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ABSTRACT

Transformer has attracted increasing interest in spatio-temporal video grounding, or
STVG, owing to its end-to-end pipeline and promising result. Existing Transformer-
based STVG approaches often leverage a set of object queries, which are initialized
simply using zeros and then gradually learn target position information via iterative
interactions with multimodal features, for spatial and temporal localization. Despite
simplicity, these zero object queries, due to lacking target-specific cues, are hard to
learn discriminative target information from interactions with multimodal features
in complicated scenarios (e.g., with distractors or occlusion), resulting in degrada-
tion. Addressing this, we introduce a novel Target-Aware Transformer for STVG
(TA-STVG), which seeks to adaptively generate object queries via exploring target-
specific cues from the given video-text pair, for improving STVG. The key lies in
two simple yet effective modules, comprising text-guided temporal sampling (TTS)
and attribute-aware spatial activation (ASA), working in a cascade. The former
focuses on selecting target-relevant temporal cues from a video utilizing holistic
text information, while the latter aims at further exploiting the fine-grained visual
attribute information of the object from previous target-aware temporal cues, which
is applied for object query initialization. Compared to existing methods leveraging
zero-initialized queries, object queries in our TA-STVG, directly generated from a
given video-text pair, naturally carry target-specific cues, making them adaptive
and better interact with multimodal features for learning more discriminative in-
formation to improve STVG. In our experiments on three benchmarks, including
HCSTVG-v1/-v2 and VidSTG, TA-STVG achieves state-of-the-art performance
and significantly outperforms the baseline, validating its efficacy. Moreover, our
TTS and ASA modules are designed for general purpose. When applied to existing
Transformer-based methods such as TubeDETR and STCAT, we show substantial
performance gains, showing its generality. Our code and results will be released.

1 INTRODUCTION

Spatio-temporal video grounding (or STVG) aims at spatially and temporally localizing the target of
interest from an untrimmed video given its textual description (Zhang et al., 2020b). As a multimodal
task, it requires to understand the spatio-temporal content from videos and accurately connect it to the
corresponding textual expression. Owing to its importance in multimodal video understanding and
key applications such as content-based video retrieval, robotics, etc, STVG has attracted increasing
interest with many models proposed (Zhang et al., 2020a;b; Tang et al., 2021; Su et al., 2021).

Recently, inspired by the compact end-to-end pipeline of Transformer-based detection (Carion et al.,
2020), researchers have introduced the Transformer (Vaswani et al., 2017) for STVG given that they
both are localization task, and achieved previously unattainable result (Yang et al., 2022a; Jin et al.,
2022; Lin et al., 2023b; Gu et al., 2024). Similar to Transformer-based detection (Carion et al., 2020),
existing Transformer-based STVG methods often adopt a set of spatial and temporal object queries,
and then leverage them to learn target position information by iterative interactions with multimodal
features (generated by the encoder) from video and text for spatio-temporal target localization. In
these approaches (Yang et al., 2022a; Jin et al., 2022; Lin et al., 2023b; Gu et al., 2024), the object
queries are usually simply initialized using zeros (see Fig. 1 (a)). Despite promising results, such
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Figure 1: Comparison between existing Transformer-based STVG methods applying zero-initialized
queries for STVG in (a) and our proposed Target-Aware Transformer-based STVG generating queries
with target-aware cues from video and text for STVG in (b). Best viewed in color for all figures.

zero-initialized object queries, due to the lack of effective target-specific semantic cues, are difficult
to learn discriminative target position information from the interactions with multimodal features in
complicated scenarios, e.g., with distractors or occlusion, leading to performance degradation.

Figure 2: Comparison of the zero-initialized
queries and groundtruth-generated queries for
STVG. We see the target-specific information
in groundtruth largely enhances results.

In the decoder procedure, object queries expect to
learn target position information from multimodal
features. If object queries know the target from the
very beginning, or in other words, they know what
to learn, they can employ target-specific cues as a
prior to guide themselves for better interaction with
the multimodal features, which benefits learning
more discriminative features for better localization.
In order to validate this, we conduct the oracle ex-
periment by generating spatial and temporal object
queries from groundtruth, and compare the perfor-
mance using such groundtruth-generated queries
and zero-initialized queries. The architecture in
this oracle experiment simply consists of feature
extraction, an encoder and a decoder, and please re-
fer to the supplementary material for details due to
limited space. Fig. 2 shows the comparison results
on HCSTVG-v1 (Tang et al., 2021), and more comparison on other benchmarks can be found in
Sec. A in the supplementary material. From Fig. 2, we can clearly observe that, when introducing the
target-specific information from groundtruth to initialize object queries, the STVG performance can
be significantly improved, e.g., from 49.9% to 68.9% in m_IoU (18.0% absolute gains) and 36.4% to
49.9% in m_vIoU (13.5% absolute gains), fully verifying effectiveness of target-specific information
in initializing queries for accurate STVG.

Thus motivated by the above, we introduce a novel Target-Aware Transformer for STVG (TA-STVG),
which seeks to adaptively initialize object queries by exploring target-specific cues from videos for
spatio-temporal target localization (see Fig. 1 (b)). The crux of our TA-STVG lies in two simple
yet effective modules, including text-guided temporal sampling (TTS) and attribute-aware spatial
activation (ASA). These two modules work in a cascade in the TA-STVG, from coarse to fine, to
generate the target-aware queries for subsequent localization. Specifically, TTS, from the temporal
perspective, firstly aims to select target-relevant frames from the video using holistic information
from the textual expression. To enhance the temporal selection, both appearance and motion cues are
jointly considered in TTS. Then, from a spatial perspective, ASA focuses on exploring fine-grained
visual semantic information of the object from the previous target-aware temporal cues learned by
TTS. Particularly, attributes such as color and action will be exploited in the ASA to activate spatial
features most relevant to the target object. Considering the specificity of object queries for spatial
and temporal decoders, different activation features based on the specific attributes will be generated.
Finally, features from ASA are used to initialize queries, which are fed to decoders, interacting with
multimodal features from the encoder, to learn target position information for localization.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In this work, we employ the DETR-similar architecture for TA-STVG, similar to existing Transformer-
based STVG methods (Yang et al., 2022a; Jin et al., 2022; Gu et al., 2024), but difference is that,
our object queries, for both spatial and temporal localization, are directly generated from the given
video-text pair, and thus naturally carry the target-specific cues, making them adaptive and better
interact with multimodal features for learning more discriminative information to improve STVG.
Our attribute-aware activation is related to Lin et al. (2023b) that activates the spatially attended target
using intra-frame visual cues and Tan et al. (2024) that jointly learns feature alignment and regression
using weak supervision signals. The difference is that, our ASA mines target-relevant spatial cues
from features by TTS for learning target-aware queries to enhance target localization. To our best
knowledge, TA-STVG is the first to incorporate target-specific cues for object query generation to
improve STVG. To validate its efficacy, we conduct experiments on HCSTVG-v1/-v2 (Tang et al.,
2021) and VidSTG (Zhang et al., 2020b), and results show that TA-STVG outperforms previous STVG
methods by achieving new state-of-the-arts, evidencing effectiveness of our solution. Moreover, our
TTS and ASA are designed for general purpose and thus applicable to other architectures. We apply
TTS and ASA on top of two approaches, including the seminal Transformer-based TubeDETR (Yang
et al., 2022a) and STCAT (Jin et al., 2022), significantly improving their performance, as shown in
our experiments, further highlighting the generality of our approach.

In summary, the major contributions of this work are as follows: ♠ We present the TA-STVG, a novel
Target-Aware Transformer for improving STVG by exploring target-specific cues for object queries;
♥ We propose text-guided temporal sampling (TTS) for selecting target-relevant temporal cues from
the videos; ♣ We present attribute-aware spatial activation (ASA) to exploit fine-grained visual
semantic attribute information for object query generation; and ♦ TA-STVG in extensive experiments
achieves new state-of-the-art performance and shows good generality, demonstrating its efficacy.

2 RELATED WORK

Spatio-Temporal Video Grounding. Spatio-temporal video grounding (STVG) (Zhang et al., 2020b)
aims to spatially and temporally localize the target of interest, given its free-form of textual description,
from an untrimmed sequence. Early STVG approaches (Zhang et al., 2020b;a; Tang et al., 2021)
mainly consists of two stages, first generating candidate proposals from the video with a pre-trained
detector and then selecting correct proposals based on the textual expression. To eliminate the heavy
dependency on the pre-trained detection model, recent methods (Su et al., 2021; Yang et al., 2022a;
Jin et al., 2022; Lin et al., 2023b; Talal Wasim et al., 2024; Gu et al., 2024), inspired by Transformer,
switch to the one-stage pipeline that directly generates a spatio-temporal tube for target localization,
without relying on any external detectors. Owing to the compact end-to-end training pipeline, such a
one-stage framework demonstrates superior performance compared to previous two-stage algorithms.
Our TA-STVG also belongs to the one-stage Transformer-based type. However, different from the
aforementioned Transformer-based approaches that simply follows (Carion et al., 2020) to leverage
zero-initialized object queries for target localization, TA-STVG innovatively exploits target-specific
cues from the video-text pair for object query generation, making it adaptive to various scenarios and
better interact with multimodal features in the decoder for more accurate localization.

Temporal Grounding. Temporal grounding focuses on localizing specific targets or events from
the video given the textual expression. Being relevant to STVG, it requires temporally localizing the
target of interest, but the difference is that temporal grounding does not require to perform the spatial
bounding box localization. In recent years, many methods (Cao et al., 2022; Chen et al., 2021; Mun
et al., 2020; Hao et al., 2022; Wang et al., 2023a; Zhang et al., 2023; Barrios et al., 2023; Lin et al.,
2023a) have been proposed for temporal grounding. For instance, the work of (Wang et al., 2023a)
introduces a pre-training approach for improving video temporal grounding. The method in (Lin
et al., 2023a) presents a unified framework for various video temporal grounding tasks. The approach
in (Chen et al., 2021) proposes to learn complementary features from different modalities including
images, flow, and depth for temporal grounding. Different than these works, we focus on the more
challenging STVG involved with spatial and temporal localization of the target.

Transformer-based Detection. Detection is a fundamental component in computer vision. Recently,
the seminal work DETR (Carion et al., 2020) has applied Transformer (Vaswani et al., 2017) for
detection with impressive performance, and later been further improved in numerous extensions (Sun
et al., 2021; Zhu et al., 2021; Zheng et al., 2023; Ye et al., 2023). Similar to other Transformer-based

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The man in 
green clothes 
walks behind 

the man in 
brown

Video

Text

2D
 

B
ackbone

3D
 

B
ackbone

Text
B

ackbone

�ℱ𝑎𝑎 �ℋ𝑎𝑎

Text-guided Tem
poral Sam

pling 
(TSS) in Sec. 3.2

�𝒳𝒳𝑎𝑎

�𝒳𝒳𝑚𝑚

A
ttribute-aw

are Spatial A
ctivation 

(A
SA

) in Sec. 3.3

AvgPooling
AvgPooling

C
opy

C
opy

𝒬𝒬0𝑠𝑠

�ℱ𝑡𝑡

�ℱ𝑚𝑚 �ℋ𝑚𝑚

�ℱ𝑡𝑡

𝒬𝒬0𝑡𝑡

Initial Spatial 
Queries

Initial Temporal 
Queries

Spatio-Temporal 
Target Localization

Input Multimodal Encoder Target-aware Query Generation Decoder Output

D
eC

oncat

ℱ

M
ultim

odal Feature Fusion in Sec. 3.1

ℱ

Spatial D
ecoder 

in Sec. 3.4
Tem

poral D
ecoder 

in Sec. 3.4

The man in 
green clothes 
walks behind 

the man in 
brown

Video

Text

2D
 

B
ackbone

3D
 

B
ackbone

Text
B

ackbone

�ℱ𝑎𝑎 ℛ𝑎𝑎

Text-guided Tem
poral Sam

pling 
(TSS) in Sec. 3.2

𝒜𝒜𝑎𝑎

𝒜𝒜𝑚𝑚

A
ttribute-aw

are Spatial A
ctivation 

(A
SA

) in Sec. 3.3

AvgPooling
AvgPooling

R
epeat

R
epeat

𝒬𝒬0𝑠𝑠

�ℱ𝑡𝑡

�ℱ𝑚𝑚 ℛ𝑚𝑚

�ℱ𝑡𝑡

𝒬𝒬0𝑡𝑡

Initial Spatial 
Queries

Initial Temporal 
Queries

Input Multimodal Encoder Target-aware Query Generation Decoder Output

D
eC

oncat

�ℱ

M
ultim

odal Feature Fusion in Sec. 3.1

Spatial D
ecoder 

in Sec. 3.4
Tem

poral D
ecoder 

in Sec. 3.4
Temporal 

Head

Tube

Spatial 
Head

[� ℱ
𝑎𝑎

,� ℱ
𝑡𝑡]

[� ℱ
𝑚𝑚

,� ℱ
𝑡𝑡]

Figure 3: Overview of TA-STVG, which exploits target-specific information from the video and text
(i.e., features from multimodal encoder) for generating spatial and temporal object queries for STVG.

STVG works, our method employs the DETR-similar architecture for STVG. The difference is that
we propose to learn adaptive object queries from the video-text pair, instead of utilizing zero object
queries following (Carion et al., 2020) as in existing STVG methods, for better target localization.

Vision-Language Modeling. Vision-language modeling (VLM) aims to to process both visual content
and language for multimodal understanding. In recent years, it has attracted great attention from the
researchers and been studied in various tasks including visual question answering (Antol et al., 2015;
Jiang et al., 2020; Chen et al., 2022; Le et al., 2020; Shao et al., 2023), visual captioning (You et al.,
2016; Aneja et al., 2018; Huang et al., 2019; Zhou et al., 2018; Iashin & Rahtu, 2020; Shen et al.,
2023; Seo et al., 2022; Yang et al., 2023), navigation (Zhu et al., 2020; Li & Bansal, 2023), text-to-
image generation (Li et al., 2019; Ramesh et al., 2021), referring expression segmentation (Yang et al.,
2022b; Liu et al., 2023), vision-language tracking (Guo et al., 2022; Zhou et al., 2023), etc. Different
from these tasks, we focus on vision-language modeling for spatio-temporal video grounding.

3 OUR APPROACH

Overview. In this work, we propose TA-STVG, which aims to generate target-aware object queries for
improving STVG. Motivated by DETR (Carion et al., 2020), TA-STVG utilizes the encoder-decoder
framework which consists of a multimodal encoder and a spatio-temporal grounding decoder. As
shown in Fig. 3, the multimodal encoder (§3.1) extracts and interacts visual and textual features, while
the decoder (§3.4) learns target position information using target-aware object queries generated with
TTS (§3.2) and ASA (§3.3) and their interaction with the multimodal feature for target localization.

3.1 MULTIMODAL ENCODER

Given a video and the textual expression, the multimodal encoder aims at obtaining vision-language
features for target-aware query generation and the subsequent decoder for localization. It comprises
visual and textual feature extraction and multimodal feature fusion as described in the following.

Visual and Textual Feature Extraction. For the video, we extract its both appearance and motion
features to leverage rich static and dynamic information. Specifically, we first sample Nv frames
I = {Ii}Nv

i=1 from the video. Afterwards, ResNet-101 (He et al., 2016) and VidSwin (Liu et al., 2022)
are respectively utilized for appearance and motion feature extraction. The appearance feature is
denoted as Fa = {fa

i }
Nv
i=1, where fa

i ∈ RH×W×Ca with H , W and Ca the height, width and channel
dimensions, and the motion feature is represented using Fm = {fm

i }Nv
i=1, where fm

i ∈ RH×W×Cm

with Cm the channel dimension.

For the textual expression, we use RoBERTa (Liu et al., 2019) to extract its feature. We first tokenize
it to obtain a word sequence W = {wi}Nt

i=1 containing Nt words. Then, we apply RoBERTa on W
to generate the textual feature Ft = {f t

i }
Nt
i=1, where f t

i ∈ RCt with Ct the textual feature channel.

Multimodal Feature Fusion. For enhancing feature representation for STVG, we fuse multimodal
features of appearance feature Fa, motion feature Fm, and text feature Ft, similar to (Gu et al., 2024).
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(a) Text-guided Temporal Sampling (TTS) (b) Attribute-aware Spatial Activation (ASA)

s

Figure 4: Illustration of the architecture for TTS in (a) and ASA in (b).

Specifically, we first project them to the same channel number D and then concatenate corresponding
features to produce the multimodal feature F = {fi}Nv

i=1 as follows,

fi = [fa
i1 , f

a
i2 , ..., f

a
iH×W︸ ︷︷ ︸

appearance features fa
i

, fm
i1 , f

m
i2 , ..., f

m
iH×W︸ ︷︷ ︸

motion features fm
i

, f t
1, f

t
2, ..., f

t
Nt︸ ︷︷ ︸

textual features Ft

] (1)

where fi is the multimodal feature in frame i. Then, we perform feature fusion using the self-attention
encoder (Vaswani et al., 2017) to obtain the multimodal feature F̃ as follows,

F̃ = SelfAttEncoder(F + Epos + Etyp) (2)

where Epos and Etyp denote position and type embeddings imposed on F , and SelfAttEncoder(·)
is the self-attention encoder with L (L=6) standard self-attention encoder blocks. Please refer to
Sec. B in supplementary material for architecture of SelfAttEncoder(·).

3.2 TEXT-GUIDED TEMPORAL SAMPLING (TTS)

To generate target-specific object queries, we first develop a text-guided temporal sampling (TTS)
module to identify and sample frames relevant to the target guided by holistic textual features.
Specifically, it will predict a relevance score between each frame and text and then sample video
frames with their relevance scores above a predefined threshold. To enhance the frame selection in
TTS, both appearance and motion are considered in computing the relevance, as shown in Fig. 4 (a).

More concretely, given multimodal feature F̃ from the multimodal encoder (§3.1), we first extract
the appearance, motion and textual features, respectively denoted by F̃a, F̃m, and F̃t, from F̃ via
deconcatenation [F̃a, F̃m, F̃t] = DeConcat(F̃). Afterwards, we perform average pooling on F̃a and
F̃m and channel-average operation on F̃t to obtain frame-level appearance and motion features and
the holistic textual feature,

Ga = AvgPooling(F̃a) Gm = AvgPooling(F̃m) Gt = Avg(F̃t) (3)

where Ga, Gm (both ∈ RNv×D) and Gt (∈ R1×D) are averaged appearance, motion, and text features.

To measure the relevance of each frame with the text, we fuse the textual feature into appearance and
motion features via two cross-attention blocks, respectively. Specifically, the appearance feature Ga

or motion feature Gm serves as query, while the textual feature Gt as key/value. After this, MLP is
performed on the appearance and motion features to predict relevance scores for each frame in terms
of appearance and motion. As shown in Fig. 4 (a), this process can be expressed as follows,

sa = MLP(CA(CA(Ga,Gt),Gt)) sm = MLP(CA(CA(Gm,Gt),Gt)) (4)

where sa and sm are the relevance scores regarding appearance and motion, CA(z,u) denotes the
cross-attention block (CAB) (Vaswani et al., 2017) with z generating query and u key/value, and
MLP(·) is the MLP.
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Text: The girl with yellow hair walks in and stops. 

(a) Temporal relevance score 𝑠 predicted by TTS (red rectangle: groundtruth; pink rectangles: sampled frames)

(b) Appearance (“yellow”) activation ℳ! by ASA (c) Motion (“walks” and “stops”) activation ℳ" by ASA

Figure 5: Illustration of temporal relevance score s by TTS in (a) and attribution-aware spatial
activation (in partial selected frames) including appearance and motion activation in (b) and (c). We
can see from (a) that TTS can accurately select target-relevant frames, and from (b) and (c) that ASA
precisely localizes attributes, e.g., color “yellow” and action “walks in, stops”, related to the target.

Considering both appearance and motion are critical when determining target-relevant frames, we
combine sa and sm, controlled by δ, to compute the final relevance score s for each frame, as follows,

s = δ × sa + (1− δ)× sm (5)

With s, we leverage it to sample target-relevant appearance and motion features. Specifically, we only
keep appearance and motion features in frames whose relevance scores are above the pre-defined
threshold θ, and this process can be written as follows,

Ra = sample(F̃a, s, θ) = {F̃a(i)|s(i) > θ}
Rm = sample(F̃m, s, θ) = {F̃m(i)|s(i) > θ}

(6)

where i ∈ [1, Nv] is the frame index. Ra and Rm are sampled target-relevant temporal appearance
and motion features, which will be used for extracting target-specific fine-grained attribute information.
Fig. 5 (a) shows an example of the temporal relevance score and selected temporal frames by TTS.
Please note, for Ra and Rm, their quantities are the same, because we set the same threshold θ for
both appearance and motion features, and sample Ra and Rm from F̃a and F̃m (F̃a and F̃m have
the same quantities) both based on the relevance score s generated by TTS (see Eq. (6)), which is .
Thus, their quantities are the same, and consistent with the number of frames sampled by TTS.

3.3 ATTRIBUTE-AWARE SPATIAL ACTIVATION (ASA)

To explore more fine-grained information of the target, we design an attribute-aware spatial activation
(ASA) module, which mines fine-grained visual semantic information from previous coarse-grained
temporal features Ra and Rm for object queries. Particularly, ASA considers appearance attribute
like color (e.g., “green”, “red”, etc) and shape (e.g., “small”, “tall”, etc) and motion attribute such as
action (e.g., “walk”, “ride”, etc) to generate fine-grained spatial features for the target. The intuition
is that, appearance attribute is important for spatial target localization, while motion attribute is
crucial in temporal localization, i.e., locating the start and end of the tube. In certain cases, even if
spatial localization of target is good enough in each frame, the accuracy is low due to the incapability
of temporally recognizing target action. Considering the specificity of queries for spatial and temporal
decoders, appearance and motion activation features based on specific attributes are generated.

Specifically, as shown in Fig. 4 (b), given the textual feature F̃t, we first extract the feature T̃t of the
subject (usually the target to localize) in the textual sentence from it. Due to limited space, please
refer to the Sec. D in supplementary material for subject extraction. Then, we repeat the subject
feature T̃t to match the number of frames in Ra and Rm, and the resulted feature is denoted as Tt.
After that, we learn the fine-grained spatial fine-grained features from Ra and Rm by interacting
them with Tt respectively using two cross-attention blocks. In specific, the subject feature Tt serves
as the query, while Ra and Rm as the key/value. By doing so, we can allow the subject feature to
learn relevant spatial features from appearance and motion. To enforce the learning of attribute-aware
spatial features, we propose to supervise ASA with explicit weak attribute labels generated from the
textual expression using multi-label classification losses for appearance and motion. The appearance
and motion are multi-class labels. Due to space limitation, we refer readers to our supplementary
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Text: The man in yellow clothes opens the door. 

Attention maps of zero-initialization queries Attention maps of our target-aware queries

Figure 6: Comparison of attention maps for zero-initialized object queries and the proposed target-
aware object queries in video frames in the spatial decoder. The red boxes indicate the foreground
target to localize. From this figure, we can clearly observe that the attention maps of our target-aware
object queries by TTS and ASA can better focus on the target object for localization.

material for details regrading the attribute label construction. The attribute classification is performed
with a linear projection layer followed with softmax. As in Fig. 4 (b), this can be written as follows,

ca = Softmax(Linear(CA(CA(Tt,Ra),Ra)))

cm = Softmax(Linear(CA(CA(Tt,Rm),Rm)))
(7)

where ca and cm represent classification scores for appearance and motion attributes, respectively,
and Linear(·) and Softmax(·) denote linear projection and softmax classification.

By supervising ca and cm with appearance and motion attribute labels, the subject feature Tt, serving
as query in cross-attention blocks, is able to adaptively learn fine-grained features relevant to attributes
from Ra and Rm for attribute classification. Therefore, the attention maps of Tt with Ra and Rm

can be explained as attribute-specific spatial activation in appearance and motion (Dosovitskiy et al.,
2021), and adopted to generate attribute features from Ra and Rm as follows,

Aa = Ma ⊗Ra Am = Mm ⊗Rm (8)

where Aa and Am are the target-specific attribute features and Ma and Mm the attribute-aware
spatial activation in appearance and motion. Fig. 5 (b) and (c) show the learned attribute activation.

Discussion. Please note that, besides our method, another way is to directly learn spatial activation of
the target (i.e., instance-level activation, not the attribute-specific activation) supervised by binary
masks generated from the groundtruth box. In this method, results after softmax in ASA will be
directly employed as the appearance and motion spatial activation for feature extraction (see details in
Sec. C in supplementary material). Despite simplicity, this will not enable the learning of fine-grained
unique attribute features, which are discriminative to distinguish the target from background. As
shown in an experiment later, our strategy of ASA shows better performance.

Generating Object Queries. After the TTS and ASA, the final fine-grained target-specific features
Aa and Am are used to generate the spatial and temporal object queries. Specifically, we simply use
average pooling on Aa and Am (note, reshaping is needed) and then apply the repeat operation to
obtain the initial spatial and temporal object queries Qs

0 and Qt
0 as follows,

Qs
0 = repeat(AvgPooling(Aa), Nv) Qt

0 = repeat(AvgPooling(Am), Nv) (9)

where repeat(v, k) denotes repeating v by k times. Afterwards, Qs
0 and Qt

0 are sent to the decoder
for spatial-temporal target localization as described later.

3.4 DECODER FOR SPATIO-TEMPORAL LOCALIZATION

To learn target position information, we employ spatial and temporal decoders, similar to existing
methods (Jin et al., 2022; Gu et al., 2024). In both decoders, object queries Qs

0 and Qt
0 will iteratively

interact with the multimodal feature F̃ from the encoder for target information learning, as follows,

Qs
K = SpatialDecoder(Qs

0, F̃a, F̃t) Qt
K = TemporalDecoder(Qt

0, F̃m, F̃t) (10)

where Qs
K and Qt

K are learned spatial and temporal queries after decoders, and SpatialDecoder(·, ·)
and TemporalDecoder(·, ·) denote spatial and temporal decoders with each containing K (K = 6)
self-attention blocks and cross-attention blocks. Fig. 6 shows the attention maps of our target-aware
queries for localization. Due to limited space, please refer to the Sec. B in supplementary material for
decoder architectures and additional attention maps of our target-aware queries for localization.

7
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Once generating Qs
K and Qt

K , we employ two heads to predict the final object boxes B = {bi}Nv
i=1

where bi ∈ R4 represents central position, width and height of predicted box in frame i, and start and
end probabilities of each frame H = {(hs

i , h
e
i )}

Nv
i=1, where start and end times are determined by the

maximum joint start and end probability.

3.5 OPTIMIZATION

In TA-STVG, we predict: (1) the temporal relevance scores sa and sm in terms of appearance and
motion in TTS, (2) the appearance and motion attribution classification scores ca and cm in ASA, and
(3) the spatial boxes B = {bi}Nv

i=1 in the spatial decoder, start timestamps Hs = {hs
i}

Nv
i=1 and end

timestamps He = {he
i}

Nv
i=1 in the temporal decoder. During training, with the groundtruth of motion

attribute c∗m, appearance attribute c∗a, start timestamps H∗
s , end timestamps H∗

e , and the bounding
box B∗, we can calculate the total loss L as

L =λTTS(LBCE(sa, (H∗
s ,H∗

e)) + LBCE(sm, (H∗
s ,H∗

e)))︸ ︷︷ ︸
loss of TTS

) + λASA(LBCE(c
∗
m, cm) + LBCE(c

∗
a, ca)︸ ︷︷ ︸

loss of ASA

)

+ λk(LKL(H∗
s ,Hs) + LKL(H∗

e ,He)︸ ︷︷ ︸
loss of temporal decoder

) + λlL1(B∗,B) + λuLIoU(B∗,B)︸ ︷︷ ︸
loss of spatial decoder

(11)

where LKL, L1, LIoU and LBCE are KL divergence, smooth L1, IoU, and binary cross-entropy losses.

4 EXPERIMENTS

Implementation. TA-STVG is implemented in Python using PyTorch (Paszke et al., 2019). Similar
to (Gu et al., 2024), we use pre-trained ResNet-101 (He et al., 2016) and RoBERTa-base (Liu et al.,
2019) from MDETR (Kamath et al., 2021) as 2D and text backbones, and VidSwin-tiny (Liu et al.,
2022) as 3D backbone. The number of attention heads is 8, and the hidden dimension of the encoder
and decoder is 256. The channel dimensions Ca, Cm, Ct, D are 2,048, 768, 768 and 256. δ and θ are
empirically set to 0.5 and 0.7. We use random resized cropping as augmentation method, producing
an output with a short side of 420. The video frame length Nv is 64, and the text sequence length Nt

is 30. During training, we use Adam (Kingma & Ba, 2015) with an initial learning rate of 2e-5 for
the pre-trained backbone and 3e-4 for the remaining modules (note that the 3D backbone is frozen).
The loss weight parameters λTTS, λASA, λk, λl, and λu are set to 1, 1, 10, 5, and 3, respectively.

Datasets and Metrics. We use three challenging datasets, i.e., HCSTVG-v1/v2 (Tang et al., 2021)
and VidSTG (Zhang et al., 2020b), for experiments. HCSTVG-v1 consists of 5,660 untrimmed videos
from movie scenes, with 4,500 and 1,160 video-text pairs in training and testing sets. HCSTVG-v2
expands upon HCSTVG-v1, and comprises 10,131 training, 2,000 validation, and 4,413 testing
samples. As test set annotations are not publicly available, results are reported based on the validation
set on HCSTVG-v2 as in other methods (Jin et al., 2022; Yang et al., 2022a; Gu et al., 2024; Lin
et al., 2023b). VidSTG contains 99,943 video-text pairs. It includes 44,808 declarative and 55,135
interrogative sentences, with training, validation, and test sets containing 80,684, 8,956, and 10,303
distinct sentences, and 5,436, 602, and 732 distinct videos, respectively.

Following (Zhang et al., 2020b; Yang et al., 2022a; Jin et al., 2022), we employ m_tIoU, m_vIoU, and
vIoU@R as the evaluation metrics. m_tIoU measures the ability of temporal grounding by computing
the average tIoU score across all the test set. m_vIoU compares the spatial grounding performance
by calculating the average of vIoU scores, and vIoU@R measures the performance using ratios of
samples with vIoU greater than R in test sets. For detailed calculation of these metrics, please kindly
refer to (Zhang et al., 2020b; Yang et al., 2022a; Jin et al., 2022).

4.1 STATE-OF-THE-ART COMPARISON

HCSTVG Datasets. To validate the efficacy of our method, we compare it against other approaches
on HCSTVG-v1/v2 datasets. Tab. 1 shows the comparison results on the HCSTVG-v1 test set. As
shown in Tab. 1, TA-STVG achieves state-of-the-art performance on all four metrics, especially
on the vIOU@0.3 metric, where it improves the score by 1.6% absolute gains compared to CG-
STVG (Gu et al., 2024). Compared to our baseline that does not employ TTS and ASA modules for
target-specific query generation and instead uses zero-initialized object queries, TA-STVG shows
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Table 1: Comparison on HCSTVG-v1 (%).
Methods m_tIoU m_vIoU vIoU@0.3 vIoU@0.5

STVGBert (Su et al., 2021) - 20.4 29.4 11.3
TubeDETR (Yang et al., 2022a) 43.7 32.4 49.8 23.5

STCAT (Jin et al., 2022) 49.4 35.1 57.7 30.1
SGFDN (Wang et al., 2023b) 46.9 35.8 56.3 37.1

STVGFormer (Lin et al., 2023b) - 36.9 62.2 34.8
CG-STVG (Gu et al., 2024) 52.8 38.4 61.5 36.3

Baseline (ours) 49.9 36.4 57.6 32.1
TA-STVG (ours) 53.0 ( +3.1) 39.1 ( +2.7) 63.1 ( +5.5) 36.8 ( +4.7)

Table 2: Comparison on HCSTVG-v2 (%).
Methods m_tIoU m_vIoU vIoU@0.3 vIoU@0.5

PCC (Yu et al., 2021) - 30.0 - -
2D-Tan (Tan et al., 2021) - 30.4 50.4 18.8

MMN (Wang et al., 2022) - 30.3 49.0 25.6
TubeDETR (Yang et al., 2022a) 53.9 36.4 58.8 30.6

STVGFormer (Lin et al., 2023b) 58.1 38.7 65.5 33.8
CG-STVG (Gu et al., 2024) 60.0 39.5 64.5 36.3

Baseline (ours) 58.3 37.9 62.6 33.0
TA-STVG (ours) 60.4 ( +2.1) 40.2 ( +2.3) 65.8 ( +3.2) 36.7 ( +3.7)

Table 3: Comparison with existing state-of-the-art methods on VidSTG (%).
Declarative Sentences Interrogative SentencesMethods

m_tIoU m_vIoU vIoU@0.3 vIoU@0.5 m_tIoU m_vIoU vIoU@0.3 vIoU@0.5
STGRN (Zhang et al., 2020b) 48.5 19.8 25.8 14.6 47.0 18.3 21.1 12.8
OMRN (Zhang et al., 2020a) 50.7 23.1 32.6 16.4 49.2 20.6 28.4 14.1

STGVT (Tang et al., 2021) - 21.6 29.8 18.9 - - - -
STVGBert (Su et al., 2021) - 24.0 30.9 18.4 - 22.5 26.0 16.0

TubeDETR (Yang et al., 2022a) 48.1 30.4 42.5 28.2 46.9 25.7 35.7 23.2
STCAT (Jin et al., 2022) 50.8 33.1 46.2 32.6 49.7 28.2 39.2 26.6

SGFDN (Wang et al., 2023b) 45.1 28.3 41.7 29.1 44.8 25.8 36.9 23.9
STVGFormer (Lin et al., 2023b) - 33.7 47.2 32.8 - 28.5 39.9 26.2

CG-STVG (Gu et al., 2024) 51.4 34.0 47.7 33.1 49.9 29.0 40.5 27.5
Baseline (ours) 49.5 32.3 44.9 31.6 48.6 27.5 38.5 25.6

TA-STVG (ours) 51.7 ( +2.2) 34.4 ( +2.1) 48.2 ( +3.3) 33.5 ( +1.9) 50.2 ( +1.6) 29.5 ( +2.0) 41.5 ( +3.0) 28.0 ( +2.4)

absolute performance gains of 3.1%, 2.7%, 5.5%, and 4.7% on the four metrics, which evidences
the effectiveness of our method. Tab. 2 shows the result on HCSTVG-v2 validation set. As shown,
TA-STVG achieves SOTA results on all four metrics. Compared to the baseline, TA-STVG improves
it with 2.1%, 2.3%, 3.2%, and 3.7% absolute gains on four metrics, validating its efficacy again.

VidSTG Dataset. We evaluate TA-STVG on VidSTG in Tab. 3. Different from HCSTVG, VidSTG
includes both declarative and interrogative sentences. As in Tab. 3, TA-STVG achieves state-of-the-art
results on all 8 metrics for both declarative sentences and interrogative sentences. With the help
of target-aware queries, TA-STVG significantly outperforms the baseline, improving m_tIoU and
m_vIoU scores by 2.2% and 2.1% for declarative sentences, and 1.6% and 2.0% for interrogative
sentences, respectively. These results once again validate the effectiveness of our TA-STVG.

4.2 ABLATION STUDY

Table 4: Ablations of TTS and ASA.

TTS ASA m_tIoU m_vIoU vIoU@0.3 vIoU@0.5
❶ - - 49.9 36.4 57.6 32.1
❷ ✓ - 52.2 38.4 61.7 36.2
❸ - ✓ 51.4 38.0 60.4 34.1
❹ ✓ ✓ 53.0 39.1 63.1 36.8

Impact of TTS and ASA. The TTS and ASA
are key components of TA-STVG. To vali-
date their effectiveness, we conducted ablation
experiments on HCSTVG-v1. As shown in
Tab. 4, without TTS and ASA (❶), our base-
line achieves a m_tIoU score of 49.9%. When
TTS is applied alone, the m_tIoU score is im-
proved 52.2% with 2.3% gains (❶ v.s. ❷).
When ASA is used alone, m_tIoU is improved to 51.4% with 1.5% gains (❶ v.s. ❸). Working
together, the best result of 53.0% is achieved with 3.1% absolute gains (❶ v.s. ❸). All these results
clearly validate the efficacy of TTS and ASA, working either alone or together, for improving STVG.

Impact of different branches in TTS. In TTS, we consider both appearance and motion, guided by
text, for temporal selection. To further analyze TTS, we conduct experiments on its different choices
on HCSTVG-v1. The results are reported in Tab. 5. As in Tab. 5, without using TTS (but using ASA),
TA-STVG achieves 51.4% m_tIoU score (❶). With the help of text-guided appearance branch, the
m_tIoU score is improved to 51.8% with 0.4% gains (❶ v.s. ❷). When using text-guided motion
branch, the m_tIoU score is improved to 52.3% with 0.9% gains (❶ v.s. ❸). When considering both
appearance and motion, the m_tIoU score is boosted to 53.0% with 1.6% gains (❶ v.s. ❹), showing
the best performance. It is worth noting that, if not using text as a guidance, the m_tIoU score will be
decreased from 53.0% to 51.8% (❺ v.s. ❹), validating the importance of textual guidance in TTS.

Impact of different attributes in ASA. In ASA, we consider both appearance and motion attributes
for fine-grained feature learning. For in-depth analysis, we conduct ablations for ASA on HCSTVG-
v1. As in Tab. 6, without using ASA (but using TTS), TA-STVG achieves 52.2% m_tIoU score
(❶). When considering appearance attribute, m_tIoU is improved to 52.3% (❶ v.s. ❷). When using
motion attribute, the m_tIoU score is improved to 52.7% (❶ v.s. ❸). When applying both appearance
and motion attributes, best result of 53.0% m_tIoU score is achieved with 0.8% gains (❶ v.s. ❺).
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Table 5: Ablations of branches in TTS. “TG”,
“AB”, and “MB” are the text-guided, appearance
and motion branches, respectively.

TG AB MB m_tIoU m_vIoU vIoU@0.3 vIoU@0.5
❶ - - - 51.4 38.0 60.4 34.1
❷ ✓ ✓ - 51.8 38.4 61.1 36.3
❸ ✓ - ✓ 52.3 38.3 62.0 36.5
❹ - ✓ ✓ 51.8 38.5 62.0 36.9
❺ ✓ ✓ ✓ 53.0 39.1 63.1 36.8

Table 6: Ablations of attributes in ASA. “SG”,
“AA”, and “MA” are the subject-guided, appear-
ance and motion attributes, respectively.

SG AA MA m_tIoU m_vIoU vIoU@0.3 vIoU@0.5
❶ - - - 52.2 38.4 61.7 36.2
❷ ✓ ✓ - 52.3 38.6 62.4 36.2
❸ ✓ - ✓ 52.7 38.6 61.3 36.6
❹ - ✓ ✓ 52.6 38.8 61.9 36.8
❺ ✓ ✓ ✓ 53.0 39.1 63.1 36.8

Table 7: Ablations of activation learning in ASA.

Activation m_tIoU m_vIoU vIoU@0.3 vIoU@0.5
❶ None 52.2 38.4 61.7 36.2
❷ Instance-act. 52.8 38.8 62.0 34.7
❸ Attribute-act. 53.0 39.1 63.1 36.8

Table 8: Ablation of δ.

δ m_tIoU m_vIoU
❶ 0.4 52.7 38.8
❷ 0.5 53.0 39.1
❸ 0.6 52.8 39.0

Table 9: Ablation of θ.

θ m_tIoU m_vIoU
❶ 0.6 52.3 38.5
❷ 0.7 53.0 39.1
❸ 0.8 52.6 38.6

Please note, the gain by jointly using appearance and motion attributes is the maximum, which shows
the necessity of both appearance and motion attributes for improvement. Similarly, when subject is
not used, m_tIoU is decreased from 53.0% to 52.6% (❺ v.s. ❹), showing the need of subject in ASA.

Analysis of activation learning strategy in ASA. In ASA, we propose learning attribute-aware spatial
activation for fine-grained target features. Another way is to learn the naive instance-level activation
(not attribute-specific activation) supervised by binary masks generated from the groundtruth boxes
as mentioned earlier (see these two strategies in Sec. C in supplementary material). We conduct
experiments in Tab. 7. As shown, the attribute-specific features (❸) in our strategy shows better result
compared to instance-level spatial activation (❷) or none activation (i.e., removing ASA) (❶).

Impact of parameter δ and θ in TTS. In TTS, there are two thresholds: δ controls the fusion of
appearance and motion scores, and θ controls the sampling of video frames. In order to explore the
impact of the two thresholds, we conduct the ablation experiment in Tab. 8 and Tab. 9. We can see
that the model performs best by setting δ to be 0.5 (❷ in Tab. 8) and θ to be 0.7 (❷ in Tab. 9).

Due to limited space, we show more experiments, analysis, and discussion of our work in supplemen-
tary material. Please kindly refer to our supplementary materials.

4.3 VALIDATION OF GENERALITY

Table 10: Incorporate the TTS and ASA modules into
different methods on HCSTVG-v1 (%). ♦: results
from the original paper. ♦: retrained results.

Method TTS + ASA m_tIoU m_vIoU vIoU@0.3 vIoU@0.5
❶ TubeDETR♦ - 43.7 32.4 49.8 23.5
❷ TubeDETR♦ - 43.2 31.6 49.1 25.5
❸ TubeDETR♦ ✓ 45.5 (+2.3) 33.5 (+1.9) 53.0 (+3.9) 27.1 (+1.6)

❹ STCAT♦ - 49.4 35.1 57.7 30.1
❺ STCAT♦ - 48.3 34.9 57.2 29.8
❻ STCAT♦ ✓ 50.0 (+1.7) 36.7 (+1.8) 59.9 (+2.7) 31.7 (+1.9)

To validate the generality of our approach, we
conduct experiments by applying TTS and
ASA to other Transformer-based methods, in-
cluding TubeDETR and STCAT. Since these
two methods only use appearance features, we
retain only the appearance branch to accom-
modate them. Tab. 10 reports the results on
HCSTVG-v1. Please note, we retrain Tube-
DETR and STCAT on our platform for fair
comparison. Although we try our best to re-implement these methods with provided code and
settings, our results differ slightly from the original paper with small discrepancy. As in Tab. 10, we
observe our method effectively and consistently improves TubeDETR and STCAT, achieving gains
of 2.3%/1.9% (❷ v.s. ❸) and 1.7%/1.8% (❺ v.s. ❻) in m_tIoU/m_vIoU, evidencing its generality.

5 CONCLUSION

This paper proposes a novel Target-Aware Transformer for STVG (TA-STVG) by exploiting target-
specific cues for query generation. The key lies in two simply but effective modules including TTS
and ASA. TTS aims to sample target-relevant temporal features using text as a guidance, while ASA
focuses on exploring fine-grained spatial features from coarse-grained temporal features. Working
in a cascade, they allow the exploration of target-specific cues, directly from the video-text pair,
for generating target-aware object queries, which learn better target position information for STVG.
Experiments on three datasets validates the efficacy of TA-STVG for improving target localization.
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SUPPLEMENTAL MATERIAL

To better understanding of this work, we offer additional details, analysis, and results as follow:

• A Details and More Results for the Oracle Experiments
In this section, we show more the detailed architecture for the Oracle experiment and report
results on more datasets.

• B Architectures for Self-attention Encoder, Spatial and Temporal Decoders
In this section, we show the details for the architecture of the self-attention encoder used for
multimodal feature fusion. In addition, we display the architectures of spatial and temporal
decoders.

• C Different Architectures of Activation Learning Strategies
In this section, we present details of architectures for activation learning strategies in ASA.

• D Text Pre-processing and Attribute Label Construction
This section will illustrate the necessary text pre-processing for subject extraction. In
addition, we will detail the construction of vocabulary for attribute labels.

• E Clarification for Multi-label Classification in ASA
In this section, we offer clarification for the multi-label classification in the ASA module.

• F Additional Ablation Experiments
In this section, we show additional ablation experiments on different loss weights and the
robustness of our method.

• G Additional Discussion
In this section, we provided additional discussions on our method.

• H Efficiency and Complexity Analysis
In this section, we provide analysis of efficiency and model complexity for our proposed
method and its comparisons with other state-of-the-art approaches.

• I Qualitative Analysis and Results
In this section, we display qualitative analysis including relevance score learned by TTS,
attribute-specific spatial activation learned by ASA, attention maps of object queries in the
decoder, and qualitative results for spatial-temporal target localization.

• J Limitation
We discuss the limitation of our method.

A DETAILS AND MORE RESULTS FOR THE ORACLE EXPERIMENTS

To verify whether target-aware queries benefit localization, we conduct an Oracle experiment by
generating spatial and temporal object queries from the ground-truth boxes. Similar to our TA-STVG,
the architecture in this Oracle experiment consists of a multimodal encoder, query generation, and a
decoder, as shown in Fig. 7. The difference with our method is that, in the Oracle experiment, object
queries are directly generated from the groundtruth boxes of the target using RoI pooling. In contrast,
our method generates object queries from the trained TTS and ASA modules.

We also conduct Oracle experiments on VidSTG (Zhang et al., 2020b) and HCSTVG-v2 (Tang et al.,
2021) datasets, as shown in Fig. 8. The results reveal that, compared to zero-initialized queries, the
groundtruth-generated queries have significantly improve performance on these two datasets, which
once again demonstrates the importance of using target-aware queries in enhancing the performance
of STVG.
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(a) Results for Oracle experiment on HCSTVG-v2 (b) Results for Oracle experiment on VidSG (D: Declarative Sentences; I Interrogative Sentences)

Figure 8: Comparison of performance using zero-initialized object queries and the groundtruth-
generated object queries for STVG on HCSTVG-v2 in (a) and VidSTG in (b).
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Figure 10: Architecture of decoders.

B ARCHITECTURES FOR SELF-ATTENTION ENCODER, SPATIAL AND
TEMPORAL DECODERS

B.1 ARCHITECTURE OF SELF-ATTENTION ENCODER

The self-attention encoder SelfAttEncoder(·), composed of L (L = 6) standard self-attention
encoder blocks, is used to fuse features from multiple modalities. The structure is shown in Fig. 9.

B.2 ARCHITECTURE OF SPATIAL AND TEMPORAL DECODER

Similar to previous methods (Gu et al., 2024; Jin et al., 2022), we use a spatial decoder to learn spatial
locations and a temporal decoder to learn temporal locations. The spatial decoder and the temporal
decoder each consist of K (K = 6) blocks, with each block comprising a self-attention module and a
cross-attention module. Fig. 10 illustrates the architectures of the spatial and temporal decoders.
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C DIFFERENT ARCHITECTURES OF ACTIVATION LEARNING STRATEGIES

In ASA, we compare two different strategies for learning spatial activation of the target. One is the
proposed attribute-aware spatial activation which learns attribute-specific information by attribute
classification, and the other one is to learn the naive instance-level spatial activation through binary
classification. Fig. 11 (a) and (b) show the detailed architectures of these strategies. Specifically, for
the instance-level spatial activation in (b), the classification results can be directly employed as the
spatial activation maps Ma and Mm to generated the spatially activated features. Compared to the
naive instance-level activation method, our attribute-specific spatial activate enables learning more
discriminative fine-grained features, which are crucial to distinguish the target from the background.

D TEXT PRE-PROCESSING AND ATTRIBUTE LABEL CONSTRUCTION

Subject Extraction. In the ASA module, we guide the learning of activation using the subject from
the text. To this end, we employ the Stanford CoreNLP tool1 to conduct syntactic analysis on the
text, transforming it into a structured graph. From the generated graph, we are able to extract the
subject along with the related adjectives for appearance such as color and shape and verbs for motion
such as various actions based on the part-of-speech tagging. The adjectives and verbs extracted are
respectively used to produce the appearance and motion attribute labels. It is worth noticing that,
since current STVG task focuses on localizing a single target (and thus there is only one subject in
the query), we extract only one subject representation from the textual sentence.

Vocabulary and Attribute Label Construction. The ASA module is trained by predicting attribute
classes. For this purpose, we have constructed two vocabularies for each dataset, including an
appearance vocabulary and a motion vocabulary. Please note that, all information is from the dataset
itself, without using extra information. Specifically, we first count the frequency of attribute words
(adjectives or verbs related to the subject.) in each textual description in the dataset, and then eliminate
words that appear less than 50 times. The remaining words constitute the vocabulary. The lengths of
the appearance vocabulary and motion vocabulary for HCSTVG-v1/v2 are 25 and 40, respectively,
while for VidSTG, they are 36 and 45, respectively. With the vocabulary, we can construct the
multi-class attribute label for each dataset based on the words in the textural expression.

E CLARIFICATION FOR MULTI-LABEL CLASSIFICATION IN ASA

In this section, we provide more clarifications for the multi-label classification in our ASA module.
Specifically, we answer the following questions: (a) Are the extracted subject features for appearance

1stanfordnlp.github.io/CoreNLP/
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Table 11: Ablations of different loss weights on HCSTVG-v1.

λTTS λASA m_tIoU m_vIoU vIoU@0.3 vIoU@0.5
❶ 1 1 53.0 39.1 63.1 36.8
❷ 1 5 52.9 39.0 63.3 36.5
❸ 5 1 52.8 38.7 62.8 35.9
❹ 5 5 52.6 38.8 62.7 36.3

Table 12: Comparison of existing methods in complex scenarios on Hard-HCSTVG-v1.

Method m_tIoU m_vIoU vIoU@0.3 vIoU@0.5
❶ TubeDETR 40.4 28.3 42.3 14.3
❷ STCAT 42.9 28.8 47.3 19.3
❸ CG-STVG 45.5 31.4 50.3 20.0
❹ Baseline (ours) 43.1 29.3 48.8 18.7
❺ TA-STVG (ours) 45.9 32.6 54.7 22.3

and motion identical? (b) What is the relationship between weak attribute labels and subject features,
and (c) do the weak labels update dynamically?

For (a): The extracted subject features for appearance and motion are identical. Because the subject
is usually the target of interest, and we want to extract its related appearance and motion features.
Thus, we use the identical subject as the query for learning both appearance and motion information.
For (b): The weak attribute labels and the subject both come from the given textual query (please
see Sec. D in our supplementary material on how to obtain these two). For example, in the textual
query ‘The tall girl is walking’, ‘girl’ is the subject, while ‘tall’ and ‘walking’ are the weak attribute
labels. The subject feature is used as the query to learn relevant attribute information from the visual
features for the goal of multi-attribute classification. For (c): Given the textual query, the weak label
for the weak attributes is generated from the query and is fixed (not updated).

F ADDITIONAL ABLATION EXPERIMENTS

Impact of different loss weights. Similarly to the previous approaches, our model is trained with
multiple losses, including TTS loss, ASA loss, spatial decoder loss, and temporal decoder loss. The
weights for the spatial and temporal decoder losses are kept consistent works such as STCAT (Jin
et al., 2022) and CG-STVG (Gu et al., 2024). The weights for TTS and ASA losses are empirically
set. We have conducted an ablation on the weights λTTS and λASA for TTS and ASA losses, and the
results are shown in Tab. 11. From Tab. 11, we observe that when setting λTTS and λASA to 1 and 1
(see ❶), respectively, we achieve the best performance.

Ablation on the robustness of TA-STVG. In order to show the robustness of our TA-STVG again
challenges, we manually select videos from a current benchmark HCSTVG-v1, in which the objects
suffer from heavy occlusions, similar distractors, or noisy text descriptions. The resulted subset is
called Hard-HCSTVG-v1 (it will be released together with our source code), containing 300 videos
selected from the test set of HCSTVG-v1. We show our performance on this Hard-HCSTVG-v1
and compare it with other state-of-the-art models in Tab. 12. From Tab. 12, we observe that, due
to increased complexity, all the models degrade on the more difficult Hard-HCSTVG-v1 (please
see Tab. 12 here and Tab. 1 in the paper). Despite this, our proposed TA-STVG still achieves
the best performance (45.9/32.6/54.7/22.3 in m_tIoU/m_vIoU/vIoU@0.3/vIoU@0.5, see ❺) by
outperforming CG-STVG (45.5/31.4/50.3/20.0 in m_tIoU/m_vIoU/vIoU@0.3/vIoU@0.5, see ❸),
STCAT (42.9/28.8/47.3/19.3 in m_tIoU/m_vIoU/vIoU@0.3/vIoU@0.5, see ❷), and TubeDETR
(40.4/28.3/42.3/14.3 in m_tIoU/m_vIoU/vIoU@0.3/vIoU@0.5, see ❶). Further more, TA-STVG
significantly improves its baseline under these challenges (❺ v.s. ❹). All of these are attributed to
our TTS and ASA modules that mine discriminative information of the target, even in challenging
scenarios, for localization, showing their efficacy for improving STVG.

G ADDITIONAL DISCUSSION

Discussion on construction of frame-specific object queries. In this work, the feature output by the
ASA module undergoes a pooling and repetition to generate the final object queries. The reasons
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for not constructing frame-specific object queries are two-fold: (1) For STVG, we aim to obtain
a global-level target-relevant query by pooling, which ensures the consistency in target prediction
across different frames, i.e., localizing the same target instance in all frames using global information;
and (2) Since the ASA module only extracts target features from frames selected by the previous TTS
module, not every frame has its own target-specific feature. As a result, it is hard to directly construct
frame-specific object queries in our work.

Discussion of computational consumption and future directions. Our TA-STVG needs a high de-
mand of computational resource. In fact, this is a common issue in the STVG field. The computational
complexity of STVG methods is high, because STVG models, particularly current Transformer-based
ones (including our work), require to receive all sampled video frames at once to make the prediction,
leading to the requirement of significant computational resources. That being said, our proposed mod-
ules TTS and ASA are lightweight and only bring about 4M parameters and 0.09T FLOPS compared
to the baseline method (please see Tab. 13). In the future, we will further explore efficient STVG
in the future, such as (1) how to develop lightweight STVG architecture by reducing unnecessary
network parameters, aiming to improve training and inference efficiency, and (2) how to leverage
parameter-efficient fine-tuning (PETR) techniques like adapter or prompt learning for STVG model
training, aiming to reduce the training complexity.

Discussion on handling videos with multiple targets. For STVG, the video may comprise multiple
targets which are described in a single textual query. Since the target of interest is often the unique
subject of the textual query, our model is able to leverage many descriptions such as motion and color
attributes via our proposed modules, as well as contextual information like interaction with others by
our spatio-temporal modeling in TA-STVG to distinguish the target from other objects.

Discussion on adapting TTS and ASA to other multimodal data. In this work, we introduce two
modules TTS and ASA for STVG. Besides STVG, TTS and ASA (with appropriate adaptations) can
be applied to work with other multimodal data. The essence of both TTS and ASA is to align two
different correlated modalities (in our work, they are visual and text modalities). Specifically, TTS
aims to align the frame-level feature with the global sentence-level feature, while ASA works to align
the region-level feature with the local word-level feature. For other multimodal data, such as audio
description and video, TTS and ASA can be used in a similar way. For example, TTS can be used to
align the video with the global audio description to remove irrelevant video content, and ASA can
be applied to align spatial regions in the video to more fine-grained local audio descriptions (like
attributes in textual description). For 3D videos, TTS and ASA can be used similarly.

Analysis on multi-label classification in the ASA. In this work, the extracted subject features for
appearance and motion are identical. Because the subject is usually the target of interest, and we
want to extract its related appearance and motion features. Thus, we use the identical subject as
the query for learning both appearance and motion information. we use the identical subject as the
query for learning both appearance and motion information. The attribute labels and the subject
both come from the given textual query. Given the textual query, the label for the weak attributes
is generated from the query, and is fixed. The subject feature is used as the query to learn relevant
attribute information from the visual features for the goal of multi-attribute classification.

Discussion on sampled target-relevant features on ASA. In our TA-STVG, the information of
sampled frames by TTS is crucial for the subsequent ASA (which extracts attribute-related target
information from sample frames for generating queries). We discuss the impact of sampled target-
relevant frames on ASA in two situations: (a) Part of the selected frames does not contain the target
object, while the other part contains the target. In this case, since the attention mechanism is utilized
in the subsequence ASA, it can still extract useful target-aware information from partial sampled
frames that contain the target while decreasing the weight of sampled frames without targets. As a
result, we can still generate effective target-aware query for improving STVG. For the worse case
in this situation, the subsequent ASA fails, the sampled frames from TTS alone, even only partial
frames contain targets, can still generate useful queries to enhance STVG performance, as shown
in Tab. 4 (see ❶ and ❷ in Tab. 4 in the paper). (b) All sampled frames from TTS do not contain
the target. If unfortunately this happens, then the final generated queries after ASA will not contain
effective target-aware information, which is equivalent to using randomness-initialized query for
STVG and thus may degrade the final performance. However, we think that this case might be very
occasional, as from Tab. 4 in the paper, we can see that TTS alone can significantly improve baseline
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Table 13: Comparison on model efficacy and complexity on VidSTG. The inference is conducted on
a single A100 GPU, and inference time refers to the duration of a single forward propagation.

Params Training InferenceMethods Trainable Total Time GPU Num Time GPU Mem FLOPS m_tIoU m_vIoU

TubeDETR (Yang et al., 2022a) 185M 185M 48 h 16 V100 0.40 s 24.4 1.45 T 48.1 30.4
STCAT (Jin et al., 2022) 207M 207M 12 h 32 A100 0.51 s 30.4 2.85 T 50.8 33.1

STVGFormer (Lin et al., 2023b) - - ∼48 h 8 A6000 - - - - 33.7
CG-STVG (Gu et al., 2024) 203M 231M 13.6 h 32 A100 0.61 s 29.7 3.03 T 51.4 34.0

Baseline (ours) 202M 230M 14 h 32 A100 0.53 s 28.2 2.88 T 49.5 32.3
TA-STVG (ours) 206M 234M 14.5 h 32 A100 0.57 s 28.4 2.97 T 51.7 34.4

performance. This means that TTS can usually generate effective sampled frames that contain the
target. We may leave the exploration of this to our future work.

Discussion on our innovation and contribution. In this work, we emphasize that, our innovation
and contribution is the idea of exploring target-aware queries for improving STVG, which has never
been studied in the STVG field. To achieve the target-aware queries for STVG, we proposed two
modules, TTS and ASA. The reason why implementing TTS and ASA with attention is because the
adopted cross-attention perfectly meets our demand in extracting object query features and is simply
enough (the pursuit of simple but effective architecture is always our motivation). In experiments, we
show our proposed TA-STVG is able to achieve the best performance on all three datasets, showing
the significant contribution of our idea of exploring target-aware for STVG. Moreover, our idea is
general and when applied to other frameworks such as STCAT and TubeDETR, we demonstrate
consistent improvements, evidencing its efficacy.

H EFFICIENCY AND COMPLEXITY ANALYSIS

To analyze the efficacy and complexity of our model, we conduct a comparative analysis involving
the number of parameters, training consumption, inference consumption, and FLOPS against other
existing methods. As shown in Tab. 13, we can see that, our proposed maintains similar computational
complexity (206/234M trainable/total parameters and 2.97T FLOPS) to existing state-of-the-art
models such as STCAT (207M/207M trainable/total parameters and 2.85T FLOPS) and CG-STVG
(203M/231M trainable/total parameters and 3.03T FLOPS), while achieving better performance with
the best m_tIoU of 51.7 and m_vIoU of 34.4 on VidSTG. Moreover, compared to the baseline method,
TA-STVG brings negligible parameter and computational increments (Baseline v.s. TA-STVG: 202M
v.s. 206M in trainable parameters, 230M v.s. 234M in total parameters, and 2.88T v.s. 2.97T in
FLOPS), yet significantly enhances the performance (m_tIoU improved from 49.5 to 51.7 in and
m_vIoU from 32.3 to 34.4), underscoring its superiority.

I QUALITATIVE ANALYSIS AND RESULTS

I.1 VISUALIZATION OF TEMPORAL RELEVANCE SCORE AND ATTRIBUTE-SPECIFIC
ACTIVATION

In this section, we show more visualizations of the temporal relevance scores learned by TTS and
attribute-specific spatial activation learned by ASA in Fig. 12. From Fig. 12, we can see that the
frames, selected by the temporal relevance score s, will be within the groundtruth, which shows the
selected features are target-relevant. In addition, the attribute-specific spatial attention maps Ma

and Mm can well localize the related attributes such as color and different actions of the target. F
instance, in the first example, the text is “The man in green clothes walks behind the man in brown”.
The highly relevant areas in the appearance attention map are mainly concentrated around the green
clothes, while in the motion attention map are focused on the legs. These attribute-specific spatial
activation helps with learning more discriminative fine-grained features for improving STVG.

I.2 ATTENTION MAPS OF OBJECT QUERIES IN THE SPATIAL DECODER

To show the role of target-aware queries, we visualize its attention maps in the spatial decoder with
comparison to the attention maps of zero-initialized queries, as shown in Fig. 13. As in Fig. 13, the
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Text: The man in green clothes walks behind the man in brown. 

Appearance (“green”) activation ℳ!  by ASA Motion (“walks”) activation ℳ" by ASA

Temporal relevance score 𝑠 predicted by TTS (red: groundtruth; pink: sampled frames)

Temporal relevance score 𝑠 predicted by TTS (red: groundtruth; pink: sampled frames)

Text: The man in yellow clothes opens the door. 

Appearance (“yellow”) activation ℳ!  by ASA Motion (“opens”) activation ℳ" by ASA

Figure 12: Visualization of temporal relevance score predicted by TTS and attribute-aware activation
score predicted by ASA. The red boxes indicate the temporal and spatial foreground object to localize.

Text: The man in green clothes walks behind the man in brown. 

Attention maps of zero-initialization queries Attention maps of our target-aware queries

Text: The girl in pink clothes moves to the man and hugs the man. 

Text: The man in the white shirt puts his wine bottle on the table. 

Attention maps of zero-initialization queries Attention maps of our target-aware queries

Attention maps of zero-initialization queries Attention maps of our target-aware queries

Figure 13: Comparison of attention maps for zero-initialized object queries and the proposed target-
aware object queries in video frames in the spatial decoder. The red boxes indicate the foreground
target to localize. From this figure, we can clearly observe that the attention maps of our target-aware
object queries by TTS and ASA can better focus on the target object for localization.

attention maps from zero-initialized queries are scattered, leading to imprecise target localization. In
contrast, the attention maps from target-aware queries highly focus on the target, demonstrating that
target-aware object queries can better learn target position information for improving STVG.

I.3 QUALITATIVE GROUNDING RESULTS

To further qualitatively validate the effectiveness of our proposed method, we provide its grounding
results and comparison with the baseline method (with zero-initialization queries) on HCSTVG-
v1/v2, as shown in Fig. 14. From Fig. 14, it is evident that our method outperforms the baseline in
both temporal and spatial localization. This suggests that queries with target-specific fine-grained
visual information can better learn the spatio-temporal position of the target, thereby enhancing
spatio-temporal grounding capability of the model.
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Baseline

GT
TA-STVG

Video

Text: The man in green clothes walks behind the man in brown. 

Video

Text: The white-collar man goes up the steps and walks forward. 

Video

Text: The man in yellow clothes opens the door. 

Video

Text: The girl with yellow hair walks in and stops. 

Baseline

GT
TA-STVG

Baseline

GT
TA-STVG

Baseline

GT
TA-STVG

Video

Text: The girl in pink clothes moves to the man and hugs the man. 

Baseline

GT
TA-STVG

Figure 14: Qualitative results of our TA-STVG (red), the baseline (blue), and ground truth (green).

For instance, in the first example, the task is to locate a man wearing green clothes and walking. The
baseline model, using zero-initialized queries, fails to locate the target due to incorrect identification.
In contrast, our model, through the proposed TTS and ASA modules, extracts target-related visual
information such as “green” and “walk” from the video as initial queries, accurately locating the target
object. The same comparison is observed in other examples. These results and comparison further
show that initializing queries with fine-grained visual information of target can improve STVG.

J LIMITATION

Despite achieving state-of-the-art performance on multiple datasets, our method has two main
limitations. First, although TTS and ASA are able to provide better initialization for object queries,
these queries still inevitably contain some noise compared to the desired information, resulting in
lower performance than the Oracle experiments with groundtruth-generated object queries. In the
future, one direction is to further improve the quality of our target-aware object queries. Second,
similar to all other STVG approaches, our method consumes a large amount of computational
resources for training, leading to lengthy training period. In future, we will study resource-friendly
STVG using techniques from parameter-efficient learning methods.
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