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Abstract—This paper proposes a cloud-based framework and
platform for end-to-end development and lifecycle management
of artificial intelligence (AI) applications. We build on our
previous work on platform-level support for cloud-managed
deep learning services, and show how the principles of software
lifecycle management can be leveraged and extended to enable
automation, trust, reliability, traceability, quality control, and
reproducibility of Al pipelines. Based on a discussion of use cases
and current challenges, we describe a framework for managing
Al application lifecycles and its key components. We also show
concrete examples that illustrate how this framework enables
managing and executing model training and continuous learning
pipelines while infusing trusted AI principles.

Index Terms—model, pipelines, DevOps, Al, cloud, harden,
monitor-drift

I. INTRODUCTION

Advances in artificial neural networks, coupled with the
explosive growth of data volumes and advances in processing
power, have led to rapid adoption of deep learning in a variety
of applications [1]. Along with algorithmic breakthroughs, the
community is increasingly focused on system and process
level aspects to support scalable machine learning on massive
data sets. Major Cloud providers are also racing to provide
a comprehensive stack that delivers artificial intelligence (AI)
as a service (e.g., Amazon, IBM, Microsoft and Google) by
offering clusters of GPU-backed VMs and containers through
a pay-as-you-go pricing model. Al application developers
can therefore leverage the cloud computing infrastructure to
train machine learning models and take advantage of addi-
tional compute services such as batch processing, container
orchestration and serverless computing for parallelizing and
automating machine learning workloads.

Additionally, cloud platforms lend themselves naturally to
Al pipelines that tend to be bursty and require massive
experimentations (e.g., hyperparameter optimization in Deep
Learning tasks). Cloud is also playing a key role in bringing Al
to the masses and democratizing its uses among a variety of Al
practitioners, by removing the necessity of owning expensive
infrastructure to start experimenting with Al techniques.

However, systematic lifecycle support—including contin-
uous development, training, testing, and deployment of
models—and continuous integration [2] for Al is still in its
infancy. Al has shown promise in a variety of application
domains but its adoption by enterprises is still nascent. We

think one reason for this is the lack of tools and methodologies
to support the development lifecycles of Al solutions, span-
ning data preparation, model design and training, application
development, quality checks (e.g., security, bias, compliance,
etc.), deployment, monitoring, and feedback, as well as the
reproducibility and auditability of the entire process. Machine
learning teams typically build custom tools and work in
ad hoc ways to address requirements in different parts of
the Al lifecycle. This slows down the operationalization of
Al applications and is at odds with the business needs to
rapidly deploy models and continuously evaluate the quality
of them in a production setting. There is clearly a need for a
more streamlined and systematic approach to Al application
development and lifecycle management.

Established practices in cloud software engineering, such
as continuous integration (CI), continuous delivery (CD),
and staged deployments, have brought tremendous benefits
such as scalability of projects to large teams, productivity
of developers, reproducibility of errors, and ability to deliver
code quickly with minimal risk. Applying these principles to
Al applications will bring similar benefits. We hypothesize
that, by leveraging concepts from software engineering and
DevOps [3], [4], we can accelerate the Al lifecycle, foster
collaboration and reuse of AI models across teams with
diverse skill sets, and ultimately achieve higher quality Al
applications.

This paper introduces ModelOps (a portmanteau of Al
models and DevOps), a novel framework and platform for end-
to-end lifecycle management of Al application artifacts. We
build on our previous work on a cloud-native model training
platform [5], [6], and show how to leverage and extend the
principles of software lifecycle to co-evolve Al models and
the applications they are deployed in. While Al lifecycles can
be structurally similar to traditional application lifecycles, we
show that there are some fundamental differences which bring
new challenges and require changes to traditional DevOps
pipelines.

One of the key components of ModelOps is a domain
abstraction language with first-class support for the common
artifacts in Al solutions. This includes datasets, model defi-
nitions, trained models, applications, and monitoring events,
as well as the algorithms and platforms used to process data,
train models, or deploy applications. These artifacts are all



# Domain Model Types # Models Retraining Key Focus and Characteristics

UC1  Retail Price Optimization ~ 10s semi-automated ~ Model variants for geographical regions
UC2  Health Care Time Series 1000s manual Patient-specific models; HIPAA compliance
UC3  Device Maintenance  Visual Recognition  10s semi-automated  Retraining loop based on user feedback
UC4  Financial Services Time Series 100s manual Stringent rules for bias, auditability

UC5  Conversation NLP/NLU 10s semi-automated ~ Ad-hoc pipelines to generate entities/intents
UC6 ML Competitions Various 100s automated Framework for solving Kaggle competitions

TABLET

AT APPLICATION USE CASES

versioned, and their lineage is tracked for reproducibility
and auditability. The abstractions are defined at a level of
granularity that makes it possible to easily author pipelines
customized for a team’s development workflow.

Another important aspect of ModelOps is flexibility. We
have seen that teams have preferences in terms of the tools
and (cloud) platforms they use, and ModelOps is designed to
meet the teams where they are. Proprietary model deployment
platforms or custom data processing services can be easily
plugged into a ModelOps pipeline. ModelOps also allows
easily infusing quality control checks in the lifecycle of an
Al application. Through its pluggable design, users can easily
bootstrap Al pipelines that infuse security checks [7], bias
checks [8], explainability [9], compliance checks, or any
other quality controls and their mediations that are deemed
necessary to deploy Al in enterprise settings.

The rest of the paper is structured as follows. In Section II
we first discuss the unique properties of Al application lifecy-
cle and how they differ from traditional applications lifecycles,
and outline some key uses cases that motivate the need for
ModelOps. In Section III, we discuss the design principles of
ModelOps and sketch the system architecture and its compo-
nents. Section IV describes selected implementation details of
the proposed framework. Section V discusses relevant related
work and how it compares with our approach. The paper ends
with a summary of the benefits, conclusion and future work
in Section VI.

II. OPERATIONALIZING Al

For Al to become mainstream, it will need to move beyond
small-scale and often ad-hoc experiments run by data scientists
to automated operationalized pipelines with inference and
results being directly consumed in enterprise settings. Opera-
tionalizing Al implies integrating AI models and algorithms in
production applications, and encompasses properties on how
the models behave and evolve, and the processes teams use to
build, quality control, and consume these models.

To better understand the requirements and challenges teams
face while operationalizing Al, we have reviewed several use
cases and conducted interviews with internal and external
teams working on research as well as industry projects in-
volving Al This section presents a classification of the key
requirements that arise in the use cases. The section also
highlights characteristics of Al lifecycles that differ from
traditional application lifecycles, as well as a summary of

the challenges that need to be addressed by any platform that
supports these use cases.

A. Use Cases and Challenges for Al Lifecycles

Table I summarizes a set of use cases (UC1-UC6) and their
key characteristics. Our analysis and interviews capture (1)
general information about the use case and personas involved,
(2) model retraining and automation requirements, (3) man-
agement of model metadata and lifecycle events, and (4) pro-
motion of models across environments (e.g., dev/staging/prod).
Although a survey of this size is not statistically representative,
we are still able to identify interesting challenges and pain
points faced by users, which further motivated our work.
Below are some of the key insights:

Automation: Automating the entire pipeline from data prepa-
ration through model training and deployment to runtime mon-
itoring can be time consuming and error-prone. Particularly
UCI1 and UC6 reported that teams find themselves creating
lots of boilerplate code, instead of focusing on the core data
science and machine learning algorithms.

Quality Assurance: As Al models take a more central role in
enterprise applications, steering critical decisions like credit
worthiness checks (UC4) or health monitoring (UC2), the
issues of model fairness and robustness become pressing.
Users must be able to easily plug in quality assurance checkers
(e.g., bias checks, drift detection, etc.) to continuously assert
the performance and reliability of their models.

Traceability: Teams need to be able to answer questions like
“Which data was this model trained on?”, or “Which code
or data change made our accuracy deteriorate?”. However,
keeping track of data and models across the lifecycle is
difficult with little tooling support. This is required in regulated
domains like health care or finance (UC2, UC4).

Risk Management: Rolling out new model versions in an
application introduces risks, and teams need to manage the
risk. Possible techniques include canary releases, A/B testing
with user feedback, and drift detection. These are essential
features for use cases UC1, UC3, and UC4.

Feedback Cycle: Continuous improvement of models requires
an efficient feedback loop all the way from the user interface
to the model training backend. Instead of handcrafting all steps
in this cycle for each use case, teams are demanding reusable
patterns and tools that optionally allow humans to be involved
in the loop. This requirement is strongly driven from use cases
UC3 and UCS.



B. Characteristics of Al Application Lifecycles

While Al lifecycles can be structurally similar to traditional
application lifecycles, there are qualitative and quantitative
differences (see Table II).

Al can require a more diverse set of skills (e.g., data science,
statistics). Also, the workflow stages can be much longer
(e.g., data preparation), and be executed more frequently
(e.g., continuous training). Also, Al applications often need
to manage a huge number of artifact versions (e.g., models
trained with different configuration parameters or datasets).
Model artifacts also do not necessarily evolve in a linear
fashion with incrementing version numbers; many model
variants may coexist, including those personalized for subsets
of users. Finally, while classical applications adapt and apply
configurations at runtime, Al apps require computationally
intensive algorithms at training time.

When it comes to unit and integration tests, traditional
testing typically runs on a small set of inputs and expects
to generate stable and reproducible results. However, as the
domain of Al models is stochastic in nature, test results may
not be (exactly) reproducible. Another key difference is around
build triggers - in addition to code changes, any (significant)
changes in the data assets may require to re-build and evaluate
the quality of the Al solution. Changing one thing might lead
to changing everything in the Al world.

C. Experience from the Front Line

Watson Machine Learning (WML) [10] is a cloud platform
enabling users to train, manage, and deploy models using an
automated, collaborative workflow. Our research on ModelOps
builds on insights we have gathered from analyzing how WML
is used in both production and research settings.

With the basic workflow automation that WML provides
today, a large portion of users already deploy models multiple
times a day. We found that, users who use the system regularly
deploy on average between 1.2 to 226 times per day, with
some accounts peaking at 1000 daily deployments, clearly
showing the need for scalable systems to enable end-to-end
automation of Al workflows. Compared to classical DevOps
CI/CD workflows, Al pipelines can be very long running
and their execution time varies greatly depending on pipeline
complexity and the frameworks used. For example, the average
pipeline for simple models runs around 20 minutes, where 7%
is spent on data preprocessing, 89% is on training, and 4% on
validating the model. A typical long-running pipeline may run
for more than 13 hours, and some deep learning jobs can even
run up to several days. Similar observations for frequency and
duration of different training workloads are also reported by
Facebook applying Al to their workloads [11].

We also identify the importance for Al operations platforms
to abstract from the libraries and frameworks used. For exam-
ple, WML lets users chose the learning frameworks for their
pipeline. Some 63% of submitted training jobs use Spark, 32%
TensorFlow, 3% PyTorch, and 1% use Caffe. The others are
a mix of Darknet, MXNet, or Theano jobs. Furthermore, we
found that, while 81% of data processing flows operate on

IBM’s Cloud Object Storage, almost 18% read and write data
from various relational databases.

D. Al Operations Platform Challenges

This section discusses the challenges in building scalable
Al operations. These serve as requirements for the subsequent
sections on the design and implementation of ModelOps.
Pluggability: Lifecycle services must be easily pluggable
and customizable. Consuming services like bias or robustness
checks in the lifecycle still comes with a relatively high cost
of custom integration, as reported by UC4/UC5. Additionally,
some Al pipelines still require human in the loop such as
continuous learning pipelines where a human needs to validate
certain outcomes or re-label some sample data for re-training.
Therefore, we need to support pipelines that are completely
automated and others that still require a human in the loop
interventions.

Reusability: To provide an easy on-ramp and to keep the
configuration effort at a minimum, users should be able to
use pre-configured templates and patterns for pipelines and
lifecycle capabilities.

Flexibility: The system needs to meet developers and data
scientists where they are, and integrate with the tools and
services they already use and are comfortable with.
Scalability: The system needs to provide scalability across
different dimensions - including model metadata versioning,
parallel pipeline executions, event processing, and model per-
formance monitoring.

Hybrid Environments: While there is a general move to the
cloud, a significant number of Al systems use on-premise
servers, dedicated clusters, edge devices, or a combination
of these. Resource and security heterogeneity in such hybrid
environments introduce a number of challenges.

Fault Tolerance: As ModelOps pipelines plug together a
wide range of tools and infrastructure, many things can fail.
For example, we found that 8% of all data preprocessing
tasks in WML fail or finish with errors, and therefore would
stall the subsequent training of a model. This is particularly
problematic for automated pipelines of critical models.

III. SYSTEM DESIGN

Based on the identified challenges, we develop ModelOps,
a system to operationalize AI. ModelOps revolves around the
core concept of pipelines: a series of tasks that generate,
monitor, and continuously improve Al models. We introduce a
metamodel that captures concepts necessary to develop, gener-
ate, and execute pipelines. Furthermore, ModelOps introduces
production stages and environments as top-level concepts.
Figure 1 illustrates the coarse-grained architecture, including
the internal component stack and external plugin connectors.

A. Model Training Pipelines

We use the concept of pipelines to express the logic applied
in complex automated model training workflows. Users ex-
press pipelines as a directed acyclic graph (DAG) where each
node represents a task and each edge defines the control flow



Classical Application Lifecycle

Al Application Lifecycle

Requires dev / ops skills

Relatively short running

Human speed (low change frequency)

Few versions of software artifacts

Linear evolution of artifacts

Configurations applied at runtime

Codebase changes trigger new builds
Deterministic testing

Monitoring of application performance and KPIs

Involves more diverse skill sets

Long-running, resource intensive

Continuous (re-)training

Huge number of models

Specialized models coexist

Parameters tuned at training time

Data/code changes trigger new builds (re-training)
Statistical/probabilistic testing

Monitoring of model accuracy, drift, and KPIs

TABLE IT
COMPARISON OF APPLICATION DEVELOPMENT LIFECYCLES

Value Adds

Code/Repos Data Model Train Application
and CIICD Pipelines & Serve (Rol?ustness, Platforms
Bias, ...)
Open Plugin Architecture for Tools, Services, and Platforms
Deployment & Quality Lineage Runtime
Execution Experimentation Gates Tracking Adaptation
| Monitoring & Event Processing |
ModelOps Domain Pipeline Task | |Orchestration| | Analytics
Core Metamodel Catalog Engine Engine
Data Model Payload Model
Access Metadata Logging Metrics
Store Store Store
Data Graph Document Timeseries
Storage Database Database Database
ModelOps Platform

Fig. 1. ModelOps Platform Architecture

between tasks (including branch and join nodes). Typical tasks
include data preprocessing, training and deployment, but also
extend to more advanced techniques such as model hardening
[12] and [7], compression [13], and bias mitigation [14]. To
allow for cyclic functionality (e.g., model retraining loops),
ModelOps introduces the concept of events and triggers (see
next subsection).

As ModelOps is part of our ongoing effort to democratize
Al, it is important to make composition and operation of
pipelines accessible to a broad range of users. While the DAG
structure and plugin support for executing arbitrary code as
tasks provide the necessary flexibility to implement complex
custom pipelines, we found that a set of prototypical structures
cover a large set of common use cases.

The use of well defined pipelines primarily solves the
Automation requirements of virtually every use case we have
come across. Figure 2 shows different pipeline prototypes that
we have identified from the use cases outlined in the previ-
ous section, and the tasks used to implement the pipelines.
Pipelines can also support complex automated Quality Assur-
ance checks required by many use cases.

B. Al Operations Metamodel & Metadata Management

ModelOps tracks metadata across the lifecycle, and defines
metamodel entities that abstract the core concepts of Al

Preprocess]—b{ Traln ]—b[Harden HCompress]

Blas
Evaluate De lo

[ Preprocess ]—b{ Traln ]—b{ Evaluate ]—b?
v .

Base l P— : :

Model
User-specific models

Fig. 2. Sample Pipelines: (1) Simple train/deploy pipeline, (2) complex
pipeline with custom plugins enabled, (3) transfer learning pipeline with user-
specific models

operations: assets (including training data sources and models),
accounts (including access keys for data sources), pipelines
and tasks, and event triggers. All entities are automatically
versioned and the full history can be queried.

Figure 3 illustrates a simple timeline with events and tasks
for model training and hardening, as well as the entities
tracked throughout the process. At time ¢; a monitoring
process detects that the training data has changed, and a
corresponding event is raised. This event triggers a Train
Model task which retrains the model m; and then raises a
Model Updated event at t5. Since the CLEVER score [15] of
this model is relatively low (0.721), a Harden Model task is
triggered which tests and hardens the model against various
attacks and generates a new model at time ¢3, with improved
CLEVER score of 0.803.

trained on
» Training Model Model
2 Data Na':nn?gerLl Name: m1 Name: m1
b= Name: d1 Versio.n' 1 Version: 2 Version: 3
w Version: 1 . CLEVER: 0.721 CLEVER: 0.803
4 A\ B A [
t, ;data old™ tz L T
] T >
.g % Event Task Event Task Event Time
g Data Train Model Harden Model
M o | Changed Model Updated Model Updated

Fig. 3. Simple Model Training Pipeline with Metadata



Incorporating metadata management at the core of Model-
Ops allows us to answer the Traceability questions raised by
several use cases as described in the previous section.

C. Monitoring and Event Triggers

What distinguishes Al pipelines from classical DevOps
workflows is the notion of closed feedback loops between the
deployed artifacts and the pipelines that generate them. After
a model has been deployed, and it is used by an application,
runtime monitoring data on the model are fed back into the
pipeline to drive decisions on when run specific pipelines.
For example, UC2 requires models to be retrained when a
certain number of new labeled data are available, and if the
performance of the model drops below a given threshold. In
UC4, bias detection algorithms are used to monitor bias of a
deployed model, and may trigger the execution of a pipeline to
harden that model. In ModelOps, such rules can be formulated
as event triggers. To operate these rules, ModelOps monitors
the runtime performance of deployed models, as well as data
store metrics.

Events allow for the runtime monitoring of models and
applications, and are needed for the Feedback Cycle required
by some use cases. Events can invoke pipelines to act on
runtime signals, completing the feedback loop.

D. Environment Abstractions

A common use case for Al operations is to promote
data, model, or application assets between environments or
operational stages. After models are developed in a local
environment, it moves through a staging phase into production.
Because they are crucial in enabling flexible development
workflows, ModelOps treats environments as first-class citi-
zens in the metamodel. Instead of duplicating configurations
for pipelines and tasks, configurations are parameterized with
environment specific overrides. Promotion of assets between
environments can be automated, or may require sign-off from
a human in the loop, which is recorded in the metadata for
auditability purposes.

The concept of environments as a first class artifacts was
introduced in response to requests from several teams, and
allows users to easily encode best practices to address the
Risk Management concerns.

E. Cross-Cloud Model Training Pipelines

Another key requirement for operationalizing Al is to
provide cross-platform abstractions for the key lifecycle ca-
pabilities. For example, even though the APIs for Amazon’s
AWS SageMaker! and IBM’s Watson Machine Learning?
(WML) platforms provide similar capabilities, the underlying
programming model and API interfaces show some significant
differences. Whereas SageMaker generally requires the user to
provide a custom Docker image with pre-defined entry points,
WML allows the user to upload a zip archive with the model
training code, which then gets deployed into a container in the

Thttps://aws.amazon.com/sagemaker
Zhttps://ibm.com/cloud/machine-learning

cloud environment. Our goal in ModelOps is to abstract from
these subtle API differences, allowing the user to focus on the
data science rather than having to deal with the low-level API
calls and configuration management.

Generic Pipeline

Pipeline ‘

c&r;féglgiae%n [Preprocess H Train }—PQ Deploy]
Pipeline Pipeline for AWS Pipeline for WML
Execution

(Runtime View)

Cloud APIs

AWS APIs WML APIs

Fig. 4. Mapping Generic Pipelines to Cloud Platform Specific APIs

Figure 4 illustrates how ModelOps allows to seamlessly
switch between execution environments. The generic pipeline
definition specified by the user is independent of the target
platform. Upon execution, the runtime automatically instan-
tiates the corresponding task implementations, depending on
which target cloud platform has been specified (e.g, AWS or
WML).

Source Env
(Public Cloud)

=

Target Env
(Private Cloud)

mirror
data

B )

User View

Fig. 5. Injecting Preprocessing Tasks into the Pipeline

The notion of generic pipelines also allows to inject pre-
processing tasks that facilitate the switching between environ-
ments. Consider the scenario in Figure 5 which illustrates a
generic pipeline (User View) to train a model in a private
cloud environment, using a network file system (NFS) for
data storage. The user’s training data happens to reside in
an S3 bucket of a public cloud, therefore during execution
(Runtime View) we automatically inject a task into the pipeline
which mirrors data from the source bucket to the NFS storage,
thereby making it available to the target environment.

1V. IMPLEMENTATION
A. Declarative Pipeline Configuration

Executing Al pipelines requires access to various kinds of
metadata. We distinguish between (1) static metadata con-
figured by the user (e.g., a TensorFlow model with training
data in an S3 bucket), (2) instance metadata (e.g., a deployed
instance of the trained model), and (3) runtime metadata (e.g.,
performance metrics of the model). The static metadata can
be specified in a YAML file (or via a graphical UI).



Figure 1 illustrates a simple pipeline from use case UC3
to train a TensorFlow model, compress the model using
fixed point quantization [13] and export it to CoreML for-
mat, and finally deploy the model (to a mobile device)
with drift monitoring enabled. Note the harden:true and
monitor_drift:true attributes which cause ModelOps
to automatically insert two additional pipeline steps for model
hardening and deploying a model drift detector. Hence, the
declarative pipeline with three tasks effectively gets trans-
formed into a pipeline with five tasks at instantiation time.

Note the platform attribute specifies that the model
should be trained on IBM Watson Machine Learning (wml).
Switching to a different provider or even an on-premise cluster
is as simple as changing that attribute (e.g., aws, gcp).
The domain abstractions in the metamodel and plugin system
automatically adjust the pipeline accordingly.

1 models: )
2 — name: my_model_1

3 type: tensorflow

4 platform: wml

5 training_data: s3:// mybucket/training_images
6  pipelines:

7 — name: train_deploy_pipeline

8 tasks:

9 — name: Train Model

10 _type: modelops. task . TrainModel

11 model: my_model_1

12 harden: true

13 — name: Compress Model

14 _type: modelops . task . CompressModel

15 model: my_model_1

16 output: CoreML

17 — name: Deploy Model

18 _type: modelops. task . DeployModel

19 model: my_model_1

20 monitor_drift: true

Listing 1. Pipeline Configuration Sample

B. Pipeline Templating

ModelOps provides a templating approach that allows users
to easily bootstrap their configurations based on pluggable
pipeline capabilities. We distinguish between pipeline fem-
plates and pipeline transformers, as illustrated in Figure 6. The
former are building blocks of common configuration patterns
that can be instantiated by the user, whereas the latter are
composable pieces of logic that enrich existing configurations
with additional features.

In the example in Figure 6, a simple template with three
pipeline tasks is defined. Note that, in addition to the pipeline
itself, the template also defines configuration entities like
models, data stores, and accounts which are required to execute
the pipeline. The entities are associated with parameters (e.g.,
bucket name of the training data store) whose values are pro-
vided by the user upon instantiation. The figure also illustrates
three sample transformers, along with the structural changes
they apply to the pipeline: (1) a transformer that adds a data
bias check to the pipeline, (2) a transformer that branches out
a separate model version for A/B testing, and (3) a transformer
that publishes metadata events for each task to enable detailed
model lineage tracking.

Pipeline templates and transformers are easily extensible
and can be provided as plugins, for example in a separate
Github repository, or as a pip Python package. We are cur-
rently in the process of releasing the ModelOps framework as

Preprocess/Train/Deploy Template

%]

] bbbt .
g_ Pipeline: [ Preprocess H Train HDeploy)
E’ —_— . ;
o Entities: | Model I | Datastore I | Account I
£ I

.GE)- Parameters: {{bucket}} {{use_rname}}

o {{api_key}}

Add Data Bias Check
to the Pipeline

Add Model Version
for AIB Testing

Add Lineage Tracking
across the Pipeline

Pipeline Transformers

Fig. 6. Parameterizable Pipeline Templates and Transformers

open source, to leverage contributions from the community and
build a comprehensive catalog of pluggable and composable
pipeline templates.

C. Pipeline Execution

ModelOps pipelines are configured in a generic format that
allows us to map it to different target execution platforms.
In our current implementation, we have successfully mapped
ModelOps pipelines to Apache Airflow®, OpenWhisk Com-
poser*, Jenkins®, as well as Kubernetes/Argo®. Figure 7 illus-
trates the high-level code generation approach. The generic
pipeline definition (typically represented in a YAML file, or
using a Python based DSL) is combined with a set of task
implementations in the task catalog, and ModelOps then gen-
erates code for the respective backend system (Airflow DAG,
Jenkins pipeline, Composer program, or Argo workflow). This
approach provides the flexibility to plug in new execution
platforms, and ensures that the catalog of task implementations
is fully reusable across these different environments.

Source Generated Execution
Artifacts Artifacts Platforms
Airflow [ . ]
Airflow
Task DAG
Catalog Jenkins Jenkins
Python ModelOps ipeli
G( ython) Codep CPlpeIlne _
eneric Generator omposer
Pipeline Program _ OpenWhisk
Definition
Argo

Fig. 7. Pipeline Code Generation and Execution

3https://airflow.apache.org
“https://github.com/ibm-functions/composer
Shttps://jenkins.io
Shttps://github.com/argoproj/argo



V. RELATED WORK

Integrating DevOps principles and Al is relatively nascent,
as discussed by [16], but tentative efforts to scale and automate
Al workflows can be seen in industry and academia. Uber has
developed Michelangelo [17] for developing, managing, and
deploying machine learning models at scale. Industry specific
Al platforms are being shaped, e.g., building analytics and
recommendation models for video gaming using an agent store
to automate experimentation and retraining [18]. Ali et al.
[19] developed an ML based sales prediction system for au-
tomative CRM supporting model training/re-training, storage,
and deployment. Tovar et al. [20] study automatic dependency
management for scientific applications on clusters, where a
package graph is transformed into a workflow graph, which
then gets executed on a target compute cluster. There is also
comprehensive related work on automated machine learning
(AutoML) [21], with iterative pipelines guided by a search
algorithm to find optimal models over large hyperparameter
search spaces. Yet, the aforementioned offerings still do not
address the complete Al lifecycle with pluggable pipelines and
co-evolution of models and applications.

Google introduced the TFX platform which also focuses on
pipelines for data processing and model training [22]. TFX
uses lower level configuration details, including a proprietary
schema for training data as well as a TensorFlow model spec-
ification API, whereas ModelOps focuses on domain abstrac-
tions for platform-independent pipelines, allowing to easily
plug in lifecycle capabilities (bias, robustness, drift, etc) for
building and operationalizing AI models. Perhaps the closest
effort to our work is Algorithmia’s Al Layer product [23]. The
Al Layer attempts to automate DevOps for machine learning
and deep learning models by providing several capabilities
such as pipelining, versioning, and infrastructure optimization.
Our framework complements what Algorithmia’s Al layer
provides by allowing pluggable Al domain abstractions such
as bias checking, drift detection, etc. Li et al. [24] discuss
challenges associated with building a scalable ML service,
including feature computation over global data. Their focus
is mainly on real-time serving of large number of models,
without considering the integration lifecycle.

Polyzotis et al. [25] have reported on data management
challenges in production machine learning pipelines. Mod-
elHub [26] and ModelDB [27] are lifecycle management
systems for deep learning models to support efficient storing,
querying, and sharing of artifacts, but they do not consider a
generalized view on the co-evolution of models and applica-
tions. Recent work on trust in Al emphasizes the need for a
supplier’s declaration of conformity (SDoC) to describe the
lineage of AI models along with the safety and performance
testing it has undergone [28]. This factsheet-based certification
of AI models directly relates to ModelOps, as it provides the
underlying events and metadata to track changes across the
lifecycle. We are actively working on evolving the concepts of
Al factsheets and the ModelOps system requirements derived
from them.

The accumulation of technical debt in ML systems was
addressed in [29] where different machine learning specific
contributing causes of technical debt including models, data,
system-design, system configuration, and their mutual interac-
tions are discussed. ModelOps can potentially reduce this debt
by DevOps-style standardization of the Al model lifecycle.

VI. CONCLUSION

Many teams are still struggling to leverage the full potential
of Al in their applications, partly due to the investment in
skills, tooling, and platforms needed to support Al lifecycles
while meeting enterprise governance requirements. Al oper-
ations support is critical to narrowing these gaps by allow
these teams to more easily incorporate Al technologies in their
applications, whether it be systematic versioning of model
artifacts, or building reusable pipelines with quality gates that
guarantee that deployed models are certified and meet the
business ever-changing needs and regulations.

Our work aims to build a foundation for the emerging
field of AI lifecycle management. Based on a review and
survey of existing use cases in industry and research, we
identify the key opportunities and challenges in the field.
The ModelOps platform is designed around the concepts
of metadata versioning, Al domain abstractions, re-usable
patterns, event-based pipelines, and seamless integration of
lifecycle capabilities. Our prototype implementation, denoted
ModelOps, rigorously follows the principles of pluggability,
extensibility, consumability and platform independence all in
a cloud-native setting. For example, sophisticated algorithms
that check and repair vulnerabilities in a model could be
incorporated into a model building pipeline with a few lines
of code. The AI domain abstractions enable teams to use
bias checking, drift detection, or model robustness algorithms
without excessive configuration or knowledge of the details of
how these algorithms work or where they run.

Our goal is to enable users to continuously evolve and
improve their AI models across the lifecycle, systematically
reduce and manage the risks of model deployments, and
ultimately build more reliable and trusted Al applications. In
future work, we plan to onboard more large-scale use cases
onto the ModelOps platform, to further validate and evolve the
domain concepts and programming model for operationalizing
Al across cloud platforms. Moreover, as we collect more
data about the structure and characteristics of users’ pipeline
executions, we are targeting the cloud provider’s perspective
and investigate techniques for optimized scheduling under
quality and resource constraints.
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