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ABSTRACT

Recent advances in Graph Neural Networks (GNNs) and Graph Transformers
(GTs) have been driven by innovations in architectures and Positional Encodings
(PEs), which are critical for augmenting node features and capturing graph topol-
ogy. PEs are essential for GTs, where topological information would otherwise be
lost without message-passing. However, PEs are often tested alongside novel ar-
chitectures, making it difficult to isolate their effect on established models. To ad-
dress this, we present a comprehensive benchmark of PEs in a unified framework
that includes both message-passing GNNs and GTs. We also establish theoretical
connections between MPNNs and GTs and introduce a sparsified GRIT attention
mechanism to examine the influence of global connectivity. Our findings demon-
strate that previously untested combinations of GNN architectures and PEs can
outperform existing methods, offering a more comprehensive picture of the state-
of-the-art. To support future research and experimentation in our framework, we
make the code publicly available.

1 INTRODUCTION

Graph machine learning has traditionally relied on message-passing neural networks (MPNNs),
which work through iterative rounds of neighborhood aggregation (Kipf & Welling, 2016). In each
round, nodes update their states by incorporating information from their neighbors along with their
own current states. While effective in capturing local graph structures, this approach can strug-
gle with modeling long-range dependencies. Graph Transformer (GT) architectures utilize full at-
tention mechanisms to circumvent this, but necessitate new methods to integrate graph topology
information (Dwivedi & Bresson, 2020). This is similar to how positional encodings (PEs) in Nat-
ural Language Processing (NLP) represent token positions within sequences (Vaswani et al., 2017).
However, encoding positional information in graphs is more complex than in sequences. Ideally,
positional encodings should allow the reconstruction of the graph’s topology from node features and
provide useful inductive biases to improve performance (Black et al., 2024). Despite the growing
number of new graph transformer architectures and positional encodings, there has been a lack of
systematic evaluation comparing these encodings across different GT architectures. This makes it
difficult to determine whether observed performance improvements are due to novel encodings or
architectural innovations.

In this paper, we conduct a comprehensive evaluation of various positional encodings for both
message-passing and transformer frameworks. Our goal is to understand the impact of positional
encodings on model performance and identify the best combinations of encodings and architectures.
By benchmarking state-of-the-art graph transformers with a variety of positional encodings, we
provide a clear picture of the current state of the field and offer guidance for future research. Addi-
tionally, we further strengthen the theoretical connection between MPNNs and GTs. Although GTs
are generally considered fundamentally different due to their use of attention mechanisms, we show
that under certain conditions, MPNNs and GTs can be equally expressive, with additional results
that extend the scope of previous analyses (Veličković, 2023; Müller & Morris, 2024). Specifically,
MPNNs can be applied to fully-connected graphs and operate like a GT, while attention mech-
anisms can also be adapted for local message-passing. Our theoretical analysis demonstrates that
both MPNNs and GTs can have the same expressiveness when the underlying topology of the MPNN
is fully connected. Based on these insights, we extend our evaluation to include MPNNs with po-
sitional encodings on fully-connected graphs and modify state-of-the-art attention mechanisms for
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localized graph convolutions. Our results indicate that by combining existing positional encodings
and architectures, state-of-the-art performance can be achieved on several benchmark datasets.

Our contributions can be summarized as follows:

1. We conduct an empirical evaluation of various positional encodings across message-
passing neural networks and Graph Transformers to consolidate the current state-of-the-art
and find new combinations that surpass the previous best models.

2. We provide theoretical insights into the relationship between MPNNs and GTs, showing
conditions where they share similar expressiveness. Based on these observations, we intro-
duce a sparsified version of GRIT attention for localized graph convolutions, which proves
effective across multiple datasets.

3. We provide a unified evaluation framework implementing all used architectures and posi-
tional encodings in one codebase to facilitate the testing of new positional encodings and
models. The code is made publicly available.1

2 RELATED WORK

Message-Passing Neural Networks (MPNNs). Earlier graph neural networks (GNNs), including
models like GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), GraphSAGE (Hamilton
et al., 2017), and GIN (Xu et al., 2018), have paved the way for various advancements. Some con-
volutional filtering variants incorporate edge attributes into their architecture. GatedGCN (Bresson
& Laurent, 2017) employs gates as sparse attention mechanisms, while GINE (Hu et al., 2019)
augments features with local edges. Recent efforts aim to enhance the expressive power of GNNs,
addressing the limitations imposed by the 1-WL test. For instance, Principal Neighborhood Ag-
gregation (PNA) (Corso et al., 2020) combines different aggregators with degree-scalers to tackle
isomorphism tasks in continuous feature spaces. Higher-order GNNs, like k-GNN (Morris et al.,
2019; Maron et al., 2019), build on the k-WL algorithm, a more generalized version of the WL test,
offering increased expressive power. Other approaches, such as GSN (Bouritsas et al., 2022) and
GIN-AK+ (Zhao et al., 2021), utilize substructures (subgraphs) for message passing, while methods
like CIN (Bodnar et al., 2021) operate on regular cell complexes, although they remain less pow-
erful than the 3-WL test. Importantly, these models serve as baselines in some graph transformers,
demonstrating comparable performance with certain GTs, as cited in GraphGPS (Rampášek et al.,
2022), GRIT (Ma et al., 2023), and Exphormer (Shirzad et al., 2023).

Graph Transformers (GTs). Graph Transformers (GT) were popularized in recent years
(Rampášek et al., 2022; Liu et al., 2023; Mao et al., 2024; Zhang et al., 2023). Modules includ-
ing positional or structural encodings, global attention, and local message passing are considered as
mainstream design components for a standard graph transformer model, which successfully solved
the problem of in-scalability (Rampášek et al., 2022; Shirzad et al., 2023) in large graphs, lack of
graph inductive bias (Ma et al., 2023), and over-smoothing problems (Chen et al., 2022b). Apart
from its maturity in some machine learning fields such as natural language processing, computer
vision, or bioinformatics that many previous GT papers have mentioned, GTs have also demon-
strated their strength by extending their application to scientific domains such as differential equa-
tions (Bryutkin et al., 2024; Choromanski et al., 2022), quantum physics (Wang et al., 2022a), and
symbolic regression (Zhong & Meidani). Some recent works are theoretical analysis in graph trans-
formers regarding the theoretical expressive power of GT (Zhou et al., 2024), and the analytical
relationship between positional encodings in GT (Keriven & Vaiter, 2024; Black et al., 2024). How-
ever, there is currently a lack of a practical benchmark that compares different types of positional
encodings. MPNNs and GTs have been compared extensively in the literature, with early work ob-
serving that these models can simulate one another (Veličković, 2023). A more rigorous theoretical
analysis has demonstrated that GTs can be related to MPNNs when a virtual node is employed (Cai
et al., 2023). Furthermore, it has been established that GTs can simulate MPNNs, provided that the
positional encodings are sufficiently strong (Müller & Morris, 2024). In contrast, our findings show
conditions under which MPNNs operating on fully connected graphs can achieve equal expressive-
ness to that of GTs, without requiring additional positional encodings or architectural modifications.

1https://anonymous.4open.science/r/PEGT-34DB
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GTs traditionally make use of positional encodings to encode the graph topology, especially when
full attention is used. We provide an in-depth review of positional encodings and benchmarking in
Section 3.1 and Appendix A.1.

3 THEORETICAL FOUNDATIONS

3.1 POSITIONAL ENCODINGS

Numerous positional encodings for graph-based models have been discussed in recent research, but
they are often scattered across various ablation studies with no unified framework. In this paper,
we categorize and streamline the formal definition of existing graph-based positional encodings into
three main categories: Laplacian-based, Random walk-based, and others.

We start with some fundamental definitions related to graphs. Let the input graph be G = (V, E , X),
where X ∈ R|V| represents the node features. For any graph G, essential properties include the
degree matrix D and the adjacency matrix A. The graph Laplacian matrix L is defined as L = D−A.
A normalized graph Laplacian is given by L = I −D− 1

2AD− 1
2 = UTΛU , where the i-th row of U

corresponds to the graph’s i-th eigenvector ui, and Λ is a diagonal matrix containing the eigenvalues
of L. We define a graph neural network model f(·) parameterized by Θ. We denote Xk

PE as the
positional encoding for node K.

Laplacian-based methods utilize functions of the k-th eigenvector Uk,:, Λ, and parameters Θ. Ex-
amples include Laplacian Positional Encoding (LapPE) (Rampášek et al., 2022) and Sign-Invariant
Networks (SignNet) (Lim et al., 2022).

Xk
PE = f (Uk,:,Λ,Θ, {·})

Random walk-based methods are derived from polynomial function p(·) of D and A. Examples
are Random-Walk Structural Encoding RWSE (Rampášek et al., 2022), Random-Walk Diffusion
(RWDIFF / LSPE) (Dwivedi et al., 2021), and Relative Random Walk Probability Based (RRWP)
(Ma et al., 2023).

Xk
PE = p (D,A, {·})

Other methods rely on different procedures, such as colors obtained by mapping 1-WL to higher
dimensions. We thus use this umbrella class for all remaining PEs. Examples include the WL-
based Positional Encoding (WLPE) (Dwivedi & Bresson, 2020) and Graph Convolution Kernel
Networks (GCKN) (Mialon et al., 2021). We aim to succinctly summarize and unify these positional
encoding methods for better accessibility and comparison. The Appendix contains more specific
details (including equations) for each positional encoding.

3.2 MESSAGE-PASSING NETWORKS

MPNNs comprise multiple layers that repeatedly apply neighborhood aggregation and combine
functions to learn a representation vector for each node in the graph. For an input graph G =
(V, E , X), the i-th layer of a MPNN can be written as

c(i)v = COMBINE(i)
(
c(i−1)
v , AGGREGATE(i)

({{
c(i−1)
w : w ∈ N (v)

}}))
,

where c
(i−1)
v represents the state of node v after layer (i− 1).

3.3 GRAPH TRANSFORMERS

Transformer models have been widely used in modeling sequence-to-sequence data in different do-
mains (Vaswani et al., 2017). Although the attention mechanism has commonly been used to learn
on graph-structured data (Veličković et al., 2017), the use of transformers is relatively recent. A
GT layer relies on a self-attention module that lets nodes attend to a set of “neighbors”, effectively
resulting in a dependency graph G of nodes that can attend to each other. We will refer to the nodes
that a node u can attend to simply as its neighborhood N (u). Many architectures use “full attention”
on the graph (as opposed to “sparse attention”), meaning that all nodes can attend to all other nodes
in the graph, i.e., the underlying dependency graph for attention is fully connected. Based on the
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given neighborhood, the generalized attention mechanism first computes attention scores αu,v for
every node u and every v ∈ N (u), based on the embeddings c

(i−1)
u and c

(i−1)
v from the previous

iteration, and potentially including labels for the edges (u, v) ∈ V (G). The attention coefficients
are then used to weigh the importance of neighbors and compute a new embedding for u as follows:

c(i)u = Θ

c(i−1)
u +

∑
v∈N (u)

αu,v · δ(c(i−1)
v )

 ,

where Θ and δ are transformations for embeddings. This definition aligns with popular architectures
such as Exphormer (Shirzad et al., 2023) and GraphGPS (Rampášek et al., 2022). We use Exphormer
as a running example to clarify the practical applicability of our proofs, as its attention mechanism
can attend to arbitrary neighborhoods. In the case of Exphormer, δ becomes a linear transformation,
Θ the identity function, and attention coefficients αu,v are computed via dot-product attention that
integrates edge labels.

To maintain information about the original topology, adding connectivity information back into the
attention mechanism is essential. This is typically done by using positional encodings. Positional
encodings can come in the form of node encodings (Rampášek et al., 2022), which are essentially
features added to the nodes before the attention block is applied, or edge features, where every edge
is endowed with (additional) features, such as the shortest-path-distance between the respective
nodes (Ying et al., 2021). In our framework, positional encodings are modeled as labels for nodes
in G, whereas relative positional encodings can be modeled as edge labels.

3.4 BRIDGING GTS AND WL

In the literature, various attempts have been made to bridge the gap between Graph Transformers
(GTs) and the WL test (Müller & Morris, 2024; Cai et al., 2023). This is usually done by defining
new variants of the WL algorithm that apply to the GT of interest (Kim et al., 2022). However, we
argue that such extensions are not necessary. Instead, we can interpret the execution of a GT on G
as an MPNN on a new topology G′ = (V,E′) corresponding to the dependency graph, representing
the information flow in the attention layer (Veličković, 2023). For example, a GT with full attention
can be seen as an MPNN on the fully connected graph, with E′ = V × V . Relative positional
encodings can be added to the MPNN as edge labels. This means we can use the (edge-augmented)
1-WL algorithm on G′ to upper bound the expressive power of a GT on G. While it is perhaps not
surprising that GT expressivity can be upper bounded in this way, we also show that GTs can attain
this upper bound under some reasonable assumptions. To facilitate this proof, we use the same idea
as Xu et al. (2018) to show the equivalence between the GIN architecture and 1-WL.

Lemma 3.1 (Adapted from Corollary 6 by Xu et al. (2018)). Assume X is a countable set. There
exists a function f : X → Rn so that for infinitely many choices of ϵ, including all irrational num-
bers, h(c,X ) = f(c) +

∑
x∈X f(x) is unique for each pair (c,X), where c ∈ X and X ⊆ X

is a multiset of bounded size. Moreover, any function g over such pairs can be decomposed as
g(c,X) = φ

(
(f(c) + (1 + ϵ)

∑
x∈X f(x)

)
for some function φ.

See proof on page 16.

To complete the proof for GTs, we adapt Corollary 6 by moving the use of the multiplicative factor
ϵ ∈ R from f(c) to the aggregation

∑
x∈X f(x). This is because the GT can multiply the aggrega-

tion by ϵ using the attention coefficients while it cannot transform c
(i−1)
u directly. The ϵ is used in

the proof to differentiate between embeddings from neighbors and a node’s own embedding.

With the adapted Lemma, we can prove the following:

Theorem 3.2. Let G = (V,E) be a graph with node embeddings cv for nodes v ∈ V . A GT layer
on the dependency graph G′ = (V,E′) can map nodes v1, v2 ∈ V to different embeddings only if
the 1-WL algorithm using E′ assigns different labels to nodes v1 and v2. For equivalence, we need δ
(in the definition of GTs) to be injective and αu,v = c for a given constant c ∈ R and all (u, v) ∈ E′,
making the GT as expressive as the 1-WL algorithm.

See proof on page 17.
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The result implies that we can bound the expressiveness of a GT by that of the WL algorithm. As
an example, GTs with full attention, as used by Rampášek et al. (2022) and Ma et al. (2023), can be
bound by the 1-WL algorithm on the fully connected graph. In this case, we can interpret positional
encodings for node pairs as edge features on the complete graph.

In the case of Exphormer, we notice that δ can be parametrized to be injective when using positional
encodings for nodes. This works if the query and key matrices are 0, leading all attention coefficients
for a node u to be 1

|N (u)| , while the value matrix can be set to the identity matrix times c. The
only part where Exphormer lacks is the power of Θ, which does not fulfill the requirements in the
theorem. Other architectures like GRIT make up for this by using MLPs to encode embeddings (Ma
et al., 2023).

We further note that a similar statement can be made for rewiring techniques that change the graph’s
topology: Applying 1-WL to the rewired topology naturally leads to similar equivalence results.
Motivated by the fact that MPNNs and GTs can be seen as applying a “convolution” to some neigh-
borhood, we test how well traditional message-passing convolutions like GatedGCN perform on
the fully-connected graph and propose a localized variant of the GRIT attention mechanism that
considers a local neighborhood.

3.5 SPARSE GRIT MESSAGE-PASSING CONVOLUTION

GRIT introduces two main innovations: (1) A new attention mechanism that updates edge labels
on a fully connected graph and (2) RRWP as a positional encoding. While it is relatively easy to
use RRWP with both other message-passing and Graph Transformer architectures, we need some
adaptions to use the GRIT attention mechanism with message-passing GNNs on sparse graphs.
As motivated earlier in Section 3.4, a Graph Transformer can be seen as message-passing on a
fully-connected graph. Therefore, we generalize the GRIT attention mechanism designed for fully-
connected graphs to a message-passing convolution that works with any neighborhood. We call the
resulting convolution Sparse GRIT, as it can attend to local neighborhoods on sparse graphs and does
not suffer from the quadratic computational overhead that the original GRIT mechanism has. This
makes sparse GRIT more efficient and scalable, as we further underline in our empirical evaluation
in Section 5.2.

Sparse GRIT utilizes the same updating edge labels êi,j as the original, but only for edges that exist
in the original graph. This further distinguishes the convolution from other popular local attention
mechanisms like GAT. The main difference to GRIT lies in the update function x̂i for nodes, which
now attend to their local neighborhood instead of all nodes in the graph. It becomes:

x̂i =
∑

j∈N (i)

ewj ·êi,j∑
k∈N (i) e

wk·êi,k
· (WV xj +WEV

êi,j) (1)

where wj is the attention weight, WV and WEV
are weight matrices. In contrast to GRIT, the

summation is taken only over a node’s local neighborhood using the implementation of a sparse
softmax. With these changes, sparse GRIT works the same as GRIT on a fully connected graph.
We, therefore, effectively transform the GRIT GT into an MPNN, which enables us to isolate and
analyze what impact the graph that is used for message-passing (fully connected vs. local) has.
Results and empirical analysis of the sparse GRIT and GRIT are provided in Section 5.

4 BENCHMARKING POSITIONAL ENCODINGS

4.1 GENERAL FRAMEWORK

The general GNN framework we consider for our evaluation is depicted in Figure 1. More infor-
mation on the employed datasets can be found in Appendix A.4. We describe the main components
here and give an overview over what methods were tested.

Design Space 1: Positional Encoding. As specified in Section 3.1, we test three types of graph-
based positional encodings, treating them as node feature augmentations. More background for the
different encodings is given in Appendix 3.1

5
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Input Graph

Sparse Dense

Connection Type

Positional Encoding

GNN layer

GraphGPS

GatedGCN

Exphormer

GRIT

Prediction Head

PostGNN

MLP

Pooling

MLP

Node level Graph level

Rewired

Laplacian-
based
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walk based Other

LapPE
SignNet GCKN
ESLapPE

WLPE
RWSE

RWDIFF

RRWP

GINE

SparseGRIT

Predictor

Link level

Figure 1: Overview of our evaluation framework, illustrating the preprocessing steps on the left
and the GNN model architecture on the right. The framework allows for extensive experimentation
with various components, including positional encodings, connection types, and GNN layers. This
modular approach facilitates a comprehensive analysis of how different configurations impact model
performance. In our experimentation, we mainly focus on the positional encoding and GNN layer,
while we also test different connection types.

Design Space 2: Connection Type. In most real-world graph datasets, graphs tend to be sparse.
This means that message-passing on the original topology can potentially lead to a lack of global
information exchange that is necessary for the task. To mitigate this issue, GTs usually employ
full-attention on the complete, fully-connected graph (as discussed in Section 3.4). To change the
topology that is used for the following GNN layer, we apply a classic MPNN to the fully-connected
graph to compare it to GTs and adapt the currently best-performing GT to run on the original graph
with our SparseGRIT convolution. While Exphormer implicitly applies some degree of rewiring,
we do not consider further rewiring approaches in this work to keep the number of comparisons at a
reasonable level.

Design Space 3: GNN Layers. Based on the chosen topology, we apply several GNN layers and
benchmark their performance. On the MPNN side, we consider GINE, GatedGCN, and SparseGRIT,
while we use GraphGPS, Exphormer, and GRIT as classical GTs. The architectures were chosen
due to the fact that they are widely used and currently perform best in leaderboards for the tasks we
consider. Other convolutions and transformer layers can easily be tested in our general framework.

Design Space 4: Prediction Heads. Lastly, we need task-specific prediction heads that decode to
either link level, node level, or graph level tasks for the datasets we consider. We use the same setup
as popularized by GraphGPS (Rampášek et al., 2022) and do not undertake further testing here.

4.2 BENCHMARKING FRAMEWORK

To enable the evaluation of models and future research for measuring the impact of positional
encodings, we provide a unified codebase that includes the implementation of all tested models
and the respective positional encodings. We base the code off GraphGPS Rampášek et al. (2022)
and integrate all missing implementations. This makes for reproducible results and easy exten-
sibility for new datasets, models, or positional encodings. Our codebase further provides readily
available implementations for NodeFormer (Wu et al., 2022), Difformer (Wu et al., 2023), GOAT
(Kong et al., 2023), GraphTrans (Wu et al., 2021), GraphiT (Mialon et al., 2021), and SAT (Chen
et al., 2022a) that are based on the respective original codebases. The code is publicly available at
https://anonymous.4open.science/r/PEGT-34DB.

In our experiments, we use five different random seeds for the BENCHMARKINGGNN (Dwivedi
et al., 2023) datasets and four for the others. The train-test split settings adhere to those estab-
lished previously, employing a standard split ratio of 8:1:1. All experiments can be executed on
either a single Nvidia RTX 3090 (24GB) or a single RTX A6000 (40GB). To avoid out-of-memory
(OOM) issues on LRGB and OGB datasets, we ensure that 100GB of reserved CPU cluster memory
is available when pre-transforming positional encodings. Configurations that did not fit into this
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Figure 2: Performance comparison of target metrics across selected datasets from BENCHMARK-
INGGNN. The boxplots illustrate the performance range for all models included in the study, with
whiskers representing the minimum and maximum performance observed. Notably, RRWP consis-
tently achieves the best results, whereas certain PEs, such as SignNet on CIFAR10, can sometimes
decrease performance relative to the baseline without PEs.

computational envelope were not considered. The hyperparameters used for each architecture are
provided in the Appendix, as well as running times and memory usage for the PE pre-processing.

5 EVALUATION

Based on the framework we established in Section 4.2, we benchmark the performance of differ-
ent PEs on the BENCHMARKINGGNN (Dwivedi et al., 2023) and LRGB (Dwivedi et al., 2022)
datasets. Results for ogbg-molhiv and ogbg-molpcba can be found in Appendix A.7.

5.1 BENCHMARKINGGNN DATASETS

We benchmark state-of-the-art models with commonly used PEs in-depth to identify the best config-
urations. This analysis is often overlooked when new PEs are introduced alongside new architectures
without being evaluated with existing models. Our approach decouples the architecture from the PE,
allowing us to measure the full range of possible combinations. Our experimental evaluation starts
with a dataset-centric approach, examining the effect of various PEs on model performance. Fig-
ure 2 illustrates the range of values for the respective target metrics achieved by different PEs. These
values are aggregated over all models in our analysis, while more detailed, unaggregated results are
available in Appendix A.7. Notably, while we could reproduce most results of previously tested
model and PE combinations, we consistently observed slightly worse values for GRIT. This was the
case even when using the official codebase and the most up-to-date commit at the time of writing,
with provided configuration files intended to reproduce the results stated in the original paper.

Our findings reveal that PEs can significantly influence model performance, with the best choice
of PE varying depending on the dataset and task. However, PEs can also negatively impact per-
formance in some cases. For instance, while RRWP performs best on the CIFAR10 dataset and
ZINC, there are not always clear winners. Sometimes, good performance can be achieved even
without any positional encoding (e.g., for PATTERN). This is also evident when examining the
best-performing configurations for each model and PE. While the complete results for all runs are
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Figure 3: Performance comparison of target metrics across selected datasets from the Long-Range
Graph Benchmark. The boxplots illustrate the performance range of all models included in the
study, with whiskers indicating the minimum and maximum performance observed. Plots for the
remaining datasets are provided in Appendix A.7.

provided in Appendix A.7, we summarize the best-performing configurations for the BENCHMARK-
INGGNN datasets in Table 1, indicating which PE led to the best performance for each model and
dataset. This enables a fair comparison of all architectures and helps determine the optimal PE
overall.

In our comparison, we observe that the sparse GRIT convolution emerges as the best graph con-
volution for sparse topologies. It competes effectively with the full GRIT attention across most
datasets. This suggests that these datasets do not require extensive long-range information exchange
and can achieve strong performance with sparse message-passing. The GatedGCN convolution on
the fully-connected graph does perform better than the original overall, but generally lacks behind
attention-based layers. Regarding the effectiveness of different PEs, random-walk-based encodings
such as RRWP and RWSE consistently perform well across the tested models. The only notable
exception is the CLUSTER dataset, where SignNet performs competitively for some architectures,
although the best results are still achieved with RRWP.

5.2 LONG-RANGE GRAPH BENCHMARK

We extend our evaluation to the LRGB datasets and use hyperparameter configurations based on
those by Tönshoff et al. (2023), with results presented in Table 2. In these datasets, Laplacian-based
encodings generally outperform others (except for the Peptides variations), likely due to their ability
to capture more global structure in the slightly larger graphs. This might also be reflected in the fact
that transformer-based architectures or models that facilitate global information exchange consis-
tently perform better. Our findings largely align with previous rankings, except for PCQM-Contact,
where we achieve a new state-of-the-art with Exphormer, which underscores the importance of thor-
ough benchmarking of existing models. Figure 3 further analyzes the performance of the employed
PEs. It is noteworthy that RRWP could not be utilized for larger datasets due to its significant mem-
ory footprint and computational complexity, similar to models employing full attention mechanisms.
The results align with our previous analysis and show that on datasets like Peptides-func, the PE has

Table 1: Results for the best-performing models and the PE they use for the BENCHMARKINGGNN
datasets. All runs except those for EGT and TIGT were done by us. SparseGRIT performs on par
with GRIT on most datasets, indicating that full attention might not be necessary for all of them. We
color the best, second best, and third best models.
Model CIFAR10 ↑ CLUSTER ↑ MNIST ↑ PATTERN ↑ ZINC ↓

EGT (Hussain et al., 2022) 68.70 ± 0.41 79.23 ± 0.35 98.17 ± 0.09 86.82 ± 0.02 0.108 ± 0.009
TIGT (Choi et al., 2024) 73.96 ± 0.36 78.03 ± 0.22 98.23 ± 0.13 86.68 ± 0.06 0.057 ± 0.002

GINE 66.14 ± 0.31 (ESLapSE) 59.66 ± 0.63 (SignNet) 97.75 ± 0.10 (RWDIFF) 86.69 ± 0.08 (RWSE) 0.075 ± 0.006 (RWDIFF)
GatedGCN 69.57 ± 0.79 (RRWP) 75.29 ± 0.05 (SignNet) 97.91 ± 0.08 (RRWP) 86.83 ± 0.03 (RWSE) 0.102 ± 0.003 (RWSE)
SparseGRIT 74.95 ± 0.26 (RRWP) 79.87 ± 0.08 (RRWP) 98.12 ± 0.05 (RWSE) 87.17 ± 0.04 (RRWP) 0.065 ± 0.003 (RRWP)
Exphormer 75.21 ± 0.10 (LapPE) 78.28 ± 0.21 (SignNet) 98.42 ± 0.18 (RRWP) 86.82 ± 0.04 (RWSE) 0.092 ± 0.007 (SignNet)

GRIT 75.66 ± 0.41 (RRWP) 79.81 ± 0.11 (RRWP) 98.12 ± 0.14 (RRWP) 87.22 ± 0.03 (RRWP) 0.059 ± 0.001 (RRWP)
GatedGCN (FC) 71.08 ± 0.60 (RRWP) 74.78 ± 0.46 (SignNet) 98.20 ± 0.15 (GCKN) 86.85 ± 0.02 (RWSE) 0.114 ± 0.003 (RWSE)
GraphGPS 72.31 ± 0.20 (noPE) 78.31 ± 0.11 (SignNet) 98.18 ± 0.12 (ESLapSE) 86.87 ± 0.01 (RWSE) 0.074 ± 0.006 (RWSE)
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Table 2: Best-performing models and PEs for the LRGB datasets. We achieve a new state-of-the-art
for PCQM-Contact.
Model COCO-SP ↑ PCQM-Contact ↑ PascalVOC-SP ↑ Peptides-func ↑ Peptides-struct ↓

GCN (Tönshoff et al., 2023) 13.38 ± 0.07 45.26 ± 0.06 0.78 ± 0.31 68.60 ± 0.50 24.60 ± 0.07
GINE (Tönshoff et al., 2023) 21.25 ± 0.09 46.17 ± 0.05 27.18 ± 0.54 66.21 ± 0.67 24.73 ± 0.17
GatedGCN (Tönshoff et al., 2023) 29.22 ± 0.18 46.70 ± 0.04 38.80 ± 0.40 67.65 ± 0.47 24.77 ± 0.09
CRaWl (Tönshoff et al., 2021) - - 45.88 ± 0.79 70.74 ± 0.32 25.06 ± 0.22
S2GCN (Geisler et al., 2024) - - - 73.11 ± 0.66 24.47 ± 0.32
DRew (Gutteridge et al., 2023) - 34.42 ± 0.06 33.14 ± 0.24 71.50 ± 0.44 25.36 ± 0.15
Graph ViT (He et al., 2023) - - - 68.76 ± 0.59 24.55 ± 0.27
GatedGCN-VN (Rosenbluth et al., 2024) 32.44 ± 0.25 - 44.77 ± 1.37 68.23 ± 0.69 24.75 ± 0.18

Exphormer 34.85 ± 0.11 (ESLapPE) 47.37 ± 0.24 (LapPE) 42.42 ± 0.44 (LapPE) 64.24 ± 0.63 (LapPE) 24.96 ± 0.13 (LapPE)
GraphGPS 38.91 ± 0.33 (RWSE) 46.96 ± 0.17 (LapPE) 45.38 ± 0.83 (ESLapPE) 66.20 ± 0.73 (LapPE) 24.97 ± 0.24 (LapPE)
SparseGRIT 19.76 ± 0.38 (noPE) 45.85 ± 0.11 (LapPE) 35.19 ± 0.40 (GCKN) 67.02 ± 0.80 (RRWP) 24.87 ± 0.14 (LapPE)
GRIT 21.28 ± 0.08 (RWDIFF) 46.08 ± 0.07 (SignNet) 35.56 ± 0.19 (noPE) 68.65 ± 0.50 (RRWP) 24.54 ± 0.10 (RRWP)

a consistent impact on the performance, even when the values are aggregated over different archi-
tectures. This impact can also be of a negative nature when compared to the baseline that does not
use any PE. On other datasets (for example PascalVOC-SP), the PE seems to play a lesser role and
good results can be achieved without any PE. The complete results are reported in Appendix A.7.

5.3 RUNNING TIME AND MEMORY COMPLEXITY FOR PES

The computational cost of positional encodings (PEs) is a critical consideration, particularly for
large graphs where methods with high complexity quickly become infeasible. We evaluated the
running time and memory usage for various PEs, and the full results are presented in Appendix A.8.

RRWP is the most memory-intensive PE, but maintains reasonable running times. RWSE and
RWDIFF, on the other hand, tend to have significantly longer running times but are relatively more
memory-efficient. Laplacian-based methods, such as LapPE and ESLapPE, offer a good balance be-
tween computational speed and memory usage, making them practical even for larger datasets. PPR
and GCKN come with high computational demands in both time and memory, making them less
suited for large-scale graphs. In contrast, Laplacian-based encodings like ESLapPE strike a better
trade-off, making them practical for a broader range of graph sizes while still offering competitive
performance.

5.4 GUIDELINES FOR PRACTICIONERS

For superpixel graph datasets, such as PascalVOC-SP, COCO-SP, MNIST, and CIFAR10, we found
that the inclusion of positional encodings generally does not result in substantial performance im-
provements. In particular, larger superpixel graphs like PascalVOC-SP and COCO-SP showed mini-
mal to no gains from adding PEs, while MNIST similarly exhibited negligible benefits. An exception
to this trend is CIFAR10, where RRWP demonstrated potential for enhancing model performance.
This suggests that while superpixel graphs may not typically benefit from positional encodings,
RRWP could be considered as a candidate for improvement. However, the gains observed may not
always justify the increased computational complexity associated with RRWP for such datasets.

In contrast, molecular datasets, such as ZINC and the Peptides variations, displayed a strong de-
pendency on the choice of positional encoding, with significant variations in model performance
based on the PE used. For instance, ZINC consistently showed the best results with PPR. On the
other hand, the Peptides datasets revealed task-specific preferences: Peptides-func benefited the
most from RRWP, while Peptides-struct achieved optimal performance with WLPE. Interestingly,
despite using identical graph structures, the two Peptides tasks favored different PEs, which indi-
cates that the nature of the prediction target (functional vs. structural) plays a significant role. Thus,
when dealing with molecular datasets, practitioners are advised to experiment with various PEs, as
the optimal choice may depend more on the specific task than on the graph structure itself. Still,
the optimal PE for a given dataset is generally consistent across different models, which, in com-
bination with the fact that we test on commonly used datasets provides practitioners with a strong
starting point for their experiments. This distinction is further highlighted when comparing random-
walk-based encodings with Laplacian encodings, where one typically emerges as the clear winner
depending on the dataset and task.
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6 CONCLUSIONS

This study underscores the critical role of positional encodings in enhancing the performance of
Graph Neural Networks (GNNs), particularly within Graph Transformer architectures. We con-
ducted a thorough comparison of various positional encodings across a wide array of state-of-the-art
models and identify the optimal configurations for diverse datasets, as well as offer valuable insights
into the relationship between positional encodings and model performance. While we consolidated
much of the current state-of-the-art, we also identified new configurations that surpass the perfor-
mance of existing best models, such as Exphormer on PCQM-Contact. This underscores the neces-
sity of in-depth comparisons to provide a fair and accurate ranking. Our theoretical considerations
have led to the development of the SparseGRIT model. This model shows competitive performance
across multiple benchmarks, while maintaining scalability to larger graphs. It shows that sparse
message-passing together with the right positional encodings is a viable option on many datasets.

Furthermore, we provide a comprehensive overview of the current state-of-the-art in graph learn-
ing and highlight the importance of selecting appropriate positional encodings to achieve optimal
results. Our unified codebase includes implementations of all tested models and encodings, which
serves as a valuable resource for future research. The framework ensures reproducible results and
supports the integration of new datasets, models, and positional encodings, thereby facilitating fur-
ther experimentation.

Limitations. Due to computational constraints, we could not explore all possible hyperparameter
configurations and there might be slightly better performing ones that we did not catch. Additionally,
although we tested a wide range of models and encodings, it is infeasible to test every model and PE.
This is why we focused on current state-of-the-art for both. Further, our evaluations are based on a
specific set of benchmark datasets, which may not fully represent the diversity of real-world graph
structures. Thus, performance on these benchmarks may not generalize to all types of graph data.
Nevertheless, our unified codebase serves as a robust foundation for further testing and development,
and enables researchers to overcome these limitations by facilitating the inclusion of new datasets,
models, and positional encodings.
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Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326–22340, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey Malevich,
Jingrui He, and Bo Long. Vcr-graphormer: A mini-batch graph transformer via virtual connec-
tions. arXiv preprint arXiv:2403.16030, 2024.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
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A APPENDIX

A.1 EXTENDED RELATED WORK

Positional Encodings for Graphs. Positional encodings are traditionally used in natural language
processing to capture the absolute position of a token within a sentence (Vaswani et al., 2017) or the
relative distance between pairs of tokens (Shaw et al., 2018; Ke et al., 2020; Chen, 2021). Similarly,
positional encoding in graphs aims to learn both local topology and global structural information
of nodes efficiently. This approach has been successfully implemented with the introduction of
the graph transformer (Dwivedi & Bresson, 2020). With the advent of graph transformers in the
field of graph representation learning, many traditional graph theory methods have been revitalized.
Graph signal processing techniques have been employed such as Laplacian decomposition and fi-
nite hop random walks (Rampášek et al., 2022; Dwivedi et al., 2023; Ma et al., 2023; Beaini et al.,
2021; Dwivedi & Bresson, 2020; Kreuzer et al., 2021; Dwivedi et al., 2021; Lim et al., 2022; Wang
et al., 2022b) as absolute or relative positional encoding. Node properties such as degree central-
ity (Ying et al., 2021) and personalized PageRank (PPR) (Gasteiger et al., 2018; Fu et al., 2024)
could be mapped and expanded into higher dimensions for absolute positional encoding, while the
shortest distance between nodes could be used for relative positional encoding (Li et al., 2020; Ying
et al., 2021). Recent studies have focused on developing learnable positional encodings for graphs
(Ying et al., 2021) and exploring their expressiveness and stability as well (Wang et al., 2022b; Ma
et al., 2023; Huang et al., 2023). Additionally, graph rewiring combined with layout optimization to
coarsen graphs has been proposed as a form of positional encoding (Grötschla et al., 2024).

GNN Benchmarking. One of the first GNN benchmarking papers compared architectures with
and without positional encodings (PEs) (Dwivedi et al., 2023), where their PE mainly refers to Lapla-
cian positional encoding (LapPE). Their study was limited to the GatedGCN model and discussed
the expressive power, robustness, and efficiency of state-of-the-art message-passing methods. Addi-
tionally, several surveys have benchmarked the complexity, specific tasks, unified message-passing
frameworks (Wu et al., 2020; Zhou et al., 2020), robustness, and privacy (Ju et al., 2024). The LRGB
dataset (Dwivedi et al., 2022) has been tested in both GNNs and transformers to demonstrate the su-
periority of Graph Transformers (GTs) over Message Passing Neural Networks (MPNNs). Many
state-of-the-art GTs have included this benchmark in their experiments (Rampášek et al., 2022;
Shirzad et al., 2023; Ma et al., 2023). One limitation of the LRGB benchmark is that LRGB only
considers LapPE and random walk structural encodings (RWSE). One notable work benchmarked
using LRGB by fine-tuning the architectures of GraphGPS and pre-processing (Tönshoff et al.,
2023). We adopt their settings but place greater emphasis on the effect of positional encodings.

A.2 PROOFS

Lemma 3.1 (Adapted from Corollary 6 by Xu et al. (2018)). Assume X is a countable set. There
exists a function f : X → Rn so that for infinitely many choices of ϵ, including all irrational num-
bers, h(c,X ) = f(c) +

∑
x∈X f(x) is unique for each pair (c,X), where c ∈ X and X ⊆ X

is a multiset of bounded size. Moreover, any function g over such pairs can be decomposed as
g(c,X) = φ

(
(f(c) + (1 + ϵ)

∑
x∈X f(x)

)
for some function φ.

Proof of Lemma 3.1. We slightly tightly follow the proof by Xu et al. (2018) for Corollary 6, but
define h as h(c,X) ≡ f(c) + (1+ ϵ)

∑
x∈X f(x) (with f defined as in the original proof). We then

want to show that for any (c′, X ′) ̸= (c,X) with c, c′ ∈ X and X,X ′ ⊂ X , h(c,X) ̸= h(c′, X ′)
holds, if ϵ is an irrational number. We show the same contradiction as Xu et al. (2018): For any
(c,X), suppose there exists (c′, X ′) such that (c′, X ′) ̸= (c,X) but h(c,X) = h(c′, X ′) holds.
We consider the following two cases: (1) c′ = c but X ′ ̸= X , and (2) c′ ̸= c. For the first case,
h(c,X) = h(c,X ′) implies

∑
x∈X f(x) =

∑
x∈X′ f(x). By Lemma 5 from Xu et al. (2018) it

follows that equality will not hold. For the second case, we can rewrite h(c,X) = h(c′, X ′) as the
following equation:

ϵ ·

(∑
x∈X

f(x)−
∑
x∈X′

f(x)

)
=

(
f(c′) +

∑
x∈X′

f(x)

)
−

(
f(c) +

∑
x∈X

f(x)

)
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We assume ϵ to be irrational, and if
∑

x∈X f(x) −
∑

x∈X′ f(x) ̸= 0, then the left side of the
equation is irrational, while the right side is rational. If

∑
x∈X f(x) −

∑
x∈X′ f(x) = 0, then the

equation reduces to f(c′) = f(c), also a contradiction.

Theorem 3.2. Let G = (V,E) be a graph with node embeddings cv for nodes v ∈ V . A GT layer
on the dependency graph G′ = (V,E′) can map nodes v1, v2 ∈ V to different embeddings only if
the 1-WL algorithm using E′ assigns different labels to nodes v1 and v2. For equivalence, we need δ
(in the definition of GTs) to be injective and αu,v = c for a given constant c ∈ R and all (u, v) ∈ E′,
making the GT as expressive as the 1-WL algorithm.

Proof of Theorem 3.2. First, we show that a GT is bounded by 1-WL on the same topology by
showing that 1-WL is at least as powerful as a graph transformer. As 1-WL hashes all neighbor
states with an injective function, we can observe states from all nodes in the graph in the aggregated
multiset at node v, including possible edge labels. This information is sufficient to compute the
result of the attention module at every node.

For the other direction, we can make use of Lemma 3.1 by setting c to the desired ϵ and follow the
same proof as (Xu et al., 2018). Note that Θ and δ have to be powerful enough such that we can
apply the universal approximation theorem.

A.3 TESTED GNN ARCHITECTURES

Message Passing Neural Networks (MPNN). For message passing neural networks, we primar-
ily choose GatedGCN (Bresson & Laurent, 2017) and GINE (Hu et al., 2019). The message-passing
update rule for GateGCN is as follows:

xℓ+1
i = f ℓ

G-GCNN

(
xℓ
i , {xℓ

j : j → i}
)
= ReLU

U ℓxℓ
i +

∑
j→i

ηij ⊙ V ℓxℓ
j

 (2)

where xj , j ∈ N (i) are node features, and ηij are edge gates which are employed by ηij =
σ
(
Aℓxℓ

i +Bℓxℓ
j

)
. The update for GINE is defined as follows:

x′
i = hΘ

(1 + ϵ) · xi +
∑

j∈N (i)

ReLU(xj + ei,j)

 (3)

where ϵ is a hyper-parameter as specified in GIN paper, edge information ei,j is injected into indi-
vidual node features, and MLP h(·) is parameterized by Θ.

Our rationale is as follows:

1. When observing popular MPNNs such as DGN (Beaini et al., 2021), PNA (Corso et al.,
2020), and GSN (Bouritsas et al., 2022), they are not consistently scalable or tested on
medium-scale datasets as thoroughly as classical MPNNs like GatedGCN and GINE , as
indicated in GraphGPS (Rampášek et al., 2022). This limitation is also evident in current
state-of-the-art graph neural networks like CIN (Bodnar et al., 2021) and GIN-AK+ (Zhao
et al., 2021), which lack reported results on large-scale graphs, such as most datasets from
the Open Graph Benchmark (Hu et al., 2020; Rampášek et al., 2022).

2. Most graph transformers incorporate edge information, making direct comparisons to
GNNs without edge information unfair. Graph convolution networks (GCN) (Kipf &
Welling, 2016) and Graph Isomorphism Network (GIN) (Xu et al., 2018) potentially lack
these updates. Hence, we use modified convolutional graph filters that include edge at-
tributes in message passing, specifically GatedGCN and GINE.

3. We aim to investigate if the results from GatedGCN on fully connected graphs are com-
parable to those from GT on sparse graphs. In addition to the above points, an improved
GatedGCN architecture has been found to perform on par with GT on the peptides-func
and peptides-struct datasets (Tönshoff et al., 2023). This finding motivates us to explore
the effects of positional encodings on the GatedGCN architecture.
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By focusing on GatedGCN and GINE, we aim to leverage their established scalability and perfor-
mance on medium to large-scale datasets, while fairly comparing their edge attribute capabilities to
graph transformers.

Graph Transformers. Current Graph Transformers can be divided into two families:

• GTs with only full attention layers. This family includes the following GT(s): EGT (Hus-
sain et al., 2021), GKAT (Choromanski et al., 2022), GRIT (Ma et al., 2023), NAGphormer
(Chen et al., 2022b) , Vanilla GT (Dwivedi & Bresson, 2020), GraphiT (Mialon et al.,
2021), GRPE (Park et al., 2022), SignNet (Lim et al., 2022), SAN (Kreuzer et al., 2021),
Specformer (Bo et al., 2022), TokenGT (Kim et al., 2022), and Transformer-M (Luo et al.,
2022a).

• GTs with additional message passing layers as an inductive bias. This family includes
the following GT(s): Coarformer (Kuang et al., 2021), Equiformer (Liao & Smidt, 2022),
Exphormer (Shirzad et al., 2023), GOAT (Kong et al., 2023), GraphGPS (Rampášek et al.,
2022), Graphormer (Ying et al., 2021), GPS++ (Masters et al., 2022), GraphTrans (Wu
et al., 2021), SAT (Chen et al., 2022a), NodeFormer (Wu et al., 2022), and URPE (Luo
et al., 2022b).

In this research, we select GRIT from the first class, and GraphGPS and Exphormer from the second
class. Other models can also be classified into one of these two categories.

GraphGPS Update. As specified in the original paper, the model follows a pattern where the
output from global attention layers interacts with the output from a global attention (vanilla trans-
former) layer. In this context, X represents the node features, E represents the edge features, and A
is the adjacency matrix.

X̂ℓ+1
M ,Eℓ+1 = MPNNℓ

e(X
ℓ,Eℓ,A),

X̂ℓ+1
T = GlobalAttnℓ(Xℓ),

Xℓ+1
M = BatchNorm

(
Dropout

(
X̂ℓ+1

M

)
+Xℓ

)
,

Xℓ+1
T = BatchNorm

(
Dropout

(
X̂ℓ+1

T

)
+Xℓ

)
,

Xℓ+1 = MLPℓ
(
Xℓ+1

M +Xℓ+1
T

)
Exphormer Update. As specified in the Exphormer paper and observed from its implementation,
the model follows a training pattern similar to that used in SAN (Kreuzer et al., 2021):

ATTNH(X):,i = xi +

h∑
j=1

Wj
OW

j
V XNH(i) · σ

((
Wj

EENH(i) ⊙Wj
KXNH(i)

)T (
Wj

Qxi

))
where X is the node features, and E is the edge features. The most important aspect is that they
compute the local sparse attention mechanism using 1) virtual nodes and 2) expander graphs.

A.4 DATASETS

Statistics and prediction tasks are listed in Table 3. Licenses for each datasets are listed in Table 4.

BenchmarkingGNN include MNIST, CIFAR10, CLUSTER, PATTERN, and ZINC, following the
protocols established in GraphGPS (Rampášek et al., 2022), Exphormer (Shirzad et al., 2023), and
GRIT (Ma et al., 2023). These datasets have traditionally been employed for benchmarking Graph
Neural Networks (GNNs) (Dwivedi et al., 2023), excluding graph transformers. In this paper, we ad-
here to these established settings but aim to revisit both message passing neural networks (MPNNs)
and graph transformers.

Long-Range Graph Benchmark (LRGB) (Dwivedi et al., 2022) encompasses Peptides-func,
Peptides-struct, PascalVOC-SP, PCQM-Contact, and COCO. Graph learning in this context is heav-
ily influenced by the interactions between pairs of long-range vertices. Prior research has explored
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the potential optimal hyperparameters for both MPNNs and GTs within the LRGB framework
(Tönshoff et al., 2023). Our objective is to identify the most effective combination of GNN ar-
chitectures and positional encoding strategies.

Open Graph Benchmark (OGB) (Hu et al., 2020) includes: 1) node-level tasks like OGBN-Arxiv
and 2) graph-level tasks like OGBG-MOLHIV and OGBG-MOLPCBA. These datasets are consider-
ably larger in scale compared to the aforementioned benchmarks. Our goal is to discover scalable
positional encoding methods, as conventional graph Laplacian decomposition for positional encod-
ing is not feasible for large graphs.

Table 3: Statistics for each dataset
Dataset # Graphs Avg. |N | Avg. |E| Directed Prediction level Prediction task Metric
ZINC 12,000 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.0 564.5 Yes graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classif. Accuracy
PATTERN 14,000 118.9 2,359.2 No inductive node binary classif. Accuracy
CLUSTER 12,000 117.2 1,510.9 No inductive node 6-class classif. Accuracy
PascalVOC-SP 11,355 479.4 2,710.5 No inductive node 21-class classif. F1 score
COCO-SP 123,286 476.4 2,693.7 No inductive node 81-class classif. F1 score
PCQM-Contact 529,434 30.1 69.1 No inductive link link ranking MRR (Fil.)
Peptides-func 15,535 150.9 307.3 No graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 No graph 11-task regression Mean Abs. Error
ogbn-arxiv 1 169,343 1,166,243 Yes transductive node 40-class classif. Accuracy
ogbg-molhiv 41,127 25.5 27.5 No graph binary classif. AUROC
ogbg-molpcba 437,929 26.0 28.1 No graph 128-task classif. Avg. Precision

In future work, we hope to add more large-scale inductive datasets such as OGBG-PPA, OGBG-
Code2 and PCQM4Mv2 (Hu et al., 2020), and transductive datasets such as CS, Physics and Com-
puter and Photo (Shirzad et al., 2023) into comparison.

A.5 POSITIONAL ENCODINGS

A.5.1 LAPLACIAN BASED METHODS

Table 4: Dataset licenses.
Dataset License
ZINC MIT License
MNIST CC BY-SA 3.0 and MIT License
CIFAR10 CC BY-SA 3.0 and MIT License
PATTERN MIT License
CLUSTER MIT License
PascalVOC-SP Custom license and CC BY 4.0 License
COCO-SP Custom license and CC BY 4.0 License
PCQM-Contact CC BY 4.0 License
Peptides-func CC BY-NC 4.0 License
Peptides-struct CC BY-NC 4.0 License
ogbn-arxiv MIT License
ogbg-molhiv MIT License
ogbg-molpcba MIT License

We define L as the Laplacian matrix for our in-
put graph G = (V, E) . According to graph
theory, as it’s positive semidefinite and sym-
metric, it could be further decomposed as L =∑

i λiuiu
T
i , where λi is the eigenvalue and ui

is the eigenvector. Under a unified scheme of
positional encoding for graph neural networks,
we define a normalized graph Laplacian L =

I − D− 1
2AD− 1

2 = UTΛU where i-th row of
U corresponds to the graph’s i-th eigenvector
ui, and Λ is a diagonal matrix containing all
eigenvalues. Under the Laplacian-based set-
tings, we could express each positional encod-
ing for node k in a similar way by:

Xk
PE = f (Uk,:,Λ,Θ, {·}) (4)

where Uk,: represents the i-th row of U, Λ is a diagonal matrix containing all eigenvalues, Θ is the
function parameters which represent the linear or non-linear operations on U and Λ, and {·} is the
additional parameters that are utilized by each method individually. We consider three Laplacian-
based methods: Laplacian Positional Encoding (LapPE), Sign-Invariant Positional Encoding (Sign-
Net), and rectified Graph Convolution Kernel Network-based Positional Encoding (GCKN).

LapPE (Rampášek et al., 2022) LapPE, or Laplacian Positional Encoding, is a method that lever-
ages the eigenvectors of the graph Laplacian to encode positional information for nodes. The core
idea is that the eigenvectors corresponding to higher eigenvalues contain more information about
the local structure of the graph, especially the relationships between a node and its neighbors. We
can further concatenate the eigenvectors with their corresponding eigenvalue. In the actual imple-
mentation, an additional parameter S is employed to randomly split the sign of this concatenated
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eigenvector. Subsequently, we apply either a DeepSet (Zaheer et al., 2017) or an MLP Φ parameter-
ized by Θ to this eigenvector.

Xk
PE = f (Uk,:,Λ,Θ,S) (5)

= ΦΘ (S ⊙ (Uk,: ∥ Λk)) (6)

The equivariant and stable version of LapPE (ESLapPE) (Wang et al., 2022b) follows the same
procedure but omits the post-processing MLP.

SignNet (Lim et al., 2022) SignNet is an advanced version of LapPE, which considers both the
original eigenvector and its inversely signed counterparts. An additional graph neural network
(GNN) is applied to capture local Laplacian signals before passing them to the MLP. The out-
puts from two distinct or shared GNNs are then added together. This approach is proven to be
sign-invariant and capable of approximating any continuous function of eigenvectors with the de-
sired invariances (Lim et al., 2022). While we did not consider BasisNet in this work, researchers
could further explore its inclusion in their studies for comparison with SignNet. The expression for
SignNet is:

Xk
PE = f (Ui,:,Λ,Θ, A) (7)

= ΦΘ (GNN(Uk,: ∥ Λk, A) + GNN((−1)⊙ (Uk,: ∥ Λk), A)) (8)

GCKN (Mialon et al., 2021) According to GraphiT (Mialon et al., 2021), there are two ways to
construct the new graph Laplacian matrix, either by using diffusion kernels (GCKN) or a p-step
random walk kernel (p-RWSE). Here, we introduce the diffusion kernel (p-step is similar) where the
new Laplacian is computed by multiplying by inverse β and then placed onto the exponential of e.
U is the new eigenvector matrix. The method is similar to LapPE, but the additional parameter β is
used to control the diffusion process (Kondor & Vert, 2004). The expression for GCKN is given by:

Xk
PE = f (Uk,:,Λ,Θ, {S, β}) (9)

= ΦΘ (S ⊙ (Uk,: ∥ Λk)) ,where UT
k ΛUk = e−βL (10)

A.5.2 RANDOM WALK BASED METHODS

We denote p as a polynomial function. From the following settings, we can see that this class of
methods takes a polynomial of D−1A, which is:

Xk
PE = p(D,A, {·}) (11)

RWSE (Rampášek et al., 2022) Random Walk Structural Encoding (RWSE) encodes the graph
structure by computing the frequencies of random walks starting from each node. Specifically,
the RWSE method calculates the probabilities of nodes being visited at each step of the random
walk. This approach utilizes the polynomial (D−1A)k, where D is the degree matrix and A is the
adjacency matrix, to represent the result of a k-step random walk. For the biased version, weights
θk are used to weight the results of each step. The formula is as follows:

Xk
PE = p(D,A,K) (12)

=

K∑
k=1

(D−1A)k, or =

K∑
k=1

θk(D
−1A)k if biased (13)

RWDIFF (LSPE) (Dwivedi et al., 2021) Learnable positional encoding, on the other hand, can
encode positions through random walk diffusion and decouples structural and positional encoding
(Dwivedi et al., 2021). Unlike RWSE, RWDIFF concatenates the random walk diffusion features
from each time step (new dimension), while RWSE directly adds those k-step random walk matrices.
The initial condition where no random walk is performed is also considered, with the additional
parameter I , which is the identity matrix. The formula is as follows:

Xk
PE = p(D,A, {K, I}) (14)

= [I,D−1A, (D−1A)2, (D−1A)3, ..., (D−1A)K−1]k,k (15)

= Ik,k ∥ (D−1A)k,k ∥ (D−1A)2k,k ∥ (D−1A)3k,k ∥ ... ∥ (D−1A)K−1
k,k (16)
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RRWP (Ma et al., 2023) One improvement on RWDIFF in GRIT (Ma et al., 2023) is that the
sparse graph is connected to a fully connected graph for each graph in the batch, as well as an
addition update in the edge features where it has shown a better performance on LRGB benchmark.
It is stated that it is at least as expressive as a biased RWSE (Ma et al., 2023). The form of Xk

PE
is not changed here, instead we mention the edge attributes (as the structural encoding). The edge
feature is also indicated by random walk diffusion, however, the off-diagonal entry indicates the
edge features, which is represented by a form of probability from node i to j:

Pi,j = [I,D−1A, (D−1A)2, (D−1A)3, ..., (D−1A)K−1]i,j (17)

= Ii,j ∥ (D−1A)i,j ∥ (D−1A)2i,j ∥ (D−1A)3i,j ∥ ... ∥ (D−1A)K−1
i,j (18)

PPR (Gasteiger et al., 2018) Personalized PageRank (PPR) propagation is an approximate and
faster propagation scheme under message passing (Gasteiger et al., 2018). For each node, its PageR-
ank is given in its analytical form as:

Xk
PE = p(D,A, {α, |V|}) (19)

= α
(
I|V| − (1− α)D−1A

)−1
ik (20)

where ik is the indicator function, and α controls the distance from the root node. It is considered
one of the positional encodings in GRIT (Ma et al., 2023), which is strictly less powerful than
RRWP. From its analytical solution, it is also classified under random walk-based methods since the
function is inversely related to D−1A.

A.5.3 OTHER METHODS

WLPE (Dwivedi & Bresson, 2020) The Weisfeiler-Lehman Positional Encoding (WLPE)
method, as introduced by Dwivedi & Bresson (2020), leverages the Weisfeiler-Lehman (WL) graph
isomorphism test to generate positional encodings for nodes in a graph. Firstly, the hashed node
feature for node k X ′

k is updated by using a hash function that combines the node’s own feature Xk

with the features of its neighbors:
X ′

k = hash (Xk, {Xu : u ∈ N(v), v ∈ V}) (21)
Here, N(v) denotes the neighborhood of node v, and V is the set of all nodes in the graph. Secondly,
the positional encoding Xk

PE is generated by applying a function f to X ′
k and the hidden dimension

dh:
Xk
PE = f(X ′

k, dh)
The function f typically involves sinusoidal transformations to embed the positional information
into a continuous vector space. This transformation is detailed as follows:

Xk
PE =

[
sin

(
X ′

k

10000
2l
dh

)
, cos

(
X ′

k

10000
2l+1
dh

)]⌊ dh
2

⌋
l=0

In this expression:

• X ′
k is the hashed feature of node k.

• dh is the hidden dimension, controlling the size of the positional encoding.

• l ranges from 0 to
⌊
dh

2

⌋
, ensuring that the resulting vector has dh dimensions.

A.6 MODEL CONFIGURATIONS

We provide the model configuration here to ensure reproducibility.

BENCHMARKINGGNN For BENCHMARKINGGNN, we adhere to established settings from rel-
evant literature for each model. Specifically, for the GatedGCN and GraphGPS models, we follow
the configurations detailed in the GraphGPS paper (Rampášek et al., 2022). For the Exphormer
model, we utilize the settings from the Exphormer paper (Shirzad et al., 2023). For the GINE,
Sparse GRIT, and Global GRIT models, we adopt the configurations from the GRIT paper (Ma
et al., 2023). We provide five tables, one for each dataset, to ensure comprehensive coverage of the
BENCHMARKINGGNN. Unlike the GraphGPS paper, which fixed the positional encoding, we will
report the statistics of the computation of positional encoding in separate tables. Configurations are
listed from table 5 to table 9.
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Table 5: Model Configurations for MNIST
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

GatedGCN 0.001 0.0 - 4 52 mean 16 100 - 8
GINE 0.001 0.0 - 3 52 mean 16 150 BatchNorm 18
GraphGPS 0.001 0.0 4 3 52 mean 16 100 BatchNorm 18
Exphormer 0.001 0.1 4 5 40 mean 16 150 BatchNorm 8
GRITSparseConv 0.001 0.0 - 3 52 mean 16 150 BatchNorm 18
GRIT 0.001 0.0 4 3 52 mean 16 150 BatchNorm 18

Table 6: Model Configurations for CIFAR10
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

GatedGCN 0.001 0.0 - 4 52 mean 16 100 - 8
GINE 0.001 0.0 - 4 52 mean 16 150 BatchNorm 18
GraphGPS 0.001 0.0 4 3 52 mean 16 150 BatchNorm 8
Exphormer 0.001 0.1 4 5 40 mean 16 150 BatchNorm 8
GRITSparseConv 0.001 0.0 - 3 52 mean 16 150 BatchNorm 18
GRIT 0.001 0.0 4 3 52 mean 16 150 BatchNorm 18

Table 7: Model Configurations for PATTERN
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

GatedGCN 0.001 0.0 - 4 64 - 32 100 BatchNorm 10
GINE 0.0005 0.0 - 10 64 - 32 100 BatchNorm 21
GraphGPS 0.001 0.0 4 6 64 - 32 100 BatchNorm 10
Exphormer 0.0002 0.0 4 4 40 - 32 100 BatchNorm 10
GRITSparseConv 0.0005 0.0 - 8 64 - 32 100 BatchNorm 21
GRIT 0.0005 0.0 8 10 64 - 32 100 BatchNorm 21

Table 8: Model Configurations for CLUSTER
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

GatedGCN 0.001 0.0 - 4 48 - 16 100 BatchNorm 16
GINE 0.001 0.01 - 2 64 - 16 100 BatchNorm 16
GraphGPS 0.001 0.01 8 16 48 - 16 100 BatchNorm 16
Exphormer 0.0002 0.1 8 20 32 - 16 200 BatchNorm 8
SparseGRIT 0.001 0.01 - 16 48 - 16 100 BatchNorm 32
GRIT 0.0005 0.0 8 10 64 - 32 100 BatchNorm 21

Table 9: Model Configurations for ZINC
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

GatedGCN 0.001 0.0 - 4 64 add 32 1700 BatchNorm 8
GINE 0.001 0.0 - 10 64 add 32 1500 BatchNorm 21
GraphGPS 0.001 0.0 4 10 64 add 32 1500 BatchNorm 21
Exphormer 0.001 0.0 4 4 64 add 32 1500 BatchNorm 8
SparseGRIT 0.001 0.0 - 10 64 add 32 1500 BatchNorm 21
GRIT 0.001 0.0 8 10 64 add 32 1500 BatchNorm 18

Long Range Graph Benchmark We mainly consider four models: GatedGCN, GraphGPS, Ex-
phormer, and Sparse GRIT. For GatedGCN and GraphGPS, we primarily follow the fine-tuned con-
figurations as described by Tonshoff et al. (2023) (Tönshoff et al., 2023). For Sparse GRIT, we
adopt the hyperparameters used for the peptides-func and peptides-struct datasets and transfer these
settings to the COCO-SP, Pascal-VOC, and PCQM-Contact datasets, as detailed by Dwivedi et al.
(2022) (Dwivedi et al., 2022). For Exphormer, we follow the configurations proposed by Shirzad et
al. (2023) (Shirzad et al., 2023). Configurations are listed from table 10 to table 14.

Open Graph Benchmark We mainly consider three models: GraphGPS, Exphormer, and Sparse
GRIT. Due to scalability issues, we do not include configurations for the GPS model for ogbn-arxiv.
GraphGPS (Rampášek et al., 2022), Exphormer (Shirzad et al., 2023) and Sparse GRIT have shared
the same settings for the ogbg-molpcba dataset. Configurations are listed from table 15 to table 17.
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Table 10: Model Configurations for Peptides-func
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

GatedGCN 0.001 0.1 - 10 95 mean 200 250 BatchNorm 16
GraphGPS 0.001 0.1 4 6 76 mean 200 250 BatchNorm 16
Exphormer 0.0003 0.12 4 8 64 mean 128 200 BatchNorm 16
GRITSparseConv 0.0003 0.0 - 4 96 mean 16 300 BatchNorm 16
GRIT 0.0003 0.0 4 4 96 mean 16 200 BatchNorm 17

Table 11: Model Configurations for Peptides-struct
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

GatedGCN 0.001 0.1 - 8 100 mean 128 250 BatchNorm 16
GraphGPS 0.001 0.1 4 8 64 mean 200 250 BatchNorm 16
Exphormer 0.0003 0.12 4 4 88 mean 128 200 BatchNorm 16
GRITSparseConv 0.0003 0.05 - 4 96 mean 16 300 BatchNorm 16
GRIT 0.0003 0.0 8 4 96 mean 32 200 BatchNorm 24

Table 12: Model Configurations for PCQM-Contact
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

GatedGCN 0.001 0.1 - 8 215 - 500 100 - 16
GraphGPS 0.001 0.0 4 6 76 - 500 150 BatchNorm 16
Exphormer 0.0003 0.0 4 7 64 - 128 200 BatchNorm 16
GRITSparseConv 0.001 0.0 - 10 64 - 500 100 BatchNorm 16

Table 13: Model Configurations for Pascal-VOC
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

GatedGCN 0.001 0.2 - 10 95 - 50 200 - 16
GraphGPS 0.001 0.1 4 8 68 - 50 200 BatchNorm 16
Exphormer 0.0005 0.15 8 4 96 - 32 300 BatchNorm 16
GRITSparseConv 0.001 0.0 - 10 64 - 50 250 BatchNorm 16

Table 14: Model Configurations for COCO-SP
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

GatedGCN 0.001 0.1 - 6 120 - 16 200 - 16
GraphGPS 0.001 0.1 4 8 68 - 50 200 BatchNorm 16
Exphormer 0.0005 0.0 4 7 72 - 32 200 BatchNorm 16
GRITSparseConv 0.0005 0.0 - 4 64 - 32 200 BatchNorm 16

Table 15: Model Configurations for OGBN-Arxiv
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

Exphormer 0.001 0.3 2 4 80 add 1 600 BatchNorm 16
GRITSparseConv 0.001 0.1 - 4 64 add 1 600 BatchNorm 8

Table 16: Model Configurations for OGBG-Molhiv
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

GraphGPS 0.0001 0.05 4 10 64 mean 32 100 BatchNorm 8
Exphormer 0.0001 0.05 4 8 64 mean 32 100 BatchNorm 16
GRITSparseConv 0.0001 0.0 - 8 64 mean 32 100 BatchNorm 16

Table 17: Model Configurations for OGBG-Molpcba
Model lr dropout heads layers hidden dim pooling batch size epochs norm PE dim

GraphGPS 0.0005 0.2 4 5 384 mean 512 100 BatchNorm 20
Exphormer 0.0005 0.2 4 5 384 mean 512 100 BatchNorm 20
GRITSparseConv 0.0005 0.2 - 5 384 mean 512 100 BatchNorm 20
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A.7 COMPLETE RESULTS

This section provides the results of all runs that we conducted in the paper. This also includes the
non-aggregated results that show the performance of every positional encoding on any model and
dataset.

A.7.1 BENCHMARKINGGNN

Table 18 has listed all results of GNN models with different positional encodings on BENCHMARK-
INGGNN datasets. Figure 4 shows a percentage of improvement compared to GNN models without
any positional encoding.
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Figure 4: Percentage of improvement compared to GNN models without any positional encoding
(BENCHMARKINGGNN)

A.7.2 LONG RANGE GRAPH BENCHMARK

Table 19 has listed all results of GNN models with different positional encodings on BENCHMARK-
INGGNN dataset. Figure 5 shows a percentage of improvement compared to GNN models without
any positional encoding. Figure 6 shows the mean average of improvement on the Long Range
Graph Benchmark for each positional encoding individually.

A.7.3 OPEN GRAPH BENCHMARK

Table 20 has listed all results of GNN models with different positional encodings on Open Graph
Benchmark dataset.

A.8 STATISTICS FOR POSITIONAL ENCODINGS

We measure both the time that is taken to measure pre-computing positional enoodings (PEs), as
well as the space that CPU is taken to precompute it, which are presented from Table 21 to Table 26.
Figure 7 shows the comparison between time and memory for each dataset, which is log-scaled.
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Figure 5: Percentage of improvement compared to GNN models without any positional encoding
(LRGb)
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Figure 6: Mean performance of different positional encodings on Long Range Graph Benchmark
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Figure 7: Temporal complexity vs. spatial complexity for different positional encodings
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Table 18: Different positional encodings with GNNs on BENCHMARKINGGNN including ZINC,
MNIST, CIFAR10, PATTERN, and CLUSTER. Experiments are run on a NVIDIA RTX 3090 and
RTX A6000. Five random seeds are: 0, 7, 42, 100, and 2024 (although it should be noted that the
execution of PyG on the cuda backend is non-deterministic). Note that the batched graphs are sparse
as default. Batched graphs are only fully-connected when it comes to RRWP.

Sparse Graph MNIST ↑ CIFAR10 ↑ PATTERN ↑ CLUSTER ↑ ZINC ↓

GatedGCN + noPE 97.800±0.138 69.303±0.318 85.397±0.040 61.695±0.261 0.2398±0.0094

GatedGCN + ESLapPE 97.870±0.090 69.438±0.297 85.422±0.161 61.953±0.082 0.2409±0.0131

GatedGCN + LapPE 97.575±0.025 69.285±0.205 86.700±0.000 65.130±0.405 0.1718±0.0024

GatedGCN + RWSE 97.840±0.171 69.038±0.152 86.833±0.030 65.675±0.296 0.1016±0.0030

GatedGCN + SignNet 97.553±0.167 68.570±0.240 86.763±0.027 75.293±0.047 0.1060±0.0021

GatedGCN + PPR 97.797±0.045 69.224±0.546 86.522±0.093 74.175±0.122 0.3678±0.0198

GatedGCN + GCKN 97.745±0.069 69.408±0.222 86.758±0.049 62.478±0.156 0.1446±0.0048

GatedGCN + WLPE 97.693±0.235 69.418±0.165 84.980±0.160 62.738±0.291 0.1779±0.0059

GatedGCN + RWDIFF 97.823±0.119 69.528±0.494 86.760±0.043 65.653±0.470 0.1346±0.0074

GatedGCN + RRWP 97.908±0.076 69.572±0.787 85.465±0.148 61.728±0.174 0.2451±0.0131

GINE + noPE 97.712±0.120 65.554±0.225 85.482±0.272 48.783±0.060 0.1210±0.0107

GINE + ESLapPE 97.596±0.071 66.140±0.310 85.546±0.114 48.708±0.061 0.1209±0.0066

GINE + LapPE 97.555±0.045 65.325±0.195 85.835±0.195 48.685±0.035 0.1144±0.0028

GINE + RWSE 97.686±0.073 65.238±0.283 86.688±0.084 50.642±0.694 0.0795±0.0034

GINE + SignNet 97.692±0.165 64.538±0.314 86.538±0.044 59.660±0.630 0.0993±0.0069

GINE + PPR 97.650±0.088 65.082±0.434 85.658±0.048 47.440±2.290 0.3019±0.0122

GINE + GCKN 97.708±0.105 65.976±0.308 85.844±0.157 48.780±0.149 0.1169±0.0029

GINE + WLPE 97.716±0.118 66.132±0.225 85.676±0.084 48.997±0.068 0.1205±0.0062

GINE + RWDIFF 97.750±0.097 65.632±0.553 85.764±0.209 49.148±0.168 0.0750±0.0058

GINE + RRWP 96.742±0.277 62.790±1.501 86.526±0.036 48.736±0.108 0.0857±0.0009

Exphormer + noPE 98.414±0.047 74.962±0.631 85.676±0.049 77.500±0.151 0.1825±0.0209

Exphormer + ESLapPE 98.354±0.108 74.880±0.322 86.734±0.024 78.218±0.267 0.2023±0.0140

Exphormer + LapPE 98.270±0.070 75.205±0.095 86.565±0.075 77.175±0.165 0.1503±0.0117

Exphormer + RWSE 98.254±0.084 74.434±0.205 86.820±0.040 77.690±0.147 0.0933±0.0050

Exphormer + SignNet 98.136±0.094 73.842±0.317 86.752±0.088 78.280±0.211 0.0924±0.0072

Exphormer + PPR 98.076±0.126 74.076±0.104 86.712±0.047 78.098±0.211 0.2414±0.0123

Exphormer + GCKN 98.402±0.067 74.926±0.288 86.730±0.040 77.470±0.067 0.1690±0.0056

Exphormer + WLPE 98.398±0.162 74.794±0.358 85.454±0.033 77.402±0.120 0.1465±0.0095

Exphormer + RWDIFF 98.416±0.055 74.886±0.810 86.792±0.023 77.550±0.057 0.1360±0.0082

Exphormer + RRWP 98.418±0.179 74.504±0.369 85.652±0.001 77.434±0.056 0.1914±0.0153

GraphGPS + noPE 98.136±0.085 72.310±0.198 84.182±0.276 77.590±0.158 0.1610±0.0045

GraphGPS + ESLapPE 98.180±0.117 72.122±0.511 86.700±0.055 77.800±0.107 0.1795±0.0110

GraphGPS + LapPE 98.065±0.075 72.310±0.530 86.550±0.150 77.355±0.115 0.1086±0.0062

GraphGPS + RWSE 98.116±0.102 72.034±0.756 86.866±0.010 77.550±0.195 0.0744±0.0060

GraphGPS + SignNet 98.012±0.091 72.152±0.323 86.734±0.069 78.308±0.111 0.0945±0.0019

GraphGPS + PPR 98.010±0.097 71.842±0.325 86.124±0.214 76.828±0.250 0.1349±0.0054

GraphGPS + GCKN 98.180±0.117 72.194±0.515 86.786±0.043 77.514±0.182 0.1460±0.0078

GraphGPS + WLPE 98.038±0.134 72.258±0.661 84.916±0.195 76.866±0.171 0.1204±0.0055

GraphGPS + RWDIFF 98.026±0.101 71.800±0.363 86.820±0.063 77.478±0.150 0.0924±0.0212

GraphGPS + RRWP 98.146±0.105 72.084±0.466 84.436±0.224 77.420±0.080 0.1690±0.0084

SparseGRIT + noPE 97.940±0.071 72.778±0.627 85.948±0.148 77.274±0.170 0.1255±0.0062

SparseGRIT + ESLapPE 97.970±0.110 72.494±0.501 86.018±0.319 77.238±0.066 0.1280±0.0077

SparseGRIT + LapPE 97.915±0.065 72.640±0.040 86.555±0.025 76.100±0.085 0.1070±0.0017

SparseGRIT + RWSE 98.122±0.054 72.330±0.600 86.914±0.031 77.148±0.174 0.0676±0.0060

SparseGRIT + SignNet 97.946±0.122 71.003±0.301 86.794±0.055 78.882±0.146 0.0821±0.0043

SparseGRIT + PPR 98.020±0.194 71.926±0.833 86.650±0.033 78.732±0.202 0.2536±0.0193

SparseGRIT + GCKN 97.958±0.127 72.598±0.535 86.650±0.033 76.746±0.187 0.1233±0.0071

SparseGRIT + WLPE 97.946±0.125 72.096±0.835 85.712±0.027 77.170±0.143 0.1262±0.0059

SparseGRIT + RWDIFF 98.022±0.083 72.366±0.388 86.938±0.045 77.214±0.065 0.0690±0.0039

SparseGRIT + RRWP 98.088±0.048 74.954±0.256 87.168±0.041 79.872±0.079 0.0651±0.0027

GRIT + noPE 98.108±0.190 74.402±0.135 87.126±0.033 78.616±0.178 0.1237±0.0057

GRIT + ESLapPE 98.010±0.141 74.558±0.682 87.140±0.064 78.588±0.111 0.1241±0.0031

GRIT + LapPE 97.875±0.001 73.325±0.505 86.985±0.015 77.960±0.310 0.1039±0.0035

GRIT + RWSE 98.068±0.182 73.652±0.623 87.116±0.046 78.880±0.057 0.0671±0.0037

GRIT + SignNet 97.766±0.220 72.812±0.482 87.085±0.064 79.770±0.150 0.0945±0.0098

GRIT + PPR 97.986±0.082 73.568±0.451 86.780±0.001 78.958±0.175 0.1390±0.0076

GRIT + GCKN 98.084±0.139 73.946±0.910 87.194±0.044 78.542±0.149 0.1306±0.0141

GRIT + WLPE 98.022±0.173 74.206±0.684 86.863±0.033 78.500±0.091 0.1218±0.0035

GRIT + RWDIFF 98.024±0.148 73.956±0.202 87.152±0.045 78.778±0.090 0.0671±0.0060

GRIT + RRWP 98.124±0.141 75.662±0.410 87.217±0.034 79.812±0.109 0.0590±0.0010
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Table 19: Five Long Range Graph Benchamrk Datasets which include Peptides func,
Pepteide struct, PCQM Contact, PascalVOC-SuperPixels and COCO-SuperPixels. The hyper-
parameters for Peptides func and Pepteide struct follow the original GraphGPS settings. For
GraphGPS, we follow the settings of a special study into LRGB (Tönshoff et al., 2023) where it
found a state-of-the-art settings for GraphGPS on those five datasets.

Sparse Graph Peptides-func Peptides-struct PCQM-Contact PascalVOC-SP COCO-SP

GatedGCN + noPE 0.6523±0.0074 0.2470±0.0005 0.4730±0.0003 0.3923±0.0020 0.2619±0.0045

GatedGCN + LapPE 0.6581±0.0068 0.2472±0.0003 0.4764±0.0004 0.3920±0.0033 0.2671±0.0006

GatedGCN + ESLapPE 0.6484±0.0037 0.2490±0.0020 0.4736±0.0006 0.3930±0.0041 0.2628±0.0004

GatedGCN + RWSE 0.6696±0.0022 0.2485±0.0022 0.4749±0.0005 0.3882±0.0041 0.2657±0.0007

GatedGCN + SignNet 0.5327±0.0137 0.2688±0.0016 0.4672±0.0001 0.3814±0.0005 -
GatedGCN + GCKN 0.6544±0.0040 0.2483±0.0009 0.4687±0.0002 0.3933±0.0044 -
GatedGCN + WLPE 0.6562±0.0053 0.2473±0.0012 0.4671±0.0003 0.3805±0.0018 -
GatedGCN + RWDIFF 0.6527±0.0053 0.2474±0.0003 0.4740±0.0003 0.3919±0.0019 0.2674±0.0031

GatedGCN + RRWP 0.6516±0.0072 0.2514±0.0001 - - -

GraphGPS + noPE 0.6514±0.0123 0.4243±0.0305 0.4649±0.0025 0.4517±0.0112 0.3799±0.0056

GraphGPS + LapPE 0.6620±0.0073 0.2497±0.0024 0.4696±0.0017 0.4505±0.0062 0.3859±0.0016

GraphGPS + ESLapPE 0.6516±0.0062 0.2568±0.0013 0.4639±0.0031 0.4538±0.0083 0.3866±0.0017

GraphGPS + RWSE 0.6510±0.0071 0.2549±0.0033 0.4685±0.0009 0.4531±0.0073 0.3891±0.0033

GraphGPS + SignNet 0.5719±0.0055 0.2657±0.0021 0.4624±0.0020 0.4291±0.0056 -
GraphGPS + GCKN 0.6502±0.0101 0.2519±0.0005 0.4609±0.0007 0.4515±0.0053 -
GraphGPS + WLPE 0.5851±0.0441 0.5203±0.0504 0.4622±0.0012 0.4501±0.0057 -
GraphGPS + RWDIFF 0.6519±0.0077 0.4769±0.0360 0.4669±0.0006 0.4488±0.0097 0.3873±0.0024

GraphGPS + RRWP 0.6505±0.0058 0.3734±0.0157 - - -

Exphormer + noPE 0.6200±0.0052 0.2584±0.0019 0.4661±0.0021 0.4149±0.0047 0.3445±0.0052

Exphormer + LapPE 0.6424±0.0063 0.2496±0.0013 0.4737±0.0024 0.4242±0.0044 0.3471±0.0028

Exphormer + ESLapPE 0.6281±0.0085 0.2513±0.0022 0.4676±0.0018 0.4141±0.0054 0.3485±0.0011

Exphormer + RWSE 0.6240±0.0069 0.2579±0.0010 0.4642±0.0039 0.4218±0.0063 0.3485±0.0011

Exphormer + SignNet 0.5458±0.0097 0.2667±0.0037 0.4615±0.0066 0.3966±0.0020 -
Exphormer + GCKN 0.6422±0.0080 0.2514±0.0012 0.4604±0.0038 0.4196±0.0049 -
Exphormer + WLPE 0.6216±0.0069 0.2558±0.0011 0.2051±0.0080 0.4104±0.0071 -
Exphormer + RWDIFF 0.6275±0.0031 0.2556±0.0021 0.4642±0.0032 0.4165±0.0059 0.3417±0.0006

Exphormer + RRWP 0.6208±0.0074 0.2586±0.0014 - - -

SparseGRIT + noPE 0.4885±0.0036 0.2550±0.0006 0.4527±0.0006 0.3471±0.0030 0.1976±0.0038

SparseGRIT + LapPE 0.5884±0.0059 0.2487±0.0014 0.4585±0.0011 0.3514±0.0026 0.1974±0.0008

SparseGRIT + ESLapPE 0.5161±0.0069 0.2537±0.0005 0.4532±0.0005 0.3462±0.0035 0.1958±0.0001

SparseGRIT + RWSE 0.5570±0.0079 0.2537±0.0012 0.4553±0.0014 0.3460±0.0071 0.1969±0.0010

SparseGRIT + SignNet 0.5115±0.0064 0.2640±0.0018 0.4573±0.0003 0.3419±0.0074 -
SparseGRIT + GCKN 0.5871±0.0042 0.2492±0.0010 0.4500±0.0004 0.3519±0.0040 -
SparseGRIT + WLPE 0.4808±0.0016 0.2547±0.0005 0.4489±0.0012 0.3439±0.0027 -
SparseGRIT + RWDIFF 0.5521±0.0072 0.2550±0.0008 0.4551±0.0005 0.3447±0.0046 0.1965±0.0011

SparseGRIT + RRWP 0.6702±0.0080 0.2504±0.0025 - - -

GRIT + noPE 0.4861±0.0053 0.2489±0.0008 0.4525 ± 0.0001 0.3556 ± 0.0019 0.2105 ± 0.0004
GRIT + LapPE 0.5834±0.0105 0.2474±0.0005 0.4580 ± 0.0020 0.3551 ± 0.0032 0.2112 ± 0.0005
GRIT + ESLapPE 0.4831±0.0023 0.2584±0.0002 0.4486 ± 0.0014 0.3485 ± 0.0028 0.2100 ± 0.0008
GRIT + RWSE 0.5432±0.0034 0.2612±0.0008 0.4524 ± 0.0001 0.3461 ± 0.0058 0.2114 ± 0.0009
GRIT + SignNet 0.5307±0.0085 0.2600±0.0018 0.4608 ± 0.0007 0.3385 ± 0.0045 -
GRIT + GCKN 0.5868±0.0051 0.2477±0.0006 0.4521 ± 0.0002 0.3516 ± 0.0003 -
GRIT + WLPE 0.4798±0.0012 0.2578±0.0011 0.4515 ± 0.0004 0.3441 ± 0.0011 -
GRIT + RWDIFF 0.5801±0.0036 0.2639±0.0010 0.4563 ± 0.0003 0.3521 ± 0.0079 0.2128 ± 0.0008
GRIT + RRWP 0.6865±0.0050 0.2454±0.0010 - - -
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Table 20: Results for three OGB datasets.
Sparse Graph ogbn-arxiv ogbg-molhiv ogbg-molpcba

GPS + noPE - 77.885±2.641 28.573±0.215

GPS + ESLapPE - 78.295±0.925 28.373±0.477

GPS + LapPE - 77.256±0.806 29.325±0.300

GPS + GCKN - 77.652±1.326 -
GPS + WLPE - 75.835±0.857 27.968±0.154

GPS + RWSE - 77.890±1.045 28.563±0.283

GPS + RRWP - 76.383±1.189 28.765±0.268

Exphormer + noPE 70.782±0.029 78.347±0.440 28.355±0.224

Exphormer + ESLapPE - 77.578±1.595 28.123±0.281

Exphormer + LapPE - 76.818±0.744 27.858±0.082

Exphormer + GCKN - 78.045±1.146 -
Exphormer + WLPE 70.738±0.095 75.587±1.172 27.283±0.312

Exphormer + RWSE 70.693±0.132 77.053±0.295 28.490±0.257

Exphormer + RRWP - 77.305±1.250 -

SparseGRIT + noPE 70.955±0.119 77.752±1.331 20.950±0.076

SparseGRIT + ESLapPE - 77.670±1.870 20.953±0.086

SparseGRIT + LapPE - 75.393±1.358 22.748±0.455

SparseGRIT + GCKN - 75.453±0.893 -
SparseGRIT + WLPE 70.877±0.045 76.060±1.066 20.670±0.211

SparseGRIT + RWSE - 76.973±0.242 23.628±0.205

SparseGRIT + RRWP - 78.353±0.546 -

Table 21: Running Time for Pretransforming PEs (measured in seconds) on BENCHMARKINGGNN
MNIST CIFAR10 PATTERN CLUSTER ZINC

LapPE 93 123 28 23 8
ESLapPE 90 122 28 21 7
RWSE 225 252 55 53 31
SignNet 90 122 28 20 7
PPR 585 600 90 71 313
GCKN 1180 1705 552 448 89
WLPE 166 217 166 108 8
RWDIFF 210 209 226 158 15
RRWP 159 - 47 53 22

Table 22: Memory Usage for Pretransforming PEs (measured in MB) on BENCHMARKINGGNN
MNIST CIFAR10 PATTERN CLUSTER ZINC

LapPE 795.55 1021.10 290.78 251.45 67.68
ESLapPE 652.55 809.55 293.79 377.49 148.95
RWSE 772.05 994.92 286.80 243.91 60.12
SignNet 803.17 1024.11 293.41 377.97 58.90
PPR 2430.63 4142.62 1849.49 1701.08 1041.20
GCKN 355.12 824.58 292.69 170.61 68.00
WLPE 1268.05 1709.76 1506.82 809.11 104.82
RWDIFF 264.00 312.49 145.37 191.87 28.38
RRWP 43327.52 - 29823.30 36577.61 2414.64

Table 23: Running Time for Pretransforming PEs (measured in seconds) on LRGB
Peptides-func Peptides-struct PCQM-Contact PascalVOC-SP COCO-SP

LapPE 44 44 358 203 2889
ESLapPE 44 45 384 203 3045
RWSE 92 90 1500 418 8373
SignNet 44 44 386 206 -
GCKN 530 527 5072 2377 -
WLPE 34 33 451 97 -
RWDIFF 47 46 1075 764 8976
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Table 24: Memory Usage for Pretransforming PEs (measured in MB) on LRGB
Peptides-func Peptides-struct PCQM-Contact PascalVOC-SP COCO-SP

LapPE 438.33 651.95 4625.45 875.47 9149.31
ESLapPE 438.84 654.52 4617.98 877.84 9153.73
RWSE 424.32 421.45 4410.43 875.87 9112.50
SignNet 647.73 646.92 6091.65 871.27 -
GCKN 662.06 661.18 6016.68 909.13 -
WLPE 710.55 709.84 6525.88 1639.22 -
RWDIFF 334.18 334.54 3484.15 677.29 7248.34

Table 25: Running Time for Pretransforming PEs (measured in seconds) on OGB
ogbn-arxiv ogbg-molhiv ogbg-molpcba

ESLapPE - 28 296
LapPE - 26 314
GCKN - 325 -
WLPE 14 31 334
RWSE 35 101 1034
RRWP - 54 -

Table 26: Memory Usage for Pretransforming PEs (measured in MB) on OGB
ogbn-arxiv ogbg-molhiv ogbg-molpcba

ESLapPE - 296.21 4374.86
LapPE - 328.23 4514.98
GCKN - 238.57 -
WLPE 57.76 382.05 5080.64
RWSE - 301.18 2799.23
RRWP - 3220.03 -
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