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Abstract

Spiking Neural Networks (SNN) are now demonstrating comparable accuracy to convolutional
neural networks (CNN), thanks to advanced ANN-to-SNN conversion techniques, all while
delivering remarkable energy and latency efficiency when deployed on neuromorphic hardware.
However, these conversion techniques incur a large number of time steps, and high spiking
activity. In this paper, we propose a novel ANN-to-SNN conversion framework, that incurs
an exponentially lower number of time steps compared to that required in the existing
conversion approaches. Our framework modifies the standard integrate-and-fire (IF) neuron
model used in SNNs with no change in computational complexity and shifts the bias term
of each batch normalization (BN) layer in the trained ANN. To reduce spiking activity, we
propose training the source ANN with a fine-grained ℓ1 regularizer with surrogate gradients
that encourages high spike sparsity in the converted SNN. Our proposed framework thus
yields lossless SNNs with low latency, low compute energy, thanks to the low timesteps and
high spike sparsity, and high test accuracy, for example, 75.12% with only 4 time steps on the
ImageNet dataset. Code is available at https://github.com/godatta/SNN_meets_ANN.

1 Introduction

Spiking Neural Networks (SNNs) (Maass, 1997) have emerged as an attractive spatio-temporal computing
paradigm for a wide range of complex computer vision (CV) tasks (Pfeiffer et al., 2018). SNNs compute
and communicate via binary spikes that are typically sparse and require only accumulate operations in their
convolutional and linear layers, resulting in significant compute efficiency. However, training deep SNNs has
been historically challenging, because the spike activation function in standard neuron models in SNNs yields
gradients that are zero almost everywhere. While there has been extensive research on backpropagation
through time (BPTT) to mitigate this issue (Bellec et al., 2018; Neftci et al., 2019; O’Connor et al., 2018; Wu
et al., 2018; Zenke and Ganguli, 2018; Meng et al., 2022a; Xiao et al., 2022), training deep SNNs from scratch
is often unable to yield the same accuracies as traditional iso-architecture Artificial Neural Networks (ANN).
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ANN-to-SNN conversion, which leverages the advances in state-of-the-art (SOTA) ANN training strategies,
has the potential to mitigate this accuracy concern (Sengupta et al., 2019; Rueckauer et al., 2017; Fang et al.,
2021). However, since the full-precision ANN activations need to be approximated by binary spikes in the
SNN layers, the number of SNN inference time steps required is high. To improve the trade-off between
accuracy and time steps, previous research proposed shifting the SNN bias (Deng and Gu, 2021) and initial
membrane potential (Bu et al., 2022a; Hao et al., 2023a;b), while leveraging quantization-aware training in
the ANN domain (Bu et al., 2022b; Hu et al., 2023a; Schaefer and Joshi, 2020; Sorbaro et al., 2020), inspired
by the straight-through estimator method (Bengio et al., 2013). Although this can eliminate the component
of the ANN-to-SNN conversion error incurred by the spike-driven binarization, the uneven distribution of the
time of arrival of the spikes causes errors, thereby degrading the SNN accuracy. We first uncover that this
unevenness error is responsible for the accuracy drop in the converted SNNs in low timesteps. To completely
eliminate this unevenness as well as other errors with respect to the quantized ANN, we propose a novel
conversion framework that enables exactly identical ANN and SNN activation outputs, while honoring the
accumulate-only operation paradigm of SNNs. Our framework: (i) encodes both the timing information
and binary value of the spikes in the membrane potential with negligible compute overhead, (ii) shifts the
bias term of the BN layers in the source ANN, and (iii) modifies the IF neuron model with no change in
computational complexity by postponing the neuronal firings and resets after accumulation of the total input
current. Our framework yields SNNs with SOTA accuracies among both ANN-to-SNN conversion and BPTT
approaches with only 2−4 time steps.

In summary, we make the following contributions.

• We analyze the key sources of error that (i) persist in SOTA ANN-to-SNN conversion approaches, and (ii)
degrade the SNN accuracy when using low number of time steps.

• We propose a novel ANN-to-SNN conversion framework that exponentially reduces the number of time
steps required for SOTA accuracy and eliminates each ANN-to-SNN conversion error. Our resulting SNN
can be supported in neuromorphic chips, including Loihi (Davies et al., 2018).

• We significantly increase the compute efficiency of SNNs by incorporating an additional loss term in our
training framework, that penalizes the non-zero bits of the intermediate ANN activations, along with
the task-specific loss (e.g., cross-entropy for image recognition). Further, we propose a novel surrogate
gradient method to optimize this loss.

Figure 1: Comparison of the performance-efficiency
trade-off between ourconversion & SOTA SNN training
methods on ImageNet.

Our contributions simultaneously provide lower la-
tency, higher energy efficiency compared to exist-
ing SNNs, especially those trained using ANN-to-
SNN conversion. Additionally, our method surpasses
most existing SNN training approaches in terms of
performance-efficiency trade-off, as shown in Fig. 1.
Note that while we use a modified integrate-and-
fire mechanism (postponed resets) inspired by quan-
tized ANN processing, the model operates with bi-
nary spikes and retains all the practical attributes of
SNNs (sparse spikes, accumulate operations, thresh-
old checks, etc.).

2 Related Works

ANN-to-SNN conversion involves estimating the
threshold value in each layer by approximating the
activation value of ReLU neurons with the firing rate
of spiking neurons (Cao et al., 2015; Rueckauer et al., 2017; Diehl et al., 2015; Sengupta et al., 2019; Hu et al.,
2018). Some conversion works estimated this threshold using heuristic approaches, such as using the maximum
(or close to) ANN preactivation value (Rathi et al., 2020a). Others proposed weight normalization techniques
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while setting the threshold to unity (Kim et al., 2019; Sengupta et al., 2019) . While these approaches helped
SNNs achieve competitive classification accuracy on the Imagenet dataset, they required hundreds of time
steps for SOTA accuracy. Consequently, there has been a plethora of research (Deng and Gu, 2021; Bu
et al., 2022b; Hao et al., 2023a;b) that helped reduce the conversion error while also reducing the number
of time steps by an order of magnitude. All these works used trainable thresholds in the ReLU activation
function in the ANN and reused the same for the SNN threshold. In particular, Deng and Gu (2021); Li et al.
(2021a) proposed a shift in the bias term of the convolutional layers to minimize the conversion error, with
the assumption that the ANN and SNN input activations are uniformly and identically distributed. Other
works include burst spikes (Park et al., 2019; Li and Zeng, 2022), and signed neuron with memory (Wang
et al., 2022a). However, they might not adhere to the bio-plausibility of spiking neurons. Some works also
proposed modified ReLU activation functions in the source ANN, including StepReLU (Wang et al., 2023a)
and SlipReLU (Jiang et al., 2023) to reduce the conversion error. Moreover, there have been works that
aim to minimize the deviation error, including Bu et al. (2022b) which proposed to initialize the membrane
potential with half of the threshold value; Hao et al. (2023a;b) which adjusts the membrane potential after
observing its trend for a few time steps, and Meng et al. (2022b) which proposed threshold tuning and
residual block restructuring. Some other works explored error correction methods between ANN and SNNs,
often by adapting SNNs through conversion approaches to resemble ANNs more closely (Schaefer and Joshi,
2020; Sorbaro et al., 2020; Hu et al., 2023a). Lastly, some works minimized the conversion error using novel
neuron models, such as inverted LIF neuron (Liu et al., 2022) and signed IF neuron (Hu et al., 2023b). Our
method builds upon these foundations by focusing specifically on addressing accuracy gaps at very low time
steps (e.g., T∼2−4), while providing substantial computational efficiency.

In contrast to ANN-to-SNN conversion, direct SNN training methods, based on BPTT, aim to resolve the
discontinuous and non-differentiable nature of the thresholding-based activation function in the IF model.
Most of these methods (Lee et al., 2016; Panda and Roy, 2016; Bellec et al., 2018; Neftci et al., 2019; O’Connor
et al., 2018; Wu et al., 2018; 2021; Zenke and Ganguli, 2018; Zenke and Vogels, 2021; Meng et al., 2022a;
Xiao et al., 2022; Meng et al., 2023; Guo et al., 2022a) replace the spiking neuron functionality with a
differentiable model, that can approximate the real gradients (that are zero almost everywhere) with the
surrogate gradients. In particular, Guo et al. (2023a) and Guo et al. (2022b) proposed a regularizing loss
and an information maximization loss respectively to adjust the membrane potential distribution in order to
reduce the quantization error due to spikes. Some works optimized the BN layer in the SNN to achieve high
performance. For example, Duan et al. (2022) proposed temporal effective BN, that rescales the presynaptic
inputs with different weights at each time-step; Zheng et al. (2021) proposed threshold-dependent BN; Kim
et al. (2020) proposed batch normalization through time that decouples the BN parameters along the temporal
dimension; Guo et al. (2023b) used an additional BN layer to normalize the membrane potential. Some
works extended direct SNN training to Transformers. For example, Zhou et al. (2023) introduced Spikformer
using surrogate gradient learning and spike-based self-attention, demonstrating improved energy efficiency
and temporal processing capabilities. Later, Yao et al. (2023) extended this approach with Spike-driven
Transformers, where they reformulated attention mechanisms using spike-based computations, later advancing
to Spike-driven Transformer V2 (Yao et al., 2024), which introduces meta-spiking architectures optimized for
adaptability and next-generation neuromorphic hardware. Lastly, some works have explored the use of ℓ1
regularizers in SNN training to improve sparsity (Narduzzi et al., 2022; Ho and Chang, 2021), but to the best
of our knowledge, no research has specifically applied this regularization method for ANN-to-SNN conversion.

3 Preliminaries

3.1 ANN & SNN Neuron Models

For ANNs used in this work, a block l that takes al−1 as input, consists of a convolution (denoted by f conv),
batchnorm (denoted by fBN ), and nonlinear activation (denoted by fact), as shown below.

al =fact(fBN (f conv(al−1))) = fact(zl)=fact
(

γl
(

W lal−1−µl

σl

)
+ βl

)
, (1)

where W l ∈ Rcout×cin×k×k denotes the convolutional layer weights (cout and cin are the number of output and
input channels, respectively, and k is the kernel size), µl and σl denote the BN running mean and variance, and

3



Published in Transactions on Machine Learning Research (04/2025)

γl and βl denote the learnable scale and bias BN parameters. All BN parameters are vectors with dimensions
matching the number of output channels. Inspired by (Bu et al., 2022b), we use quantization-clip-floor-shift
(QCFS) as the activation function fact(·) defined as

al = fact(zl) = λl

Q
clip

(⌊
zlQ

λl
+ 1

2

⌋
, 0, Q

)
, (2)

where al ∈ RN×cout×h×w, Q denotes the number of quantization steps, λl denotes the scalar trainable QCFS
activation output threshold, and zl denotes the activation input. Note that N is the batch size, and h,w are
the spatial dimensions. The clip function is represented as

clip(x, 0, µ) =


0, if x < 0
x, if 0 ≤ x ≤ µ

µ, if x ≥ µ

(3)

QCFS can enable ANN-to-SNN conversion with minimal error for arbitrary T and Q, where T denotes the
total number of SNN time steps.

The spike-driven dynamics of an SNN is typically represented by the IF model where, at each time step
denoted as t, each neuron integrates the input current zl(t) from the convolution, followed by BN layer, into
its respective state, referred to as membrane potential denoted as ul(t). The neuron emits a spike if the
membrane potential crosses a threshold value, denoted as θl. Assuming sl−1(t) and sl(t) are the spike inputs
and outputs respectively, µl and σl are the BN running mean and variance respectively, and γl and βl are
the learnable scale and bias BN parameters, respectively, the IF model dynamics can be represented as

zl(t) =
(

γl

(
W lsl−1(t)θl−1 − µl

σl

)
+ βl

)
, sl(t) = H(ul(t−1) + zl(t)− θl), (4)

ul(t) = ul(t−1) + zl(t)− sl(t)θl. (5)

where H(·) denotes the heaviside function. Note that ul(t), zl(t), and sl(t) ∈ RN×cout×h×w, where ul(t) and
zl(t) are full-precision tensors while sl(t) is a binary tensor. Instead of resetting the membrane potential to
zero after the spike firing, we use the reset-by-subtraction scheme where the surplus membrane potential over
the firing threshold is preserved and propagated to the subsequent time step.

3.2 ANN-to-SNN Conversion

The primary goal of ANN-to-SNN conversion is to approximate the SNN spike firing rate with the multi-bit
nonlinear activation output of the ANN with the other trainable parameters being copied from the ANN to
the SNN. In particular, rearranging Eq. 4 to isolate the expression for sl(t)θl, summing for t=1 to t=T , and
dividing both sides by T , we obtain∑T

t=1 sl(t)θl

T
=
∑T

t=1 zl(t)
T

+
(

ul(0)− ul(T )
T

)
. (6)

Then, substituting

ϕl(T ) =
∑T

t=1 sl(t)θl

T
, and Zl(T ) =

∑T
t=1 zl(t)

T

to denote the average spiking rate and presynaptic potential for the layer l respectively, we obtain

ϕl(T ) = Zl(T )−
(

ul(T )− ul(0)
T

)
(7)

Note that for a very large T , ϕl(T ) can be approximated with Zl(T ). Importantly, the resulting function
ϕl(T ) is equivalent to the ANN ReLU activation function, because it outputs zero for negative values of the
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Figure 2: (a) Comparison between the average magnitude of unevenness error for different number of time
steps with Q=8 and Q=16. Comparisons of the SNN and ANN output activations, ϕl(T ) and al respectively
for (b) Q=8 and T=4, (c) Q=8 and T=2. Reducing the number of time steps from 4 to 2 increases the
expected quantization error from 0.0625λl to 0.125λl.

input (since the accumulated input current is zero when negative) and directly reflects the positive values
of the input current. This analogy is essential in understanding the transition from SNNs to ANNs using
spike-based models. However, for the low T in our use-case, the residual term

(
ul(T )−ul(0)

T

)
introduces error

in the ANN-to-SNN conversion error, which previous works (Hao et al., 2023b;a; Bu et al., 2022b) refer
to as unevenness error. These works also took into account two other types of conversion errors, namely
quantization and clipping errors. Quantization error occurs due to the discrete nature of ϕl(T ) which has a
quantization resolution (QR) of θl

T . Clipping error occurs due to the upper bound of ϕl(T ) = θl. However,
both these errors can be eliminated with the QCFS activation function in the source ANN (see Eq. 2) and
setting θl = λl and T=Q. This yields the same QR of θl

T and upper bound of θl as the ANN activation.

4 Analysis of Conversion Errors

Although we can eliminate the quantization error by setting T=Q, the error increases as T is decreased
significantly from Q for low-latency SNNs1. This is because the absolute difference between the ANN
activations and SNN average post-synaptic potentials increases as (Q−T ) increases as shown in Fig 2(b)-(c).
Note that Q cannot be too small, otherwise, the source ANN cannot be trained with high accuracy. To
mitigate this concern, we propose to improve the SNN capacity at low T by embedding the information of
both the timing and the binary value of spikes in each membrane potential. As shown later in Section 5, this
eliminates the quantization error at T= log2 Q. This results in an exponential drop in the number of time
steps compared to prior works that require T=Q (Bu et al., 2022b). As our work already enables a small
value of T , the drop in SNN performance with further lower T<log2Q becomes negligible compared to prior
works. Moreover, at low timesteps, the unevenness error increases as shown in Fig. 2(a), and even dominates
the total error as shown in Fig. 3(Right), which highlights its importance for our use case. Previous works
(Hao et al., 2023a;b) attempted to reduce this error by observing and shifting the membrane potential after
some number of time steps, which dictates the upper bound of the total latency. Moreover, Hao et al. (2023a)
requires iterative potential correction by injecting or eliminating one spike per neuron at a time, which also
increases the inference latency. That said, the unevenness error is difficult to overcome with the current IF
models. To eliminate the unevenness error, ul(T ) must fall in the range [0, θl] (Bu et al., 2022b). However,
this cannot be guaranteed without the prior information of the post-synaptic potentials (up to T time steps).
The key reason this cannot be guaranteed is the neuron reset mechanism, which dynamically lowers the
post-synaptic potential value based on the input spikes. By shifting all neuron resets to the last time step
T , and matching the ANN activation and SNN post-synaptic values at each time step, we can completely
eliminate this unevenness error, as shown in Section 5.

1Note that T cannot always be equal to Q for practical purposes, since we may want multiple SNNs with different number of
time steps from a single pre-trained ANN
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5 Proposed Method

In this section, we propose our ANN-to-SNN conversion framework, which involves training the source ANN
using the QCFS activation function (Bu et al., 2022b) and a 1) bit-wise fine-grained ℓ1 regularizer , followed by
2) shifting the bias term of the BN layers, and 3) modifying the IF model where the neuron spiking mechanism
and reset are pushed after the current accumulation over all the time steps.

5.1 ANN-to-SNN Conversion

To enable lossless ANN-to-SNN conversion, the IF layer output should be equal to the bit-wise representation
of the output of the corresponding QCFS layer in the lth block, which can be represented as sl(t)=al

t ∀t ∈ [1, T ],
where al

t denotes the tth bit of al starting from the most significant bit. This ensures that the cumulative
spike train over T=log2Q time steps reconstructs the full quantized activation value of the ANN.

We first show how this is guaranteed for the input block and then for any hidden block l by induction.

Input Block: Similar to prior works targeting low-latency SNNs (Bu et al., 2022b;a; Rathi et al., 2020b),
we directly use multi-bit inputs that incur multiplications in the first layer, whose overhead is negligible in
a deep SNN. Hence, the input to the first IF layer in the SNN (output of the first convolution, followed
by BN layer) is identical to the first QCFS layer in the ANN. The first QCFS layer yields the output a1

with T= log2 Q bits. The first IF layer also yields identical outputs s1(t) = a1
t at the tth time step, with the

proposed neuron model as shown later in Eqs. 9 and 10.

Hidden Block: To incorporate the information of both the firing time and binary value of the spikes, we
multiply the input sl−1(t) of the IF layer (i.e., output of the convolution followed by a BN layer) in the
lth block by 2(t−1) at the tth time step, which can be easily implemented by a left shifter. Note that the
additional compute overhead due to the shifting is negligible as shown later in Section 6.3. The resulting SNN
input current in the lth block is computed as ẑl(t) = fBN (f conv(2t−1sl−1(t))). The input of the corresponding
ANN QCFS layer is fBN (f conv(al−1)) where al−1 can be denoted as

∑T
t=1 2t−1sl−1(t) by induction.

Condition I : For lossless conversion, let us first satisfy that the accumulated input current over T time steps
is equal to the input of the corresponding QCFS layer in the lth block.

Mathematically, representing the composite function fBN (f conv(·)) as gANN and gSNN for the source ANN
and its converted SNN respectively, Condition I can be re-written as

T∑
t=1

gSNN (k · sl−1(t))=gANN

(
T∑

t=1
k · sl−1(t)

)
(8)

where k=2t−1. However, this additive property does not hold for any arbitrary source ANN and its converted
SNN, due to the BN layer. We satisfy this property by modifying the bias of each BN layer during ANN-to-SNN
conversion, as shown in Proposition I below, whose proof is in Appendix A.2.

Proposition I : For the lth block in the source ANN, let us denote W l as the weights of the convolutional layer,
and µl, σl, γl, and βl as the trainable parameters of the BN layer. Let us denote the same parameters of the
converted SNN for as W l

c , µl
c, σl

c, γl
c, and βl

c. Then, Eq. 8 holds true if W l
c = W l, µl

c = µl, σl
c = σl, γl

c = γl,
and βl

c = βl

T + (1− 1
T ) γlµl

βl .

Proposition II : If Condition I (Eq. 8) is satisfied and the post-synaptic potential accumulation, neuron firing,
and reset model adhere to Eqs. 9 and 10 below, the lossless conversion objective i.e., sl(t)=al

t ∀t ∈ [1, T ] is
satisfied for any hidden block l.

ẑl(t) =
(

γl
c

(
2t−1W l

csl−1(t)θl−1 − µl
c

σl
c

)
+ βl

c

)
, (9)

ul(1)=
T∑

t=1
ẑl(t), sl(t)=H

(
ul(t)− θl

2t

)
, ul(t + 1) = ul(t)− sl(t) θl

2t
. (10)
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Conv BN QCFS

ANN trained using QCFS activation

Conv BN QCFS

Single ANN block

Conv BN New IF 
Neuron

Conv BN QCFS

Conv BN New IF 
Neuron

Converted SNN

Conv BN

Compute BN 
bias shift

New IF neuron, that 
1) segregates accumulation and 

emission phases, 
2) Adds the BN bias shift to the 

initial membrane potential

New IF 
Neuron

Figure 3: (Left) Proposed ANN-to-SNN conversion framework, encompassing i) training of the source ANN
using the QCFS activation function, ii) computing the shift of the bias term of the BN layers, and copying
the other trainable parameters and iii) modification of the IF neuron. (Right) Comparison of the average
magnitude of quantization, clipping, and unevenness errors between the ANN and SNN.

The proof of Proposition II is shown in Appendix A.2. Our conversion framework is illustrated in Fig.
3(Left). Note that our neuron model postpones the firing and reset mechanism until after the input current
is accumulated from the incoming spikes emitted over all the T time steps in the previous layer. Hence, our
model does not change the computational complexity of the traditional IF model. Moreover, our neuron model
can be supported in programmable neuromorphic chips, that implements current accumulation, threshold
comparison, and potential reset independently in a modular fashion. Since our model needs to acquire ẑl(T ),
before transmitting the spikes at any time step to the subsequent layer, it requires layer-by-layer propagation,
as used in advanced conversion works (Hao et al., 2023a;b). However, this does not prohibit the asynchronous
computations that can be accelerated by an asynchronous accelerator such as Loihi. In particular, spikes are
transmitted to the next layer as soon as they are computed. Moreover, our implemented framework adheres to
this scheme and thus our reported accuracies are consistent with the asynchronous implementation. The only
constraint the layer-by-layer propagation incurs is that all time steps of the previous layer must be computed
before the spikes of the first time step of the next layer can be computed. However, this constraint does
not impose any penalty, as layer-by-layer propagation is superior compared to its alternative step-by-step
propagation in terms of system efficiency as shown in Appendix A.3.

While our approach of separating the aggregation and emission phases is similar to Liu et al. (2022), there are
notable differences that result in improved SNN accuracy, particularly at low time steps. Firstly, our method
embeds both the timing and binary value of spikes within the accumulated input current (as indicated by the
term 2t−1 in Eq. 9). Secondly, we provide a mathematical proof demonstrating that our proposed neuron
model completely eliminates the conversion error, in contrast, Liu et al. (2022) empirically shows that their
inverted LIF model only reduces (not eliminate) the conversion error.

5.2 Activation Sparsity

Although our proposed framework can significantly reduce T while eliminating the conversion error, the
spiking activity does not reduce proportionally. Note that spiking activity is defined as the average number
of spikes per neuron in the entire SNN over all the time steps i.e., the total inferencing window. In fact,
we can see from Fig. 7(a) that the spiking activity of a VGG-16 based SNN evaluated on CIFAR10 drops
only ∼3% (36.2% to 33.0%) when T decreases from 8 to 4. We hypothesize this is because the SNN tries to
pack a similar number of spikes within the few time steps available. To mitigate this concern, we propose a
fine-grained regularization method that encourages more zeros in the bit-wise representation of the source
ANN. As our approach enforces similarity between the SNN spiking and ANN bit-wise output, this encourages
more spike sparsity under low T , which in turn, decreases the compute complexity of the SNN when deployed
on neuromorphic hardware. The training loss function (Ltotal) of our proposed approach is shown below in
Eq. 11, where ai,l

t denotes the tth bit of the ith activation value in layer l, LCE denotes the cross-entropy loss
calculated on the softmax output of the last layer L, LSP denotes the proposed ℓ1 regularizer loss, and λ is
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the regularization coefficient.

Ltotal=LCE + λLSP =LCE+λ

L−1∑
l=1

T∑
t=1

N∑
i=1

ai,l
t . (11)

Note that we only accumulate (and do not spike) the post-synaptic potential in the last layer L, and hence,
we do not incorporate the loss due to ai,l

t for l=L. Since ai,l
t ∈{0, 1}, its gradients are either zero or undefined,

and so, we cannot directly optimize LSP using backpropagation. To mitigate this issue, inspired by the
straight-through estimator (Bengio et al., 2013), we propose a form of surrogate gradient descent as shown
below, where ai,l denotes the t-bit activation of neuron i in layer l:

∂LSP

∂ai,l
=λ

L∑
l=1

N∑
i=1

T∑
t=1

∂ai,l
t

∂ai,l
,

∂ai,l
t

∂ai,l
=
{

1, if 0 < ai,l < λl

0, otherwise
(12)

6 Experimental Results

In this section, we demonstrate the efficacy of our framework on image recognition tasks with CIFAR-10
(Lecun et al., 1998), CIFAR100 (Krizhevsky, 2009), and ImageNet datasets (Deng et al., 2009). Similar to
prior works, we evaluate our framework on VGG-16 (Simonyan and Zisserman, 2014), ResNet18 (He et al.,
2016), ResNet20, and ResNet34 architectures for the source ANNs. To the best of our knowledge, we are the
first to yield low latency SNNs based on the MobileNetV2 (Sandler et al., 2018) architecture. We compare
our method with the SOTA ANN-to-SNN conversion methods including Rate Norm Layer (RNL) (Ding
et al., 2021), Signed Neuron with Memory (SNM) (Wang et al., 2022a), radix encoded SNN (radix-SNN)
(Wang et al., 2022b), SNN Conversion with Advanced Pipeline (SNNC-AP) (Li et al., 2021a), Optimized
Potential Initialization (OPI) (Bu et al., 2022a), QCFS (Bu et al., 2022b), Bridging Offset Spikes (BOS) (Hao
et al., 2023a), Residual Membrane Potential (SRP) (Hao et al., 2023b) and direct training methods including
Dual Phase (Wang et al., 2023b), Diet-SNN (Rathi et al., 2020b), Information loss minimization (IM-Loss)
(Guo et al., 2022b), Differentiable Spike Representation (DSR) (Li et al., 2021b), Temporal Efficient Training
(Deng et al., 2022), parametric leaky-integrate-and-fire (PLIF) (Fang et al., 2021), RecDis-SNN (Guo et al.,
2022a), Membrane Potential Reset (MPR) (Guo et al., 2022c), Temporal Effective Batch Normalization
(TEBN) (Duan et al., 2022), and Surrogate Module Learning (SML) (Deng et al., 2023). More details about
the proposed conversion algorithm and training configurations are in Appendix A.1.

6.1 Efficacy of Proposed Method

Figure 4: Comparison of the test accuracy of our conversion method
for different time steps with Q = 16 on (a) CIFAR10 and (b) CI-
FAR100 datasets. For T=log2Q=4, the ANN & SNN test accuracies
are identical. The source ANN accuracies are shown in dotted lines.

To verify the efficacy of our proposed
method, we compare the accuracies ob-
tained by our source ANN and the con-
verted SNN on CIFAR datasets. As
shown in Fig. 4, for both VGG and
ResNet architectures, the accuracies ob-
tained by our source ANN and con-
verted SNN are identical for T=log2Q.
This is expected since we ensure that
both the ANN and SNN produce the
same activation outputs with the shift
of the bias term of each BN layer.
Hence, unlike previous works, there is
no layer-wise error that gets accumu-
lated and transmitted to the output
layer. However, the SNN test accuracy starts reducing for lower T , which is due to the difference between the
ANN and SNN activation outputs, but is still higher than existing works at the same T as shown below.
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Architecture Method ANN T =2 T =4 T =6 T =8 T =16 T =32

VGG16

RNL 92.82% - - - - 57.90% 85.40%
SNNC-AP 95.72% - - - - - 93.71%

OPI 94.57% - - - 90.96% 93.38% 94.20%
BOS∗ 95.51% - - 95.36% 95.46% 95.54% 95.61%

Radix-SNN - - 93.84% 94.82% - - -
QCFS 95.52% 91.18% 93.96% 94.70% 94.95% 95.40% 95.54%
Ours 95.82% 94.21% 95.82% 95.79% 95.82% 95.84% 95.81%

ResNet18

OPI 96.04% - - - 66.24% 87.22% 91.88%
BOS∗ 95.64% - - 95.25% 95.45% 95.68% 95.68%

Radix-SNN - - 94.43% 95.26% - - -
QCFS 95.64% 91.75% 93.83% 94.79% 95.04% 95.56% 95.67%
Ours 96.68% 96.12% 96.68% 96.65% 96.67% 96.73% 96.70%

ResNet20

OPI 92.74% - - - 66.24% 87.22% 91.88%
BOS∗ 91.77% - - 89.88% 91.26% 92.15% 92.18%
QCFS 91.77% 73.20% 83.75% 83.79% 89.55% 91.62% 92.24%
Ours 93.60% 86.9% 93.60% 93.57% 93.66% 93.75% 93.82%

Table 1: Comparison of our proposed method to existing ANN-to-SNN conversion approaches on CIFAR10.
Q = 16 for all architectures, λ=1e−8. ∗BOS incurs at least 4 additional time steps to initialize the membrane
potential, so their results are reported from T>4.

Architecture Method ANN T =2 T =4 T =6 T =8 T =16 T =32

ResNet34

SNM 73.18% - - - - - 64.78%
SNNC-AP 75.36% - - - - - 63.64%

OPI 93.63% - - - - - 60.30%
BOS∗ 74.22% - - 67.12% 68.86% 74.17% 73.95%
SRP∗ 74.32% - - - 57.22% 67.62% 68.18%

Radix-SNN - - 72.52% 73.45% 73.65% - -
QCFS 74.32% - - - 35.06% 59.35% 69.37%
Ours 75.12% 54.27% 75.12% 75.00% 75.02% 75.10% 75.14%

MobileNetV2
SNNC-AP 73.40% - - - - - 37.43%

QCFS 69.02% 0.20% 0.26% 0.53% 1.12% 21.74% 58.45%
Ours 69.02% 22.62% 68.81% 68.89% 68.98% 69.02% 69.01%

Table 2: Comparison of our proposed method to existing conversion methods on ImageNet. Q=16 for both
ResNet34 and MobileNetV2, and λ=5e−10. ∗BOS and SRP incurs at least 4 and 8 additional time steps to
initialize the potential, so their results are reported from T>4 and T>8 respectively.

6.2 Comparison with SOTA

We compare our proposed framework with the SOTA ANN-to-SNN conversion approaches on CIFAR10 and
ImageNet in Table 1 and 2 respectively. For a low number of time steps, especially T≤4, the test accuracy of
the SNNs trained with our method surpasses all the existing methods. Note that our accuracy slight drops at
T=6 likely because the source QCFS ANN being trained with Q=16 (equivalent to 4-bit precision), leading
to optimal performance at T=4. However, this drop (∼0.1%) is within expected noise levels. Our SNNs
can also outperform some of the recently proposed SNNs that incur even higher number of time steps. For
example, QCFS reported a test accuracy of 94.95% at T=8; our method can surpass that accuracy (yield
95.82%) at T=4. Note that Hao et al. (2023b;a) requires additional time steps to capture the temporal trend
of the membrane potential. The authors reported 4 extra time steps for the accuracy numbers that are shown
in Table 1. As a result, they require at least 5 time steps during inference, and their reported accuracies
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are lower compared to our SNNs at iso-time-step across different architectures and datasets. Moreover,
our approach results in >2% increase in test accuracy on both CIFAR10 and ImageNet compared to radix
encoding (Wang et al., 2022b), that proposed a shifting method similar to our left-shift approach, for low
time steps (<4). This demonstrates the efficacy of our BN bias shift and neuron model. Moreover, as shown
in Table 3, our low-latency accuracies are also higher compared to other SOTA yet memory-expensive SNN
training techniques, such as BPTT and hybrid training, at iso-time-step. Lastly, compared to these, our
conversion approach leverages standard ANN training with QCFS activation and requires changing only one
parameter of each BN layer, that is not repeated across time steps, before the SNN inference process.

6.3 Energy Efficiency

Our modified IF model incurs the same number of membrane potential update, neuron firing, and reset,
compared to the traditional IF model with identical spike sparsity. The only additional overhead is the
left shift operation that is performed on each convolutional layer output in each time step. As shown in
Table 6 in Appendix A.4, a left shift operation consumes similar energy as an addition operation with
identical bit-precision. However, the total number of left shift operations is significantly lower than the
number of addition operations incurred in an SNN for the spiking convolution operation. Intuitively, this is
because the computational complexity of the spiking convolution operation and the left shift operation are
O(sk2cincoutHW ) and O(coutHW ) respectively, where s denotes the sparsity. Note that k denotes the kernel
size, cin and cout denote the number of input and output channels respectively, and H and W denote the
spatial dimensions of the activation map. Even with a sparsity of 90%, for cin=512 and k=3, in ResNet18, we
have sk2cincoutHW

coutHW =406.8. Hence, as shown in Fig. 5(a), the left shifts incur negligible overhead in the total
compute energy, which is the the energy incurred by the floating point operations, specifically accumulate
operations in SNNs (Rathi and Roy, 2023; Datta et al., 2024), across both VGG and ResNet architectures.
Moreover, left shifts can also be supported in programmable neuromorphic chips.

Figure 5: (a) Comparison of the compute energy of each SNN
operation with λ=1e−8 on CIFAR10. Comparison of the spiking
activites of the SNNs obtained via our and SOTA conversion methods
on (b) CIFAR10 and (c) CIFAR100 with VGG16 and ResNet20. In
(a), LS denotes the left shift operation, and CE denotes compute
energy.

Our SNNs enjoy superior energy ef-
ficiency compared to existing SNNs
with a higher number of time steps, as
our method effectively reduces the re-
quired time steps while preserving ac-
curacy. By maintaining the same com-
putational complexity as a quantized
ANN and incorporating modifications
to the IF model, our approach enables
a more energy-efficient SNN. Moreover,
our fine-grained regularizer significantly
reduces the spiking activity of the net-
work. As shown in Fig. 5(b)-(c), with
VGG16, we can obtain a 1.64× reduc-
tion for CIFAR10 and 2.40× reduction
for CIFAR100. For ResNet-18 on CIFAR10 and ResNet-34 on CIFAR100, the reduction factors are 2.41×
and 2.33× respectively. Compared to SOTA conversion approaches (Bu et al., 2022b; Hao et al., 2023a), we
obtain 3.73−10.70× reduction in spiking activity. This reduced spiking activity linearly reduces the compute
energy. Additionally, our low-latency SNNs significantly reduce the memory access cost, which is dominated
by the successive read and write operations of the membrane potentials in each time step. Thus, our proposed
low-latency conversion framework, coupled with high spike sparsity, can significantly reduce the combined
system energy. Detailed energy comparisons with ANNs and additional analysis are in Appendix A.4.

6.4 Ablation study of Neuron Model

We conduct ablation studies of our proposed encoding and conversion framework using the traditional IF
model. As shown in Table 4, the SNN accuracy drops compared to the ANN counterpart, and the degradation
is severe for low (2-4) time steps. This is due to the deviation error that appears with the normal IF model,
and increases significantly at low time steps, dominating the total error. These results validate our hypothesis
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Dataset Method Approach Architecture Accuracy Time Steps

CIFAR10

Dual-Phase Hybrid ResNet18 93.27

4

IM-Loss BPTT ResNet19 95.40
MPR BPTT ResNet19 96.27
TET BPTT ResNet19 94.44

RecDis-SNN BPTT ResNet19 95.53
TEBN BPTT ResNet19 95.58

SurrModu BPTT ResNet19 96.04
Ours ANN-to-SNN ResNet18 96.68

ImageNet

Dspike Supervised learning VGG16 71.24 5
Diet-SNN Hybrid VGG16 69.00 5

SEW ResNet BPTT ResNet34 67.04 4
IM-Loss BPTT VGG16 70.65 5

RMP-Loss BPTT ResNet34 65.27 4
SurrModu BPTT ResNet34 68.25 4
SDT V2 BPTT Meta-Spikeformer 80.00 4

Spikformer V2 BPTT Spikformer V2-8-512 80.38 4
Ours ANN-to-SNN ResNet34 75.12 4

Table 3: Comparison of our method with SOTA BPTT and hybrid training approaches.

Architecture Left shift BN bias shift Modified IF T =2 T =4 T =6 T =8 T =16

VGG16

× × × 91.08% 93.82% 94.68% 94.90% 95.33%
× × ✓ 92.42% 94.80% 95.17% 95.28% 95.21%
✓ × × 93.03% 95.12% 95.24% 95.18% 95.21%
✓ ✓ × 93.33% 95.23% 95.45% 95.45% 95.32%
✓ ✓ ✓ 94.21% 95.82% 95.79% 95.82% 95.84%

ResNet20

× × × 71.42% 83.91% 84.12% 88.72% 92.64%
× × ✓ 76.21% 90.18% 91.92% 92.49% 92.62%
✓ × × 76.10% 91.22% 91.43% 92.40% 92.62%
✓ ✓ × 79.86% 91.81% 92.07% 93.24% 93.48%
✓ ✓ ✓ 86.92% 93.60% 93.57% 93.66% 93.75%

Table 4: Ablation study of the different components of our proposed method on CIFAR10 with VGG16 and
ResNet20.

presented in Section 3. Additionally, when we use the normal IF model, the encoding and bias shift of the
BN layers still yield noticeable accuracy increase compared to the QCFS training method that our work
is based on, especially for 2-4 time steps. For hardware that can only support the standard IF model, our
conversion framework employing this model yields superior accuracy compared to most of the existing SNN
works, as shown in Table 1.

6.5 Comparison with quantized ANN

While SNNs were originally proposed to mimic the neural mechanism of humans, SNNs can also yield
high energy efficiency arising from the spike sparsity and accumulate-only operations, while maintaining
state-of-the-art accuracy. Our method enhances the energy efficiency compared to existing SNNs by drawing
inspiration from activation quantized ANNs and proposing a new neuron model and batch norm (BN) bias
modification strategy, that ensures the ANN and average SNN outputs are identical at each layer. While this
implies some degree of similarity with quantized ANNs, marrying the efficiency benefits from the quantization
in ANNs and sparsity in SNNs helps enable low-power and low-latency neural networks, particularly given
the rise of neuromorphic chips.
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Architecture T=Q SNN Acc. (%) QANN Acc. (%)

VGG16
2 94.21 94.73
3 95.30 95.37
4 95.82 96.02

ResNet20
2 86.90 86.73
3 90.77 91.22
4 93.60 94.06

Table 5: Comparison of accuracy of the SNNs obtained via our conversion framework with quantized ANNs
(QANN) on CIFAR10.

As shown in Table 5, with VGG16 and ResNet20 on CIFAR10, our SNNs incur only a marginal reduction of
test accuracy compared to quantized ANNs. This reduction is due to our fine-grained ℓ1 regularizer that
trades accuracy for spiking activity. Note that for a fair comparison, we use T = Q, where T is the total
number of SNN time steps, and Q is the activation bit-width of the ANN. While our SNNs incur a slight
drop in accuracy, they are significantly more energy efficient than quantized ANNs. First, quantized ANN
accelerators do not typically leverage activation sparsity that avoid computation when any of the bits in the
activation are zero. Secondly, they require quantized multiply-and-accumulate (MAC) operations, which incur
significantly more energy compared to accumulate (AC) operations required by SNNs. For example, a 4-bit
integer MAC operation incurs 2.3× higher compute energy compared to a 4-bit integer AC operation in 45
nm CMOS technology, as observed in our in-house FPGA simulations. Thirdly, our SNNs provide additional
spike sparsity (on top of the natural spike sparsity) due to our fine-grained ℓ1 regularizer, which further
increases the energy-efficiency. As a result, our SNNs incur ∼5.1× lower compute energy for T = Q = 4
as shown in Table 11 in Appendix, when averaged over VGG and ResNet architectures, on CIFAR10 and
ImageNet.

7 Conclusion

In this paper, we first uncover the key sources of error in ANN-to-SNN conversion that have not been
completely eliminated in existing works. We propose a novel conversion framework, that introduces a modified
IF neuron model and shifts the bias term of each BN layer of the source ANN, before the SNN inference.
Our neuron model has identical compute and memory complexity compared to the traditional IF neuron
model. Our framework completely eliminates all sources of conversion errors when we use the same number
of time steps as the bit precision of the source ANN. We also propose a fine-grained ℓ1 regularizer during the
source ANN training that minimizes the number of spikes in the converted SNN. This significantly increases
the compute efficiency, while the ultra-low latency increases the memory efficiency of our SNNs. To the best
of our knowledge, our work is the first to achieve ultra-low latency and compute energy, while still achieving
the SOTA test accuracy on complex image recognition tasks with SNNs.
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A Appendix

A.1 Network Configurations and Hyperparameters

We train our source ANNs with average-pooling layers instead of max-pooling as used in prior conversion
works (Hao et al., 2023a; Bu et al., 2022b). We also replace the ReLU activation function in the ANN with
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QCFS function as shown in Eq. 2, copy the weights from the source ANN to the target SNN and set the
QCFS activation threshold λl equal to the SNN threshold θl. Note that λl is a scalar term for the entire
layer to minimize the compute associated with the left-shift of the threshold in the SNN. We set the number
of quantization steps Q to 16 for all networks on all datasets.

We leverage the Stochastic Gradient Descent optimizer (Bottou, 2012) with a momentum value of 0.9. We
use an initial learning rate of 0.02 for CIFAR-10 and CIFAR-100, and 0.1 for ImageNet, with a cosine decay
scheduler (Loshchilov and Hutter, 2017) to lower the learning rate. For CIFAR datasets, we set the value of
weight decay to 5×10−4, while for ImageNet, it is set to 1×10−4. Additionally, we leverage advanced input
augmentation techniques to boost the performance of our source ANN models (DeVries and Taylor, 2017;
Cubuk et al., 2019), which can eventually improve the performance of our SNNs. The models for CIFAR
datasets are trained for 600 epochs, while those for ImageNet are trained for 300 epochs. All experiments are
performed on an NVIDIA V100 GPU with 16 GB memory.

A.2 Proof of Propositions & Statements

Proposition-I : For the lth block in the source ANN, let us denote W l as the weights of the lth hidden
convolutional layer, and µl, σl, γl, and βl as the trainable parameters of the BN layer. Let us denote the
same parameters of the converted SNN for as W l

c , µl
c, σl

c, γl
c, and βl

c. Then, Eq. 8 holds true if W l
c = W l,

µl
c = µl, σl

c = σl, γl
c = γl, and βl

c = βl

T + (1− 1
T ) γlµl

βl .

Proof : Substituting the value of gSNN for the SNN in the left-hand side (LHS) which is equal to the
accumulated input current over T time steps,

∑T
t=1 ẑl, and gANN in the right-hand side (RHS) of Equation

8, we obtain∑T
t=1

(
γl

c

(
2t−1W l

csl−1(t)θl−1−µl
c

σl
c

)
+ βl

c

)
=
(

γl

(∑T

t=1
(2t−1W lsl−1(t)θl−1)−µl

σl

)
+ βl

)
=⇒ γl

cW l
cθl−1

σl
c

∑T
t=1 2t−1sl−1(t) + T (βl

c −
µl

cγl
c

σl
c

) = γlW lθl−1

σl

∑T
t=1 2t−1sl−1(t) + (βl − µlγl

σl )
If we assert γl

c = γl, W l
c = W l, σl

c = σl, the first terms of both LHS and RHS are equal. Substituting γl
c = γl,

W l
c = W l, and σl

c = σl with this assertion, LHS=RHS if their second terms are equal, i.e,
T (βl

c −
µlγl

σl ) = (βl − µlγl

σl ) =⇒ Tβl
c = βl + (T − 1) µlγl

σl =⇒ βl
c = βl

T + (1− 1
T ) µlγl

σl

Proposition-II : If Condition I (Eq. 8) is satisfied and the post-synaptic potential accumulation, neuron firing,
and reset model adhere to Eqs. 9 and 10, the lossless conversion objective i.e., sl(t)=al

t ∀t ∈ [1, T ] is satisfied
for any hidden block l.

In Eqs. 9 and 10, ul(1) =
∑T

t=1 ẑl(t) is the original LHS of Eq. 8. Given that Eq. 8 is satisfied due to
Proposition-I, we can write ul(1) = hl, where hl is the input to the QCFS activation function of the lth block
of the ANN. The output of the QCFS function is denoted as al = fact(hl), whose tth bit starting from the
most significant bit (MSB) is represented as al

t. We can check if al
t is zero or one, iteratively starting from

the MSB, using a binary decision tree approach where we progressively discard one-half of the search range
for the subsequent bit checking. With the maximum value of hl being λl, and λl = θl (see Section 3.2),
al

1 = H(hl − θl

2 ) = H(ul(1)− θl

2 ) = sl(1). To compute al
2, we can lower hl by half of the previous range, by

first updating hl as hl = hl − al
1

θl

2 , and then calculating al
2 = H(hl − θl

4 ) = H(ul(2)− θl

4 ) which is equal to
sl(2). Similarly, updating hl to calculate the tth bit ∀ t ∈ [2, T ] as hl = hl − θl

2t−1 and then evaluating al
t as

al
t = H(hl − θl

2t ), we obtain al
t = sl(t), ∀t ∈ [1, T ].

A.3 Efficacy of layer-by-Layer Propagation

A.3.1 Spatial Complexity

During the SNN inference, the layer-by-layer propagation scheme incurs significantly lower spatial complexity
compared to its alternative step-by-step propagation. This is because in step-by-step inference, the computa-
tions are localized at a single time step for all the layers, and to process a subsequent time step, all the data,
including the outputs and hidden states of all layers at the previous time step, can be discarded. Thus, the
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Operation Bit Precision Energy (pJ)

Mult. 32 3.1
8 0.2

Add. 32 0.1
8 0.03

Left Shift 32 0.13
8 0.024

Comparator 32 0.08
8 0.03

Table 6: Comparison of the energy consumed by the different operations in our proposed IF neuron model,
and multiplication required in ANNs, on an ASIC (45 nm CMOS technology). The energy values for multiply
operations are sourced from Horowitz (2014); Gholami et al. (2021), while those for the shift operation are
from You et al. (2020); Sekikawa and Yashima (2023). The comparator energy numbers are obtained from
our in-house circuit simulations, all within 45nm CMOS technology.

Figure 6: Comparison of the test accuracy of our conversion method for different values of the regularization
coefficient λ.

spatial inference complexity of the step-by-step propagation is O(N · L), which is not proportional to T . In
contrast, for layer-by-layer propagation, the computations are localized in a single layer, and to process a
subsequent layer, all the data of the previous layers can be discarded. Thus, the spatial inference complexity
of the layer-by-layer propagation scheme is O(N ·T ). Since T << L for deep and ultra low-latency SNNs, the
layer-by-layer propagation scheme has lower spatial complexity compared to the step-by-step propagation.

A.3.2 Latency Complexity

When operating with step-by-step propagation scheme, let us assume that the lth layer requires tstep(l) to
process the input sl−1(t) and yield the output sl(t). Then, the latency between the input X and the output
sL(T ) is Dstep = T

∑L
l=1 tstep(l).

With layer-by-layer propagation, let us assume that the delay in processing the layer l i.e., outputting the
spike outputs for all the time steps (sl(t) ∀t ∈ [1, T ]) from the instant the first spike input sl−1(1) is received,
is tlayer(l). Then, the total latency between the input X and the output sL(T ) is Dlayer =

∑L
l=1 tlayer(l).

Although each SNN layer is stateful, the computation across the different time steps can be fused into a
large CUDA kernel in GPUs when operating with the layer-by-layer propagation scheme (Fang et al., 2023).
Even on neuromorphic chips such as Loihi (Davies et al., 2018), there is parallel processing capability. All
these imply that tlayer(l) < T · tstep(l) for any layer l. This further implies that Dlayer =

∑L
l=1 tlayer(l) <∑L

l=1 T · tstep(l) < Dstep.

For a concrete example, consider a network with L = 34 layers (e.g., ResNet-34) running at T = 4 time steps.
Suppose each layer’s per-step compute time tstep(l) ≈ 1 unit (normalized). Then step-by-step latency would
be Dstep = 4×

∑34
l=1 1 = 136 units. Now assume that with fused time steps, each layer l can be processed in
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Figure 7: Comparison of the spiking activity of the SNNs obtained via our conversion method for different
values of the regularization coefficient λ for (a) VGG16 on CIFAR10, (b) ResNet20 on CIFAR10, (c) VGG16
on CIFAR100, and (d) ResNet20 on CIFAR100.

tlayer(l) ≈ 2 units (accounting for parallel overhead less than 4). Then Dlayer ≈
∑34

l=1 2 = 68 units, half the
latency of step-by-step. Even in a more conservative scenario where tlayer(l) is, say, 3 units (not fully parallel),
Dlayer would be 102 units, still ∼33% faster than Dstep. These numbers illustrate that throughput (in terms
of latency per inference) is not sacrificed by layer-by-layer propagation; it can in fact improve it. Our method
inherently exploits this by requiring only a small T , making fusion feasible. We also did not observe any
degradation in empirical throughput on GPU during our experiments – the network with T = 4 ran efficiently,
as all operations were implemented as matrix multiplies and thresholding that GPUs handle in batch.

In conclusion, the layer-by-layer propagation scheme is generally superior both in terms of spatial and latency
complexity compared to the step-by-step propagation, and hence, our method that requires layer-by-layer
propagation to operate successfully, does not incur any additional overhead.

A.4 Latency & Energy Efficiency Details

Our proposed IF neuron model incurs the same addition, threshold comparison, and potential reset operations
as that of a traditional IF model. It simply postpones the comparison and reset operations until after the
input current is accumulated over all the T time steps. Thus, our IF model has similar latency and energy
complexity compared to the traditional IF model. Moreover, our proposed conversion framework requires
that the output of each spiking convolutional layer is left-shifted by (t−1) at the tth time step. However,
as shown in Fig. 5, the number of left-shift operations in any network architecture is negligible compared
to the total number of addition operations (even with the high sparsity provided by SNNs) incurred in the
convolution operation. As a left-shift operation consumes similar energy as an addition operation for both
8-bit and 32-bit fixed point representation as shown in Table 6, the energy overhead of our proposed method
is negligible compared to existing SNNs with identical spiking activity. Moreover, the energy overhead due to
the addition, comparison and reset operation in our (this holds true for traditional IF models as well) IF
model is also negligible compared to the spiking convolution operations as shown in Fig. 5.

Our SNNs yield high sparsity, thanks to our fine-grained ℓ1 regularizer, and ultra-low latency, thanks to our
conversion framework. While the high sparsity reduces the compute energy compared to existing SNNs, the
reduction compared to ANNs is significantly high. This is because ANNs incur multiplication operations in
the convolutional layer which is 6.6−31× more expensive compared to the addition operation as shown in
Table 6. Thanks to the high sparsity (71−79%) due to the ℓ1 regularizer, and the addition-only operations in
our SNNs, we can obtain a 7.2−15.1× reduction in the compute energy compared to an iso-architecture SNN,
assuming a sparsity of 50% due to the ANN ReLU layers.

The memory footprint of the SNNs during inference is primarily dominated by the read and write accesses of
the post-synaptic potential at each time step (Datta et al., 2022; Yin et al., 2022). This is because these
memory accesses are not influenced by the SNN sparsity since each post-synaptic potential is the sum of
k2cin weight-modulated spikes. For a typical convolutional layer, k = 3, cin = 128, and so it is almost
impossible that all the k2cin spike values are zero for the membrane potential to be kept unchanged at a
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Model Time Steps (T) Latency per Sample (ms) Accuracy (%)

Our Converted SNN 4 8.2 95.82
32 59.86 95.81

QCFS-Converted SNN 4 7.8 93.96
32 59.63 95.54

Table 7: Comparison of latency and accuracy between our converted SNN and QCFS-converted SNN at
different time steps, with the latency being profiled on NVIDIA Jetson Orin NX.

Method Network QQP (%) SST-2 (%) QNLI (%)
QCSF ANN 84.04 81.44 80.92
QCFS SNN 79.12 77.89 75.30
Ours SNN 82.04 80.29 78.33

Table 8: Comparison of our proposed ANN-to-SNN conversion framework with QCFS for the BERTBASE

network on a few representative GLUE tasks.

particular time step2. Since our proposed conversion framework significantly reduces the number of time
steps compared to previous SNN training methods, it also reduces the number of membrane potential accesses
proportionally. Hence, we reduce the memory footprint of the SNN during inference. However, it is hard
to accurately quantify the memory savings since that depends on the system architecture and underlying
hardware implementation.

Due to the exponentially lower number of time steps, our SNNs also incur lower latency compared to existing
ANNs trained using ANN-to-SNN conversion. as shown in Table 7, our converted SNN model at T=4 achieves
∼7.3× lower latency compared to the QCFS-converted SNN at T=32, while maintaining similar accuracy.
Note that our neuron model maintains the same latency as the traditional IF model, as demonstrated by
the comparable latency between our SNN and the QCFS-based SNN at identical time steps. These latency
results are based on profiling inference per sample on the NVIDIA Jetson Orin GPU.

A.5 Performance-Energy Trade-off with Bit-level regularizer

We can reduce the spiking activity of SNNs using our fine-grained ℓ1 regularizer. In particular, by increasing
the value of the regularization co-efficient λ from 0 to 5e−8, the spiking activity can be reduced by 2.5−4.1×
for different architectures on CIFAR datasets as shown in Fig. 7. However, this comes at the cost of test
accuracy, particularly for a very low number of time steps, T<=3, as shown in Fig. 6. By carefully tuning
the value of λ, we can obtain SNN models with different sparsity-accuracy trade-offs that can be deployed in
scenarios with diverse resource budgets. Using λ=1e−8 for the CIFAR datasets, and λ=5e−10 for ImageNet,
yields a good trade-off for different time steps. As shown in Fig. 6, λ=1e−8 yields accuracies that are similar
to λ=0. Note that λ=0 implies training of the source ANN without our fine-grained regularizer for T≈log2Q
for CIFAR datasets. In particular, with ResNet18 for CIFAR10, λ=1e−8 yields SNN test accuracies within
0.2% of that of λ = 0, while reducing the spiking activity by ∼2.4× (0.53 to 0.22), which also reduces the
compute energy by a similar factor. With ResNet34 for ImageNet, λ = 5e− 10, leads to a 0.4% reduction in
test accuracy, while reducing the compute energy by 2×. Moreover, as shown in Fig. 7, the spiking activities
of our SNNs trained with non-zero values of λ do not increase significantly with the number of time steps as
that with λ=0, which also demonstrates the improved compute efficiency resulting from our regularizer.

A.6 Evaluation of Proposed Framework for Transformer Models

We also evaluate our ANN-to-SNN conversion framework on the BERTBASE model as shown in Table 8.
We replace the GeLU activation function in the BERT model with the QCFS activation function to train
the ANN, modified the SNN IF neuron model as proposed in our method. Note that, unlike CNNs, BERT

2Note that the number of weight read and write accesses can be reduced with the spike sparsity, and thus typically do not
dominate the memory footprint of the SNN
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Architecture Method ANN T =2 T =4 T =6 T =8 T =16 T =32

VGG16

SNM 74.13% - - - - - 71.80%
SNNC-AP 77.89% - - - - - 73.55%
OPI 76.31% - - - 60.49% 70.72% 74.82%
BOS∗ 76.28% - - 76.03% 76.26% 76.62% 76.92%
QCFS 76.28% 63.79% 69.62% 72.50% 73.96% 76.24% 77.01%
Ours 76.71% 72.39% 76.71% 76.74% 76.70% 76.78% 76.82%

ResNet20

OPI 70.43% - - - 23.09% 52.34% 67.18%
BOS∗ 69.97% - - 64.21% 65.18% 68.77% 70.12%
QCFS 69.94% 19.96% 34.14% 49.20% 55.37% 67.33% 69.82%
Ours 70.30% 63.80% 70.30% 70.33% 70.45% 70.49% 70.52%

Table 9: Comparison of our proposed method to existing ANN-to-SNN Conversion approaches on CIFAR100
dataset. Q=16 for all architectures, and λ=1e − 8. ∗BOS incurs 4 additional time steps to initialize the
membrane potential, so the total number of time steps is T>4.

models do not have any batch normalization layer that succeeds the linear layer (unlike convolutional layer in
CNNs), and hence, we could not eliminate the unevenness error by shifting any bias term. However, our
modified neuron model outperforms the existing QCFS based conversion method by ∼2.8% on average for a
range of tasks in the General Language Understanding Evaluation (GLUE) benchmark as shown below. We
use T = 16 for a reasonable trade-off between accuracy and latency.

Dataset Approach Architecture Accuracy Time steps
DSR BPTT ResNet18 73.35 4
Diet-SNN Hybrid VGG16 69.67 5
TEBN BPTT ResNet18 78.71 4
IM-Loss BPTT VGG16 70.18 5
RMP-Loss BPTT ResNet19 78.28 4
SurrModu BPTT ResNet18 79.49 4
Our Work ANN-SNN ResNet18 79.89 4

Table 10: Comparison of our proposed method with SOTA BPTT and hybrid training approaches on
CIFAR100 dataset.

A.7 Comparison with SOTA for CIFAR100

We compare our proposed framework with the SOTA ANN-to-SNN conversion approaches on CIFAR100 in
Table 9. Similar to CIFAR10 and ImageNet, for ultra-low number of time steps, especially T≤4, the test
accuracy of our SNN models surpasses existing conversion methods. Moreover, our SNNs can also outperform
SOTA-converted SNNs that incur even higher number of time steps. For example, the most recent conversion
method, BOSQ reported a test accuracy of 76.03% at T=6 (with 4 time steps added on top of T = 2 in
Table 9 for the extra 4 time steps required for potential initialization); our method can surpass that accuracy
(76.71%) at T=4.

Additionally, as shown in Table 10, our ultra-low-latency accuracies are also higher compared to direct SNN
training techniques, including BPTT and hybrid training step at iso-time-step. For example, our method can
surpass the test accuracies obtained by the latest BPTT-based SNN training methods (Guo et al., 2023a;
Deng et al., 2023) by 0.4−1.6%, while significantly reducing the training complexity.
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Dataset Architecture Neuromorphic QANN Bit-Serial

CIFAR10 VGG16 1× 4.98× 3.57×
ResNet18 1× 5.70× 4.54×

ImageNet VGG16 1× 4.52× 3.12×
ResNet34 1× 5.12× 3.70×

Table 11: Comparison of normalized estimated energy of our SNNs on neuromorphic hardware compared
quantized ANNs (QANN) and bit-serial ANNs.

A.8 Comparison with Bit-Serial Quantized ANN

Bit-serial quantization is a popular implementation technique for neural network acceleration. It is often
desirable for low precision hardware, including in-memory computing chips based on one-bit memory cells such
as static random access memory (SRAM) and low-bit cells, such as resistive random access memory (RRAM).
Similar to the SNN, it also requires a state variable that stores the intermediate bit-level computations,
however, unlike the SNN that compares the membrane state with a threshold at each time step, it performs
the non-linear activation function and produces the multi-bit output directly. However, to the best of our
knowledge, there is no large-scale bit-serial accelerator chip currently available. Moreover, unlike neuromorphic
chips, bit-serial accelerators do not leverage the large activation sparsity demonstrated in our work, and
hence, incur significantly higher compute energy compared to neuromorphic chips. Since our SNNs trained
with our bit-level regularizer provides a sparsity of 68−78% for different architectures and datasets, they incur
3.1−4.5× lower energy when run on sparsity-aware neuromorphic chips, compared to bit-serial accelerators,
as shown in Table 11. Note that the values in Table 11 are derived by summing compute and memory energy
based on established SNN energy models, as shown in the Section A.8 of Datta et al. (2024). Specifically,
we estimate the number of floating point operations (FLOPs) and memory accesses in the SNN and apply
energy-per-operation values from previous ASIC studies.

It can be argued that our approach without our bit-level regularizer leads to results similar to bit-serial
computations. However, naively applying bit-serial computing to SNNs with the left-shift approach proposed
in this work, would lead to non-trivial accuracy degradations. This is because unlike quantized networks, SNNs
can only output binary spikes based on the comparison of the membrane potential against the threshold. Our
proposed conversion optimization (bias shift of the BN layers and modification of the IF model) mitigates this
accuracy gap, and ensures the SNN computation is identical to the activation-quantized ANN computation.
This leads to zero conversion error from the quantized ANNs, and our SNNs achieve identical accuracy with
the SOTA quantized ANNs.

A.9 Memory Bandwidth Reduction with Proposed Method

Maintaining membrane potentials across time steps significantly impacts memory bandwidth usage in Spiking
Neural Networks (SNNs). Each neuron’s membrane potential must be read and updated at every time
step; thus, increasing the number of time steps proportionally increases memory accesses, leading to higher
bandwidth consumption. Conversely, reducing the number of time steps directly lowers the frequency of these
accesses, thereby decreasing memory bandwidth demands.

For instance, in an SNN with T = 16 time steps, each neuron’s membrane potential is accessed and updated
16 times per inference. Reducing T to 4 decreases the number of accesses by a factor of 4, effectively reducing
memory bandwidth consumption by 75%. In a VGG16 network designed for ImageNet classification with
approximately 6.3 million neurons, this reduction translates to a fourfold decrease in memory accesses,
assuming computation per time step remains constant.

The overall impact on memory energy depends on the hardware dataflow, particularly how weights and
activations are stored and accessed. In a weight-stationary dataflow, where weights remain on-chip and are
reused across multiple inputs, memory energy is often dominated by membrane potential accesses, as they
must be dynamically computed at each time step. Consequently, reducing time steps can yield memory
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Epochs Architecture Type Accuracy
300 VGG16 QCFS pre-training 95.82%
30 VGG16 ReLU pre-training + QCFS fine-tuning 95.47%
300 ResNet20 QCFS pre-training 93.60%
30 ResNet20 ReLU pre-training + QCFS fine-tuning 93.51%

Table 12: Comparison of ANN training between QCFS pre-training and ReLU pre-training followed by QCFS
fine-tuning for ANN-to-SNN conversion.

energy savings approaching the same factor as the time step reduction, making it a critical optimization for
energy-efficient SNN implementations.

A.10 Dependence on Training ANNs using QCFS Activation

While our ANN-to-SNN conversion framework is based on the QCFS activation function, it cannot be directly
applied to ANNs trained using the ReLU function. However, our experimental results demonstrate that
we need to fine-tune the ANNs with the QCFS function for only a small number of epochs when they are
pre-trained with the ReLU function. In particular, as shown in Table 12, for both VGG16 and ResNet20, we
only need 30 epochs of fine-tuning with the QCFS function for ANNs pre-trained with the ReLU function
to achieve the same accuracy as training with the QCFS function for 300 epochs (as done in our original
experiments).

A.11 Extension to Object Detection

Model and Dataset: We chose a single-stage object detector architecture similar to RetinaNet with a ResNet-34
backbone (pre-trained on ImageNet) and detection heads for bounding box regression and classification. We
evaluated on the MS COCO dataset, a standard benchmark for detection. The baseline ANN (ResNet34
backbone with feature pyramid and prediction heads) achieves an mAP (mean average precision) of around
30.1% on COCO validation – this is expected for a ResNet34-based detector (which is less powerful than
ResNet50-based models that reach higher mAP).

Conversion Process: We applied our conversion framework to this detector. The backbone’s convolutional
layers all have batch normalization, which we adjusted (shifting the BN biases as per our method). The
detection heads (for classification of proposals and for regression of box coordinates) do not contain BN layers
in our implementation, but they do use ReLU activations. We converted those ReLUs to spiking neurons as
well, using our proposed integrate-and-fire model. For the classification logits (which go into a sigmoid or
softmax for object presence), we let the spiking neurons accumulate over T time steps and take the firing
rate as the analog value. For the bounding box regression outputs, which are real-valued, one straightforward
approach is to represent them in a fixed-point spike rate as well. In our conversion, we treated the regression
outputs as separate channels that were small in magnitude and could be encoded with a few time steps of
spiking (essentially a minor extension to handle regression – we discretized the output range into a few spike
counts). Importantly, no retraining of the detector was done after conversion; we directly used the ANN’s
trained weights.

We set T = 4 time steps for the SNN detector, consistent with our low-latency focus. This means each layer
of the backbone and heads processes 4 spike cycles. Our modifications (like postponed resets) ensure that
this T = 4 captures the necessary precision (in effect, equivalent to a 4-bit activation quantization for the
features). The converted SNN detector achieves an mAP of 28.7% on COCO, which is remarkably close
to the ANN’s 30.1%. The drop of about 1.4 percentage points is modest and can be attributed mostly to
the slight quantization of activation values due to having only 4 time steps. Comparing to recent works on
spiking neural network detectors, such as a spiking RetinaNet achieved via direct training (Kim et al., AAAI
2020) that got mAP in the 20–30% range on COCO, our converted model’s mAP 29% is on par with the
state-of-the-art SNN detectors reported in literature (Zhang et al., 2023), despite us not doing any additional

25



Published in Transactions on Machine Learning Research (04/2025)

SNN-specific training tricks. This is a strong indication that conversion is a viable path to bring SNNs into
complex tasks like detection with minimal performance loss.

Model Time Steps (T) mAP on COCO Validation (%)

Baseline ANN (ResNet-34 RetinaNet) - 30.1
QCFS ANN - 28.7
Converted SNN 2 27.5
Converted SNN 4 28.7
Converted SNN 6 29.3

Table 13: Object detection performance comparison between the baseline ANN and converted SNNs with
varying time steps (T).

Model Time Steps (T) Noise Accuracy (%) Adv. Attack Accuracy (%)

QCFS ANN - 88.7 85.2
Converted SNN 2 86.0 83.5
Converted SNN 4 86.5 83.0
Converted SNN 6 87.0 82.8

Table 14: Robustness performance comparison between the baseline ANN and converted SNNs with varying
time steps (T).

A.12 Robustness Analysis of the Proposed SNN

We conducted a brief experiment to gauge how our SNN handles random noise perturbations on input images,
in comparison to the source ANN. On the CIFAR-10 test set, we introduced additive Gaussian noise to
the images (zero-mean, with a standard deviation equal to 10% of the image pixel range). As shown in
Table 14, the baseline ANN’s accuracy dropped from 95.8% to 88.7% under this noise. Our converted SNN
(ResNet20, T = 4) saw a very similar drop, from 93.6% to about 86.5%. The gap between ANN and SNN
performance remained roughly the same ( 2–3% difference) under noise. This suggests that our conversion
does not degrade the inherent robustness of the model: the SNN reacts to noisy inputs just as the ANN does.
In some cases, we observed the SNN was slightly more tolerant to mild noise — likely because the spike
thresholding can filter out very small fluctuations (a tiny input change might not cause an extra spike if it
doesn’t push the membrane over threshold). However, if the noise is significant, both ANN and SNN will be
affected proportionally.

The enhanced robustness may be attributed of our SNNs may be attributed to the temporal integration,
spike discretization, and inherited characteristics from the source ANN. Temporal robustness arises as
neurons integrate information over T time steps, allowing transient noise to be averaged out, similar to a
voting mechanism. While the effect is limited for small T, it still provides resilience against fleeting input
perturbations. Binary robustness stems from the all-or-none nature of spikes—minor input changes below the
threshold do not affect firing, unlike continuous activations in ANNs, which respond proportionally to small
variations. Adversarial robustness largely depends on the source ANN; if the ANN is adversarially trained,
this robustness is preserved in the converted SNN (Ozdenizci and Legenstein, 2024). While conversion alone
does not inherently improve resistance to adversarial attacks, SNN discontinuities and temporal dynamics
can complicate gradient-based adversarial manipulations, making some attacks less effective.

A.13 Comparison with Binary Networks

Binary and ternary networks often experience a significant drop in accuracy, especially in tasks like ImageNet
classification, due to their reduced representation capacity. Recent studies (Zhang et al., 2022; Bethge et al.,
2021; Zhijun Tu and Wang, 2022; Xu et al., 2021; Shi et al., 2022) have attempted optimizations to mitigate
this accuracy loss, but they still fall short of full-precision networks, as demonstrated in Table 15. In contrast,
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Network Type Dataset Accuracy Normalized CE
(Sakr et al., 2018) BNN CIFAR10 89.6 1×

(Diffenderfer and Kailkhura, 2021) BNN CIFAR10 91.9 1×
Ours SNN CIFAR10 95.82 1.15×

(Zhang et al., 2022) BNN ImageNet 73.4 1×
(Bethge et al., 2021) BNN ImageNet 71.0 1×

Ours SNN ImageNet 75.12 1.18×

Table 15: Comparison of our proposed ANN-to-SNN conversion method with T=4 against binary quantization
approaches

Architecture T Version Accuracy (%)

VGG16
2 PyTorch 94.21%

Lava-DL 94.15%

4 PyTorch 95.82%
Lava-DL 95.61%

ResNet18
2 PyTorch 96.12%

Lava-DL 95.77%

4 PyTorch 96.68%
Lava-DL 96.02%

Table 16: Comparison of the accuracies of our SNN models in PyTorch and Lava-DL.

our SNNs with T=4, even achieving a spike sparsity of 80%, consistently exceed the accuracies achieved by
state-of-the-art binary networks.

Binary Neural Networks (BNNs) replace costly Multiply-Accumulate (MAC) operations with more affordable
pop-count operations, leveraging binary weights and activations. While this reduces energy consumption
compared to SNNs with multiple time steps, which involve additional operations per time step, the substantial
spike sparsity enabled by our ℓ1 regularizer further mitigates this energy usage. Additionally, many state-of-
the-art BNNs aim to enhance their expressive capacity through network modifications (e.g., ReactNet with
PReLU), which significantly increase Floating Point Operations (FLOPs) by more than 2x compared to our
simpler VGG and ResNets architectures. This trade-off between the combined factors of multiple time steps
and additional operations versus pop-count operations and high spike sparsity in SNNs positions our SNN
with T=4 to consume only 15-18% more compute energy than state-of-the-art BNNs, as depicted in Table 15.
The compute energy is estimated from the energy model developed in Datta et al. (2024).

A.14 Deployment of Proposed SNN on Loihi

Table 16 below compares the accuracies of our SNN in PyTorch and Lava-DL. We observed an average
accuracy drop of approximately 0.3% on CIFAR-10 across both VGG and ResNet architectures when using the
Lava-DL implementation compared to the PyTorch version. This discrepancy is likely due to the quantization
of the weights and synaptic inputs inherent to the Lava-DL framework, which introduces slight computational
differences. These results are included in the revised manuscript to provide a detailed analysis of the impact
of deploying the SNN model on Loihi via Lava-DL.

A.15 Pseudo code of proposed conversion framework

In this section, we summarize our proposed ANN-to-SNN conversion framework in Algorithm 1, which
includes training the source ANNs using the QCFS activation function and then converting to SNNs.
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Algorithm 1 : Proposed ANN-to-SNN conversion algorithm
1: Inputs: ANN model fANN (a; W, µ, σ, β, γ) with initial weight W , BN layer running mean µ, running

variance σ, learnable scale γ, and learnable variance β; Dataset D; Quantization step L; Initial dynamic
thresholds λ; Learning rate ϵ; Number of SNN time steps T

2: Output: SNN model fSNN (a; W, µ, σ, β, γ) & output sL(t) ∀t∈[1, T ] where L = fSNN .layers
3: #Source ANN training
4: for e = 1 to epochs do
5: for length of dataset D do
6: Sample minibatch (a0, y) from D
7: for l = 1 to fANN .layers do
8: al = QCFS(γl

(
W lal−1−µl

σl

)
+ βl)

9: ai,l
t = tth-bit, starting from MSB, of the ith term in al

10: end for
11: loss = CrossEntropy(al, y) + λ

∑L
l=1
∑T

t=1 ai,l
t

12: for l = 1 to fANN .layers do
13: W l ←W l − ϵ ∂loss

∂W l , µl ← µl − ϵ ∂loss
∂µl , µl ← σl − ϵ ∂loss

∂σl

14: γl ← γl − ϵ ∂loss
∂γl , βl ← βl − ϵ ∂loss

∂βl , λl ← λl − ϵ ∂loss
∂λl

15: end for
16: end for
17: end for
18: #ANN-to-SNN conversion
19: for l = 1 to fANN .layers do
20: fSNN .W l←fANN .W l,fSNN .θl←fANN .λl, fSNN .µl←fANN .µl,fSNN .σl←fANN .σl

21: fSNN .γl ← fANN .γl,fSNN .βl ← fANN .βl

T
+(1− 1

T
) fANN .γlfANN .µl

fANN .βl

22: end for
23: #Perform SNN inference on input a0

24: a1 = QCFS
(

fSNN .γ1
(

x0fSNN .W 1a0−fSNN .µ1

fSNN .σ1

)
+ fSNN .β1

)
25: s1(t) = tth-bit of a1 starting from MSB
26: for l = 2 to fSNN .layers do
27: for t = 1 to T do
28: zl(t)=

(
fSNN .γl

(
2t−1fSNN .W lsl−1(t)−fSNN .µl

fSNN .σl

)
+fSNN .βl

)
29: end for
30: ul(1) =

∑T
t=1 zl(t)

31: for t = 1 to T do
32: sl(t) = H(ul(t)− fSNN .θl

2 )
33: ul(t + 1) = ul(t)− sl(t) fSNN .θl

2
34: end for
35: end for
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