
Compute Or Load KV Cache? Why not Both?

Shuowei Jin * 1 Xueshen Liu * 1 Qingzhao Zhang 1 Z. Morley Mao 1

Abstract

Large Language Models (LLMs) are increasingly
deployed in large-scale online services, enabling
sophisticated applications. However, the compu-
tational overhead of generating key-value (KV)
caches in the prefill stage presents a major bottle-
neck, particularly for long-context inputs. Prefix
caching mitigates this issue by storing KV caches
for reuse, reducing redundant computation. De-
spite its advantages, prefix caching suffers from
high latency due to the limited I/O bandwidth
of storage devices, constraining inference effi-
ciency. To address this challenge, we introduce
Cake, a novel KV cache loading system that op-
timally utilizes both computational and I/O re-
sources in parallel. Cake employs a bidirec-
tional scheduling strategy that dynamically bal-
ances KV cache computation and loading, ensur-
ing efficient resource utilization. Additionally,
Cake incorporates an adaptive scheduling mech-
anism that seamlessly integrates with non-prefix
caching requests, improving system throughput
and adapting to fluctuating resource availabil-
ity. Through extensive evaluations across various
hardware configurations, datasets, and storage
conditions, Cake achieves on average 2.6× reduc-
tion in Time to First Token (TTFT) compared to
compute-only and I/O-only methods. Our find-
ings highlight Cake as an effective and practical
solution for optimizing long-context LLM infer-
ence, bridging the gap between computation and
I/O efficiency in large-scale AI deployments.

1. Introduction
Large Language Models (LLMs) have become a corner-
stone of modern AI applications, powering a wide range

*Equal contribution 1University of Michigan. Correspon-
dence to: Shuowei Jin <jinsw@umich.edu>, Xueshen Liu <li-
uxs@umich.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

of large-scale online services. As these models are in-
creasingly adopted, ensuring efficient online inference
has emerged as a critical research and engineering chal-
lenge (Agrawal et al., 2024; Zheng et al., 2023; Miao et al.,
2024; Leviathan et al., 2023; Ning et al., 2023; Jin et al.,
2025). Recent advancements in LLMs, such as the ex-
pansion of context windows (openAI, 2024; Anthropic,
2024), have enabled sophisticated applications including
long document understanding (Wang et al., 2024), long-
context Retrieval-Augmented Generation (RAG) (Jiang
et al., 2024), and the creation of complex LLM-based
agents (Zhang et al., 2024). However, although these ca-
pabilities improve utility, they also introduce significant
computational overhead during inference, due to the cost
of generating key–value (KV) caches.1 The resulting la-
tency can noticeably degrade user experience. Given this
computational bottleneck, strategies to optimize LLM in-
ference workflows are essential.

In real-world applications, many tokens are reused across
users and conversations, presenting an opportunity for sys-
tem optimization. For instance, in multi-turn conversations,
follow-up queries reuse the key-value (KV cache) pairs
from prior tokens, while in Retrieval-Augmented Genera-
tion (RAG) workflows, document KV cache can be shared
across multiple user queries (Jin et al., 2024; Chan et al.,
2024). To reduce these redundancies, prefix caching stores
previously computed KV cache and loads them into GPU
memory for inference when the corresponding tokens are
hit. Leading LLM service providers, including OpenAI,
Anthropic, and DeepSeek, have integrated prefix caching
mechanisms into their inference systems, lowering infer-
ence costs by over 50% (OpenAI, 2024; Anthropic, 2023;
Deepseek, 2024).

Despite its advantages, deploying prefix caching at scale
poses a key challenge: designing a high-capacity KV cache
management system across heterogeneous memory layers
while ensuring low loading latency for optimal Time-to-
First-Token (TTFT) during inference. State-of-the-art in-
ference engines (Kwon et al., 2023; Zheng et al., 2023)
typically store KV cache in GPU and CPU memory, ensur-

1KV cache is widely used in state-of-the-art inference systems
to reduce computational overhead during decoding for each re-
quest.

1

Compute Or Load KV Cache? Why not Both?

Yes

No

In GPU
Memory Start Decode

In CPU
Memory

No

Yes

In Disk
Load KV from
Local/Remote

Disk

Load KV from
CPU Memory

Compute KV
No

Yes

Cake

Bandwidth: 2TB/s
Size Limit: ~80GB

Bandwidth: 25GB/s
Size Limit: ~1.8TB

Bandwidth:
0.5~4GB/s

Size Limit: ~26TB

Figure 1. Workflow of long-context LLM inference with prefix
caching. Cake operates during the KV cache loading phase (high-
lighted in blue). The configuration parameters are based on the
specifications of a LambdaLab GPU server (Lambda, 2024).

ing minimal latency. However, GPU and CPU memory are
both limited and expensive, often requiring the eviction of
KV cache for long-context requests, making them imprac-
tical for large-scale inference services. To address this lim-
itation, hierarchical storage systems have been proposed,
leveraging CPU memory, local disks, and remote storage
for managing KV cache caches (Gao et al., 2024; Liu et al.,
2023; Yao et al., 2024). Figure 1 illustrates the hierarchical
workflow of LLM inference with prefix caching. Upon re-
ceiving a query, the system searches for reusable KV cache
caches across three storage tiers:

• GPU Memory: The fastest but most capacity-limited
option (bandwidth: ∼2TB/s, size: ∼80GB). If the
KV cache cache is found, decoding proceeds immedi-
ately.

• CPU Memory: Offers greater capacity (bandwidth:
∼25GB/s, size: ∼1.8TB) but is slower than GPU mem-
ory.

• Disk Storage: The largest capacity option (bandwidth:
0.5–4GB/s, size: ∼26TB) but also the lowest bandwidth.

• Compute: If no KV cache cache is found across all lev-
els, the system computes it from scratch.

Due to the substantial capacity differences in the storage hi-
erarchy, a significant portion of KV cache caches reside on
local or remote disks. As evaluated in AttentionStore (Gao
et al., 2024), approximately 80% of cache hits occur at the
disk level. However, fetching large KV cache from disk is
constrained by the low I/O bandwidth of PCIe or network-
based remote storage, significantly impacting TTFT, which
adversely affects user experience.

Contribution. In this paper, we introduce Cake
(Computation and I/O Aware KV cache CachE loader), a

novel KV cache loading system designed to minimize la-
tency when loading KV cache from high-capacity, low-
bandwidth storage layers. Cake optimally leverages the
distinct characteristics of both computational and I/O re-
sources in parallel, significantly reducing TTFT by 2.6x on
average in long-context prefix caching scenarios.

In addition to reducing latency, Cake is designed con-
sidering real-world practicality. We propose an adaptive
scheduling mechanism that efficiently shares compute re-
sources with non-prefix caching requests, improving over-
all throughput by 26%. Additionally, Cake dynamically
adjusts to fluctuations in network and computational re-
sources, ensuring consistently optimal latency.

Furthermore, we conduct extensive experiments across di-
verse setups and provide a detailed analysis of Cake’s ef-
fectiveness. Our findings offer practical insights into when
Cake achieves the greatest performance gains, serving as a
valuable guide for future real-world deployments.

To the best of our knowledge, Cake is the first system to
demonstrate that efficiently utilizing both computational
and I/O resources can optimally reduce TTFT in long-
context prefix caching scenarios. Prior approaches ei-
ther rely exclusively on computation or solely on I/O for
KV cache loading (Liu et al., 2023; Kwon et al., 2023),
leaving a significant gap in understanding how to leverage
the unique characteristics of both computation and I/O for
efficient KV cache cache loading. Cake addresses this gap,
providing a comprehensive and adaptive solution for long-
context prefix caching scenarios.

2. Related Work
Previous work has explored two primary directions to de-
velop practical prefix caching systems: (1) algorithm-level
compression techniques that reduce the size of KV cache,
thereby decreasing loading time, and (2) system-level
KV cache management strategies that expand cache capac-
ity across heterogeneous memory layers.

KV cache Compression. Most work compress the
KV cache through quantization, token pruning, and model
architectural modifications. Quantization methods (Hooper
et al., 2024; Kang et al., 2024; Liu et al., 2024b) reduce
the precision of KV cache representations while maintain-
ing accuracy. Token pruning approaches like LLMLin-
gua (Jiang et al., 2023), ScissorHands (Liu et al., 2024a),
and H2O (Zhang et al., 2023) identify and remove less im-
portant tokens from the KV cache. At the model architec-
ture level, Grouped-Query Attention (GQA) (Ainslie et al.,
2023) reduce memory footprint by sharing key-value heads
across queries in the group, while Multi-head Latent At-
tention (MLA) compresses KV cache into compact latent
vectors to reduce KV cache size.

2

Compute Or Load KV Cache? Why not Both?

System Optimizations. vLLM (Kwon et al., 2023) and
SGLang (Zheng et al., 2023) mainly optimize KV cache
management between GPU DRAM and CPU memory, en-
abling low-latency loading despite limited capacity. Cache-
dAttention (Gao et al., 2024) extends this by employing a
hierarchical KV cache management system across memory
and disk mediums, effectively support multi-turn conver-
sations. CacheGen (Liu et al., 2023) addresses scenarios
where KV cache is stored in remote data storages, apply-
ing adaptive compression methods to reduce the latency of
loading through network.

While these approaches focus on reducing the I/O load la-
tency to reduce TTFT, our work tackles the problem from
a different angle: combining computation and I/O in paral-
lel to further reduce latency. It is an orthogonal design to
existing methods.

3. Background
Attention and KV cache. The attention mecha-
nism (Vaswani et al., 2017) is a core component of LLMs,
allowing them to model token relationships efficiently.
KV cache is a technique to improve attention module in-
ference efficiency.

Given an input sequence X , the attention module first
transforms it into queries, keys, and values:

Q = XWQ, K = XWK , V = XWV

where WQ, WK , and WV are learned projection matrices.
The attention scores are then computed as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V

where dk is the key dimension.

During autoregressive decoding, this computation repeats
at each step t, generating a new token xt based on previ-
ous tokens x<t. However, the key and value vectors for
x<t remain unchanged across decoding steps. To elimi-
nate redundant computation, modern systems cache these
as past K and past V, computing only the query for xt

along with the new key kt and value vt. This optimization,
known as KV cache, significantly reduces computational
overhead.

Chunk Prefill. Chunk prefill is a technique used to opti-
mize LLM inference, particularly for long input sequences.
State-of-the-art LLM inference engines (Kwon et al., 2023;
Zheng et al., 2023) split inference into two phases:

• Prefill: Computes the KV cache for the input prompt.
• Decode: Generates tokens sequentially using the cached

KV, updating it incrementally.

For long-context inputs, the prefill stage is highly compute-
intensive, requiring substantial GPU resources for a long
period. Chunk prefill (Agrawal et al., 2023; 2024) mitigates
this by dividing the input sequence into smaller chunks to
prefill it chunk by chunk and batching small chunk pre-
fill together with decode requests. To be specific, vLLM
forms a batch of requests for each inference step based on
a predetermined token budget. The scheduler prioritizes
decode requests, allocating one token from the budget to
each. Any remaining tokens in the budget are then assigned
to prefill requests for chunk prefill. This prevents long
prefill operations from blocking decode requests, improv-
ing GPU utilization by co-locating compute-bound (pre-
fill) and memory-bound (decode) tasks in the same batch.
Currently, it is the default suggested scheduling mode in
vLLM (Kwon et al., 2023).

We design Cake upon this approach, scheduling chunks
for either computation or I/O. Compared to token-
level scheduling, chunk-level scheduling better exploits
GPU parallelism for maximum efficiency. Compared to
sequence-level scheduling, it is more fine-grained, allow-
ing greater flexibility for optimal scheduling strategies.

4. Design of Cake
We design Cake to optimize the latency of loading
KV cache from storage layers with limited bandwidth but
large capacity, such as local disks and remote storage
—where most cache hits occur in prefix caching scenarios.
Cake leverages both compute and I/O resources bidirec-
tionally and in parallel to minimize this latency. We present
Cake workflow in Figure 2.

In this section, we first analyze the compute and I/O capa-
bility in common inference server setups. Next, we present
key insights into Cake ’s scheduling design, focusing on
how to efficiently utilize the unique characteristics of com-
pute and I/O. Finally, we discuss in real-world scenarios
how Cake dynamically adapts to fluctuations in compute
and I/O bandwidth, ensuring optimal latency.

Part 1: Analysis of Compute and I/O Capability. We
first analyze the performance characteristics of KV cache
loading and computation across common inference system
configurations. We evaluate the equivalent throughput (cal-
culated as KV cache file size divided by processing time)
using vLLM (Kwon et al., 2023) with a chunk size of 512
tokens on the LongAlpaca-7B model (Chen et al., 2023).
Our experiments use various GPUs to process a random
context of 32k tokens. A more detailed analysis across var-
ious configurations is provided in Section 5.

Our results in Figure 3 demonstrate that computation and
I/O resources achieve comparable throughput in typical in-
ference scenarios. Specifically, computing KV cache with

3

Compute Or Load KV Cache? Why not Both?

Stage0: E ating cake makes me happy , I enjoy eating cakes .

Stage1: E ating cake makes me happy , I enjoy eating cakes .

….

StageN-1: E ating cake makes me happy , I enjoy eating cakes .

StageN E ating cake makes me happy , I enjoy eating cakes .

Compute I/O LoadUnfinished Chunks Loaded Chunks

Figure 2. Workflow of Cake: Computation starts from the beginning of the sequence, while I/O loading starts from the end. Both
processes progress in parallel and merge in the middle, ensuring efficient KV cache loading and minimal latency.

HDD
A100

H100

NVMe S
SD

Netw
ork

0.0

1

2

3

4

5

Eq
ui

va
le

nt
 T

hr
ou

gh
pu

t (
GB

/s
)

~200MB/s

~3.3GB/s

~4GB/s ~4GB/s

~1GB/s

Figure 3. Comparison of equivalent KV cache loading bandwidth
(bytes/second) across different storage mediums and GPU com-
putation. (Bandwidth for GPU computation is calculated by di-
viding the total KV cache size by processing time.)

an H100 GPU achieves similar throughput to loading from
SSD and is much faster than network bandwidth used
in Google Cloud Egress (˜1GB/s) (Google Cloud, 2023).
This observation validates our design principle of leverag-
ing both compute and I/O resources in parallel to minimize
latency.

Part 2: Scheduling Based on the Distinct Characteris-
tics of Compute and I/O. We design the Cake core sched-
uler as a bidirectional KV cache loader based on the fol-
lowing key insight:

Insight: Compute cost increases for later tokens,
while I/O cost remains constant regardless of token
position.

This is because, in the attention operation, later tokens must
attend to all previous tokens, resulting in a higher compu-
tational cost as the sequence progresses. However, the size
of key-value vectors remain the same regardless of posi-
tion, meaning I/O access cost is uniform across all tokens.

0

100

200

300

400

500

600

700

KV
 C

ac
he

 M
em

or
y

Us
ag

e
(M

B)

0 10 20 30 40 50 60
Chunk Index (512 tokens per chunk)

40

60

80

100

St
ep

 T
im

e
(m

s)

NVIDIA A100
NVIDIA H100
SSD 32 Gbps
Memory Usage

Figure 4. Chunk prefill time per step using different methods v.s.
chunk index.

To validate this hypothesis, we conducted long-context pre-
fill experiments using chunked prefill, where each chunk
contains a fixed 512 tokens. As shown in Figure 4, the re-
sults exhibit a clear pattern: latency per chunk increases
linearly with its index, with earlier chunks requiring less
computation, while KV cache memory usage remains con-
stant across all chunks.

Leveraging this insight, Cake schedules earlier chunks for
computation and later chunks for I/O loading. As illus-
trated in Figure 2, upon receiving a request, Cake splits the
sequence into chunks and initiates two parallel processes:
(1) The local GPU computes KV cache from the beginning
chunk, progressing forward. (2) The data loading process
fetches KV cache from the last chunk, moving in reverse
direction. This bidirectional strategy continues until the
two processes meet in the middle, completing KV cache
generation for the entire prompt.

Part 3: Practical Considerations for Real-World De-
ployment. In practical deployment, Cake is designed to
address two key challenges: (1) Efficiently sharing com-
pute resources with non-prefix caching requests. (2) Han-
dling fluctuations in compute and I/O availability.

4

Compute Or Load KV Cache? Why not Both?

For the first challenge, real-world inference scenarios in-
clude requests without saved prefix cache that require com-
pute resources for prefill and decoding. To ensure sys-
tem throughput, Cake can prioritize other users’ compute
needs, allocating only available resources to Cake com-
putation. Since Cake can still rely on I/O loading even
when compute resources are constrained, we introduce an
adaptive scheduling mode that extends vLLM’s schedul-
ing logic as discussed in Section 3. This mode follows a
prioritized allocation order: 1. Decoding requests. 2. Non-
prefix-cache chunked prefill. 3. Prefix-cache chunked pre-
fill.

For the second challenge, since compute resources are
shared across multiple users, and I/O bandwidth could fluc-
tuate over time, Cake must dynamically adapt to these
variations while maintaining optimal latency. However,
this challenge is naturally mitigated by Cake ’s bidirec-
tional parallel design—whenever I/O or compute availabil-
ity changes, the merging point of the two processes shifts
accordingly, always ensuring minimal latency.

5. Evaluation
In this section, we evaluate Cake across a variety of real-
world setups and discuss its benefits and limitations in de-
ployment. These insights can guide future implementations
and optimizations. We begin by outlining the experiment
setup and then conduct comprehensive experiments to as-
sess the impact of the following factors on Cake:

1. Varying I/O bandwidth and compute configurations
(Section 5.2). 2. Sequence length (Section 5.4). 3. Model
architecture (Section 5.5). 4. KV cache compression tech-
niques (Section 5.6). 5. Resource fluctuation scenarios
(Section 5.7). 6. Adaptive Scheduling (Section 5.8). 7.
System overhead (Section 5.9).

5.1. Experiment Setup

Models. We evaluate Cake on various long-context
models with different architectures and sizes, including
LongAlpaca-7B and LongAlpaca-13B (Chen et al., 2023),
which are based on LLaMA 2, as well as LLaMA 3.1-
8B and LLaMA 3.1-70B. Due to hardware constraints, we
use the FP8-weight version for LLaMA 3.1-70B, while all
other models use FP16 weights. The first two are multi-
head attention (MHA) models, while the last two apply
group query attention (GQA), which will introduce differ-
ent computation vs. memory. We use BF16 as the default
kv cache data type. The details of the model are listed in
Table 1.

Evaluation Metrics. We use time-to-first-token (TTFT)
as our primary evaluation metric. TTFT is widely used in
LLM inference, measuring the time between the arrival of

Model #Layers KV-size/Token #KV Hd #Attn Hd

LongAlpaca-7B 32 512 kB 32 32
LongAlpaca-13B 40 800 kB 32 32
LLaMA 3.1-8B 32 128 kB 8 32
LLaMA 3.1-70B 80 320 kB 8 64

Table 1. Comparison of experimental model configs.

a user query and the generation of the first token. In other
words, it reflects either the time of loading stored KV cache
or computing new KV cache.

Datasets. We evaluate Cake across various context lengths
using three datasets with different task types: LongChat (Li
et al., 2023) for multi-turn conversations, and TriviaQA and
NarrativeQA (Bai et al., 2023) for long-document question-
answering tasks. According to statistical analysis from
CacheGen (Liu et al., 2023), most dataset queries range be-
tween 4k and 16k tokens in length. Since specific token val-
ues do not impact Cake’s performance evaluation (only to-
ken length matters), we generate synthetic prompts by uni-
formly sampling token lengths every 2k tokens within this
range. Additionally, as discussed, Cake is designed to opti-
mize the latency of loading cached KV cache from high-
capacity, low-bandwidth storage layers. Thus, through-
out our evaluation, we precompute and store all requests’
KV cache in advance.

Baselines. We compare Cake to two types of KV cache
prefill/loading mechanisms:

• Compute-only methods, which employ chunk prefill to
compute all KV cache. We use vLLM (v0.6.2) in chunk
prefill mode with token budget sizes of 512 by default. In
Section 5.3, we evaluate how different token budget sizes
affect Cake’s performance.

• I/O Load-only, which loads saved KV cache from lo-
cal/remote disks through disk/network. We use LMCache
(v0.1.4).

Hardware setting. We run our evaluation on two server
configurations: 1) A server equipped with two NVIDIA
A100 80GB GPUs connected via NVLink, a 64-core AMD
EPYC 7763 CPU, and 2.0TB of memory. 2) A server with
a single NVIDIA H100 GPU, a 26-core vCPU, and 200GB
of memory.

I/O Bandwidth Control. To accurately manage I/O band-
width and ensure reproducibility, We simulate the chunk
I/O loading process by calculating the appropriate delay
time based on the chunk size and network bandwidth. The
simulated storage backend is then set to pause data trans-
fer to GPU memory until the specified delay has elapsed.
We choose a variety of bandwidth configurations as demon-
strated in Table 2. We choose the I/O loading part chunk
size as 128 tokens as it empirically strikes an optimal bal-

5

Compute Or Load KV Cache? Why not Both?

Physical Config Bandwidth

Google Cloud standard egress limit 7 Gbps
Google Cloud tier-1 egress limit 25 Gbps
Lambda Lab SSD read 32 Gbps
Samsung 980 pro SSD read 56 Gbps
Infiniband (RoCE) 100 Gbps

Table 2. I/O bandwidth with corresponding physical configura-
tion

ance between bandwidth utilization and processing granu-
larity.

GPU Resource Utilization. In online serving scenarios,
a single machine often handles multiple user requests con-
currently. As a result, a user’s prefill operation may not
always have access to the full GPU resources. To evaluate
different GPU resource availability conditions, we adopt
vLLM’s token budget scheduling policy, as discussed in
§3, to represent resource utilization. For instance, if the
total token budget is 512 tokens and a Cake request con-
sumes 256 tokens while the remaining tokens are allocated
to other users, we define this scenario as 50% GPU utiliza-
tion. We use this definition to simulate varying levels of
GPU resource utilization.

KV cache Compression methods. KV cache Compres-
sion methods, which are orthogonal to our work. They can
compress the KV cache size to make them more efficiently
transferable through I/O. In our evaluation, we combine
the most common 8-bit quantization and 3-bit quantization
proposed by KVQuant (Hooper et al., 2024) with Cake to
further evaluate its performance.

5.2. Evaluation Across Compute and I/O
Configurations

In this section, we evaluate the performance of Cake un-
der varying computational resources and I/O settings. Ta-
ble 3 presents the speedup achieved by Cake compared to
an I/O-only approach and a compute-only approach across
different GPU hardware, GPU utilization levels, and I/O
configurations. We conduct tensor parallel inference using
a 2×A100 setup.

We observe that, for a fixed GPU utilization level, the
speedup over I/O-only increases progressively from A100
to H100 and further to 2×A100. For example, under 100%
GPU utilization with an I/O load bandwidth of 32 Gbps
(representing a common server SSD read bandwidth), the
speedup over I/O-only improves from 2× on A100 to 2.23×
on H100, and 2.63× on 2×A100. This aligns with our de-
sign expectation that as compute resources increase, the
performance advantage over an I/O-only approach contin-
ues to grow. Similarly, analyzing different GPU utiliza-
tion levels within the same hardware setup yields the same

Hardware Util 7 Gbps 25 Gbps 32 Gbps 56 Gbps 100 Gbps

2xA100 12.5% 1.87\2.18 1.25\5.06 1.18\6.12 1.09\9.54 1.04\15.27
2xA100 50% 4.57\1.29 2.07\2.03 1.80\2.24 1.46\3.06 1.30\4.62
2xA100 87.5% 7.22\1.15 2.75\1.53 2.36\1.67 1.83\2.17 1.50\3.02
2xA100 100% 8.10\1.10 3.03\1.43 2.63\1.59 1.97\2.00 1.54\2.64
A100 12.5% 1.57\2.85 1.14\7.22 1.10\8.95 1.03\14.06 1.02\23.59
A100 50% 3.35\1.46 1.68\2.55 1.55\3.01 1.30\4.26 1.17\6.48
A100 87.5% 5.05\1.26 2.18\1.88 1.90\2.10 1.56\2.91 1.30\4.07
A100 100% 5.62\1.21 2.41\1.81 2.00\1.91 1.69\2.71 1.30\3.52
H100 12.5% 1.74\2.40 1.21\5.80 1.13\6.90 1.08\11.08 1.05\18.24
H100 50% 4.13\1.38 1.94\2.25 1.72\2.55 1.45\3.62 1.27\5.34
H100 87.5% 6.23\1.17 2.53\1.66 2.23\1.86 1.74\2.44 1.50\3.54
H100 100% 7.13\1.17 2.74\1.56 2.40\1.75 1.84\2.25 1.49\3.08

Table 3. Speedup over I/O-only \ compute-only methods across
different compute and I/O configurations. Chunk size: 512,
Model: LongAlpaca-13B, Sequence length: 16K.

trend. Additionally, examining Table 3 row by row, we
observe that as I/O bandwidth increases, the speedup over
compute-only also improves. This highlights that Cake ef-
fectively balances both compute and I/O resources to en-
hance overall performance.

From a broader perspective, the most favorable deploy-
ment scenario for Cake occurs when its speedup is approx-
imately 2× compared to both compute-only and I/O-only
approaches. This scenario arises when computation and
I/O capabilities are well-balanced, enabling Cake to effi-
ciently utilize both in parallel and achieve the best aver-
age speedup over either baseline. We observe that in most
cases, Cake provides a significant improvement, demon-
strating its strong performance.

To aid interpretation, we highlight scenarios with at least
a 1.5× improvement over both baselines in teal, indicat-
ing cases where Cake effectively leverages both resources.
Conversely, we use text in red to mark cases where Cake
achieves more than a 10× improvement over one baseline,
which suggests a severe bottleneck in the other resource.
In such extreme cases, comparing with the more capable
resources, Cake’s speedup is limited.

To ensure a fair evaluation of Cake ’s average performance
improvement over the two baseline methods, we exclude
the data points highlighted in red, as comparing Cake ’s
speedup relative to an extremely weak baseline would be
misleading. After filtering these outliers, we compute the
average speedup to provide a more balanced assessment of
Cake ’s overall efficiency. On average, Cake achieves 2.23x
and 3.76x speedup over I/O-only and compute-only meth-
ods respectively, under different bandwidth and computa-
tion utilization levels.

5.3. Evaluation Across Varying Chunk Sizes

In this section, we evaluate the performance of Cake un-
der varying chunk sizes configurations (i.e., the number of
batched tokens) in vLLM’s chunked prefill mode.

6

Compute Or Load KV Cache? Why not Both?

ChunkSize BW LongAlpaca-7B LongAlpaca-13B

64 32Gbps 1.47\3.47 1.47\3.55
128 32Gbps 1.83\2.40 1.79\2.45
256 32Gbps 2.06\2.09 1.96\2.20
512 32Gbps 2.20\1.94 2.03\1.91
1024 32Gbps 2.15\1.70 2.18\1.91
2048 32Gbps 2.31\1.71 2.04\1.70

Table 4. Speedup over I/O-only \ compute-only methods across
different chunk sizes of tokens and different models. Hardware
1xA100, Utilization 100%, Sequence length: 16K.

As shown in Table 4, Cake achieves an average Time-to-
First-Token (TTFT) speedup of 1.96× over I/O-only meth-
ods and 2.25× over compute-only methods across different
chunk sizes. Smaller chunk sizes lead to underutilization of
computational resources, while larger chunk sizes enable
more efficient utilization. In general, the speedup over I/O-
only methods increases with chunk size, reflecting Cake’s
growing reliance on computation. These results demon-
strate Cake’s adaptability to varying compute efficiencies
induced by different chunk configurations, allowing it to
automatically optimize TTFT.

5.4. Evaluation Across Sequence Lengths

In this section, we evaluate the performance of Cake
under varying sequence length settings.Table 5 presents
the speedup achieved by Cake compared to an I/O-only
approach and a compute-only approach across different
compute-I/O configurations and sequence length settings.

We observe that, for a fixed computation and I/O configura-
tion, increasing the sequence length consistently improves
the speedup over compute-only methods. As discussed in
Section 4, later tokens in a sequence require more com-
putation. Therefore, as sequence length grows, leveraging
I/O-only methods to load tokens from later positions be-
comes increasingly beneficial compared to compute-only
approaches, leading to a continuous increase in speedup.

Following the interpretation aid strategy in Section 5.2, We
highlight less effective scenarios in red and highly benefi-
cial scenarios in teal, observing that Cake is highly benefi-
cial in many cases. Notably, there is a single scenario where
Cake underperforms compared to compute-only methods.
This occurs when the sequence is short, as using 2×A100
for computation is significantly faster than loading data via
a 7 Gbps bandwidth. However, due to Cake ’s scheduling
algorithm, it still assigns a portion of the workload to the
I/O-only method, introducing overhead. For future work,
we can optimize this scheduling strategy by incorporating
an estimation mechanism. If one resource significantly out-
performs the other, Cake could adaptively fall back to a
single-resource mode, utilizing only the more efficient re-
source to minimize overhead.

However, on average, we can still observe Cake improves

Hardware BW Util 4k Tokens 8k Tokens 12k Tokens 16k Tokens

2xA100 7Gbps 12.5% 2.02\1.83 1.97\1.95 1.94\2.09 1.87\2.18
2xA100 7Gbps 50% 4.75\1.08 4.97\1.21 4.71\1.24 4.57\1.29
2xA100 7Gbps 87.5% 7.31\1.00 7.49\1.06 7.61\1.15 7.22\1.15
2xA100 7Gbps 100% 9.06\0.99 8.65\1.04 8.43\1.08 8.10\1.10
2xA100 32Gbps 12.5% 1.13\4.41 1.19\5.17 1.19\5.68 1.18\6.12
2xA100 32Gbps 50% 1.68\1.64 1.87\1.99 1.80\2.09 1.80\2.24
2xA100 32Gbps 87.5% 2.47\1.45 2.45\1.52 2.49\1.66 2.36\1.67
2xA100 32Gbps 100% 2.67\1.25 2.73\1.43 2.69\1.52 2.63\1.59
1xA100 7Gbps 12.5% 1.62\2.30 1.59\2.47 1.58\2.67 1.57\2.85
1xA100 7Gbps 50% 3.58\1.27 3.48\1.32 3.45\1.41 3.35\1.46
1xA100 7Gbps 87.5% 5.36\1.12 5.18\1.15 5.17\1.21 5.05\1.26
1xA100 7Gbps 100% 6.31\1.11 5.95\1.13 5.66\1.15 5.62\1.21
1xA100 32Gbps 12.5% 1.04\6.37 1.06\7.20 1.08\8.04 1.10\8.95
1xA100 32Gbps 50% 1.38\2.10 1.49\2.48 1.50\2.71 1.55\3.01
1xA100 32Gbps 87.5% 1.83\1.65 1.93\1.87 1.91\1.97 1.90\2.10
1xA100 32Gbps 100% 2.06\1.55 2.15\1.79 2.00\1.79 2.00\1.91

Table 5. Speedup over I/O-only \ compute-only methods across
different sequence length settings, Hardware: 2xA100, Chunk
size 512, Model: Long-Alpaca-13B

prefilling speed 3.34x faster than the I/O-only method and
2.24x faster than the compute-only method.

5.5. Evaluation Across Model Architectures

Table 6 presents the speedup achieved by Cake compared to
an I/O-only approach and a compute-only approach across
different compute-I/O configurations and model architec-
tures. Both LongAlpaca models employ the Multi-Head
Attention (MHA) mechanism, while the LLaMA 3 series
utilizes Grouped Query Attention (GQA) to compress the
KV cache, thereby reducing KV cache memory overhead.

By comparing the LongAlpaca-7B and LLaMA 3.1-8B
models under the same compute and I/O settings, we ob-
serve that, despite the I/O bandwidth remaining unchanged,
the speedup relative to the compute-only method increases.
This is due to the benefits of GQA, which reduces the
KV cache size, effectively enhancing I/O efficiency.

Furthermore, comparing different model sizes within the
same series reveals that the speedup for I/O-only methods
decreases as the model size grows. This indicates that com-
putation requirements scale faster than I/O demands, lead-
ing to diminishing relative gains from compute optimiza-
tions.

We also identified four data points where Cake did not
outperform the baseline, similar to the issue discussed in
Section 5.4. This can be mitigated by incorporating a fall-
back mechanism that dynamically adjusts resource alloca-
tion when one resource significantly outperforms the other.
Despite the overheads on extreme scenarios, Cake on aver-
age achieves 2.68x speedup over the I/O-only method and
3.01 speedup over the compute-only method.

7

Compute Or Load KV Cache? Why not Both?

Util BW LongAlpaca-7B LongAlpaca-13B Llama3.1-8B Llama3.1-70B

12.5% 7Gbps 1.92\2.15 1.87\2.18 1.20\5.56 0.99\12.92
12.5% 32Gbps 1.20\5.98 1.18\6.12 0.98\19.47 0.80\44.26
50% 7Gbps 4.79\1.30 4.57\1.29 1.88\2.13 1.25\3.99
50% 32Gbps 1.85\2.22 1.80\2.24 1.13\5.42 0.91\12.24
100% 7Gbps 8.55\1.10 8.10\1.10 2.81\1.52 1.66\2.64
100% 32Gbps 2.79\1.60 2.63\1.59 1.37\3.18 1.02\6.86

Table 6. Speedup over I/O-only \ compute-only across different
model settings, Hardware: 2xA100, Chunk size 512, Seq-len:
16k.

BW 16-bit 8-bit 3-bit

7Gbps 8.10\1.10 4.63\1.22 2.39\1.63
25Gbps 3.03\1.43 2.07\1.87 1.41\3.09
32Gbps 2.63\1.59 1.85\2.12 1.37\3.73
56Gbps 1.97\2.00 1.49\2.85 1.26\5.38

Table 7. Speedup over I/O-only \ compute-only under different
low-precision compression, Hardware: 2xA100 100% Utiliza-
tion, Chunk size 512, Seq-len: 16k, Model: Long-Alpaca-13B.

5.6. Incorporating KV cache Compression with Cake

Table 7 presents the speedup achieved by Cake com-
pared to the I/O-only approach and compute-only approach
across different I/O configurations and different compres-
sion ratio. We can observe similar to the effect of GQA,
low-precision compression ratio reduces the KV cache
size, thus enhancing the I/O load performance, thus Cake
speedup over compute-only methods continues to increase
as the precision decreases.

5.7. Handling Fluctuations in Resources

To evaluate Cake’s performance under fluctuating compute
and I/O conditions, we randomly sample a compute budget
trace uniformly between 0–512 tokens to represent vary-
ing computational power. Similarly, we randomly sample
an I/O bandwidth trace between 0–25 Gbps to assess how
Cake adapts its scheduling strategy.

As shown in Figure 5, Cake dynamically leverages both I/O
and computational resources, regardless of fluctuations. Its
bidirectional prefetching mechanism automatically identi-
fies the optimal merging point to minimize TTFT, ensur-
ing optimal performance even under varying resource con-
straints.

5.8. Evaluation on Adaptive Scheduling

In this evaluation, we give an example to evaluate the per-
formance of the adaptive scheduling algorithm in Cake. We
begin by sending a prefix-caching request of length 16K,
representing a typical long-context prefix-caching scenario
in Cake. To simulate a burst of incoming requests from
other users, we then randomly generate 22 additional re-
quests with sequence lengths ranging from 32 to 448, fol-
lowing a spiked distribution.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (s)

0

5000

10000

15000

To
ke

n
in

de
x

Compute thread
I/O load thread

Figure 5. Cake trace under fluctuate network and available com-
putation power. Hardware: A100, Model: Long-Alpaca-7B, I/O
Bandwidth: 0-25Gbps, Compute Utilization: 0-512 budget, Seq-
len: 16k.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

0

200

400

To
ke

n
Ba

tc
h

Si
ze

Default Scheduling
Adaptive Scheduling

Figure 6. Token batch size over time under dynamic workload
with default and adaptive scheduling. Adaptive scheduling of
Cake flattens the spikes of dynamic workloads thus maximizes
the system throughput.

Using these request traces, we compare the default vLLM
scheduling algorithm with Cake’s adaptive scheduling al-
gorithm for inference execution. The result is demon-
strated in Figure 6. In vLLM’s default scheduling mode,
our prefix-caching request arrives first and is processed to
completion before handling subsequent non-prefix-caching
requests. This approach results in suboptimal GPU utiliza-
tion, as the token batch size is not fully utilized at all times.

In contrast, Cake ’s adaptive scheduling prioritizes decod-
ing and prefill operations for incoming non-prefix-caching
requests while allocating the remaining compute budget for
chunk prefill of the prefix-caching request. It successfully
keeps the GPU busy and reduces the overall finish time
from 1.5s to 1.19s, improving throughput by 26%.

5.9. Overheads of Cake

To evaluate the overhead introduced by Cake, we com-
pare the duration of each engine step between the original
vLLM and vLLM with Cake. As shown in Figure 7, we
launch a chunk prefill job on both A100 and H100 servers.
The chunk prefill time of vLLM with Cake closely follows
the trace of the original vLLM, indicating minimal perfor-
mance impact.

8

Compute Or Load KV Cache? Why not Both?

0 5 10 15 20 25
Chunk Index

40

60

Ti
m

e
(m

s) NVIDIA A100
NVIDIA H100

Figure 7. Per-step inference time in vLLM before and after inte-
gration with Cake. The solid line represents the step time without
Cake, while the ’x’ markers indicate step times with Cake.

These results demonstrate that Cake introduces negligible
overhead, as it only performs a lightweight check to deter-
mine whether the next chunk has been fetched at runtime.

6. Discussion
Compatibility with Other Acceleration Design. Cake is
orthogonal and complementary to various widely adopted
acceleration methods, such as speculative decoding, multi-
token prediction, KV cache quantization, eviction, and
prefill-decode disaggregation. These methods can be cat-
egorized into three main classes:

Decoding Throughput Optimization Methods: Techniques
such as speculative decoding (Leviathan et al., 2023; Li
et al., 2024) and multi-token prediction (Cai et al., 2024)
optimize the decoding phase by parallelizing token genera-
tion. Cake, targeting the prefill stage, is inherently compati-
ble with these methods, allowing concurrent enhancements
in both phases without conflicts.

KV Cache Size Reduction Methods: Approaches like KV
cache quantization (Hooper et al., 2024; Kang et al., 2024;
Liu et al., 2024b) and eviction (Jiang et al., 2023) reduce
memory usage by compressing or selectively removing to-
kens from the KV cache. Cake treats the KV cache as data
and is agnostic to its specific representation or compres-
sion scheme. Our evaluation with compression methods
(Section 5.6) demonstrates that Cake can seamlessly inte-
grate with these techniques, further reducing latency and
enhancing performance.

System-level Acceleration Methods: Prefill-decode disag-
gregation (Zhong et al., 2024) separates prefill and decode
stages onto different hardware, often using separate prefill
and decode servers. Cake can be integrated into such de-
sign by managing bidirectional KV cache loading across
these servers. The prefill server computes the KV cache
from the beginning of the sequence and streams it for-
ward, while the decode server concurrently manages two
streams—the incoming stream from the prefill server and
the reverse stream from I/O operations. The two processes
meet in the middle, ensuring efficient cache preparation.

Compatibility in Distributed Environments. Cake’s

design also adapts naturally to distributed inference se-
tups. Our evaluation with tensor-parallelism using multi-
ple GPUs within a single node (Table 3 and Table 5) con-
firms that Cake effectively utilizes increased computational
resources. For multi-node distributed environments, Cake
operates independently within each inference engine, al-
lowing each node to optimize its inference latency. Con-
sequently, Cake remains effective even in extensive, dis-
tributed inference deployments.

7. Conclusion
In this paper, we introduced Cake, the first KV cache load-
ing system that optimally balances computation and I/O to
minimize Time to First Token (TTFT) in LLM inference.
Unlike prior approaches that focus on either compute or
I/O in isolation, Cake employs a bidirectional scheduling
strategy that dynamically adapts to resource availability,
achieving an average 2.6× TTFT reduction compared to
baselines. Additionally, its adaptive scheduling mechanism
enhances system throughput, making it a practical and eas-
ily deployable solution for LLM-serving systems. Through
extensive evaluations, we provide a detailed analysis of the
scenarios where Cake is most beneficial, offering valuable
insights for real-world deployment.

Acknowledgments
We would like to thank our anonymous reviewers for their
valuable comments and feedback. This work was par-
tially supported by Boeing as well as NSF under grants
CMMI-2038215, CNS-2321532, and National AI Institute
for Edge Computing Leveraging Next Generation Wireless
Networks, Grant–2112562.

Impact Statement
This paper presents Cake, a system that enhances LLM in-
ference by efficiently combining computation and I/O re-
sources to reduce latency. By improving the responsiveness
of long-context LLM applications, Cake enables smoother
user experiences and broader accessibility across various
domains, from conversational AI to document processing.
Its efficient design can help maximize the utility of exist-
ing infrastructure, making large-scale models more practi-
cal for real-world deployment. While increased efficiency
may accelerate LLM adoption, we encourage responsible
deployment with fair resource allocation and transparent
system usage. Overall, Cake contributes to advancing scal-
able and effective LLM serving for various applications.

9

Compute Or Load KV Cache? Why not Both?

References
Agrawal, A., Panwar, A., Mohan, J., Kwatra, N., Gulavani,

B. S., and Ramjee, R. Sarathi: Efficient llm inference
by piggybacking decodes with chunked prefills. arXiv
preprint arXiv:2308.16369, 2023.

Agrawal, A., Kedia, N., Panwar, A., Mohan, J., Kwatra, N.,
Gulavani, B. S., Tumanov, A., and Ramjee, R. Taming
throughput-latency tradeoff in llm inference with sarathi-
serve. arXiv preprint arXiv:2403.02310, 2024.

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,
Lebrón, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Anthropic. Prompt caching, 2023. URL https://www.
anthropic.com/news/prompt-caching.

Anthropic. Anthropic model comparison, 2024. URL ht
tps://docs.anthropic.com/en/docs/abo
ut-claude/models#model-comparison-tab
le.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., et al. Longbench: A
bilingual, multitask benchmark for long context under-
standing. arXiv preprint arXiv:2308.14508, 2023.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,
and Dao, T. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

Chan, B. J., Chen, C.-T., Cheng, J.-H., and Huang, H.-
H. Don’t do rag: When cache-augmented generation
is all you need for knowledge tasks. arXiv preprint
arXiv:2412.15605, 2024.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han,
S., and Jia, J. Longlora: Efficient fine-tuning of
long-context large language models. arXiv preprint
arXiv:2309.12307, 2023.

Deepseek. Prompt caching api, 2024. URL https://pl
atform.deepseek.com/api-docs/news/new
s0802/.

Gao, B., He, Z., Sharma, P., Kang, Q., Jevdjic, D., Deng, J.,
Yang, X., Yu, Z., and Zuo, P. {Cost-Efficient} large lan-
guage model serving for multi-turn conversations with
{CachedAttention}. In 2024 USENIX Annual Technical
Conference (USENIX ATC 24), pp. 111–126, 2024.

Google Cloud. Network bandwidth, 2023. URL https:
//cloud.google.com/compute/docs/netw
ork-bandwidth. Accessed: 2023-10-30.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Jiang, H., Wu, Q., Lin, C.-Y., Yang, Y., and Qiu, L.
Llmlingua: Compressing prompts for accelerated in-
ference of large language models. arXiv preprint
arXiv:2310.05736, 2023.

Jiang, Z., Ma, X., and Chen, W. Longrag: Enhancing
retrieval-augmented generation with long-context llms.
arXiv preprint arXiv:2406.15319, 2024.

Jin, C., Zhang, Z., Jiang, X., Liu, F., Liu, X., Liu, X.,
and Jin, X. Ragcache: Efficient knowledge caching
for retrieval-augmented generation. arXiv preprint
arXiv:2404.12457, 2024.

Jin, S., Liu, X., Wu, Y., Zheng, H., Zhang, Q., Prakash, A.,
Lentz, M., Zhuo, D., Qian, F., and Mao, Z. M. Plato:
Plan to efficiently decode for large language model in-
ference. arXiv preprint arXiv:2402.12280v2, 2025.

Kang, H., Zhang, Q., Kundu, S., Jeong, G., Liu, Z., Kr-
ishna, T., and Zhao, T. Gear: An efficient kv cache com-
pression recipefor near-lossless generative inference of
llm. arXiv preprint arXiv:2403.05527, 2024.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Lambda. Lambda lab gpu cloud specifications, 2024. URL
https://lambdalabs.com/service/gpu-c
loud.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, D., Shao, R., Xie, A., Sheng, Y., Zheng, L., Gonza-
lez, J., Stoica, I., Ma, X., and Zhang, H. How long can
context length of open-source llms truly promise? In
NeurIPS 2023 Workshop on Instruction Tuning and In-
struction Following, 2023.

Li, Y., Wei, F., Zhang, C., and Zhang, H. Eagle: Spec-
ulative sampling requires rethinking feature uncertainty.
arXiv preprint arXiv:2401.15077, 2024.

Liu, Y., Li, H., Du, K., Yao, J., Cheng, Y., Huang, Y.,
Lu, S., Maire, M., Hoffmann, H., Holtzman, A., et al.

10

https://www.anthropic.com/news/prompt-caching
https://www.anthropic.com/news/prompt-caching
https://docs.anthropic.com/en/docs/about-claude/models#model-comparison-table
https://docs.anthropic.com/en/docs/about-claude/models#model-comparison-table
https://docs.anthropic.com/en/docs/about-claude/models#model-comparison-table
https://docs.anthropic.com/en/docs/about-claude/models#model-comparison-table
https://platform.deepseek.com/api-docs/news/news0802/
https://platform.deepseek.com/api-docs/news/news0802/
https://platform.deepseek.com/api-docs/news/news0802/
https://cloud.google.com/compute/docs/network-bandwidth
https://cloud.google.com/compute/docs/network-bandwidth
https://cloud.google.com/compute/docs/network-bandwidth
https://lambdalabs.com/service/gpu-cloud
https://lambdalabs.com/service/gpu-cloud

Compute Or Load KV Cache? Why not Both?

Cachegen: Fast context loading for language model ap-
plications. arXiv preprint arXiv:2310.07240, 2023.

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z.,
Kyrillidis, A., and Shrivastava, A. Scissorhands: Ex-
ploiting the persistence of importance hypothesis for llm
kv cache compression at test time. Advances in Neural
Information Processing Systems, 36, 2024a.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman,
V., Chen, B., and Hu, X. Kivi: A tuning-free asym-
metric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

LMCache. Lmcache, 2024. URL https://github.c
om/LMCache/LMCache.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z.,
Zhang, Z., Wong, R. Y. Y., Zhu, A., Yang, L., Shi, X.,
et al. Specinfer: Accelerating large language model
serving with tree-based speculative inference and veri-
fication. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pp. 932–
949, 2024.

Ning, X., Lin, Z., Zhou, Z., Wang, Z., Yang, H., and Wang,
Y. Skeleton-of-thought: Large language models can do
parallel decoding. Proceedings ENLSP-III, 2023.

openAI. Gpt-4o, 2024. URL https://platform.o
penai.com/docs/models/gpt-4o.

OpenAI. Prompt caching, 2024. URL https://plat
form.openai.com/docs/guides/prompt-c
aching.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. At-
tention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/3f5ee
243547dee91fbd053c1c4a845aa-Paper.p
df.

Wang, M., Chen, L., Fu, C., Liao, S., Zhang, X., Wu, B.,
Yu, H., Xu, N., Zhang, L., Luo, R., et al. Leave no docu-
ment behind: Benchmarking long-context llms with ex-
tended multi-doc qa. arXiv preprint arXiv:2406.17419,
2024.

Yao, J., Li, H., Liu, Y., Ray, S., Cheng, Y., Zhang, Q.,
Du, K., Lu, S., and Jiang, J. Cacheblend: Fast large
language model serving with cached knowledge fusion.
arXiv preprint arXiv:2405.16444, 2024.

Zhang, Y., Sun, R., Chen, Y., Pfister, T., Zhang, R., and
Arik, S. Ö. Chain of agents: Large language mod-
els collaborating on long-context tasks. arXiv preprint
arXiv:2406.02818, 2024.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36:34661–34710, 2023.

Zheng, L., Yin, L., Xie, Z., Huang, J., Sun, C., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., et al.
Efficiently programming large language models using
sglang. arXiv preprint arXiv:2312.07104, 2023.

Zhong, Y., Liu, S., Chen, J., Hu, J., Zhu, Y., Liu, X., Jin, X.,
and Zhang, H. {DistServe}: Disaggregating prefill and
decoding for goodput-optimized large language model
serving. In 18th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 24), pp. 193–
210, 2024.

11

https://github.com/LMCache/LMCache
https://github.com/LMCache/LMCache
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/guides/prompt-caching
https://platform.openai.com/docs/guides/prompt-caching
https://platform.openai.com/docs/guides/prompt-caching
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Compute Or Load KV Cache? Why not Both?

A. Details of Cake Algorithm
The workflow of Cake can be described in detail as follows:

1. Upon receiving a request, Cake first splits the input sequence into chunks of a predetermined size.

2. Compute the prefix hash of all the chunks and find the latest prefix hash that exists in the storage backend, and determine
the total tokens.

2. Two pointers are initialized: compute ptr starting at the beginning of the sequence (index 0), and io ptr at the end of
the sequence (index total tokens− 1).

3. Two parallel processes are initiated: a) A GPU computation thread that starts from compute ptr and moves forward. b)
An I/O streaming thread that starts from io ptr and moves backward.

4. The GPU computation thread: - Computes KV cache for chunks starting from compute ptr. - After each chunk
computation, it updates compute ptr by adding the chunk size. - Continues until compute ptr reaches or surpasses
io ptr, or until the required KV cache is found in CPU memory.

5. The I/O streaming thread: - Fetches pre-computed KV cache for chunks ending at io ptr from storage (local or remote)
to CPU memory. - After each chunk fetch, it updates io ptr by subtracting the chunk size. - Continues until io ptr reaches
or goes below compute ptr.

6. The process concludes when the two pointers meet or cross each other, indicating that KV cache for the entire sequence
has been either computed or loaded.

7. Finally, Cake returns the complete KV cache for the entire sequence, ready for use in the subsequent inference steps.

This bidirectional approach allows Cake to efficiently utilize both computational and I/O resources simultaneously, mini-
mizing idle time and optimizing the overall latency of KV cache preparation for long-context LLM inference.

Algorithm 1 Cake Bidirectional KV cache Loading Algorithm
1: procedure COMPUTEKV
2: while compute ptr < io ptr do
3: if ISINCPUMEMORY(compute ptr, COMP CHUNK SIZE) then
4: Signal I/O worker to stop
5: break
6: Compute KV cache for chunk starting at compute ptr using GPU
7: compute ptr ← compute ptr + COMP CHUNK SIZE

8: procedure FETCHKV
9: while compute ptr < io ptr do

10: Fetch KV cache for chunk ending at io ptr from storage to CPU Memory
11: io ptr ← io ptr − FETCH CHUNK SIZE

12: Initialize CPU Memory, compute ptr = 0, io ptr = total tokens− 1
13: Start COMPUTEKV in a new thread
14: Start FETCHKV in a new thread
15: Wait for both threads to complete
16: return KV cache for the entire sequence

B. Implementation
We implement Cake by extending LMCache (LMCache, 2024) and integrating it with vLLM (Kwon et al., 2023), adding
approximately 1,000 lines of code.

B.1. Enhancements to LMCache

LMCache, originally developed as the KV cache management backend for CacheGen (Liu et al., 2023), hashes token
chunks into keys for efficient KV cache retrieval. To enable Cake to continuously receive KV cache in the background, we
introduce the following enhancements:

12

Compute Or Load KV Cache? Why not Both?

Asynchronous Retrieval We implement an asynchronous get operation to complement LMCache’s existing asyn-
chronous put functionality. This involves creating a dedicated worker thread that continuously reads chunk keys from
a task queue and retrieves the corresponding KV cache to memory. Upon successful retrieval, the chunk’s key is added to
a resident dictionary for quick access.

Buffer Preallocation We modify LMCache to preallocate chunk buffers as soon as a chunk key is pushed to the queue.
This optimization allows the worker to immediately write received KV cache into memory and proceed to the next chunk
without delay.

B.2. Integration with LLM Serving Systems

Cake operates concurrently with LLM serving systems like vLLM. The integration process works as follows:

1. Upon receiving a request, Cake divides it into chunks based on the scheduled token budget.

2. Hashed keys for these chunks are pushed to the task queue in reverse order and call batch retrieve API.

3. While the asynchronous get worker fetches KV cache from the end of the sequence, vLLM begins chunk prefill from
the start.

4. After each vLLM engine step, Cake checks if the next chunk of tokens is already in the resident dictionary using the
is resident API.

5. If the chunk is resident, Cake interrupts the chunk prefill process and directs vLLM to begin token generation.

6. If the chunk is not resident, chunk prefill continues until it encounters a chunk present in the dictionary.

This bidirectional approach allows Cake to efficiently utilize both I/O and computational resources, potentially reducing
the Time To First Token (TTFT) for long-context LLM inference tasks.

13

