseq

:y%
,:, where Vprobe ∈ Ry%·S×Cin and Iseq

:y%,
obtained from Eq. 7, represents the indices of the top y% of tokens. We then apply importance-scaled
fusion to obtain integrated states:

X̂
int,probe

=
||Xint,probe

:,j,k ||22
||Xint,probe

:,j,k ||22 + Vprobe · ||Xint,probe
:,j,k ||22 +

Vprobe

||Xint,probe
:,j,k ||22 + Vprobe · Vprobe, (11)

where X̂
int,probe

∈ Ry%·S×Cin . Following the second step of Eq. 10, we sum X̂
int,probe

over the sequence

dimension to obtain
∑y%·S

j=1 X̂
int,probe
j,k . Note that without importance-scaled fusion,

∑y%·S
j=1 X̂

int,probe
j,k

can reduce to ∥Xint
:,:,k∥22. Then, we use W final and

∑y%·S
j=1 X̂

int,probe
j,k as a surrogate of ∥Xint

:,:,k∥22 to
calculate the pruning metric based on Eq. (15), and prune the weight channels accordingly. Finally,
we run full inference on the remaining weights.

Update Historical States with Full Inference. To enhance the tracking of intermediate hidden
state attributes, we implement an exponential moving average during full inference on the selected
weight channels C. The update formula is expressed as:

V:,C|t = λV:,C|t−1 + (1− λ)||X̃
int
:,j,C||22|t, (12)

The value of V is updated for t-th inference batch, and X̃
int

represents the intermediate hidden states
during full inference. We consistently set λ = 0.99 across all implementations.

4.4 PRUNING METRIC

We propose a new structured pruning metric named PPsp, where "sp" stands for structured pruning.
This metric more effectively selects channels for pruning compared to existing metrics. We adapt
the unstructured pruning metric Wanda Sun et al. (2023) to a structured pruning scenario. PPsp
introduces two enhancements: (1) we preserve the inherent importance of individual weights, as
represented by the squared value of the Wanda metric; and (2) we calculate the L2 norm of the
importance scores for MLP input channels and attention heads to determine the pruning structures’
importance, rather than summing these scores across pruning structures.

We introduce the pruning metric for a general scenario. To enhance clarity, we omit the superscript l,
which denotes the block number, in this section. At each block, given intermediate hidden states Xint

of shape (N,S,Cin), where N and S represent the batch and sequence dimensions respectively, and
the weight matrix W final of shape (Cout, Cin), Wanda Sun et al. (2023) defines the importance of the
individual weight W final

i,k as:

Ii,k = |W final
i,k | · ||Xint

:,:,k||2, (13)

6
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where | · | denotes the absolute value operation, and ||Xint
:,:,k||2 evaluates the L2 norm of the kth

feature across the (N,S) dimensions. These two scalar values are then multiplied to produce the
final importance. However, as derived in Wanda Sun et al. (2023), the inherent importance of an
individual weight is defined by:

Ii,k = (|W final
i,k | · ||Xint

:,:,k||2)2 = |W final
i,k |2 · ||Xint

:,:,k||22. (14)

Wanda discards the squaring in Eq. (14) in local weight importance ordering, as the non-negative
nature of |W final

i,k | and ||Xint
:,:,j ||2 does not impact the relative ordering of importance. However, when

it comes to structured pruning, maintaining the inherent importance of individual weights is essential.
Thus, we square the Wanda metric and compute the Euclidean distance across the Cout dimension of
the input channel. The formula is given by:

Ik =

∥∥∥∥{|W final
i,k |2 · ||Xint

:,:,k||22
}Cout

i=0

∥∥∥∥
2

, (15)

where {·} signifies the set of elements, and I ∈ RCin .

5 EXPERIMENTAL SETUP

Table 1: Comparison of LLM structured pruning methods.

Method No Fine-tuning Time-Efficient Easy Integration Dynamic Pruning

Wanda-sp ✓ ✓ ✓ ✗
FLAP ✓ ✓ ✓ ✗

LLM-Pruner ✗ ✗ ✗ ✗
LoRAPrune ✗ ✗ ✗ ✗

PP ✓ ✓ ✓ ✓

We conduct three experiments using different random seeds for all tests and show the standard error
across these three seeds in brackets. We conduct all experiments on NVIDIA A100 GPUs.

Models and Evaluation. We evaluate PP on three popular model families: LLaMA-2 7B/13B Tou-
vron et al. (2023), LLaMA-3 8B Meta AI (2024), and OPT-13B Zhang et al. (2022). Following
previous work Sun et al. (2023); An et al. (2024), we evaluate the models on two zero-shot task
categories. We evaluate accuracy on commonsense reasoning tasks, including BoolQ Clark et al.
(2019), PIQA Bisk et al. (2020), HellaSwag Zellers et al. (2019), WinoGrande Sakaguchi et al. (2019),
ARC-Easy Clark et al. (2018), ARC-Challenge Clark et al. (2018), and OpenbookQA Mihaylov et al.
(2018). For evaluating perplexity on the text generation task, we use WikiText2 Merity et al. (2016).
We set the batch size to 20 for all tasks. For the commonsense reasoning tasks, our implementation
follows Gao et al. (2021), setting the sequence length of each batch to match its longest sample. For
the text generation task, we set the sequence length to 1024. For PP, we set the default probe size to
5% of the batch size and 50% of the sequence length, approximating 1.5% of the FLOPs cost relative
to dense model inference. Figure 3 shows ablation study results for various probe combinations,
indicating small probes enhance model performance. Ablation studies of the PP and FLAP are
available in Appendix B, and additional experimental results are available in Appendix C.

Baselines. We compare our method, PP, with four previous approaches: Wanda-sp An et al. (2024),
FLAP An et al. (2024), LoRAPrune Zhang et al. (2023), and LLM-Pruner Ma et al. (2023). We also
compare PP with its upper bound, Full-Batch Probing, as introduced in Section 4.1. Following Sun
et al. (2023); An et al. (2024), we use the C4 Raffel et al. (2020) dataset as the calibration dataset for
all methods. We use 2,000 calibration samples for PP, Wanda-sp, and FLAP, and 20,000 calibration
samples for tuning LoRAPrune and LLM-Pruner. We evaluate pruning ratios of 20% and 40%.

6 RESULTS

Main Results. We present the zero-shot performance, without fine-tuning, of four models on text
generation and commonsense reasoning tasks, as shown in Tables 2 and 3. Probe Pruning (PP)
consistently outperforms all baselines across various models and pruning ratios. For instance, on
WikiText2 at a 40% pruning ratio, PP achieves lower perplexities than competing methods: 16.8 with
LLaMA-2-7B, 11.3 with LLaMA-2-13B, and 26.7 with OPT-13B. Moreover, PP attains significantly
lower perplexities and higher reasoning task accuracies than both LLM-Pruner and LoRAPrune. For
example, on LLaMA-2-13B at a 40% pruning ratio, PP achieves an average accuracy of 61.0%,
significantly higher than 52.0% for LLM-Pruner and 48.1% for LoRAPrune. On LLaMA-3-8B,
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Table 2: Zero-shot performance of LLaMA-2-7B/13B and OPT-13B after pruning attention and MLP
blocks without fine-tuning: PP demonstrates superior performance in nearly all scenarios.

Text Generation ↓ Commonsense Reasoning ↑

Method Pruning Ratio LLaMA-2-7B LLaMA-2-13B OPT-13B LLaMA-2-7B LLaMA-2-13B OPT-13B

Dense 0% 6.0(0.1) 5.1(0.1) 11.6(0.1) 64.0 66.2 57.2

Full-Batch Probing 20% 7.3(0.1) 6.2(0.1) 12.6(0.1) 62.6 65.3 56.4
Wanda-sp 20% 10.6(0.1) 9.0(0.1) 17.4(0.1) 61.5 65.0 55.2

FLAP 20% 10.3(0.1) 7.5(0.1) 18.8(0.2) 61.4 64.6 54.9
LoRAPrune w/o LoRA 20% 22.7(0.9) 16.1(0.7) — 57.9 58.9 —
LLM-Pruner w/o LoRA 20% 17.5(1.6) 11.3(0.7) — 57.4 61.3 —

PP 20% 8.1(0.1) 6.7(0.1) 14.7(0.1) 62.8 65.3 56.5

Full-Batch Probing 40% 13.6(0.1) 8.9(0.1) 17.9(0.2) 58.7 62.9 54.0
Wanda-sp 40% 43.8(1.5) 21.6(0.4) 42.7(0.7) 54.8 56.6 50.5

FLAP 40% 38.9(1.3) 15.5(0.0) 51.0(0.7) 54.9 60.6 50.8
LoRAPrune w/o LoRA 40% 129.5(3.0) 74.8(6.4) — 45.4 48.1 —
LLM-Pruner w/o LoRA 40% 51.1(4.3) 34.5(2.4) — 47.8 52.0 —

PP 40% 16.8(0.1) 11.3(0.1) 26.7(0.3) 56.6 61.0 53.1

Table 3: Zero-shot performance of LLaMA-3-8B after pruning MLP blocks without fine-tuning: PP
demonstrates superior performance in nearly all scenarios.

Method Pruning Ratio WikiText2 ↓ BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average ↑

Dense 0% 6.8(0.0) 81.7(0.0) 79.5(0.0) 76.3(0.0) 72.5(0.0) 47.2(0.0) 61.7(0.0) 40.2(0.0) 65.6

Full-Batch Probing 20% 8.5(0.0) 79.0(0.0) 80.1(0.0) 74.8(0.0) 73.9(0.0) 44.9(0.0) 60.7(0.0) 40.2(0.0) 64.8
Wanda-sp 20% 10.0(0.0) 75.1(0.3) 78.5(0.0) 69.6(0.2) 71.4(0.4) 38.7(0.4) 56.9(0.4) 39.0(0.2) 61.3

FLAP 20% 10.0(0.0) 79.4(0.2) 78.7(0.1) 70.3(0.0) 71.4(0.5) 40.8(0.1) 57.8(0.0) 39.4(0.3) 62.5
PP 20% 9.3(0.0) 77.4(0.0) 78.5(0.0) 73.1(0.0) 72.5(0.3) 43.2(0.3) 59.1(0.2) 40.2(0.5) 63.4

Full-Batch Probing 40% 12.3(0.1) 73.1(0.0) 77.8(0.0) 70.5(0.0) 70.3(0.0) 42.9(0.0) 58.9(0.0) 39.8(0.0) 61.9
Wanda-sp 40% 18.4(0.1) 66.6(0.1) 73.4(0.2) 56.7(0.1) 63.2(0.2) 31.8(0.2) 47.0(0.5) 34.5(0.2) 53.3

FLAP 40% 18.5(0.2) 67.3(1.0) 73.5(0.0) 57.2(0.2) 66.7(0.5) 31.7(0.3) 44.6(0.3) 34.4(0.3) 53.6
PP 40% 14.9(0.1) 70.3(0.1) 76.3(0.2) 65.3(0.1) 67.2(0.2) 39.0(0.3) 57.4(0.1) 36.9(0.3) 58.9

PP surpasses Wanda-sp and FLAP in nearly all tasks, confirming its effectiveness and robustness.
For instance, at a 40% pruning ratio, PP achieves an average accuracy of 58.9%, outperforming
Wanda-sp (53.3%) and FLAP (53.6%). In Section 4.1, we stated that Full-Batch Probing represents
the upper bound of PP. Experimental results confirm that Full-Batch Probing excels in all tested
scenarios, supporting our hypothesis. Compared to Full-Batch Probing, which requires significant
extra computational resources—more than dense model inference—PP achieves comparable results
while utilizing minimal computational resources, only 1.5% of the FLOPs compared to dense model
inference. These results imply the effectiveness of PP and demonstrate that the probe’s intermediate
hidden states can help identify the important weights for processing different batches.

(a) Attention, WikiText2 (b) MLP, WikiText2 (c) Attention, ARC-e (d) MLP, ARC-e

Figure 2: Jaccard Index of common pruning channels: comparing PP and Full-Batch Probing, and
comparing fix-pruned model (without PP) and Full-Batch Probing for each batch.

Jaccard Index of Common Pruning Channels. To verify our assumption in Section 4.1 that a
greater overlap of pruning channels between PP and Full-Batch Probing correlates with enhanced
model performance and probe quality, we measure the Jaccard Index Jaccard (1912) of common
pruning channels in two comparisons: between PP and Full-Batch Probing, and between the fix-
pruned model (without PP) and Full-Batch Probing. The Jaccard Index is a statistical measure of the
similarity between two sets, defined as the size of their intersection divided by the size of their union.
We consistently apply the PPsp metric in all comparisons. As shown in Figure 2, PP consistently
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selects pruning channels more similar to those selected by Full-Batch Probing across almost all
attention and MLP blocks, in contrast to the fix-pruned model (without PP). This increased alignment
of channels contributes to improved overall performance and indicates that the probe’s intermediate
hidden states can help guide pruning decisions.

(a) LLaMA-2-7B, WikiText2 (b) LLaMA-2-7B, ARC-e (c) OPT-13B, WikiText2 (d) OPT-13B, ARC-e

Figure 3: Performance of different probe combinations at a 40% pruning ratio.
Effect of Probe Combinations on Performance. We find that even a small probe can improve
model performance. The results are shown in Figure 3. We investigate how different probe sizes
affect PP’s performance by varying the probe batch size from 1 to 20 (specifically, 1, 5, and 20) and
the probe sequence ratio from 0.05 to 1.0 (specifically, 0.05, 0.1, 0.3, 0.5, 0.8, and 1.0). First, we
observe that once we apply PP, even a small probe with a batch size of 1 and a probe sequence ratio of
0.05 can yield performance improvements. For example, for LLaMA-2-7B, the perplexity drops from
29.8 to 21.7; for OPT-13B, it drops from 35.4 to 27.7. Furthermore, we observe that increasing both
the probe batch size and sequence ratio leads to improved performance. Interestingly, we find that the
initial increase in sequence ratio from 0.05 to 0.3 brings the most rapid performance improvement.
This indicates that sequence information becomes significantly effective for pruning once it exceeds a
certain size threshold relative to the current batch’s sequence length.
Computational Cost and Inference Speed. We use the DeepSpeed package Rasley et al. (2020)
to measure the FLOPs. The results in Table 4 show that the computational overhead of probing
is approximating 1.5% of the FLOPs of the dense model inference. This finding aligns with our
analyzed computational complexity in Section 4.1. Additionally, we evaluate each block’s end-to-end
runtime and the inference speedup at a 40% pruning ratio on NVIDIA A100 GPUs, similar to previous
studies Sun et al. (2023); Ma et al. (2023). The results for LLaMA-2-7B on WikiText2 are presented
in Table 5. We find that the inference speeds of PP are comparable to those of other structured pruning
baselines, yet it delivers superior performance. Specifically, in the attention block, PP achieves a
speedup of 1.46×, and in the MLP block, a speedup of 1.30×. The slight delay observed in the MLP
block can be attributed to inherent system costs, such as weight extraction. This gap narrows under
conditions with larger batch sizes or longer sequence lengths, leading to comparable speeds between
PP and the baselines.
Performance Runtime Ratio. To illustrate the trade-off between model performance and inference
speed, we introduce Performance Runtime Ratio (PRR), which quantifies the ratio of performance
degradation per unit of runtime reduction. Importantly, a smaller PRR value is preferable as it
indicates minimal performance degradation per unit of runtime reduction. The metric is defined as:

PRR =
|Perfdense − Perfpruned|

Runtimedense − Runtimepruned
, (16)

where Perfpruned and Runtimepruned denote the performance and runtime of the pruned model, re-
spectively, and Perfdense and Runtimedense denote the performance and runtime of the dense model,
respectively. As shown in Table 5, the PRR of PP is 37.37, indicating a increase of 37.37 in perplexity
per second of runtime reduction on the attention and MLP block. In comparison, FLAP and Wanda-sp
have PRR values of 95.65 and 106.48, respectively. PP’s PRR values are 2.56× (95.65 compared
to 37.37) and 2.85× (106.48 compared to 37.37) more efficient than those of FLAP and Wanda-sp,
respectively, indicating a significantly lower rate of performance degradation.
Compared with Fine-tuned Baselines. Table 6 compares the performance of PP with fine-
tuned baselines LoRAPrune and LLM-Pruner across different pruning ratios for text genera-
tion and commonsense reasoning tasks. Without fine-tuning, PP consistently outperforms or
closely matches the fine-tuned models. At a 20% pruning ratio, PP excels in both tasks across
LLaMA-2-7B and LLaMA-2-13B models. At a 40% pruning ratio, PP achieves compara-
ble perplexity and significantly higher reasoning task accuracies. For example, PP achieves
61 on LLaMA-2-13B, while LoRAPrune achieves 55.5 and LLM-Pruner achieves 54.7.
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Table 4: Comparison of FLOPs be-
tween dense model inference and
probing.

Method
Computational Cost

(TFLOPs)

WikiText2 ARC-c

Dense 4420 4377
Probing 66 (1.5%) 69 (1.6%)

Table 5: Breakdown of inference runtime per batch at a 40%
pruning ratio. The speedup is calculated by dividing the dense
model’s inference runtime by the methods’ inference runtime.

Method PRR Runtime (s)

Attention Speedup MLP Speedup

Dense - 0.612 - 0.416 -
FLAP 95.64 0.419 1.46× 0.265 1.57×

Wanda-sp 106.48 0.395 1.55× 0.278 1.50×
PP 37.37 0.420 1.46× 0.319 1.30×

Table 6: Comparison of PP with fine-tuned baselines on LLaMA-2-7B/13B models, with attention
and MLP layers pruned: PP consistently outperforms across scenarios without fine-tuning.

Text Generation ↓ Commonsense Reasoning ↑

Method Pruning Ratio Fine-tuning LLaMA-2-7B LLaMA-2-13B LLaMA-2-7B LLaMA-2-13B

Dense 0% ✗ 6.0(0.1) 5.1(0.1) 64.0 66.2

LoRAPrune w/ LoRA 20% ✓ 8.7(0.2) 7.4(0.0) 59.2 61.0
LLM-Pruner w/ LoRA 20% ✓ 10.2(0.3) 8.4(0.5) 58.7 62.1

PP 20% ✗ 8.1(0.1) 6.7(0.1) 62.8 65.3

LoRAPrune w/ LoRA 40% ✓ 13.6(0.4) 11.1(0.3) 52.1 55.5
LLM-Pruner w/ LoRA 40% ✓ 20.3(1.3) 15.3(0.7) 50.6 54.7

PP 40% ✗ 16.8(0.1) 11.3(0.1) 56.6 61.0

Figure 4: Importance-scaled
fusion studies.

Importance-Scaled Fusion. We compare importance-scaled fu-
sion to three fixed integration ratios—0.1, 0.5, and 0.9—which
assign a fixed ratio to the probing states during integration with his-
torical states. We conduct experiments on LLaMA-2-7B using the
WikiText2 dataset at a 40% pruning ratio, keeping the probe batch
size fixed at 1. The results in Figure 4 demonstrate that importance-
scaled fusion can leverage the benefits of the calibration dataset
while minimizing associated biases.

Pruning Metric. Our PPsp consistently outperforms both Wanda-
sp and FLAP across various pruning scenarios. We conduct experi-
ments on fix-pruned models, each uniquely generated by one of three evaluated metrics, using only
the calibration dataset. we evaluated three metrics at a uniform 40% pruning ratio across all blocks
on the WikiText2 dataset. As shown in Table 7, PPsp significantly reduces perplexity, achieving the
lowest scores of 29.7 and 35.5 on the LLaMA-2-7B and OPT-13B models, respectively, compared to
FLAP’s 38.2 and 41.1, and Wanda-sp’s 43.8 and 42.7.

Table 7: Perplexity of WikiText2 across different metrics on models pruned by the calibration dataset,
showing that PPsp performs best among the three metrics.

LLaMA-2-7B OPT-13B

Metric Formula Attention MLP All Attention MLP All

Wanda-sp
∑Cout

i=1 |W final
i,k | · ||Xint

:,:,k||2 21.1(0.2) 10.9(0.1) 43.8(1.5) 13.2(1.3) 27.5(0.4) 42.7(0.7)

FLAP 1
N−1

∑N
n=1 ||W final

:,k ||22 · (X
int
n,:,k − Xint

:,:,k)
2 17.7(0.3) 11.0(0.1) 38.2(0.3) 11.6(0.1) 27.3(0.0) 41.1(0.3)

PPsp
∥∥∥∥{|W final

i,k |2 · ||Xint
:,:,k||22

}Cout

i=0

∥∥∥∥
2

15.4(0.6) 10.9(0.1) 29.7(0.3) 12.9(1.0) 25.1(0.3) 35.5(0.3)

7 CONCLUSION
In this paper, we propose Probe Pruning (PP), a novel online dynamic pruning framework that
leverages a small yet crucial portion of hidden states to run the model and gain crucial pruning
information that can guide full inference. Notably, PP only relies on the original model structure and
hidden states, without requiring additional neural network modules, or fine-tuning. Furthermore,
PP consistently surpasses all baselines, including those with fine-tuning in almost all experimental
settings. Future research directions include refining probe generation and the probing process, as well
as integrating probe pruning with advanced decoding techniques. This area presents a promising field
for future research.
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Appendix for “Probe Pruning”

A IMPLEMENTATION DETAILS

For all methods, we leave the first three layers unchanged, similar to Ma et al. (2023); Zhang et al.
(2023), because pruning parameters in these layers has a substantial impact on the model. The
pruning ratio represents the average pruning ratio across all attention and MLP blocks in the model.
For instance, when targeting pruning ratios of 20% and 40% for LLaMA-2-7B, we prune 22% and
44% from attention and MLP blocks 4 to 32, respectively.

For a fair comparison, we utilize the exact same subset of the C4 Raffel et al. (2020) dataset as the
calibration dataset.

For PP, FLAP An et al. (2024), and Wanda-sp An et al. (2024), we use 2,000 samples with sequence
lengths of 1,024 tokens as the calibration dataset for the text generation task, and 2,000 samples with
sequence lengths of 512 tokens for the commonsense reasoning task.

For LLM-Pruner Ma et al. (2023), we follow the original implementation details in Ma et al. (2023).
We use 10 randomly selected samples, each truncated to a length of 128 tokens, to build importance
metrics, and 20,000 samples with sequence lengths of 256 tokens for recovery retraining. Specifically,
in the recovery stage, we employ the AdamW He et al. (2020) optimizer with 100 warmup steps,
set the LoRA Hu et al. (2021) rank r to 8, use a learning rate of 1× 10−4, a batch size of 64, and
perform recovery retraining for 2 epochs.

For LoRAPrune Zhang et al. (2023), we follow the original implementation details in Zhang et al.
(2023). We randomly sample 20,000 sentences from the C4 dataset, each having a length of 512
tokens, according to the original calibration dataset preparation process. The training hyperparameters
include setting the LoRA rank to 8, a learning rate of 1× 10−4, a batch size of 128, and a total of 2
training epochs. When fusing pruning with fine-tuning, we employ a cubic sparsity scheduler Sanh
et al. (2020) to iteratively prune the model until we reach the target sparsity. When only pruning is
performed, with no tuning conducted to match other one-shot pruning methods, we use 10 selected
samples with sequence lengths of 512 tokens to estimate importance and perform one-shot pruning
with no weight updates. All training processes are optimized using the AdamW optimizer with a
linear learning rate decay.

B ABLATION STUDIES
In this section, we present various ablation studies. Section B.1 investigates how different calibra-
tion datasets influence the fix-pruned model, which relies exclusively on such calibration dataset.
Section B.2 evaluates the effect of manually squaring the attention metric in the FLAP model An
et al. (2024) versus not squaring it. Section B.3 studies the effectiveness of residual importance.
Section B.4 studies the integration of historical states and their influence on the performance of Probe
Pruning (PP). Section B.5 analyzes the discrepancies between pruning the attention and MLP blocks
at varying pruning ratios.

B.1 CALIBRATION DATASET

We present the performance of FLAP An et al. (2024) using different calibration datasets to test
WikiText2 Perplexity, as shown in Table 8. The results indicate that structured pruning methods, which
rely solely on calibration datasets, may introduce biases. For instance, when using the WikiText2
validation set as a calibration dataset, FLAP achieves a perplexity of 18.5 at a 40% pruning ratio on
WikiText2. However, with the C4 dataset as the calibration dataset, the perplexity deteriorates to 38.9.

Table 8: Comparison of FLAP performance at different pruning ratios and calibration datasets on
LLaMA-2-7B and LLaMA-2-13B models.

Method Pruning Ratio Calibration Dataset LLaMA-2-7B LLaMA-2-13B

FLAP

20% C4 10.30(0.1) 7.5(0.1)
20% WikiText2 - validation 7.9(0.1) 6.5(0.1)

40% C4 38.9(1.3) 15.5(0.0)
40% WikiText2 - validation 18.5(0.2) 10.5(0.1)
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B.2 MANUALLY SQUARING THE ATTENTION METRIC

In the FLAP implementation available at https://github.com/CASIA-IVA-Lab/FLAP,
the attention metric is manually squared. Table 9 demonstrates the impact of manually squaring the
attention metric in FLAP versus not squaring it. The findings indicate that squaring the metric results
in less aggressive pruning of attention blocks. For instance, with LLaMA-2-7B at a 20% overall
pruning ratio, the non-squared FLAP method prunes 17.8% of attention weights, in contrast to only
0.6% when squaring is implemented. This implies that squaring significantly mitigates attention
pruning.

Additionally, less aggressive pruning of attention blocks correlates with better model performance.
Specifically, on LLaMA-2-7B at a 40% overall pruning ratio, non-squared FLAP prunes 35.4% of
attention weights, resulting in a WikiText2 perplexity of 38.9. Conversely, squared FLAP prunes at
a reduced rate of 17.6%, achieving a lower perplexity of 29.1. These outcomes suggest that more
conservative pruning of attention blocks can enhance model performance.

Table 9: Comparasion of FLAP with and without squaring the attention metric, while keeping the
MLP metric consistently unsquared, on LLaMA-2-7B and LLaMA-2-13B Models.

LLaMA-2-7B LLaMA-2-13B

Method Pruning Ratio Attention Pruning Ratio MLP Pruning Ratio WikiText2 Attention Pruning Ratio MLP Pruning Ratio WikiText2

FLAP w/o square 20% 17.8%(0.1) 21.3%(0.1) 10.3(0.1) 24.7%(0.1) 18.0%(0.1) 7.5(0.1)
FLAP 20% 0.6%(0.1) 30.8%(0.1) 9.1(0.1) 0.0%(0.0) 31.5%(0.1) 7.7(0.1)

FLAP w/o square 40% 35.4%(0.1) 42.6%(0.1) 38.9(1.3) 37.5%(0.1) 41,0%(0.1) 15.5(0.0)
FLAP 40% 17.6%(0.1) 52.6%(0.1) 29.1(0.4) 11.4%(0.1) 55.6%(0.1) 13.6(0.1)

B.3 RESIDUAL IMPORTANCE

In the main text Section 4.2, we noted that layer normalization significantly alters the input hidden
states, thereby preventing their importance from accurately identifying key samples and tokens.
To validate this observation, Table 10 compares the effectiveness of identifying key samples and
tokens based on residual importance with identification based on the importance of layer-normalized
input hidden states (PP without residual importance). The experimental results demonstrate the
effectiveness of residual importance.

Table 10: Impact of residual importance on probe generation for LLaMA-2-7B. Applying residual
importance results in better probe performance.

Method Pruning Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

PP w/o residual importance 20% 10.3(0.0) 64.3(0.1) 74.2(0.2) 55.3(0.1) 53.4(0.5) 32.1(0.2) 55.6(0.1) 40.2(0.2) 53.6
PP 20% 8.1(0.1) 69.0(0.1) 78.1(0.0) 73.5(0.0) 66.7(0.3) 42.8(0.1) 68.5(0.0) 40.9(0.2) 62.8

PP w/o residual importance 40% 37.1(0.4) 62.1(0.0) 61.1(0.0) 31.0(0.0) 50.2(0.1) 20.4(0.2) 34.4(0.2) 36.7(0.3) 42.3
PP 40% 16.8(0.1) 62.7(0.2) 74.9(0.1) 63.6(0.0) 57.5(0.2) 35.5(0.1) 61.7(0.2) 40.3(0.4) 56.6

B.4 HISTORICAL STATES INTEGRATION

In Table 11, the results illustrate how incorporating historical states into the pruning decision process
enhances the effectiveness of PP. Specifically, when PP leverages historical states, there is a consistent
improvement in performance metrics across all models and pruning ratios compared to scenarios
where only probing states are utilized (PP w/o historical states). For instance, at a 40% pruning
ratio, using a probe generated from 5% of the batch and 50% of the sequence, PP with historical
states reduces the perplexity on WikiText2 from 20.1 to 16.9 and improves the average accuracy from
51.2% to 56.6%, compared to using only the current probing states without historical data.

B.5 DISCREPENCY BETWEEN PRUNING ATTENTION AND MLP.

We find that the pruning ratios for attention and MLP layers should be considered independently,
as they may reach saturation at different points. Table 12 demonstrates a clear discrepancy in
performance between pruning attention heads and MLPs, especially as the pruning ratios increase.
While lower pruning ratios (20%) result in similar performance impacts for both components, higher
ratios (40%, 60%) suggest that attention heads reach saturation, particularly in demanding tasks
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Table 11: Performance of integrating historical states under different probe combinations on LLaMA-
2-7B. historical states can enhance PP performance.

Method Probe Generation Pruning Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

PP w/o historical states 5% batch, 50% seq 20% 8.2(0.1) 68.4(0.0) 75.8(0.0) 70.4(0.0) 63.2(0.0) 38.9(0.0) 64.4(0.0) 42.2(0.0) 60.5
PP w/o historical states 10% batch 20% 7.9(0.1) 69.8(0.0) 75.7(0.0) 70.7(0.0) 63.7(0.0) 39.2(0.0) 64.9(0.0) 41.4(0.0) 60.8
PP w/o historical states 20% batch 20% 7.7(0.1) 69.3(0.0) 76.7(0.0) 70.9(0.0) 63.8(0.0) 40.1(0.0) 65.4(0.0) 40.2(0.0) 60.9

PP 5% batch, 50% seq 20% 8.2(0.1) 69.0(0.1) 78.1(0.0) 73.5(0.0) 66.7(0.3) 42.8(0.1) 68.5(0.0) 40.9(0.2) 62.8
PP 10% batch 20% 8.0(0.1) 67.3(0.1) 77.8(0.1) 73.7(0.0) 64.8(0.1) 41.5(0.1) 67.4(0.2) 41.3(0.3) 62
PP 20% batch 20% 7.8(0.1) 68.1(0.1) 77.5(0.1) 73.7(0.0) 66.7(0.3) 42.2(0.1) 68.2(0.1) 42.7(0.4) 62.7

PP w/o historical states 5% batch, 50% seq 40% 20.1(0.3) 57.4(0.0) 71.3(0.0) 55.7(0.0) 54.6(0.0) 31.7(0.0) 53.3(0.0) 34.6(0.0) 51.2
PP w/o historical states 10% batch 40% 17.2(0.4) 62.1(0.0) 72.1(0.0) 56.9(0.0) 58.3(0.0) 34.3(0.0) 57.9(0.0) 35.4(0.0) 53.9
PP w/o historical states 20% batch 40% 15.6(0.2) 63.8(0.0) 72.3(0.0) 57.6(0.0) 56.5(0.0) 33.5(0.0) 57.7(0.0) 36.0(0.0) 53.9

PP 5% batch, 50% seq 40% 16.9(0.1) 62.7(0.2) 74.9(0.1) 63.6(0.0) 57.5(0.2) 35.5(0.1) 61.7(0.2) 40.3(0.4) 56.6
PP 10% batch 40% 15.8(0.3) 64.3(0.1) 74.5(0.1) 64.2(0.1) 57.9(0.4) 37.6(0.1) 62.9(0.2) 40.7(1.1) 57.4
PP 20% batch 40% 15.1(0.2) 64.7(0.1) 74.3(0.1) 64.4(0.1) 58.1(0.3) 37.7(0.3) 62.5(0.1) 41.3(0.2) 57.6

Table 12: Performance of pruning attention heads versus MLPs at different ratios on LLaMA-2-7B,
comparing the effects of pruning only the attention heads or only the MLPs.

Pruning Ratio Text Generation ↓ Commonsense Reasoning ↑
Attention MLP All WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

0% 0% 0% 6.0(0.1) 74.6(0.0) 77.9(0.0) 75(0.0) 67.7(0.0) 42.7(0.0) 67.3(0.0) 42.6(0.0) 64.0

20% 0% 7% 6.8(0.1) 71.1(0.1) 78.6(0.1) 74.7(0.0) 66.3(0.1) 42.9(0.0) 69.0(0.1) 43.1(0.1) 63.7
0% 20% 13% 7.2(0.1) 68.4(0.1) 77.7(0.0) 74.3(0.0) 67.8(0.1) 41.8(0.2) 66.9(0.1) 41.3(0.1) 62.6

40% 0% 14% 10.0(0.0) 65.3(0.1) 77.2(0.1) 69.3(0.1) 58.4(0.2) 38.1(0.1) 64.9(0.0) 40.3(0.1) 59.1
0% 40% 25% 10.1(0.1) 65.9(0.0) 76.0(0.2) 69.4(0.1) 63.8(0.0) 36.5(0.2) 62.4(0.0) 40.3(0.6) 59.2

60% 0% 21% 33.5(0.4) 60.8(0.1) 71.4(0.1) 42.2(0.1) 51.8(0.3) 29.9(0.2) 49.8(0.1) 36.4(0.2) 49.0
0% 60% 39% 21.1(0.2) 62.8(0.1) 71.1(0.2) 55.3(0.1) 58.6(0.3) 31.4(0.2) 53.4(0.0) 34.8(0.2) 52.5

40% 20% 27% 11.9(0.1) 65.0(0.1) 76.4(0.1) 68.4(0.1) 59.3(0.4) 39.0(0.1) 64.8(0.2) 40.6(0.3) 59.1
20% 40% 33% 11.5(0.1) 67.7(0.1) 75.4(0.3) 69.1(0.0) 62.7(0.2) 38.3(0.1) 64.1(0.2) 41.0(0.4) 59.8

60% 20% 34% 38.4(0.3) 62.0(0.1) 72.6(0.2) 43.7(0.1) 51.0(0.2) 29.9(0.1) 52.3(0.2) 38.5(0.4) 50.0
20% 60% 46% 23.8(0.4) 62.5(0.1) 70.8(0.2) 55.6(0.1) 58.5(0.2) 33.2(0.2) 54.6(0.1) 36.2(0.1) 53.1

60% 40% 47% 44.3(0.5) 62.0(0.0) 70.8(0.2) 42.8(0.1) 51.0(0.4) 29.0(0.2) 51.2(0.2) 36.9(0.5) 49.1
40% 60% 53% 33.5(1.2) 60.6(0.1) 70.3(0.1) 50.7(0.0) 53.8(0.3) 30.1(0.5) 52.8(0.2) 35.9(0.1) 50.6

such as WikiText2 and HellaSwag. For example, at a 60% pruning ratio for attention, performance
on WikiText2 drops dramatically to 33.5, compared to 21.1 when the MLP is pruned at the same
level. Similarly, performance on HellaSwag decreases significantly to 42.2 when pruning attention,
compared to 55.3 when pruning the MLP at the same level. Additionally, considering each module’s
actual FLOPs reveals a larger performance gap, emphasizing the need for a strategic approach to
pruning neural network components.
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C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present the detailed experimental results for each task. The performance without
fine-tuning is shown in Tables 13, 14, 15, and 16. The comparison of PP with fine-tuned baselines is
provided in Tables 17 and 18. PP consistently surpasses all baselines, including those with fine-tuning,
in almost all experimental settings.

Table 13: Zero-shot performance of LLaMA-2-7B after pruning attention and MLP blocks without
fine-tuning: PP demonstrates superior performance in nearly all scenarios.

Method Pruning Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

Dense 0% 6.0(0.1) 74.6(0.0) 77.9(0.0) 75(0.0) 67.7(0.0) 42.7(0.0) 67.3(0.0) 42.6(0.0) 64.0

Full-Batch 20% 7.3(0.1) 67.9(0.0) 77.0(0.0) 74.5(0.0) 65.9(0.0) 42.7(0.0) 67.2(0.0) 43.2(0.0) 62.6
Wanda-sp 20% 10.6(0.1) 65.3(0.1) 77.2(0.1) 74.1(0.0) 67.1(0.2) 41.1(0.1) 63.9(0.3) 41.8(0.2) 61.5

FLAP 20% 10.3(0.1) 67.3(0.5) 76.6(0.2) 73.0(0.1) 67.4(0.0) 40.6(0.3) 63.1(0.1) 42.0(0.1) 61.4
LoRAPrune 20% 22.7(0.9) 64.2(0.6) 74.6(0.3) 66.5(0.5) 58.8(1.2) 37.7(0.7) 63.9(0.6) 39.4(1.1) 57.9
LLM-Pruner 20% 17.5(1.6) 62.5(0.3) 75.3(0.8) 66.0(0.7) 57.2(1.7) 37.7(1.0) 62.4(0.7) 40.5(0.2) 57.4

PP 20% 8.1(0.1) 69.0(0.1) 78.1(0.0) 73.5(0.0) 66.7(0.3) 42.8(0.1) 68.5(0.0) 40.9(0.2) 62.8

Full-Batch 40% 13.6(0.1) 64.8(0.0) 74.9(0.0) 67.6(0.0) 59.0(0.0) 38.7(0.0) 64.7(0.0) 41.0(0.0) 58.7
Wanda-sp 40% 43.8(1.5) 62.5(0.1) 72.5(0.1) 63.3(0.0) 56.9(0.1) 33.4(0.2) 54.4(0.1) 40.8(0.4) 54.8

FLAP 40% 38.9(1.3) 63.5(0.1) 71.7(0.3) 63.3(0.1) 59.8(0.1) 33.8(0.6) 52.5(0.2) 40.0(0.6) 54.9
LoRAPrune 40% 129.5(3.0) 54.0(4.2) 65.0(0.5) 45.1(1.3) 52.1(0.3) 25.8(0.2) 43.6(0.7) 32.1(0.6) 45.4
LLM-Pruner 40% 51.1(4.3) 55.5(5.0) 69.8(1.1) 49.6(2.1) 51.2(0.3) 27.8(0.6) 46.0(2.0) 35.0(0.5) 47.8

PP 40% 16.8(0.1) 62.7(0.2) 74.9(0.1) 63.6(0.0) 57.5(0.2) 35.5(0.1) 61.7(0.2) 40.3(0.4) 56.6

Table 14: Zero-shot performance of LLaMA-2-13B after pruning attention and MLP blocks without
fine-tuning: PP demonstrates superior performance in nearly all scenarios.

Method Pruning Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

Dense 0% 5.1(0.1) 72.1(0.0) 79.6(0.0) 78.7(0.0) 70.7(0.0) 46.5(0.0) 71.3(0.0) 44.2(0.0) 66.2

Full-Batch 20% 6.2(0.1) 69.0(0.0) 78.7(0.0) 77.9(0.0) 70.1(0.0) 47.7(0.0) 71.1(0.0) 42.8(0.0) 65.3
Wanda-sp 20% 9.0(0.1) 70.4(1.0) 79.4(0.1) 78.4(0.0) 70.2(0.1) 44.3(0.6) 69.9(0.3) 42.5(0.2) 65.0

FLAP 20% 7.5(0.1) 71.1(0.5) 78.7(0.1) 77.3(0.0) 71.2(0.2) 44.6(0.1) 66.7(0.1) 42.5(0.2) 64.6
LoRAPrune 20% 16.1(0.7) 63.6(0.2) 75.4(0.1) 69.4(0.8) 63.6(0.3) 37.6(0.4) 62.6(0.7) 40.3(0.5) 58.9
LLM-Pruner 20% 11.3(0.7) 63.4(1.8) 77.7(0.1) 72.3(0.5) 63.0(1.1) 42.3(0.6) 67.8(0.3) 42.9(0.7) 61.3

PP 20% 6.7(0.1) 72.0(0.2) 79.5(0.1) 77.6(0.0) 68.5(0.1) 44.7(0.2) 71.5(0.1) 43.0(0.2) 65.3

Full-Batch 40% 8.9(0.1) 68.4(0.0) 77.7(0.0) 74.5(0.0) 65.4(0.0) 42.4(0.0) 69.3(0.0) 42.8(0.0) 62.9
Wanda-sp 40% 21.6(0.4) 62.4(0.0) 74.5(0.3) 68.0(0.0) 63.0(0.4) 34.8(0.5) 54.9(0.3) 38.9(0.4) 56.6

FLAP 40% 15.5(0.0) 62.9(0.1) 76.8(0.3) 72.4(0.1) 66.9(0.3) 40.4(0.4) 63.1(0.4) 41.8(0.1) 60.6
LoRAPrune 40% 74.8(6.4) 57.9(3.5) 66.8(0.9) 51.5(0.6) 53.6(0.5) 28.5(0.3) 46.0(0.8) 32.4(1.2) 48.1
LLM-Pruner 40% 34.5(2.4) 57.0(2.2) 72.5(1.1) 57.8(2.0) 54.2(0.8) 33.3(1.3) 51.5(1.9) 37.7(1.2) 52.0

PP 40% 11.3(0.1) 65.8(0.1) 77.1(0.2) 71.6(0.0) 61.3(0.4) 40.9(0.3) 67.9(0.1) 42.5(0.3) 61.0

Table 15: Zero-shot performance of OPT-13B after pruning attention and MLP blocks without
fine-tuning: PP demonstrates superior performance in nearly all scenarios.

Method Pruning Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

Dense 0% 11.6(0.1) 68.1(0.0) 75.3(0.0) 67.9(0.0) 66.8(0.0) 35(0.0) 51.1(0.0) 36.4(0.0) 57.2

Full-Batch 20% 12.6(0.1) 63.9(0.0) 75.7(0.0) 67.6(0.0) 67.0(0.0) 34.3(0.0) 50.7(0.0) 35.4(0.0) 56.4
Wanda-sp 20% 17.4(0.1) 66.0(0.2) 75.4(0.1) 63.0(0.1) 64.8(0.3) 33.7(0.0) 48.2(0.2) 35.0(0.1) 55.2

FLAP 20% 18.8(0.2) 68.1(0.4) 75.1(0.1) 62.5(0.2) 62.6(0.3) 31.8(0.3) 49.5(0.1) 34.5(0.1) 54.9
PP 20% 14.7(0.1) 67.4(0.1) 75.5(0.1) 65.7(0.0) 64.9(0.3) 33.8(0.1) 51.6(0.0) 36.5(0.2) 56.5

Full-Batch 40% 17.9(0.2) 52.1(0.0) 75.7(0.0) 64.8(0.0) 65.5(0.0) 32.8(0.0) 50.1(0.0) 36.8(0.0) 54
Wanda-sp 40% 42.7(0.7) 63.7(0.1) 71.8(0.3) 53.2(0.1) 57.6(0.2) 29.6(0.4) 43.3(0.1) 34.3(0.2) 50.5

FLAP 40% 51.0(0.7) 62.7(0.0) 72.4(0.0) 53.3(0.2) 58.3(0.5) 29.4(0.3) 45.2(0.4) 34.1(0.1) 50.8
PP 40% 26.7(0.3) 61.1(0.2) 74.3(0.1) 58.7(0.0) 59.3(0.1) 33.6(0.1) 49.7(0.1) 35.3(0.4) 53.1
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Table 16: Zero-shot performance of pruning LLaMA-3-8B with MLP pruned. PP consistently
demonstrates superior performance across nearly all tested scenarios.

Method Pruning Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

Dense 0% 6.8(0.0) 81.7(0.0) 79.5(0.0) 76.3(0.0) 72.5(0.0) 47.2(0.0) 61.7(0.0) 40.2(0.0) 65.6

Full-Batch 20% 8.5(0.0) 79.0(0.0) 80.1(0.0) 74.8(0.0) 73.9(0.0) 44.9(0.0) 60.7(0.0) 40.2(0.0) 64.8
Wanda-sp 20% 10.0(0.0) 75.1(0.3) 78.5(0.0) 69.6(0.2) 71.4(0.4) 38.7(0.4) 56.9(0.4) 39.0(0.2) 61.3

FLAP 20% 10.0(0.0) 79.4(0.2) 78.7(0.1) 70.3(0.0) 71.4(0.5) 40.8(0.1) 57.8(0.0) 39.4(0.3) 62.5
PP 20% 9.3(0.0) 77.4(0.0) 78.5(0.0) 73.1(0.0) 72.5(0.3) 43.2(0.3) 59.1(0.2) 40.2(0.5) 63.4

Full-Batch 40% 12.3(0.1) 73.1(0.0) 77.8(0.0) 70.5(0.0) 70.3(0.0) 42.9(0.0) 58.9(0.0) 39.8(0.0) 61.9
Wanda-sp 40% 18.4(0.1) 66.6(0.1) 73.4(0.2) 56.7(0.1) 63.2(0.2) 31.8(0.2) 47.0(0.5) 34.5(0.2) 53.3

FLAP 40% 18.5(0.2) 67.3(1.0) 73.5(0.0) 57.2(0.2) 66.7(0.5) 31.7(0.3) 44.6(0.3) 34.4(0.3) 53.6
PP 40% 14.9(0.1) 70.3(0.1) 76.3(0.2) 65.3(0.1) 67.2(0.2) 39.0(0.3) 57.4(0.1) 36.9(0.3) 58.9

Table 17: Comparison of PP with fine-tuned baselines on LLaMA-2-7B model, with attention and
MLP layers pruned: PP consistently outperforms across scenarios without fine-tuning.

Method Pruning Ratio Fine-tuning WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

Dense 0% ✗ 6.0(0.1) 74.6(0.0) 77.9(0.0) 75(0.0) 67.7(0.0) 42.7(0.0) 67.3(0.0) 42.6(0.0) 64.0

LoRAPrune w/ LoRA 20% ✓ 8.7(0.2) 67.0(0.9) 76.5(0.2) 69.9(0.1) 63.2(0.3) 36.7(0.2) 58.9(0.9) 42.3(0.2) 59.2
LLM-Pruner w/ LoRA 20% ✓ 10.2(0.3) 66.6(1.3) 76.1(0.6) 68.4(0.5) 62.8(1.1) 36.3(0.4) 59.8(0.3) 40.7(0.7) 58.7

PP 20% ✗ 8.1(0.1) 69.0(0.1) 78.1(0.0) 73.5(0.0) 66.7(0.3) 42.8(0.1) 68.5(0.0) 40.9(0.2) 62.8

LoRAPrune w/ LoRA 40% ✓ 13.6(0.4) 62.9(0.2) 70.8(0.1) 58.6(0.1) 55.5(0.7) 30.9(0.4) 49.6(0.4) 36.7(0.4) 52.1
LLM-Pruner w/ LoRA 40% ✓ 20.3(1.3) 57.5(4.0) 71.3(1.2) 55.7(1.3) 53.1(0.5) 28.9(0.7) 50.4(0.5) 37.3(0.6) 50.6

PP 40% ✗ 16.8(0.1) 62.7(0.2) 74.9(0.1) 63.6(0.0) 57.5(0.2) 35.5(0.1) 61.7(0.2) 40.3(0.4) 56.6

Table 18: Comparison of PP with fine-tuned baselines on LLaMA-2-13B model, with attention and
MLP layers pruned: PP consistently outperforms across scenarios without fine-tuning.

Method Pruning Ratio Fine-tuning WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Average

Dense 0% ✗ 5.1(0.1) 72.1(0.0) 79.6(0.0) 78.7(0.0) 70.7(0.0) 46.5(0.0) 71.3(0.0) 44.2(0.0) 66.2

LoRAPrune w/ LoRA 20% ✓ 7.4(0.0) 64.4(0.5) 78.1(0.1) 74.8(0.2) 66.0(0.3) 40.4(0.3) 61.7(0.9) 41.6(0.2) 61.0
LLM-Pruner w/ LoRA 20% ✓ 8.4(0.5) 70.2(1.4) 78.3(0.3) 73.8(0.3) 65.8(1.3) 40.1(0.5) 64.2(0.4) 42.0(0.4) 62.1

PP 20% ✗ 6.7(0.1) 72.0(0.2) 79.5(0.1) 77.6(0.0) 68.5(0.1) 44.7(0.2) 71.5(0.1) 43.0(0.2) 65.3

LoRAPrune w/ LoRA 40% ✓ 11.1(0.3) 62.5(0.1) 74.1(0.4) 65.5(0.1) 60.4(0.3) 33.0(0.4) 53.9(0.7) 39.3(0.6) 55.5
LLM-Pruner w/ LoRA 40% ✓ 15.3(0.7) 63.9(0.4) 73.5(0.6) 62.4(1.4) 57.5(1.1) 33.2(1.2) 55.2(0.7) 37.5(0.8) 54.7

PP 40% ✗ 11.3(0.1) 65.8(0.1) 77.1(0.2) 71.6(0.0) 61.3(0.4) 40.9(0.3) 67.9(0.1) 42.5(0.3) 61.0
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